i2 : intersectionLattice({x+y, x+z, y+z}, R)
o2 = Poset{cache => CacheTable{} }
GroundSet => {ideal(x + y), ideal(x + z), ideal (y - z, x + z), ideal(y + z), ideal (y + z, x - z), ideal (y + z, x + z), ideal (z, y, x)}
RelationMatrix => | 1 0 1 0 1 0 1 |
| 0 1 1 0 0 1 1 |
| 0 0 1 0 0 0 1 |
| 0 0 0 1 1 1 1 |
| 0 0 0 0 1 0 1 |
| 0 0 0 0 0 1 1 |
| 0 0 0 0 0 0 1 |
Relations => {{ideal(x + z), ideal(x + z)}, {ideal(x + y), ideal (y - z, x + z)}, {ideal(x + z), ideal (y - z, x + z)}, {ideal (y - z, x + z), ideal (y - z, x + z)}, {ideal(y + z), ideal(y + z)}, {ideal(x + y), ideal (y + z, x - z)}, {ideal(y + z), ideal (y + z, x - z)}, {ideal (y + z, x - z), ideal (y + z, x - z)}, {ideal(x + z), ideal (y + z, x + z)}, {ideal(y + z), ideal (y + z, x + z)}, {ideal (y + z, x + z), ideal (y + z, x + z)}, {ideal(x + y), ideal (z, y, x)}, {ideal(x + z), ideal (z, y, x)}, {ideal (y - z, x + z), ideal (z, y, x)}, {ideal(y + z), ideal (z, y, x)}, {ideal (y + z, x - z), ideal (z, y, x)}, {ideal (y + z, x + z), ideal (z, y, x)}, {ideal (z, y, x), ideal (z, y, x)}}
o2 : Poset
|