This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]
o1 = Q
o1 : PolynomialRing
|
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)
o2 = ideal (x x , x x , x x , x x , x x )
3 5 4 5 1 6 3 6 4 6
o2 : Ideal of Q
|
i3 : R = Q/I
o3 = R
o3 : QuotientRing
|
i4 : A = koszulComplexDGA(R)
o4 = {Ring => R }
Underlying algebra => R[T , T , T , T , T , T ]
1 2 3 4 5 6
Differential => {x , x , x , x , x , x }
1 2 3 4 5 6
isHomogeneous => true
o4 : DGAlgebra
|
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 : -- used 0.0360895 seconds
Computing generators in degree 2 : -- used 0.0245982 seconds
Computing generators in degree 3 : -- used 0.0240279 seconds
o5 = true
|
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.00172948 seconds
Computing generators in degree 2 : -- used 0.0154887 seconds
Computing generators in degree 3 : -- used 0.0157559 seconds
Computing generators in degree 4 : -- used 0.00754698 seconds
Computing generators in degree 5 : -- used 0.00671095 seconds
Computing generators in degree 6 : -- used 0.00611506 seconds
o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
5 4 5 3 6 4 6 3 6 1 6 1 3 5 3 4 6 3 4 6 1 4
------------------------------------------------------------------------
x T T + x T T , - x T T + x T T , x T T T , x T T T - x T T T }
6 4 5 5 4 6 6 3 5 5 3 6 6 1 3 4 6 3 4 5 5 3 4 6
o6 : List
|
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 : -- used 0.0017099 seconds
Computing generators in degree 2 : -- used 0.0153162 seconds
Computing generators in degree 3 : -- used 0.0152991 seconds
Computing generators in degree 4 : -- used 0.00143474 seconds
Computing generators in degree 5 : -- used 0.00139756 seconds
Computing generators in degree 6 : -- used 0.00141958 seconds
o7 = {{3} | 0 0 0 0 0 0 0 0 0 0 |, {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 -x_6 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 -x_6 | {4} | x_6 0 0 0 0
{3} | 0 0 0 0 0 0 -x_6 0 0 0 | {4} | 0 0 x_6 0 0
{3} | 0 0 0 0 0 0 0 0 -x_6 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | -x_5 0 x_6 -x_6 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 -x_6 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
------------------------------------------------------------------------
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x_6 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_5 0 x_6 0 -x_5 0 -x_6 0
------------------------------------------------------------------------
0 |, {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |,
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 |
0 |
x_6 |
0 |
0 |
0 |
0 |
0 |
0 |
------------------------------------------------------------------------
0, 0}
o7 : List
|
i8 : assert(tmo =!= null)
|
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]
o9 = Q
o9 : PolynomialRing
|
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)
3 3 3 2 2 2
o10 = ideal (x , y , z , x y z )
o10 : Ideal of Q
|
i11 : R = Q/I
o11 = R
o11 : QuotientRing
|
i12 : A = koszulComplexDGA(R)
o12 = {Ring => R }
Underlying algebra => R[T , T , T ]
1 2 3
Differential => {x, y, z}
isHomogeneous => true
o12 : DGAlgebra
|
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 : -- used 0.00762902 seconds
Computing generators in degree 2 : -- used 0.0166402 seconds
Computing generators in degree 3 : -- used 0.0157227 seconds
o13 = false
|
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.0013888 seconds
Computing generators in degree 2 : -- used 0.0106062 seconds
Computing generators in degree 3 : -- used 0.0105586 seconds
2 2 2 2 2 2 2 2 2 2 2
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
1 2 3 1 1 2 1 2 1 3
-----------------------------------------------------------------------
2 2 2 2 2 2
x*y z T T T , x y*z T T T , x y z*T T T }
1 2 3 1 2 3 1 2 3
o14 : List
|
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 : -- used 0.00136876 seconds
Computing generators in degree 2 : -- used 0.0102448 seconds
Computing generators in degree 3 : -- used 0.0100839 seconds
|