next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                     2     2           2    2    2 2      2   2 2      2 
o2 = ideal (s*v*x - b , c*o  - t*x, b*e  - g i, s u  - p*x , b o  - c*j ,
     ------------------------------------------------------------------------
      2 2         2 2
     c m  - h*l, a l v - u)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             4 2   4 4    3 2 2 4 2   2 2 2 4 4 2     2 3 3   3 3 3 2 2 3 3  
o3 = ideal (b d j*m t  - c f k n r , d e h n o s t - a w x , a g k o p t x  -
     ------------------------------------------------------------------------
      3 3 3   4 4 4 3 3 2          4
     d f l , b c d k l u  - a*m*n*q )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.