next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: norm

norm

Synopsis

Description

i1 : printingPrecision = 2

o1 = 2
i2 : R = RR_100

o2 = RR
       100

o2 : RealField
i3 : M = 10*random(R^3,R^10)

o3 = | 4.6 5.8 6.6 7   8.6 2.7 5.1 8.4 9.6 1.9 |
     | 6.5 1.7 1.1 7.1 3.2 9.1 5.7 9.8 8.6 2.4 |
     | 6.6 3.7 2   4.2 2.2 3.9 6.3 4.4 4.1 1.9 |

             3       10
o3 : Matrix R  <--- R
i4 : norm M

o4 = 9.79672173698366952878845626151

o4 : RR (of precision 100)
i5 : norm_(numeric_20 infinity) M

o5 = 9.79672

o5 : RR (of precision 20)
i6 : norm {3/2,4,-5}

o6 = 5
The norm of a polynomial is the norm of the vector of its coefficients.
i7 : RR[x]

o7 = RR  [x]
       53

o7 : PolynomialRing
i8 : (1+x)^5

      5     4      3      2
o8 = x  + 5x  + 10x  + 10x  + 5x + 1

o8 : RR  [x]
       53
i9 : norm oo

o9 = 10

o9 : RR (of precision 53)

Ways to use norm :