We compute the equation and nonminimal resolution F of the carpet of type (a,b) where a ≥b over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5 o1 = (5, 5) o1 : Sequence |
i2 : h=carpetBettiTables(a,b) -- 0.00192225 seconds elapsed -- 0.0058706 seconds elapsed -- 0.0275612 seconds elapsed -- 0.0109377 seconds elapsed -- 0.00296663 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1} 0: 1 . . . . . . . . . 1: . 36 160 315 288 . . . . . 2: . . . . . 288 315 160 36 . 3: . . . . . . . . . 1 0 1 2 3 4 5 6 7 8 9 2 => total: 1 36 167 370 476 476 370 167 36 1 0: 1 . . . . . . . . . 1: . 36 160 322 336 140 48 7 . . 2: . . 7 48 140 336 322 160 36 . 3: . . . . . . . . . 1 0 1 2 3 4 5 6 7 8 9 3 => total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o2 : HashTable |
i3 : T= carpetBettiTable(h,3) 0 1 2 3 4 5 6 7 8 9 o3 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o3 : BettiTally |
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3); ZZ o4 : Ideal of --[x , x , x , x , x , x , y , y , y , y , y , y ] 3 0 1 2 3 4 5 0 1 2 3 4 5 |
i5 : elapsedTime T'=minimalBetti J -- 0.612645 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o5 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o5 : BettiTally |
i6 : T-T' 0 1 2 3 4 5 6 7 8 9 o6 = total: . . . . . . . . . . 1: . . . . . . . . . . 2: . . . . . . . . . . 3: . . . . . . . . . . o6 : BettiTally |
i7 : elapsedTime h=carpetBettiTables(6,6); -- 0.00372627 seconds elapsed -- 0.0208911 seconds elapsed -- 0.142097 seconds elapsed -- 1.54339 seconds elapsed -- 0.621323 seconds elapsed -- 0.0440126 seconds elapsed -- 0.00587597 seconds elapsed -- 18.8468 seconds elapsed |
i8 : keys h o8 = {0, 2, 3, 5} o8 : List |
i9 : carpetBettiTable(h,7) 0 1 2 3 4 5 6 7 8 9 10 11 o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 . . . . . . 2: . . . . . . 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o9 : BettiTally |
i10 : carpetBettiTable(h,5) 0 1 2 3 4 5 6 7 8 9 10 11 o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 120 . . . . . 2: . . . . . 120 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o10 : BettiTally |