next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
TestIdeals :: isFregular

isFregular -- whether a ring or pair is strongly F-regular

Synopsis

Description

Given a normal Q-Gorenstein ring R (or a Gorenstein ring in general), this computes whether the ring is strongly F-regular.

i1 : R = ZZ/5[x,y,z]/ideal(x^2+y*z);
i2 : isFregular(R)

o2 = true
i3 : R = ZZ/7[x,y,z]/ideal(x^3+y^3+z^3);
i4 : isFregular(R)

o4 = false

It can also do the same computation for a pair.

i5 : R = ZZ/5[x,y];
i6 : f = y^2-x^3;
i7 : isFregular(1/2, f)

o7 = true
i8 : isFregular(5/6, f)

o8 = false
i9 : isFregular(4/5, f)

o9 = false
i10 : isFregular(4/5-1/100000, f)

o10 = true

Ways to use isFregular :