This function produces a diagonal matrix
D, and invertible matrices
P and
Q such that
D = PMQ. Warning: even though this function is called the Smith normal form, it doesn't necessarily satisfy the more stringent condition that the diagonal entries
d1, d2, ..., dn of
D satisfy:
d1|d2|...|dn..
i1 : M = matrix{{1,2,3},{1,34,45},{2213,1123,6543},{0,0,0}}
o1 = | 1 2 3 |
| 1 34 45 |
| 2213 1123 6543 |
| 0 0 0 |
4 3
o1 : Matrix ZZ <--- ZZ
|
i2 : (D,P,Q) = smithNormalForm M
o2 = (| 135654 0 0 |, | 1 33471 -43292 0 |, | 171927 -42421 54868 |)
| 0 1 0 | | 0 1 0 0 | | 93042 -22957 29693 |
| 0 0 1 | | 0 0 1 0 | | -74119 18288 -23654 |
| 0 0 0 | | 0 0 0 1 |
o2 : Sequence
|
i3 : D == P * M * Q
o3 = true
|
i4 : (D,P) = smithNormalForm(M, ChangeMatrix=>{true,false})
o4 = (| 135654 0 0 |, | 1 33471 -43292 0 |)
| 0 1 0 | | 0 1 0 0 |
| 0 0 1 | | 0 0 1 0 |
| 0 0 0 | | 0 0 0 1 |
o4 : Sequence
|
i5 : D = smithNormalForm(M, ChangeMatrix=>{false,false}, KeepZeroes=>true)
o5 = | 135654 0 0 |
| 0 1 0 |
| 0 0 1 |
3 3
o5 : Matrix ZZ <--- ZZ
|
This function is the underlying routine used by minimalPresentation in the case when the ring is ZZ, or a polynomial ring in one variable over a field.
i6 : prune coker M
o6 = cokernel | 135654 |
| 0 |
2
o6 : ZZ-module, quotient of ZZ
|
In the following example, we test the result be checking that the entries of
D1, P1 M Q1 are the same. The degrees associated to these matrices do not match up, so a simple test of equality would return false.
i7 : S = ZZ/101[t]
o7 = S
o7 : PolynomialRing
|
i8 : D = diagonalMatrix{t^2+1, (t^2+1)^2, (t^2+1)^3, (t^2+1)^5}
o8 = | t2+1 0 0 0 |
| 0 t4+2t2+1 0 0 |
| 0 0 t6+3t4+3t2+1 0 |
| 0 0 0 t10+5t8+10t6+10t4+5t2+1 |
4 4
o8 : Matrix S <--- S
|
i9 : P = random(S^4, S^4)
o9 = | -13 33 -30 -2 |
| -19 22 -46 -23 |
| 30 -16 37 35 |
| -39 15 41 -48 |
4 4
o9 : Matrix S <--- S
|
i10 : Q = random(S^4, S^4)
o10 = | -50 43 50 33 |
| -13 -28 -11 -25 |
| 47 20 -17 -3 |
| -21 23 -37 -39 |
4 4
o10 : Matrix S <--- S
|
i11 : M = P*D*Q
o11 = | 42t10+8t8+20t6+3t4+14t2-36 -46t10-28t8-50t6+48t4+7t2-8
| -22t10-9t8+42t6-23t4+44t2-5 -24t10-19t8-49t6+20t4+20t2+47
| -28t10-39t8+45t6-6t4-47t2+15 -3t10-15t8+3t6+12t4+48t2-50
| -2t10-10t8-12t6+11t4-42t2+44 7t10+35t8-19t6-11t4-22t2+43
-----------------------------------------------------------------------
-27t10-34t8+38t6-12t4+19t2-25 -23t10-14t8-39t6+23t4-5t2+25 |
43t10+13t8+9t4+16t2+37 -12t10+41t8+18t6+47t4+41t2-41 |
18t10-11t8-45t6-16t4-46t2-46 49t10+43t8-25t6-49t4-15t2+15 |
-42t10-8t8-6t6-50t4-36t2-26 -47t10-33t8+13t6-2t4-15t2-14 |
4 4
o11 : Matrix S <--- S
|
i12 : (D1,P1,Q1) = smithNormalForm M;
|
i13 : D1 - P1*M*Q1 == 0
o13 = true
|
i14 : prune coker M
o14 = cokernel | t10+5t8+10t6+10t4+5t2+1 0 0 0 |
| 0 t6+3t4+3t2+1 0 0 |
| 0 0 t4+2t2+1 0 |
| 0 0 0 t2+1 |
4
o14 : S-module, quotient of S
|
This routine is under development. The main idea is to compute a Gröbner basis, transpose the generators, and repeat, until we encounter a matrix whose transpose is already a Gröbner basis. This may depend heavily on the monomial order.