
Io, The Programming Language 



Contents
Introduction

Perspective

Getting Started
Downloading
Installing
Binaries
Running Scripts
Interactive Mode

Syntax
Expressions
Messages
Operators
Assignment
Numbers
Strings
Comments

Objects
Overview
Prototypes
Inheritance
Methods
Blocks
Forward
Resend
Super
Introspection

Control Flow
true, false and nil
Comparison
Conditions
Loops
Importing

Concurrency
Coroutines
Scheduler
Actors
Yield
Pause and Resume
Futures

Exceptions
Raise
Try and Catch
Pass
Custom Exceptions

Primitives
Object
List
Sequence
Ranges
File
Directory
Date
Networking
XML

Embedding
Coding Conventions
IoState
Values
Bindings

Appendix
Grammar

Credits

References

License

2



Introduction
Simplicity is the essence of happiness.
- Cedric Bledsoe

Io is a dynamic prototype-based programming language. The ideas in Io are mostly inspired 
by Smalltalk[1] (all values are objects), Self[2] (prototype-based), NewtonScript[3] (differential 
inheritance), Act1[4] (actors and futures for concurrency), Lisp[5] (code is a runtime 
inspectable / modifiable tree) and Lua[6] (small, embeddable).

Perspective

Why Another Language?

The focus of programming language research for the last thirty years has been to combine 
the high level expressive power of Smalltalk and the performance of low level languages with 
little attention paid to advancing expressive power itself. Io’s purpose is to refocus attention 
on expressiveness by exploring higher level dynamic programming features with greater 
levels of runtime flexibility and simplified programming syntax and semantics.

In Io, all values are objects (of which, anything can change at runtime, including slots, 
methods and inheritance), all code is made up of expressions (which are runtime inspectable 
and modifiable) and all expressions are made up of dynamic message sends (including 
assignment and control structures). Execution contexts themselves are objects and 
activatable objects such as methods/blocks and functions are unified into blocks with 
assignable scope. Concurrency is made more easily manageable through actors and 
implemented using coroutines for scalability.

Practical Goals

To be a language that is:

• simple
• conceptually simple and consistent
• easily embedded and extended

• powerful
• highly dynamic and introspective
• highly concurrent (via coroutines and async i/o)

• practical
• fast enough
• multi-platform
• a comprehensive set of standard packages which also have these goals



Getting Started
Downloading 
Io distributions are available at:

http://www.iolanguage.com

Installing
To build, from the top folder, run:

make 

Binaries will be placed in the _build/binaries subfolder. To install:

sudo make install 

or, if you’d like the install to simply link to your development folder:

sudo make linkInstall

and to run the unit tests:

make test

Addons

Some of Io’s addons require libraries that may not be installed on your system already. To 
install these automatically, type either:

su -c " sudo make aptget”

or:

su -c "make emerge”

or:

sudo make port

Depending on which package installer you use. Port is macports/darwinports (http://
www.macports.org/) for OSX.

Binaries
Io builds two executables and places them in the binaries folder. They are: 

io_static
io

The io_static executable contains the vm with a minimal set of primitives all statically linked 
into the executable. The io executable contains just enough to load the iovm dynamically 
linked library and is able to dynamically load io addons when they are referenced.

4

http://www.iolanguage.com
http://www.iolanguage.com


Running Scripts
An example of running a script: 

io samples/HelloWorld.io

There is no main() function or object that gets executed first in Io. Scripts are executed when 
compiled.

Interactive Mode
Running: 

./_build/binaries/io

Or, if Io is installed, running:

io

will open the Io interpreter prompt. 

You can evaluate code by entering it directly. Example:

Io> "Hello world!" println
==> Hello world!

Expressions are evaluated in the context of the Lobby: 

Io> print
[printout of lobby contents]

If you have a .iorc file in your home folder, it will be evaled before the interactive prompt 
starts. Also, rlwrap can be used to add line history features:

rlwrap io

Inspecting objects

You can get a list of the slots of an object like this:

Io> someObject slotNames

To show them in sorted order:

Io> someObject slotNames sort

5



doFile and doString

A script can be run from the interactive mode using the doFile method:

doFile(“scriptName.io”)

The evaluation context of doFile is the receiver, which in this case would be the lobby. To 
evaluate the script in the context of some other object, simply send the doFile message to it:

someObject doFile(“scriptName.io”)

The doString method can be used to evaluate a string:

Io> doString(“1+1”)
==> 2

And to evaluate a string in the context of a particular object:

someObject doString(“1 + 1”)

Command Line Arguments

Example of printing out command line arguments:

args foreach(k, v, write("'", v, "'\n"))

launchPath

The Lobby "launchPath" slot is set to the location on the initial source file that is executed.



Syntax
Less is more.
- Ludwig Mies van der Rohe

Expressions
Io has no keywords or statements. Everything is an expression composed entirely of 
messages, each of which is a runtime accessible object. The informal BNF description:

exp
message
arguments
symbol
terminator

::= { message | terminator }
::= symbol [arguments]
::= “(“ [exp [ { “,” exp } ]] “)”
::= identifier | number | string
::= “\n” | “;”

For performance reasons, String and Number literal messages have their results cached in 
their message objects.

Messages
Message arguments are passed as expressions and evaluated by the receiver. Selective 
evaluation of arguments can be used to implement control flow. Examples:

for(i, 1, 10, i println)
a := if(b == 0, c + 1, d)

In the above code, “for” and “if” are just normal messages, not special forms or keywords.

Likewise, dynamic evaluation can be used with enumeration without the need to wrap the 
expression in a block. Examples:

people select(person, person age < 30)
names := people map(person, person name)

Methods like map and select will typically apply the expression directly to the values if only 
the expression is provided:

people select(age < 30)
names := people map(name)

There is also some syntax sugar for operators (including assignment), which are handled by 
an Io macro executed on the expression after it is compiled into a message tree. Some 
sample source code:

Account := Object clone
Account balance := 0
Account deposit := method(amount,
	

 balance = balance + amount
)

account := Account clone
account deposit(10.00)
account balance println

7



Like Self[2], Io’s syntax does not distinguish between accessing a slot containing a method 
from one containing a variable.

Operators
An operator is just a message whose name contains no alphanumeric characters (other than 
":", "_", '"' or ".") or is one of the following words: or, and, return. Example: 

1 + 2

This just gets compiled into the normal message: 

1 +(2)

Which is the form you can use if you need to do grouping: 

1 +(2 * 4)

Standard operators follow C's precedence order, so: 

1 + 2 * 3 + 4

Is parsed as: 

1 +(2 *(3)) +(4)

User defined operators (that don't have a standard operator name) are performed left to right.

Assignment
Io has two assignment messages, “:=” and “=”. 

a := 1 

which compiles to:

setSlot(“a”, 1)

which creates the slot in the current context. And:

a = 1 

which compiles to:

updateSlot(“a”, 1)

which sets the slot if it is found in the lookup path or raises an exception otherwise. By 
overloading updateSlot and forward in the Locals prototype, self is made implicit in methods.

8



Numbers
The following are valid number formats: 

123
123.456
0.456
.456
123e-4
123e4
123.456e-7
123.456e2

Hex numbers are also supported (in any casing): 

0x0
0x0F
0XeE

Strings

Strings can be defined surrounded by a single set of double quotes with escaped quotes (and 
other escape characters) within. 

s := "this is a \"test\".\nThis is only a test."

Or for strings with non-escaped characters and/or spanning many lines, triple quotes can be 
used. 

s := """this is a "test".
This is only a test."""

Comments
Comments of the //, /**/ and # style are supported. Examples: 

a := b // add a comment to a line

/* comment out a group
a := 1
b := 2
*/

The "#" style is useful for unix scripts: 

#!/usr/local/bin/io

That's it! You now know everything there is to know about Io's syntax. Control flow, objects, 
methods, exceptions are expressed with the syntax and semantics described above. 



Objects
In all other languages we've considered [Fortran, Algol60, Lisp, APL, Cobol, Pascal], a 
program consists of passive data-objects on the one hand and the executable program that 
manipulates these passive objects on the other. Object-oriented programs replace this 
bipartite structure with a homogeneous one: they consist of a set of data systems, each of 
which is capable of operating on itself. - David Gelernter and Suresh J Jag

Overview
Io’s guiding design principle is simplicity and power through conceptual unification. 

concept
prototypes 
messages
blocks with assignable scope

unifies
objects, classes, namespaces, locals functions,
operators, calls, assignment, variable accesses
methods, closures, functions

Prototypes
In Io, everything is an object (including the locals storage of a block and the namespace 
itself) and all actions are messages (including assignment). Objects are composed of a list of 
key/value pairs called slots, and an internal list of objects from which it inherits called protos. 
A slot’s key is a symbol (a unique immutable sequence) and it’s value can be any type of 
object.
 

clone and init

New objects are made by cloning existing ones. A clone is an empty object that has the 
parent in it’s list of protos. A new instance’s init slot will be activated which gives the object a 
chance to initialize itself. Like NewtonScript[3], slots in Io are create-on-write.

me := Person clone

To add an instance variable or method, simply set it: 

myDog name := "rover"
myDog sit := method("I'm sitting\n" print)

When an object is cloned, its "init" slot will be called if it has one.

Inheritance
When an object receives a message it looks for a matching slot, if not found, the lookup 
continues depth first recursively in its protos. Lookup loops are detected (at runtime) and 
avoided. If the matching slot contains an activatable object, such as a Block or CFunction, it 
is activated, if it contains any other type of value it returns the value. Io has no globals and 
the root object in the Io namespace is called the Lobby.

Since there are no classes, there's no difference between a subclass and an instance. Here’s 
an example of creating a the equivalent of a subclass: 

Io> Dog := Object clone
==> Object_0x4a7c0 

10



The above code sets the Lobby slot "Dog" to a clone of the Object object. Notice it only 
contains a protos list contains a reference to Object. Dog is now essentially a subclass of 
Object. Instance variables and methods are inherited from the proto. If a slot is set, it creates 
a new slot in our object instead of changing the proto: 

  Io> Dog color := "red"
  Io> Dog
  ==> Object_0x4a7c0:
    color := "red"

Multiple Inheritance

You can add any number of protos to an object's protos list. When responding to a message, 
the lookup mechanism does a depth first search of the proto chain.

Methods
A method is an anonymous function which, when called, creates an object to store it's locals 
and sets the local’s proto pointer and it’s self slot to the target of the message. The Object 
method method() can be used to create methods. Example:

method((2 + 2) print)

An example of using a method in an object: 

Dog := Object clone
Dog bark := method("woof!" print)

The above code creates a new "subclass" of object named Dog and adds a bark slot 
containing a block that prints "woof!". Example of calling this method:

Dog bark

The default return value of a block is the  result of the last expression.

Arguments

Methods can also be defined to take arguments. Example: 

add := method(a, b, a + b)

The general form is: 

method(<arg name 0>, <arg name 1>, ..., <do message>)

11



Blocks
A block is the same as a method except it is lexically scoped. That is, variable lookups 
continue in the context of where the block was created instead of the target of the message 
which activated the block. A block can be created using the Object method block(). Example 
of creating a block:

b := block(a, a + b)

Blocks vs. Methods

This is sometimes a source of confusion so it's worth explaining in detail. Both methods and 
blocks create an object to hold their locals when they are called. The difference is what the 
"proto" and "self" slots of that locals object are set to. In a method, those slots are set to the 
target of the message. In a block, they're set to the locals object where the block was 
created. So a failed variable lookup in a block's locals continue in the locals where it was 
created. And a failed variable lookup in a method's locals continue in the object to which the 
message that activated it was sent.

call and self slots

When a locals object is created, it’s self slot is set (to the target of the message, in the case 
of a method, or to the creation context, in the case of a block) and it’s call slot is set to a Call 
object that can be used to access information about the block activation:

slot
call sender 
call message 
call activated
call slotContext
call target

returns
locals object of caller
message used to call this method/block
the activated method/block
context in which slot was found
current object

Variable Arguments

The “call message” slot in locals can be used to access the unevaluated argument 
messages. Example of implementing if() within Io: 

if := method(
	

 (call sender doMessage(call message argAt(0))) ifTrue( 
	

  call sender doMessage(call message argAt(1))) ifFalse( 
	

  call sender doMessage(call message argAt(2)))
)
myif(foo == bar, write("true\n"), write("false\n"))

The doMessage() method evaluates the argument in the context of the receiver.

A shorter way to express this is to use the evalArgAt() method on the call object:

if := method(
	

 call evalArgAt(0) ifTrue(
	

 call evalArgAt(1)) ifFalse( 
	

 call evalArgAt(2))
)

myif(foo == bar, write("true\n"), write("false\n"))



Forward
If an object doesn't respond to a message, it will invoke its "forward" method if it has one. 
Here’s an example of how to print the information related lookup that failed:

MyObject forward := method(
	

 write("sender = ", call sender, "\n")
	

 write("message name = ", call message name, "\n")
	

 args := call message argsEvaluatedIn(call sender)
	

 args foreach(i, v, write("arg", i, " = ", v, "\n") )
)

Resend
Sends the current message to the receiver's proto with the context of self. Example: 

A := Object clone
A m := method(write("in A\n"))
B := A clone
B m := method(write("in B\n"); resend)
B m

will print: 

in B
in A

For sending other messages to the receiver's proto, super is used.

Super
Sometimes it's necessary to send a message directly to a proto. Example: 

Dog := Object clone
Dog bark := method(writeln("woof!"))

fido := Dog clone
fido bark := method(
	

 writeln("ruf!")
	

 super(bark)
)

Both resend and super are implemented in Io.

13



Introspection
Using the following methods you can introspect the entire Io namespace. There are also 
methods for modifying any and all of these attributes at runtime.

slotNames

The slotNames method returns a list of the names of an object’s slots:

Io> Dog slotNames
==> list(“bark”)

protos

The protos method returns a list of the objects which an object inherits from:

Io> Dog protos
==> list(“Object”)

getSlot

The "getSlot" method can be used to get the value of a block in a slot without activating it: 

myMethod := Dog getSlot("bark")

Above, we've set the locals object’s "myMethod" slot to the bark method. It's important to 
remember that if you then want use the myMethod without activating it, you'll need to use the 
getSlot method: 

otherObject newMethod := getSlot("myMethod")

Here, the target of the getSlot method is the locals object.

code

The arguments and expressions of methods are open to introspection. A useful convenience 
method is “code”, which returns a string representation of the source code of the method in a 
normalized form.

Io> method(a, a * 2) code
==> “method(a, a *(2))”



Control Flow
true, false and nil
Io has predefined singletons for true, false and nil. true and false are used for boolean truth 
values and nil is typically used to indicate an unset or missing or unavailable value.

Comparison
The standard comparison operations (==, !=, >=, <=, >, <) return either the true or false.

Io> 1 < 2
==> true

Conditions

if

The Lobby contains the condition and loop methods. A condition looks like: 

if(<condition>, <do message>, <else do message>)

Example: 

if(a == 10, "a is 10" print)

The else argument is optional. The condition is considered false if the condition expression 
evaluates to false or nil, and is considered true otherwise.
The result of the evaluated message is returned, so: 

if(y < 10, x := y, x := 0)

is the same as: 

x := if(y < 10, y, 0)

Conditions can also be used in this form (though not as efficiently): 

if(y < 10) then(x := y) else(x := 2)

Else-if is supported: 

if(y < 10) then(x := y) elseif(y == 11) then(x := 0) else(x := 2)

As well as Smalltalk style ifTrue, ifFalse, ifNil and ifNonNil methods:

(y < 10) ifTrue(x := y) ifFalse(x := 2)

Notice that the condition expression must have parenthesis surrounding it.

15



Loops

loop

The loop method can be used for “infinite” loops:

loop(“foo” println)

while

Like conditions, loops are just messages. while() takes the arguments: 

while(<condition>, <do message>)

Example: 

a := 1
while(a < 10, 
	

 a print
	

 a = a + 1
)

for

for() takes the arguments: 

for(<counter>, <start>, <end>, <optional step>, <do message>)

The start and end messages are only evaluated once, when the loop starts.

Example: 

for(a, 0, 10, 
	

 a println
)

Example with a step:

for(x, 0, 10, 3, x println)

Which would print:

0
3
6
9

To reverse the order of the loop, add a negative step: 

for(a, 10, 0, -1, a println)

Note: the first value will be the first value of the loop variable and the last will be the last value 
on the final pass through the loop. So a loop of 1 to 10 will loop 10 times and a loop of 0 to 10 
will loop 11 times.

Example of using a block in a loop: 

test := method(v, v print)
for(i, 1, 10, test(i))



repeat

The Number repeat method is simpler and more efficient when a counter isn’t needed.

3 repeat(“foo” print)
==> foofoofoo

break and continue

The flow control operations break and continue are supported in loops. For example: 

for(i, 1, 10, 
	

 if(i == 3, continue)
	

 if(i == 7, break)
	

 i print
)

Would print: 

12456

return

Any part of a block can return immediately using the return method. Example: 

Io> test := method(123 print; return "abc"; 456 print)
Io> test
123
==> abc

Importing
The Importer proto implements Io’s built-in auto importer feature. If you put each of your 
proto’s in their own file, and give the file the same name with and “.io” extension, the Importer 
will automatically import that file when the proto is first referenced. The Importer’s default 
search path is the current working directory, but can add search paths using it’s 
addSearchPath() method. 

17



Concurrency
Coroutines
Io uses coroutines (user level cooperative threads), instead of preemptive OS level threads to 
implement concurrency. This avoids the substantial costs (memory, system calls, locking, 
caching issues, etc) associated with native threads and allows Io to support a very high level 
of concurrency with thousands of active threads.

Scheduler
The Scheduler object is responsible for resuming coroutines that are yielding. The current 
scheduling system uses a simple first-in-first-out policy with no priorities.

Actors
An actor is an object with it's own thread (in our case, it’s own coroutine) which it uses to 
process it's queue of asynchronous messages. Any object in Io can be sent an asynchronous 
message by placing a @ or @@ before the message name. (think of the "a" in @ as 
standing for "asynchronous") 

Example:

  result := self foo // synchronous 
  futureResult := self @foo // async, immediately returns a Future
  self @@foo // async, immediately returns nil

When an object receives an asynchronous message it puts the message in its queue and, if it 
doesn't already have one, starts a coroutine to process the messages in its queue. Queued 
messages are processed sequentially in a first-in-first-out order. Control can be yielded to 
other coroutines by calling "yield". Example: 

  obj1 := Object clone
  obj1 test := method(for(n, 1, 3, n print; yield))
  obj2 := obj1 clone
  obj1 @@test; obj2 @@test
  while(Scheduler activeActorCount > 1, yield)

This would print "112233".

Here's a more real world example: 

  HttpServer handleRequest := method(aSocket,
    HttpRequestHandler clone @@handleRequest(aSocket)
  )



Yield
An object will automatically yield between processing each of its asynchronous messages. 
The yield method only needs to be called if a yield is required during an asynchronous 
message execution. 

Pause and Resume
It's also possible to pause and resume an object. See the concurrency methods of the Object 
primitive for details and related methods.

Futures
Io's futures are transparent. That is, when the result is ready, they become the result. If a 
message is sent to a future (besides the two methods it implements), it waits until it turns into 
the result before processing the message. Transparent futures are powerful because they 
allow programs minimize blocking while also freeing the programmer from managing the fine 
details of synchronization.

Auto Deadlock Detection

An advantage of using futures is that when a future requires a wait, it will check to see if 
pausing to wait for the result would cause a deadlock and if so, avoid the deadlock and raise 
an exception. It performs this check by traversing the list of connected futures.

The @ and @@ Operators

The @ or @@ before an asynchronous message is just a normal operator message. So: 

  self @test

Gets parsed as(and can be written as): 

  self @(test)



Exceptions
Raise
An exception can be raised by calling raise() on an exception proto. 

exceptionProto raise(<description>)

There are three predefined children of the Exception proto: Error, Warning and Notification. 
Examples: 

Exception raise("generic foo exception")
Warning raise("No defaults found, creating them")
Error raise("Not enough memory")

Try and Catch
To catch an exception, the try() method of the Object proto is used. try() will catch any 
exceptions that occur within it and return the caught exception or nil if no exception is caught. 

e := try(<doMessage>)

To catch a particular exception, the Exception catch() method can be used. Example:

e := try(
    // ...
) 

e catch(Exception,
    writeln(e coroutine backtraceString)
)

The first argument to catch indicates which types of exceptions will be caught. catch() returns 
the exception if it doesn't match and nil if it does.

Pass
To re-raise an exception caught by try(), use the pass method. This is useful to pass the 
exception up to the next outer exception handler, usually after all catches failed to match the 
type of the current exception: 

e := try(
	

 // ...
) 

e catch(Error,
	

 // ...
) catch(Exception,
	

 // ...
) pass

20



Custom Exceptions
Custom exception types can be implemented by simply cloning an existing Exception type: 

  MyErrorType := Error clone



Primitives
Primitives are objects built into Io whose methods are typically implemented in C and store 
some hidden data in their instances. For example, the Number primitive has a double 
precision floating point number as it's hidden data and it’s methods that do arithmetic 
operations are C functions. All Io primitives inherit from the Object prototype and are mutable. 
That is, their methods can be changed. The reference docs contain more info on primitives.

This document is not meant as a reference manual, but an overview of the base primitives 
and bindings is provided here to give the user a jump start and a feel for what is available and 
where to look in the reference documentation for further details.

Object

The ? Operator

Sometimes it's desirable to conditionally call a method only if it exists (to avoid raising an 
exception). Example: 

if(obj getSlot("foo"), obj foo)

Putting a "?" before a message has the same effect: 

obj ?foo

List
A List is an array of references and supports all the standard array manipulation and 
enumeration methods. Examples:

Create an empty list:

a := List clone

Create a list of arbitrary objects using the list() method: 

a := list(33, "a")

Append an item:

a append(“b”)
==> list(33, “a”, “b”)

Get the list size:

a size
==> 3

Get the item at a given index (List indexes begin at zero):

a at(1)
==> "a"

Note: List indexes begin at zero and nil is returned if the accessed index doesn’t exist.

22



Set the item at a given index:

a atPut(2, "foo")
==> list(33, "a", "foo", "b")

a atPut(6, "Fred")
==> Exception: index out of bounds

Remove an item at a given index:

a remove(“foo”)
==> list(33, "a", "b")

Inserting an item at a given index:

a atPut(2, "foo")
==> list(33, "a", "foo", "56")

foreach

The foreach, map and select methods can be used in three forms:

Io> a := list(65, 21, 122)

In the first form, the first argument is used as an index variable, the second as a value 
variable and the 3rd as the expression to evaluate for each value.

Io> a foreach(i, v, write(i, “:”, v, “, ”))
==> 0:65, 1:21, 2:122,

The second form removes the index argument:

Io> a foreach(v, v println)
==> 65
21
122

The third form removes the value argument and simply sends the expression as a message 
to each value:

Io> a foreach(println)
==> 65
21
122

map and select

Io's map and select (known as filter in some other languages) methods allow arbitrary 
expressions as the map/select predicates.

Io> numbers := list(1, 2, 3, 4, 5, 6)

Io> numbers select(isOdd)
==> list(1, 3, 5)

Io> numbers select(x, x isOdd)
==> list(1, 3, 5)

23



Io> numbers select(i, x, x isOdd)
==> list(1, 3, 5)

Io> numbers map(x, x*2)
==> list(2, 4, 6, 8, 10, 12)

Io> numbers map(i, x, x+i)
==> list(1, 3, 5, 7, 9, 11)

Io> numbers map(*3)
==> list(3, 6, 9, 12, 15, 18)

The map and select methods return new lists. To do the same operations in-place, you can 
use selectInPlace() and mapInPlace() methods.

Sequence
In Io, an immutable Sequence is called a Symbol and a mutable Sequence is the equivalent 
of a Buffer or String. Literal strings(ones that appear in source code surrounded by quotes) 
are Symbols. Mutable operations cannot be performed on Symbols, but one can make 
mutable copy of a Symbol calling it’s asMutable method and then perform the mutation 
operations on the copy.

Common string operations

Getting the length of a string:

"abc" size
==> 3

Checking if a string contains a substring:

"apples" containsSeq("ppl")
==> true

Getting the character (byte) at position N:

"Kavi" at(1)
==> 97

Slicing:

"Kirikuro" slice(0, 2)
==> "Ki"

"Kirikuro" slice(-2)  # NOT: slice(-2, 0)!
==> "ro"

Io> "Kirikuro" slice(0, -2)
# "Kiriku"

Stripping whitespace:

"  abc  " adMutable strip
==> "abc"

"  abc  " asMutable lstrip
==> "abc  "

"  abc  " asMutable rstrip

24



==> "  abc"

Converting to upper/lowercase:

"Kavi" asUppercase
==> "KAVI"
"Kavi" asLowercase
==> "kavi"

Splitting a string:

"the quick brown fox" split
==> list("the", "quick", "brown", "fox")

Splitting by others character is possible as well.

"a few good men" split("e")
==> list("a f", "w good m", "n")

Converting to number:

"13" asNumber
==> 13

"a13" asNumber
==> nil

String interpolation:

name := "Fred"
==> Fred
"My name is #{name}" interpolate
==> My name is Fred

 
Interpolate will eval anything with #{} as Io code in the local context. The code may include 
loops or anything else but needs to return an object that responds to asString.

Ranges
A range is a container containing a start and an end point, and instructions on how to get 
from the start, to the end. Using Ranges is often convenient when creating large lists of 
sequential data as they can be easily converted to lists, or as a replacement for the for() 
method.

The Range protocol

Each object that can be used in Ranges needs to implement a "nextInSequence" method 
which takes a single optional argument (the number of items to skip in the sequence of 
objects), and return the next item after that skip value. The default skip value is 1. The skip 
value of 0 is undefined. An example:

Number nextInSequence := method(skipVal,
	

 if(skipVal isNil, skipVal = 1)
	

 self + skipVal
)

With this method on Number (it’s already there in the standard libraries), you can then use 
Numbers in Ranges, as demonstrated below:

1 to(5) foreach(v, v println)

25



The above will print 1 through 5, each on its own line.

File
Tthe methods openForAppending, openForReading, or openForUpdating are used for 
opening files. To erase an existing file before opening a new open, the remove method can 
be used. Example:

f := File with(“foo.txt)
f remove
f openForUpdating
f write(“hello world!”)
f close

Directory
Creating a directory object:

dir := Directory with(“/Users/steve/”)

Get a list of file objects for all the files in a directory:

files := dir files

==> list(File_0x820c40, File_0x820c40, ...)

Get a list of both the file and directory objects in a directory:

items := Directory items
==> list(Directory_0x8446b0, File_0x820c40, ...)

items at(4) name
==> DarkSide-0.0.1 # a directory name

Setting a Directory object to a certain directory and using it:

root := Directory clone setPath("c:/")
==> Directory_0x8637b8

root fileNames
==> list("AUTOEXEC.BAT", "boot.ini", "CONFIG.SYS", ...)

Testing for existance:

Directory clone setPath("q:/") exists
==> false

Getthing the current working directory:

Directory currentWorkingDirectory
==> “/cygdrive/c/lang/IoFull-Cygwin-2006-04-20”

Date
Creating a new date instance:

d := Date clone

26



Setting it to the current date/time:

d now

Getting the date/time as a number, in seconds:

Date now asNumber
==> 1147198509.417114

Date now asNumber
==> 1147198512.33313

Getting individual parts of a Date object:

d := Date now
==> 2006-05-09 21:53:03 EST

d
==> 2006-05-09 21:53:03 EST

d year
==> 2006

d month
==> 5

d day
==> 9

d hour
==> 21

d minute
==> 53

d second
==> 3.747125

Find how long it takes to execute some code:

Date cpuSecondsToRun(100000 repeat(1+1))
==> 0.02

27



Networking
All of Io’s networking is done with asynchronous sockets underneath, but operations like 
reading and writing to a socket appear to be synchronous since the calling coroutine is 
unscheduled until the socket has completed the operation, or a timeout occurs. Note that 
you’ll need to first reference the associated addon in order to cause it to load before using it’s 
objects. In these examples, you’ll have to reference “Socket” to get the Socket addon to load 
first.

Creating a URL object:

url := URL with("http://example.com/")

Fetching an URL:

data := url fetch  

Streaming a URL to a file:

url streamTo(File with("out.txt"))

A simple whois client:

whois := method(host,
	

 socket := Socket clone setHostName("rs.internic.net") setPort(43) 
	

 socket connect streamWrite(host, "\n")
	

 while(socket streamReadNextChunk, nil)
	

 return socket readBuffer
)

A minimal web server:

WebRequest := Object clone do(
	

 handleSocket := method(aSocket,
	

 	

 aSocket streamReadNextChunk
	

 	

 request := aSocket readBuffer betweenSeq("GET ", " HTTP")
	

 	

 f := File with(request) 
	

 	

 if(f exists, f streamTo(aSocket), aSocket streamWrite("not 
found"))
	

 	

 aSocket close
	

 )
)

WebServer := Server clone do(
	

 setPort(8000)
	

 handleSocket := method(aSocket, 
	

 	

 WebRequest clone @handleSocket(aSocket)
	

 )
)

WebServer start

XML
Using the XML parser to find the links in a web page:

xml := URL with("http://www.yahoo.com/") fetch asXML
links := xml elementsWithName("a") map(attributes at("href"))



29



Embedding
Coding Conventions
Io’s C code is written using object oriented style conventions where structures are treated as 
objects and functions as methods. Familiarity with these may help make the embedding APIs 
easier to understand.

Structures

Member names are words that begin with a lower case character with successive words each 
having their first character upper cased. Acronyms are capitalized. Structure names are 
words with their first character capitalized.

Example:

typdef struct 
{
	

 char *firstName;
	

 char *lastName;
	

 char *address;
} Person;

Functions

Function names begin with the name of structure they operate on followed by an underscore 
and the method name. Each structure has a new and free function.

Example:

List *List_new(void);
void List_free(List *self);

All methods (except new) have the structure (the "object") as the first argument the variable is 
named "self". Method names are in keyword format. That is, for each argument, the method 
name has a description followed by an underscore. The casing of the descriptions follow that 
of structure member names.

Examples:

int List_count(List *self); /* no argument */
void List_add_(List *self, void *item); /* one argument */
void Dictionary_key_value_(Dictionary *self, char *key, char *value); 

File Names

Each structure has it's own separate .h and .c files. The names of the files are the same as 
the name of the structure. These files contain all the functions(methods) that operate on the 
given structure.

30



IoState
An IoState can be thought of as an instance of an Io “virtual machine”, although “virtual 
machine” is a less appropriate term because it implies a particular type of implementation. 

Multiple states

Io is multi-state, meaning that it is designed to support multiple state instances within the 
same process. These instances are isolated and share no memory so they can be safely 
accessed simultaneously by different os threads, though a given state should only be 
accessed by one os thread at a time.

Creating a state

Here’s a simple example of creating a state, evaluating a string in it, and freeing the state:

#include "IoState.h"

int main(int argc, const char *argv[])
{
	

 IoState *self = IoState_new();
	

 IoState_init(self);
	

 IoState_doCString_(self, “writeln(\”hello world!\””);
	

 IoState_free(self);
	

 return 0;
}

Values
We can also get return values and look at their types and print them:

IoObject *v = IoState_doCString_(self, someString);
char *name = IoObject_name(v);
printf(“return type is a ‘%s’, name);
IoObject_print(v);

Checking value types

There are some macro short cuts to help with quick type checks:

if (ISNUMBER(v))
{
	

 printf(“result is the number %f”, IoNumber_asFloat(v));
} 
else if(ISSEQ(v))
{
	

 printf(“result is the string %s”, IoSeq_asCString(v));
}
else if(ISLIST(v))
{
	

 printf(“result is a list with %i elements”, IoList_rawSize(v));
}

Note that return values are always proper Io objects (as all values are objects in Io). You can 
find the C level methods (functions like IoList_rawSize()) for these objects in the header files 
in the folder Io/libs/iovm/source. 



Bindings
forthcoming..

Appendix

32



Grammar

messages

expression ::= { message | sctpad }
message ::= [wcpad] symbol [scpad] [arguments]
arguments ::= Open [argument [ { Comma argument } ]] Close
argument ::= [wcpad] expression [wcpad]

symbols

symbol ::= Identifier | number | Operator | quote
Identifier ::= { letter | digit | "_" }
Operator ::= { “:” | "." | "'" | "~" | "!" | "@" | "$" | "%" | "^" | "&" 
| "*" | "-" | "+" | "/" | "=" | "{" | "}" | "[" | "]" | "|" | "\" | "<" 
| ">" | "?" }

quotes

quote ::= MonoQuote | TriQuote
MonoQuote ::= """ [ "\"" | not(""")] """
TriQuote ::= """"" [ not(""""")] """""

spans

Terminator ::= { [seperator] ";" | "\n" | "\r" [seperator] }
seperator ::= { " " | "\f" | "\t" | "\v" }
whitespace ::= { " " | "\f" | "\r" | "\t" | "\v" | "\n" }
sctpad ::= { separator | Comment | Terminator }
scpad ::= { separator | Comment }
wcpad ::= { whitespace | Comment }

comments

Comment ::= slashStarComment | slashSlashComment | poundComment
slashStarComment ::= "/*" [not("*/")] "*/"
slashSlashComment ::= "//" [not("\n")] "\n"
poundComment ::= "#" [not("\n")] "\n"

numbers

number ::= HexNumber | Decimal
HexNumber ::= "0" anyCase("x") { [ digit | hexLetter ] }
hexLetter ::= "a" | "b" | "c" | "d" | "e" | "f"
Decimal ::= digits | "." digits | digits "." digits ["e" [-] 
digits]

characters

Comma ::= ","
Open ::= "(" | "[" | "{"
Close ::= ")" | "]" | "}"
letter ::= "a" ... "z" | "A" ... "Z"
digit ::= "0" ... "9"
digits ::= { digit }

33



Credits
Io is the product of all the talented folks who taken the time and interest to make a 
contribution. The complete list of contributors is difficult to keep track of, but some of the 
recent major contributors include; Jonathan Wright, Jeremy Tregunna, Mike Austin, Chris 
Double, Oliver Ansaldi, Baptist Heyman, Ken Kerahone, Christian Thater, Brian Mitchell, 
Zachary Bir and many more. The mailing list archives, repo inventory and release history are 
probably the best sources for a more complete record of individual contributions.

References

1

2

3

4

5

6

Goldberg, A et al. 
Smalltalk-80: The Language and Its Implementation
Addison-Wesley, 1983

Ungar, D and Smith, 
RB. Self: The Power of Simplicity
OOPSLA, 1987

Smith, W. 
Class-based NewtonScript Programming
PIE Developers magazine, Jan 1994

Lieberman
H. Concurrent Object-Oriented Programming in Act 1
MIT AI Lab, 1987

McCarthy, J et al. 
LISP I programmer's manual
MIT Press, 1960

Ierusalimschy, R, et al. 

Lua: an extensible extension language
John Wiley & Sons, 1996

34



License
Copyright 2006 Steve Dekorte. All rights reserved.

Redistribution and use of this document with or without modification, are permitted provided 
that the copies reproduce the above copyright notice, this list of conditions and the following 
disclaimer in the documentation and/or other materials provided with the distribution.

This documentation is provided "as is" and any express or implied warranties, including, but 
not limited to, the implied warranties of merchantability and fitness for a particular purpose 
are disclaimed. In no event shall the Io documentation project be liable for any direct, indirect, 
incidental, special, exemplary, or consequential damages (including, but not limited to, 
procurement of substitute goods or services; loss of use, data, or profits; or business 
interruption) however caused and on any theory of liability, whether in contract, strict liability, 
or tort (including negligence or otherwise) arising in any way out of the use of this 
documentation, even if advised of the possibility of such damage.

35


