All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
ompl::base::AllValidStateValidityCheckerThe simplest state validity checker: all states are valid
ompl::base::CompoundStateDefinition of a compound state
ompl::base::CompoundStateSamplerDefinition of a compound state sampler. This is useful to construct samplers for compound states
ompl::base::CompoundStateSpaceA space to allow the composition of state spaces
ompl::base::DiscreteMotionValidatorA motion validator that only uses the state validity checker. Motions are checked for validity at a specified resolution
ompl::base::DiscreteStateSamplerState space sampler for discrete states
ompl::base::DiscreteStateSpaceA space representing discrete states; i.e. there are a small number of discrete states the system can be in. States are represented as integers [lowerBound, upperBound], where lowerBound and upperBound are inclusive. States do not wrap around; i.e. the distance between state lowerBound and state upperBound is upperBound-lowerBound. The dimension of the space is 1
ompl::base::DiscreteStateSpace::StateTypeThe definition of a discrete state
ompl::base::DubinsMotionValidatorA Dubins motion validator that only uses the state validity checker. Motions are checked for validity at a specified resolution
ompl::base::DubinsStateSpaceAn SE(2) state space where distance is measured by the length of Dubins curves. Note that this Dubins distance is not a proper distance metric, so nearest neighbor methods that rely on distance() being a metric (such ompl::NearestNeighborsGNAT) will not always return the true nearest neighbors or get stuck in an infinite loop. This means that if you use any of the RRT-based planners (which use GNAT by default), you need to do the following:
ompl::base::DubinsStateSpace::DubinsPathComplete description of a Dubins path
ompl::base::GaussianValidStateSamplerGenerate valid samples using the Gaussian sampling strategy
ompl::base::GenericParamMotion planning algorithms often employ parameters to guide their exploration process. (e.g., goal biasing). Motion planners (and some of their components) use this class to declare what the parameters are, in a generic way, so that they can be set externally
ompl::base::GoalAbstract definition of goals. Will contain solutions, if found
ompl::base::GoalLazySamplesDefinition of a goal region that can be sampled, but the sampling process can be slow. This class allows sampling the happen in a separate thread, and the number of goals may increase, as the planner is running, in a thread-safe manner
ompl::base::GoalPtrA boost shared pointer wrapper for ompl::base::Goal
ompl::base::GoalRegionDefinition of a goal region
ompl::base::GoalSampleableRegionAbstract definition of a goal region that can be sampled
ompl::base::GoalStateDefinition of a goal state
ompl::base::GoalStatesDefinition of a set of goal states
ompl::base::MaximizeClearanceValidStateSamplerGenerate valid samples randomly, but with a bias towards higher clearance
ompl::base::MotionValidatorAbstract definition for a class checking the validity of motions -- path segments between states. This is often called a local planner. The implementation of this class must be thread safe
ompl::base::MotionValidatorPtrA boost shared pointer wrapper for ompl::base::MotionValidator
ompl::base::ObstacleBasedValidStateSamplerGenerate valid samples using the Bridge Test
ompl::base::ParamSetMaintain a set of parameters
ompl::base::PathAbstract definition of a path
ompl::base::PathPtrA boost shared pointer wrapper for ompl::base::Path
ompl::base::PlannerBase class for a planner
ompl::base::PlannerAlwaysTerminatingConditionSimple termination condition that always returns true. The termination condition will always be met
ompl::base::PlannerAndTerminationConditionCombine two termination conditions into one. Both termination conditions need to return true for this one to return true
ompl::base::PlannerDataDatatype holding data a planner can expose for debug purposes
ompl::base::PlannerInputStatesHelper class to extract valid start & goal states. Usually used internally by planners
ompl::base::PlannerNonTerminatingConditionSimple termination condition that always returns false. The termination condition will never be met
ompl::base::PlannerOrTerminationConditionCombine two termination conditions into one. If either termination condition returns true, this one will return true as well
ompl::base::PlannerPtrA boost shared pointer wrapper for ompl::base::Planner
ompl::base::PlannerSolutionRepresentation of a solution to a planning problem
ompl::base::PlannerSpecsProperties that planners may have
ompl::base::PlannerTerminationConditionEncapsulate a termination condition for a motion planner. Planners will call operator() to decide whether they should terminate before a solution is found or not. operator() will return true if either the implemented condition is met (the call to eval() returns true) or if the user called terminate(true)
ompl::base::PlannerThreadedTerminationConditionTermination condition with lazy evaluation. This is just as a regular termination condition, except the condition is actually evaluated by computeEval() and the return value is stored in evalValue_. Every time eval() is called, evalValue_ is returned instead of actually evaluating the termination condition. Furthermore, the termination condition is evaluated every period_ seconds in a separate thread. The thread automatically starts when the condition is constructed and it terminates when the condition becomes true
ompl::base::PrecomputedStateSamplerState space sampler for discrete states
ompl::base::ProblemDefinitionDefinition of a problem to be solved. This includes the start state(s) for the system and a goal specification
ompl::base::ProblemDefinitionPtrA boost shared pointer wrapper for ompl::base::ProblemDefinition
ompl::base::ProjectionEvaluatorAbstract definition for a class computing projections to Rn. Implicit integer grids are imposed on this projection space by setting cell sizes. Before use, the user must supply cell sizes for the integer grid (setCellSizes()). The implementation of this class is thread safe
ompl::base::ProjectionEvaluatorPtrA boost shared pointer wrapper for ompl::base::ProjectionEvaluator
ompl::base::ProjectionMatrixA projection matrix -- it allows multiplication of real vectors by a specified matrix. The matrix can also be randomly generated
ompl::base::RealVectorBoundsThe lower and upper bounds for an Rn space
ompl::base::RealVectorIdentityProjectionEvaluatorDefine the identity projection
ompl::base::RealVectorLinearProjectionEvaluatorDefinition for a class computing linear projections (multiplication of a k-by-n matrix to the the Rn vector state to produce an Rk projection. The multiplication matrix needs to be supplied as input
ompl::base::RealVectorOrthogonalProjectionEvaluatorDefinition for a class computing orthogonal projections
ompl::base::RealVectorRandomLinearProjectionEvaluatorDefinition for a class computing a random linear projections
ompl::base::RealVectorStateSamplerState sampler for the Rn state space
ompl::base::RealVectorStateSpaceA state space representing Rn. The distance function is the L2 norm
ompl::base::RealVectorStateSpace::StateTypeThe definition of a state in Rn
ompl::base::ReedsSheppMotionValidatorA Reeds-Shepp motion validator that only uses the state validity checker. Motions are checked for validity at a specified resolution
ompl::base::ReedsSheppStateSpaceAn SE(2) state space where distance is measured by the length of Reeds-Shepp curves
ompl::base::ReedsSheppStateSpace::ReedsSheppPathComplete description of a ReedsShepp path
ompl::base::SamplerSelectorDepending on the type of state sampler, we have different allocation routines
ompl::base::ScopedStateDefinition of a scoped state
ompl::base::SE2StateSpaceA state space representing SE(2)
ompl::base::SE2StateSpace::StateTypeA state in SE(2): (x, y, yaw)
ompl::base::SE3StateSpaceA state space representing SE(3)
ompl::base::SE3StateSpace::StateTypeA state in SE(3): position = (x, y, z), quaternion = (x, y, z, w)
ompl::base::SO2StateSamplerState space sampler for SO(2)
ompl::base::SO2StateSpaceA state space representing SO(2). The distance function and interpolation take into account angle wrapping
ompl::base::SO2StateSpace::StateTypeThe definition of a state in SO(2)
ompl::base::SO3StateSamplerState space sampler for SO(3), using quaternion representation
ompl::base::SO3StateSpaceA state space representing SO(3). The internal representation is done with quaternions. The distance between states is the angle between quaternions and interpolation is done with slerp
ompl::base::SO3StateSpace::StateTypeThe definition of a state in SO(3) represented as a unit quaternion
ompl::base::SpaceInformationThe base class for space information. This contains all the information about the space planning is done in. setup() needs to be called as well, before use
ompl::base::SpaceInformationPtrA boost shared pointer wrapper for ompl::base::SpaceInformation
ompl::base::SpecificParamThis is a helper class that instantiates parameters with different data types
ompl::base::StateDefinition of an abstract state
ompl::base::StatePropagatorPtrA boost shared pointer wrapper for ompl::control::StatePropagator
ompl::base::StateSamplerAbstract definition of a state space sampler
ompl::base::StateSamplerArrayClass to ease the creation of a set of samplers. This is especially useful for multi-threaded planners
ompl::base::StateSamplerPtrA boost shared pointer wrapper for ompl::base::StateSampler
ompl::base::StateSpaceRepresentation of a space in which planning can be performed. Topology specific sampling, interpolation and distance are defined
ompl::base::StateSpace::ValueLocationRepresentation of the address of a value in a state. This structure stores the indexing information needed to access elements of a state (no pointer values are stored)
ompl::base::StateSpacePtrA boost shared pointer wrapper for ompl::base::StateSpace
ompl::base::StateStorageManage loading and storing for a set of states of a specified state space
ompl::base::StateStorage::HeaderInformation stored at the beginning of the archive
ompl::base::StateStorageWithMetadataState storage that allows storing state metadata as well
ompl::base::StateValidityCheckerAbstract definition for a class checking the validity of states. The implementation of this class must be thread safe
ompl::base::StateValidityCheckerPtrA boost shared pointer wrapper for ompl::base::StateValidityChecker
ompl::base::SubSpaceProjectionEvaluatorIf the projection for a CompoundStateSpace is supposed to be the same as the one for one of its included subspaces, this class facilitates selecting a projection of that subspace
ompl::base::TimeStateSamplerState space sampler for time
ompl::base::TimeStateSpaceA state space representing time. The time can be unbounded, in which case enforceBounds() is a no-op, satisfiesBounds() always returns true, sampling uniform time states always produces time 0 and getMaximumExtent() returns 1. If time is bounded (setBounds() has been previously called), the state space behaves as expected. After construction, the state space is unbounded. isBounded() can be used to check if the state space is bounded or not
ompl::base::TimeStateSpace::StateTypeThe definition of a time state
ompl::base::UniformValidStateSamplerA state sampler that only samples valid states, uniformly
ompl::base::ValidStateSamplerAbstract definition of a state sampler
ompl::base::ValidStateSamplerPtrA boost shared pointer wrapper for ompl::base::ValidStateSampler
ompl::BinaryHeapThis class provides an implementation of an updatable min-heap. Using it is a bit cumbersome, as it requires keeping track of the BinaryHeap::Element* type, however, it should be as fast as it gets with an updatable heap
ompl::BinaryHeap::ElementWhen an element is added to the heap, an instance of Element* is created. This instance contains the data that was added and internal information about the position of the data in the heap's internal storage
ompl::control::CompoundControlDefinition of a compound control
ompl::control::CompoundControlSamplerDefinition of a compound control sampler. This is useful to construct samplers for compound controls
ompl::control::CompoundControlSpaceA control space to allow the composition of control spaces
ompl::control::ControlDefinition of an abstract control
ompl::control::ControlSamplerAbstract definition of a control sampler. Motion planners that need to sample controls will call functions from this class. Planners should call the versions of sample() and sampleNext() with most arguments, whenever this information is available
ompl::control::ControlSamplerPtrA boost shared pointer wrapper for ompl::control::ControlSampler
ompl::control::ControlSpaceA control space representing the space of applicable controls
ompl::control::ControlSpacePtrA boost shared pointer wrapper for ompl::control::ControlSpace
ompl::control::DecompositionA Decomposition is a partition of a bounded Euclidean space into a fixed number of regions which are denoted by integers
ompl::control::DecompositionPtrA boost shared pointer wrapper for ompl::control::Decomposition
ompl::control::DirectedControlSamplerAbstract definition of a directed control sampler. Motion planners that need to sample controls that take the system to a desired direction will call functions from this class. Planners should call the versions of sampleTo() with most arguments, whenever this information is available. If no direction information is available, the use of a ControlSampler is perhaps more appropriate
ompl::control::DirectedControlSamplerPtrA boost shared pointer wrapper for ompl::control::DirectedControlSampler
ompl::control::DiscreteControlSamplerControl space sampler for discrete controls
ompl::control::DiscreteControlSpaceA space representing discrete controls; i.e. there are a small number of discrete controls the system can react to. Controls are represented as integers [lowerBound, upperBound], where lowerBound and upperBound are inclusive
ompl::control::DiscreteControlSpace::ControlTypeThe definition of a discrete control
ompl::control::ESTExpansive Space Trees
ompl::control::EST::MotionRepresentation of a motion
ompl::control::EST::MotionInfoA struct containing an array of motions and a corresponding PDF element
ompl::control::EST::TreeDataThe data contained by a tree of exploration
ompl::control::GridDecompositionA GridDecomposition is a Decomposition implemented using a grid
ompl::control::KPIECE1Kinodynamic Planning by Interior-Exterior Cell Exploration
ompl::control::KPIECE1::CellDataThe data held by a cell in the grid of motions
ompl::control::KPIECE1::CloseSampleInformation about a known good sample (closer to the goal than others)
ompl::control::KPIECE1::CloseSamplesBounded set of good samples
ompl::control::KPIECE1::MotionRepresentation of a motion for this algorithm
ompl::control::KPIECE1::OrderCellsByImportanceDefinintion of an operator passed to the Grid structure, to order cells by importance
ompl::control::KPIECE1::TreeDataThe data defining a tree of motions for this algorithm
ompl::control::ODEAdaptiveSolverAdaptive step size solver for ordinary differential equations of the type q' = f(q, u), where q is the current state of the system and u is a control applied to the system. The maximum integration error is bounded in this approach. Solver is the numerical integration method used to solve the equations, and must implement the error stepper concept from boost::numeric::odeint. The default is a fifth order Runge-Kutta Cash-Karp method with a fourth order error bound
ompl::control::ODEBasicSolverBasic solver for ordinary differential equations of the type q' = f(q, u), where q is the current state of the system and u is a control applied to the system. StateType defines the container object describing the state of the system. Solver is the numerical integration method used to solve the equations. The default is a fourth order Runge-Kutta method. This class wraps around the simple stepper concept from boost::numeric::odeint
ompl::control::ODEErrorSolverSolver for ordinary differential equations of the type q' = f(q, u), where q is the current state of the system and u is a control applied to the system. StateType defines the container object describing the state of the system. Solver is the numerical integration method used to solve the equations. The default is a fifth order Runge-Kutta Cash-Karp method with a fourth order error bound. This class wraps around the error stepper concept from boost::numeric::odeint
ompl::control::ODESolverAbstract base class for an object that can solve ordinary differential equations (ODE) of the type q' = f(q,u) using numerical integration. Classes deriving from this must implement the solve method. The user must supply the ODE to solve
ompl::control::OpenDEControlSpaceRepresentation of controls applied in OpenDE environments. This is an array of double values
ompl::control::OpenDEEnvironmentThis class contains the OpenDE constructs OMPL needs to know about when planning
ompl::control::OpenDEEnvironmentPtrA boost shared pointer wrapper for ompl::control::OpenDEEnvironment
ompl::control::OpenDESimpleSetupCreate the set of classes typically needed to solve a control problem when forward propagation is computed with OpenDE
ompl::control::OpenDEStatePropagatorState propagation with OpenDE. Only forward propagation is possible
ompl::control::OpenDEStateSpaceState space representing OpenDE states
ompl::control::OpenDEStateSpace::StateTypeOpenDE State. This is a compound state that allows accessing the properties of the bodies the state space is constructed for
ompl::control::OpenDEStateValidityCheckerThe simplest state validity checker: all states are valid
ompl::control::PathControlDefinition of a control path
ompl::control::PlannerDataDatatype holding data a planner can expose for debug purposes
ompl::control::RealVectorControlSpaceA control space representing Rn
ompl::control::RealVectorControlSpace::ControlTypeThe definition of a control in Rn
ompl::control::RealVectorControlUniformSamplerUniform sampler for the Rn state space
ompl::control::RRTRapidly-exploring Random Tree
ompl::control::RRT::MotionRepresentation of a motion
ompl::control::SimpleDirectedControlSamplerImplementation of a simple directed control sampler. This is a basic implementation that does not actually take direction into account and builds upon ControlSampler. Instead, a set of k random controls are sampled, and the control that gets the system closest to the target state is returned
ompl::control::SimpleSetupCreate the set of classes typically needed to solve a control problem
ompl::control::SimpleSetupPtrA boost shared pointer wrapper for ompl::control::SimpleSetup
ompl::control::SpaceInformationSpace information containing necessary information for planning with controls. setup() needs to be called before use
ompl::control::SpaceInformationPtrA boost shared pointer wrapper for ompl::control::SpaceInformation
ompl::control::StatePropagatorModel the effect of controls on system states
ompl::control::SyclopSynergistic Combination of Layers of Planning
ompl::control::Syclop::AdjacencyRepresentation of an adjacency (a directed edge) between two regions in the Decomposition assigned to Syclop
ompl::control::Syclop::CoverageGridSyclop uses a CoverageGrid to estimate coverage in its assigned Decomposition. The CoverageGrid should have finer resolution than the Decomposition
ompl::control::Syclop::DefaultsContains default values for Syclop parameters
ompl::control::Syclop::MotionRepresentation of a motion
ompl::control::Syclop::RegionRepresentation of a region in the Decomposition assigned to Syclop
ompl::control::SyclopESTSyclopEST is Syclop with EST as its low-level tree planner
ompl::control::SyclopRRTSyclopRRT is Syclop with RRT as its low-level tree planner
ompl::ExceptionThe exception type for ompl
ompl::geometric::BallTreeRRTstarOptimal Rapidly-exploring Random Trees with Ball Trees
ompl::geometric::BallTreeRRTstar::MotionRepresentation of a motion
ompl::geometric::BKPIECE1Bi-directional KPIECE with one level of discretization
ompl::geometric::BKPIECE1::MotionRepresentation of a motion for this algorithm
ompl::geometric::DiscretizationOne-level discretization used for KPIECE
ompl::geometric::Discretization::CellDataThe data held by a cell in the grid of motions
ompl::geometric::Discretization::OrderCellsByImportanceDefinintion of an operator passed to the Grid structure, to order cells by importance
ompl::geometric::ESTExpansive Space Trees
ompl::geometric::EST::MotionThe definition of a motion
ompl::geometric::EST::MotionInfoA struct containing an array of motions and a corresponding PDF element
ompl::geometric::EST::TreeDataThe data contained by a tree of exploration
ompl::geometric::GAIKInverse Kinematics with Genetic Algorithms
ompl::geometric::GAIK::Individual
ompl::geometric::GAIK::IndividualSort
ompl::geometric::HCIKInverse Kinematics with Hill Climbing
ompl::geometric::KPIECE1Kinematic Planning by Interior-Exterior Cell Exploration
ompl::geometric::KPIECE1::MotionRepresentation of a motion for this algorithm
ompl::geometric::KStarStrategyMake the minimal number of connections required to ensure asymptotic optimality
ompl::geometric::KStrategy
ompl::geometric::LazyRRTLazy RRT
ompl::geometric::LazyRRT::MotionRepresentation of a motion
ompl::geometric::LBKPIECE1Lazy Bi-directional KPIECE with one level of discretization
ompl::geometric::LBKPIECE1::MotionRepresentation of a motion for this algorithm
ompl::geometric::PathGeometricDefinition of a geometric path
ompl::geometric::PathHybridizationGiven multiple geometric paths, attempt to combine them in order to obtain a shorter solution
ompl::geometric::PathHybridizationPtrA boost shared pointer wrapper for ompl::geometric::PathHybridization
ompl::geometric::PathSimplifierThis class contains routines that attempt to simplify geometric paths
ompl::geometric::PathSimplifierPtrA boost shared pointer wrapper for ompl::geometric::PathSimplifier
ompl::geometric::PRMProbabilistic RoadMap planner
ompl::geometric::PRM::vertex_state_t
ompl::geometric::PRM::vertex_successful_connection_attempts_t
ompl::geometric::PRM::vertex_total_connection_attempts_t
ompl::geometric::pRRTParallel RRT
ompl::geometric::pRRT::Motion
ompl::geometric::pRRT::SolutionInfo
ompl::geometric::pSBLParallel Single-query Bi-directional Lazy collision checking planner
ompl::geometric::pSBL::Motion
ompl::geometric::pSBL::MotionInfoA struct containing an array of motions and a corresponding PDF element
ompl::geometric::pSBL::MotionsToBeRemoved
ompl::geometric::pSBL::PendingRemoveMotion
ompl::geometric::pSBL::SolutionInfo
ompl::geometric::pSBL::TreeData
ompl::geometric::RRTRapidly-exploring Random Trees
ompl::geometric::RRT::MotionRepresentation of a motion
ompl::geometric::RRTConnectRRT-Connect (RRTConnect)
ompl::geometric::RRTConnect::MotionRepresentation of a motion
ompl::geometric::RRTConnect::TreeGrowingInfoInformation attached to growing a tree of motions (used internally)
ompl::geometric::RRTstarOptimal Rapidly-exploring Random Trees
ompl::geometric::RRTstar::MotionRepresentation of a motion
ompl::geometric::SampleContrib
ompl::geometric::SBLSingle-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking
ompl::geometric::SBL::MotionRepresentation of a motion
ompl::geometric::SBL::MotionInfoA struct containing an array of motions and a corresponding PDF element
ompl::geometric::SBL::TreeDataRepresentation of a search tree. Two instances will be used. One for start and one for goal
ompl::geometric::SimpleSetupCreate the set of classes typically needed to solve a geometric problem
ompl::geometric::SimpleSetupPtrA boost shared pointer wrapper for ompl::geometric::SimpleSetup
ompl::GreedyKCentersAn instance of this class can be used to greedily select a given number of representatives from a set of data points that are all far apart from each other
ompl::GridRepresentation of a simple grid
ompl::Grid::CellDefinition of a cell in this grid
ompl::Grid::EqualCoordPtrEquality operator for coordinate pointers
ompl::Grid::HashFunCoordPtrHash function for coordinates
ompl::Grid::SortComponentsHelper to sort components by size
ompl::GridBThis class defines a grid that keeps track of its boundary: it distinguishes between interior and exterior cells
ompl::GridB::LessThanExternalCellDefine order for external cells
ompl::GridB::LessThanInternalCellDefine order for internal cells
ompl::GridNRepresentation of a grid where cells keep track of how many neighbors they have
ompl::GridN::CellDefinition of a cell in this grid
ompl::msg::InterfaceThe piece of code that desires interaction with an action or an output handler should use an instance of this class. This class connects to the active OutputHandler (if any) and forwards messages
ompl::msg::OutputHandlerGeneric class to handle output from a piece of code
ompl::msg::OutputHandlerFileImplementation of OutputHandler that saves messages in a file
ompl::msg::OutputHandlerSTDDefault implementation of OutputHandler. This sends the information to the console
ompl::NearestNeighborsAbstract representation of a container that can perform nearest neighbors queries
ompl::NearestNeighborsGNATGeometric Near-neighbor Access Tree (GNAT), a data structure for nearest neighbor search
ompl::NearestNeighborsGNAT::NodeThe class used internally to define the GNAT
ompl::NearestNeighborsLinearA nearest neighbors datastructure that uses linear search
ompl::NearestNeighborsLinear::ElemSort
ompl::NearestNeighborsSqrtApproxA nearest neighbors datastructure that uses linear search. The linear search is done over sqrt(n) elements only. (Every sqrt(n) elements are skipped)
ompl::PDFA container that supports probabilistic sampling over weighted data
ompl::PDF::ElementA class that will hold data contained in the PDF
ompl::RNGRandom number generation. An instance of this class cannot be used by multiple threads at once (member functions are not const). However, the constructor is thread safe and different instances can be used safely in any number of threads. It is also guaranteed that all created instances will have a different random seed
ompl::tools::BenchmarkBenchmark a set of planners on a problem instance
ompl::tools::Benchmark::CompleteExperimentThis structure holds experimental data for a set of planners
ompl::tools::Benchmark::PlannerExperimentThe data collected after running a planner multiple times
ompl::tools::Benchmark::RequestRepresentation of a benchmark request
ompl::tools::Benchmark::StatusThis structure contains information about the activity of a benchmark instance. If the instance is running, it is possible to find out information such as which planner is currently being tested or how much
ompl::tools::OptimizePlanRun one or more motion planners repeatedly (using a specified number of threads), and hybridize solutions, trying to optimize solutions
ompl::tools::ParallelPlanThis is a utility that allows executing multiple planners in parallel, until one or more find a solution. Optionally, the results are automatically hybridized using ompl::geometric::PathHybridization. Between calls to solve(), the set of known solutions (maintained by ompl::base::Goal) are not cleared, and neither is the hybridization datastructure
ompl::tools::ProfilerThis is a simple thread-safe tool for counting time spent in various chunks of code. This is different from external profiling tools in that it allows the user to count time spent in various bits of code (sub-function granularity) or count how many times certain pieces of code are executed
ompl::tools::Profiler::AvgInfoInformation maintained about averaged values
ompl::tools::Profiler::PerThreadInformation to be maintained for each thread
ompl::tools::Profiler::ScopedBlockThis instance will call Profiler::begin() when constructed and Profiler::end() when it goes out of scope
ompl::tools::Profiler::ScopedStartThis instance will call Profiler::start() when constructed and Profiler::stop() when it goes out of scope. If the profiler was already started, this block's constructor and destructor take no action
ompl::tools::Profiler::TimeInfoInformation about time spent in a section of the code
ompl::tools::SelfConfigThis class contains methods that automatically configure various parameters for motion planning. If expensive computation is performed, the results are cached
std::allocatorSTL class
std::auto_ptrSTL class
std::bad_allocSTL class
std::bad_castSTL class
std::bad_exceptionSTL class
std::bad_typeidSTL class
std::basic_fstreamSTL class
std::basic_ifstreamSTL class
std::basic_iosSTL class
std::basic_iostreamSTL class
std::basic_istreamSTL class
std::basic_istringstreamSTL class
std::basic_ofstreamSTL class
std::basic_ostreamSTL class
std::basic_ostringstreamSTL class
std::basic_stringSTL class
std::basic_string::const_iteratorSTL iterator class
std::basic_string::const_reverse_iteratorSTL iterator class
std::basic_string::iteratorSTL iterator class
std::basic_string::reverse_iteratorSTL iterator class
std::basic_stringstreamSTL class
std::bitsetSTL class
std::complexSTL class
std::dequeSTL class
std::deque::const_iteratorSTL iterator class
std::deque::const_reverse_iteratorSTL iterator class
std::deque::iteratorSTL iterator class
std::deque::reverse_iteratorSTL iterator class
std::domain_errorSTL class
std::exceptionSTL class
std::fstreamSTL class
std::ifstreamSTL class
std::invalid_argumentSTL class
std::iosSTL class
std::ios_baseSTL class
std::ios_base::failureSTL class
std::istreamSTL class
std::istringstreamSTL class
std::length_errorSTL class
std::listSTL class
std::list::const_iteratorSTL iterator class
std::list::const_reverse_iteratorSTL iterator class
std::list::iteratorSTL iterator class
std::list::reverse_iteratorSTL iterator class
std::logic_errorSTL class
std::mapSTL class
std::map::const_iteratorSTL iterator class
std::map::const_reverse_iteratorSTL iterator class
std::map::iteratorSTL iterator class
std::map::reverse_iteratorSTL iterator class
std::multimapSTL class
std::multimap::const_iteratorSTL iterator class
std::multimap::const_reverse_iteratorSTL iterator class
std::multimap::iteratorSTL iterator class
std::multimap::reverse_iteratorSTL iterator class
std::multisetSTL class
std::multiset::const_iteratorSTL iterator class
std::multiset::const_reverse_iteratorSTL iterator class
std::multiset::iteratorSTL iterator class
std::multiset::reverse_iteratorSTL iterator class
std::ofstreamSTL class
std::ostreamSTL class
std::ostringstreamSTL class
std::out_of_rangeSTL class
std::overflow_errorSTL class
std::priority_queueSTL class
std::queueSTL class
std::range_errorSTL class
std::runtime_errorSTL class
std::setSTL class
std::set::const_iteratorSTL iterator class
std::set::const_reverse_iteratorSTL iterator class
std::set::iteratorSTL iterator class
std::set::reverse_iteratorSTL iterator class
std::stackSTL class
std::stringSTL class
std::string::const_iteratorSTL iterator class
std::string::const_reverse_iteratorSTL iterator class
std::string::iteratorSTL iterator class
std::string::reverse_iteratorSTL iterator class
std::stringstreamSTL class
std::underflow_errorSTL class
std::valarraySTL class
std::vectorSTL class
std::vector::const_iteratorSTL iterator class
std::vector::const_reverse_iteratorSTL iterator class
std::vector::iteratorSTL iterator class
std::vector::reverse_iteratorSTL iterator class
std::wfstreamSTL class
std::wifstreamSTL class
std::wiosSTL class
std::wistreamSTL class
std::wistringstreamSTL class
std::wofstreamSTL class
std::wostreamSTL class
std::wostringstreamSTL class
std::wstringSTL class
std::wstring::const_iteratorSTL iterator class
std::wstring::const_reverse_iteratorSTL iterator class
std::wstring::iteratorSTL iterator class
std::wstring::reverse_iteratorSTL iterator class
std::wstringstreamSTL class
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends