next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: factor(Module)

factor(Module) -- factor a ZZ-module

Synopsis

Description

The ring of M must be ZZ.

In the following example we construct a module with a known (but disguised) factorization.

i1 : f = random(ZZ^6, ZZ^4)

o1 = | 1 8 7 9 |
     | 8 7 9 9 |
     | 1 9 6 9 |
     | 4 2 2 4 |
     | 3 1 1 7 |
     | 7 9 6 5 |

              6        4
o1 : Matrix ZZ  <--- ZZ
i2 : M = subquotient ( f * diagonalMatrix{2,3,8,21}, f * diagonalMatrix{2*11,3*5*13,0,21*5} )

o2 = subquotient (| 2  24 56 189 |, | 22  1560 0 945 |)
                  | 16 21 72 189 |  | 176 1365 0 945 |
                  | 2  27 48 189 |  | 22  1755 0 945 |
                  | 8  6  16 84  |  | 88  390  0 420 |
                  | 6  3  8  147 |  | 66  195  0 735 |
                  | 14 27 48 105 |  | 154 1755 0 525 |

                                 6
o2 : ZZ-module, subquotient of ZZ
i3 : factor M

          ZZ   ZZ    ZZ
o3 = ZZ + -- + -- + ----
           5   11   5*13

o3 : Expression of class Sum