next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2           2    2    2       2                  2     2 
o2 = ideal (q*w  - f*v, g*o  - d u, b h - f*j , d*i*l*w - 1, m*q s - o ,
     ------------------------------------------------------------------------
          2          2 2    2
     e*k*s v - 1, c*j p  - s )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 2   3   3     3 2 3   4 2 3 4     3 2 3 4 2   4 3   4     2  
o3 = ideal (b e h*k l*r v - f i o , a c d g n - f i o r v , g i j*m q*w*x  -
     ------------------------------------------------------------------------
      3 3 3   3 4 3 3 3    4 4 3 2 3
     c k r , a c e j q  - h m p r x )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.