
ResClasses

Set-Theoretic Computations with
Residue Classes

Version 4.6.0

February 12, 2017

Stefan Kohl

Stefan Kohl Email: stefan@mcs.st-and.ac.uk

Homepage: https://stefan-kohl.github.io/

mailto://stefan@mcs.st-and.ac.uk
 https://stefan-kohl.github.io/

ResClasses 2

Abstract

ResClasses is a package for GAP 4 which provides a fully-featured and easy-to-use implementation of set-

theoretic unions of residue classes of the integers and of a few other rings.

The class of sets which ResClasses can deal with includes the open and the closed sets in the topology

on the respective ring which is induced by taking the set of all residue classes as a basis, as far as the usual

restrictions imposed by the �niteness of computing resources permit this.

The package further provides slightly more specialized functionality for unions of residue classes with

distinguished representatives and signed moduli.

The ResClasses package is used in a group theoretical context by the RCWA package [Koh16].

Copyright

© 2003 - 2017 by Stefan Kohl.

ResClasses is free software: you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option)

any later version.

ResClasses is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

For a copy of the GNUGeneral Public License, see the �le GPL in the etc directory of theGAP distribution

or see http://www.gnu.org/licenses/gpl.html.

http://www.gnu.org/licenses/gpl.html

Contents

1 Set-Theoretic Unions of Residue Classes 4

1.1 Entering residue classes and set-theoretic unions thereof 4

1.2 Methods for residue class unions . 6

1.3 On residue class unions of Z2 . 9

1.4 The categories and families of residue class unions 11

2 Unions of Residue Classes with Fixed Representatives 12

2.1 Entering unions of residue classes with �xed representatives 12

2.2 Methods for unions of residue classes with �xed representatives 13

2.3 The invariant Delta . 16

2.4 The categories of unions of residue classes with �xed rep's 16

3 Semilocalizations of the Integers 17

3.1 Entering semilocalizations of the integers . 17

3.2 Methods for semilocalizations of the integers . 17

4 Installation and Auxiliary Functions 19

4.1 Requirements . 19

4.2 Installation . 19

4.3 The testing routines . 19

4.4 Utilities for preparing the package for distribution 20

4.5 Creating timestamped log�les . 20

4.6 DownloadFile, SendEmail and EmailLogFile . 20

4.7 Creating bitmap pictures . 21

4.8 Some general utility functions . 22

References 24

Index 25

3

Chapter 1

Set-Theoretic Unions of Residue Classes

1.1 Entering residue classes and set-theoretic unions thereof

1.1.1 ResidueClass (by ring, modulus and residue)

. ResidueClass(R, m, r) (function)

. ResidueClass(m, r) (function)

. ResidueClass(r, m) (function)

Returns: in the three-argument form the residue class r mod m of the ring R , and in the two-

argument form the residue class r mod m of the �default ring� (! DefaultRing in the GAP Refer-

ence Manual) of the arguments.

In the two-argument case, m is taken to be the larger and r is taken to be the smaller of the

arguments. For convenience, it is permitted to enclose the argument list in list brackets.

Residue classes have the property IsResidueClass. Rings are regarded as residue class

0 (mod 1), and therefore have this property. There are operations Modulus and Residue to retrieve

the modulus m resp. residue r of a residue class.

Example

gap> ResidueClass(2,3);

The residue class 2(3) of Z

gap> ResidueClass(Z_pi([2,5]),2,1);

The residue class 1(2) of Z_(2, 5)

gap> R := PolynomialRing(GF(2),1);;

gap> x := Indeterminate(GF(2),1);; SetName(x,"x");

gap> ResidueClass(R,x+One(R),Zero(R));

The residue class 0 (mod x+1) of GF(2)[x]

1.1.2 ResidueClassUnion (by ring, modulus and residues)

. ResidueClassUnion(R, m, r) (function)

. ResidueClassUnion(R, m, r, included, excluded) (function)

. ResidueClassUnion(R, cls) (function)

. ResidueClassUnion(R, cls, included, excluded) (function)

Returns: in the �rst two cases, the union of the residue classes r [i] mod m of the ring R , plus

/ minus �nite sets included and excluded of elements of R . In the last two cases, the union of

4

ResClasses 5

the residue classes cls [i][1] mod cls [i][2] of the ring R=Z, plus / minus �nite sets included and

excluded of integers.

For unions of residue classes of the integers, two distinct representations are implemented: in the

�rst representation, a union of residue classes is represented by its modulus m and the list of residues

r ; this is called the �standard� representation. In the second (�sparse�) representation, a union of

residue classes r1(m1)[: : :[rk(mk) is represented by the list cls of the pairs [r_i,m_i]. One

can switch between the two representations by using the operations StandardRep and SparseRep,

respectively. The sparse representation allows more ef�cient computation in terms of time- and mem-

ory requirements when computing with unions of �relatively few� residue classes where the lcm of

the moduli is �large�; otherwise the standard representation is advantageous. For rings other than Z,

presently only the standard representation is available.

Example

gap> ResidueClassUnion(Integers,5,[1,2],[3,8],[-4,1]);

(Union of the residue classes 1(5) and 2(5) of Z) U [3, 8] \ [-4, 1]

gap> ResidueClassUnion(Integers,[[1,2],[0,40],[2,1200]]);

Union of the residue classes 1(2), 0(40) and 2(1200) of Z

gap> ResidueClassUnion(Z_pi([2,3]),8,[3,5]);

Union of the residue classes 3(8) and 5(8) of Z_(2, 3)

gap> ResidueClassUnion(R,x^2,[One(R),x],[],[One(R)]);

<union of 2 residue classes (mod x^2) of GF(2)[x]> \ [1]

When talking about a residue class union in this chapter, we always mean an object as it is returned

by this function.

There are operations Modulus, Residues, IncludedElements and ExcludedElements to re-

trieve the components of a residue class union as they have originally been passed as arguments to

ResidueClassUnion (1.1.2).

The user has the choice between a longer and more descriptive and a shorter and less bulky output

format for residue classes and unions thereof:
Example

gap> ResidueClassUnionViewingFormat("short");

gap> ResidueClassUnion(Integers,12,[0,1,4,7,8]);

0(4) U 1(6)

gap> ResidueClassUnionViewingFormat("long");

gap> ResidueClassUnion(Integers,12,[0,1,4,7,8]);

Union of the residue classes 0(4) and 1(6) of Z

1.1.3 AllResidueClassesModulo (of a given ring, modulo a given modulus)

. AllResidueClassesModulo(R, m) (function)

. AllResidueClassesModulo(m) (function)

Returns: a sorted list of all residue classes (mod m) of the ring R .

If the argument R is omitted it defaults to the default ring of m � cf. the documentation of

DefaultRing in the GAP reference manual. A transversal for the residue classes (mod m) can be

obtained by the operation AllResidues(R,m), and their number can be determined by the operation

NumberOfResidues(R,m).

ResClasses 6

Example

gap> AllResidueClassesModulo(Integers,2);

[The residue class 0(2) of Z, The residue class 1(2) of Z]

gap> AllResidueClassesModulo(Z_pi(2),2);

[The residue class 0(2) of Z_(2), The residue class 1(2) of Z_(2)]

gap> AllResidueClassesModulo(R,x);

[The residue class 0 (mod x) of GF(2)[x],

The residue class 1 (mod x) of GF(2)[x]]

gap> AllResidues(R,x^3);

[0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1]

gap> NumberOfResidues(Z_pi([2,3]),360);

72

1.2 Methods for residue class unions

There are methods for Print, String and Display which are applicable to residue class unions.

There is a method for in which tests whether some ring element lies in a given residue class union.

Example

gap> Print(ResidueClass(1,2),"\n");

ResidueClassUnion(Integers, 2, [1])

gap> 1 in ResidueClass(1,2);

true

There are methods for Union, Intersection, Difference and IsSubset available for residue class

unions. They also accept �nite subsets of the base ring as arguments.

Example

gap> S := Union(ResidueClass(0,2),ResidueClass(0,3));

Z \ Union of the residue classes 1(6) and 5(6) of Z

gap> Intersection(S,ResidueClass(0,7));

Union of the residue classes 0(14) and 21(42) of Z

gap> Difference(S,ResidueClass(2,4));

Union of the residue classes 0(4) and 3(6) of Z

gap> IsSubset(ResidueClass(0,2),ResidueClass(4,8));

true

gap> Union(S,[1..10]);

(Union of the residue classes 0(2) and 3(6) of Z) U [1, 5, 7]

gap> Intersection(S,[1..6]);

[2, 3, 4, 6]

gap> Difference(S,[1..6]);

(Union of the residue classes 0(2) and 3(6) of Z) \ [2, 3, 4, 6]

gap> Difference(Integers,[1..10]);

Z \ <set of cardinality 10>

gap> IsSubset(S,[1..10]);

false

ResClasses 7

If the underlying ring has a residue class ring of a given cardinality t, then a residue class can be

written as a disjoint union of t residue classes with equal moduli:

1.2.1 SplittedClass (for a residue class and a number of parts)

. SplittedClass(cl, t) (operation)

Returns: a partition of the residue class cl into t residue classes with equal moduli, provided

that such a partition exists. Otherwise fail.

Example

gap> SplittedClass(ResidueClass(1,2),2);

[The residue class 1(4) of Z, The residue class 3(4) of Z]

gap> SplittedClass(ResidueClass(Z_pi(3),3,0),2);

fail

Often one needs a partition of a given residue class union into �few� residue classes. The following

operation takes care of this:

1.2.2 AsUnionOfFewClasses (for a residue class union)

. AsUnionOfFewClasses(U) (operation)

Returns: a set of disjoint residue classes whose union is equal to U , up to the �nite sets

IncludedElements(U) and ExcludedElements(U).

As the name of the operation suggests, it is taken care that the number of residue classes in the

returned list is kept �reasonably small�. It is not guaranteed that it is minimal.

Example

gap> ResidueClassUnionViewingFormat("short");

gap> AsUnionOfFewClasses(Difference(Integers,ResidueClass(0,30)));

[1(2), 2(6), 4(6), 6(30), 12(30), 18(30), 24(30)]

gap> Union(last);

Z \ 0(30)

One can compute the sets of sums, differences, products and quotients of the elements of a residue

class union and an element of the base ring:

Example

gap> ResidueClass(0,2) + 1;

1(2)

gap> ResidueClass(0,2) - 2 = ResidueClass(0,2);

true

gap> 3 * ResidueClass(0,2);

0(6)

gap> ResidueClass(0,2)/2;

Integers

ResClasses 8

1.2.3 PartitionsIntoResidueClasses (of a given ring, of given length)

. PartitionsIntoResidueClasses(R, length) (operation)

. PartitionsIntoResidueClasses(R, length, primes) (operation)

Returns: in the 2-argument version a sorted list of all partitions of the ring R into length

residue classes. In the 3-argument version a sorted list of all partitions of the ring R into length

residue classes whose moduli have only prime factors in the list primes .

Example

gap> PartitionsIntoResidueClasses(Integers,4);

[[0(2), 1(4), 3(8), 7(8)], [0(2), 3(4), 1(8), 5(8)],

[0(2), 1(6), 3(6), 5(6)], [1(2), 0(4), 2(8), 6(8)],

[1(2), 2(4), 0(8), 4(8)], [1(2), 0(6), 2(6), 4(6)],

[0(3), 1(3), 2(6), 5(6)], [0(3), 2(3), 1(6), 4(6)],

[1(3), 2(3), 0(6), 3(6)], [0(4), 1(4), 2(4), 3(4)]]

1.2.4 RandomPartitionIntoResidueClasses (of a given ring, of given length)

. RandomPartitionIntoResidueClasses(R, length, primes) (operation)

Returns: a �random� partition of the ring R into length residue classes whose moduli have only

prime factors in primes , respectively fail if no such partition exists.

Example

gap> RandomPartitionIntoResidueClasses(Integers,30,[2,3,5,7]);

[0(7), 2(7), 5(7), 3(14), 10(14), 1(21), 8(21), 15(21), 18(21), 20(21),

6(63), 13(63), 25(63), 27(63), 32(63), 34(63), 46(63), 48(63), 53(63),

55(63), 4(126), 67(126), 137(189), 74(567), 200(567), 263(567),

389(567), 452(567), 11(1134), 578(1134)]

gap> Union(last);

Integers

gap> Sum(List(last2,Density));

1

1.2.5 CoverByResidueClasses (of the integers, by residue classes with given moduli)

. CoverByResidueClasses(Integers, moduli) (method)

. CoversByResidueClasses(Integers, moduli) (method)

Returns: in the �rst form a cover of the integers by residue classes with moduli moduli if such

cover exists, and fail otherwise; in the second form a list of all covers of the integers by residue

classes with moduli moduli .

Since there are often very many such covers, computing all of them can take a lot of time and

memory.
Example

gap> CoverByResidueClasses(Integers,[2,3,4,6,8,12]);

[0(2), 0(3), 1(4), 1(6), 3(8), 11(12)]

gap> Union(last);

Integers

ResClasses 9

gap> CoversByResidueClasses(Integers,[2,3,3,6]);

[[0(2), 0(3), 1(3), 5(6)], [0(2), 0(3), 2(3), 1(6)],

[0(2), 1(3), 2(3), 3(6)], [1(2), 0(3), 1(3), 2(6)],

[1(2), 0(3), 2(3), 4(6)], [1(2), 1(3), 2(3), 0(6)]]

gap> List(last,Union);

[Integers, Integers, Integers, Integers, Integers, Integers]

1.2.6 Density (of a residue class union)

. Density(U) (operation)

Returns: the natural density of U as a subset of the underlying ring.

The natural density of a residue class r(m) of a ring R is de�ned by 1=jR=mRj, and the natural

density of a union U of �nitely many residue classes is de�ned by the sum of the densities of the

elements of a partition ofU into �nitely many residue classes.

Example

gap> Density(ResidueClass(0,2));

1/2

gap> Density(Difference(Integers,ResidueClass(0,5)));

4/5

For looping over residue class unions of the integers, there are methods for the operations

Iterator and NextIterator.

1.3 On residue class unions of Z2

Residue class unions of Z2 are treated similar as those of any other ring. Also there is roughly the same

functionality available for them. However there are some differences and a few additional features,

which are described in this section.

The elements of Z2 are represented as lists of length 2 with integer entries. The modulus of a

residue class union of Z2 is a lattice. This lattice is stored as a 2� 2 integer matrix of full rank in

Hermite normal form, whose rows are the spanning vectors. Residue classes of Z2 modulo principal

ideals are presently not implemented. Residue class unions of Z2 can be multiplied by matrices of

full rank from the right. A snippet of a residue class union of Z2 is shown in �ASCII art� when one

Display's it with option AsGrid. We give some illustrative examples:

Example

gap> R := Integers^2;

(Integers^2)

gap> 5*R+[2,3];

(2,3)+(5,0)Z+(0,5)Z

gap> Difference(R,last);

Z^2 \ (2,3)+(5,0)Z+(0,5)Z

gap> Density(last);

24/25

gap> L1 := [[2,1],[-1,2]];;

gap> L2 := [[6,2],[0,6]];;

ResClasses 10

gap> AllResidueClassesModulo(R,L1); # The modulus is transformed to HNF.

[(0,0)+(1,3)Z+(0,5)Z, (0,1)+(1,3)Z+(0,5)Z, (0,2)+(1,3)Z+(0,5)Z,

(0,3)+(1,3)Z+(0,5)Z, (0,4)+(1,3)Z+(0,5)Z]

gap> cl1 := ResidueClass(R,L1,[0,0]);

(0,0)+(1,3)Z+(0,5)Z

gap> cl2 := ResidueClass(R,L2,[0,0]);

(0,0)+(6,2)Z+(0,6)Z

gap> cl3 := Intersection(cl1,cl2);

(0,0)+(6,8)Z+(0,30)Z

gap> S1 := Difference(cl1,cl2);

<union of 35 residue classes (mod (6,8)Z+(0,30)Z)>

gap> S2 := Difference(cl2,cl1);

<union of 4 residue classes (mod (6,8)Z+(0,30)Z)>

gap> Display(S1); # The set is written as union of "few" residue classes:

(0,5)+(1,3)Z+(0,10)Z U (1,3)+(2,6)Z+(0,10)Z U (2,6)+(6,8)Z+(0,10)Z U

(4,2)+(6,8)Z+(0,10)Z U (0,10)+(6,8)Z+(0,30)Z U (0,20)+(6,8)Z+(0,30)Z

gap> Display(S2);

(0,6)+(6,8)Z+(0,30)Z U (0,12)+(6,8)Z+(0,30)Z U (0,18)+(6,8)Z+(0,30)Z

U (0,24)+(6,8)Z+(0,30)Z

gap> cls := AsUnionOfFewClasses(S1);

[(0,5)+(1,3)Z+(0,10)Z, (1,3)+(2,6)Z+(0,10)Z, (2,6)+(6,8)Z+(0,10)Z,

(4,2)+(6,8)Z+(0,10)Z, (0,10)+(6,8)Z+(0,30)Z, (0,20)+(6,8)Z+(0,30)Z]

gap> Union(cls) = S1;

true

gap> S3 := S1*[[3,5],[2,4]];

<union of 35 residue classes (mod (2,46)Z+(0,180)Z)>

gap> Display(S1:AsGrid);

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * *

ResClasses 11

Note that in GAP multiplying lists of integers means computing their scalar product as vectors. The

consequence is that technically the free module Z2 is not a ring in GAP.

1.4 The categories and families of residue class unions

1.4.1 IsResidueClassUnion

. IsResidueClassUnion(U) (�lter)

. IsResidueClassUnionOfZ(U) (�lter)

. IsResidueClassUnionOfZxZ(U) (�lter)

. IsResidueClassUnionOfZ_pi(U) (�lter)

. IsResidueClassUnionOfGFqx(U) (�lter)

Returns: true if U is a residue class union, a residue class union of Z, a residue class union

of Z2, a residue class union of a semilocalization of Z or a residue class union of a polynomial ring in

one variable over a �nite �eld, respectively, and false otherwise.

Often the same methods can be used for residue class unions of the ring of integers and of its

semilocalizations. For this reason, there is a category IsResidueClassUnionOfZorZ_pi which is

the union of IsResidueClassUnionOfZ and IsResidueClassUnionOfZ_pi. The internal represen-

tation of residue class unions is called IsResidueClassUnionResidueListRep. There are methods

available for ExtRepOfObj and ObjByExtRep.

1.4.2 ResidueClassUnionsFamily (of a ring)

. ResidueClassUnionsFamily(R) (function)

. ResidueClassUnionsFamily(R, fixedreps) (function)

Returns: the family of residue class unions or the family of unions of residue classes with �xed

representatives of the ring R , depending on whether fixedreps is present and true or not.

The ring R can be retrieved as UnderlyingRing(ResidueClassUnionsFamily(R)). There is

no coercion between residue class unions or unions of residue classes with �xed representatives which

belong to different families. Unions of residue classes with �xed representatives are described in the

next chapter.

Chapter 2

Unions of Residue Classes with Fixed

Representatives

ResClasses supports computations with unions of residue classes which are endowed with distin-

guished (��xed�) representatives. These unions of residue classes can be viewed as multisets of ring

elements. The residue classes forming such a union do not need to be disjoint or even only distinct.

2.1 Entering unions of residue classes with �xed representatives

2.1.1 ResidueClassWithFixedRepresentative (by ring, modulus and residue)

. ResidueClassWithFixedRepresentative(R, m, r) (function)

. ResidueClassWithFixedRepresentative(m, r) (function)

Returns: the residue class r mod m of the ring R , with the �xed representative r .

If the argument R is omitted, it defaults to Integers. Residue classes with �xed representatives

have the property IsResidueClassWithFixedRepresentative. The �xed representative r can be

retrieved by the operation Residue, and the modulus m can be retrieved by the operation Modulus.
Example

gap> ResidueClassWithFixedRepresentative(Integers,2,1);

[1/2]

2.1.2 UnionOfResidueClassesWithFixedReps (by ring and list of classes)

. UnionOfResidueClassesWithFixedReps(R, classes) (function)

. UnionOfResidueClassesWithFixedReps(classes) (function)

Returns: the union of the residue classes classes [i][2] mod classes [i][1] of the ring R , with

�xed representatives classes [i][2].

The argument classes must be a list of pairs of elements of the ring R . Their �rst entries � the

moduli � must be nonzero. If the argument R is omitted, it defaults to Integers.

12

ResClasses 13

Example

gap> UnionOfResidueClassesWithFixedReps(Integers,[[2,4],[3,9]]);

[4/2] U [9/3]

There is a method for the operation Modulus which returns the lcm of the moduli of the residue

classes forming such a union. Further there is an operation Classes for retrieving the list of classes

which has been passed as an argument to UnionOfResidueClassesWithFixedReps. The operation

AsListOfClasses does the same, except that the returned list contains residue classes instead of pairs

[modulus,residue]. There are methods for Print, String and Display available for unions of

residue classes with �xed representatives.

2.1.3 AllResidueClassesWithFixedRepsModulo (by ring and modulus)

. AllResidueClassesWithFixedRepsModulo(R, m) (function)

. AllResidueClassesWithFixedRepsModulo(m) (function)

Returns: a sorted list of all residue classes (mod m) of the ring R , with �xed representatives.

If the argument R is omitted it defaults to the default ring of m , cf. the documentation of

DefaultRing in the GAP reference manual. The representatives are the same as those chosen by

the operation mod. See also AllResidueClassesModulo (1.1.3).
Example

gap> AllResidueClassesWithFixedRepsModulo(4);

[[0/4], [1/4], [2/4], [3/4]]

2.2 Methods for unions of residue classes with �xed representatives

Throughout this chapter, the argument R denotes the underlying ring, and the arguments U , U1 and U2

denote unions of residue classes of R with �xed representatives.

Unions of residue classes with �xed representatives are multisets. Elements and residue classes

can be contained with multiplicities:

2.2.1 Multiplicity (of an element in a union of residue classes with �xed rep's)

. Multiplicity(x, U) (method)

. Multiplicity(cl, U) (method)

Returns: the multiplicity of x in U regarded as a multiset of ring elements, resp. the multiplicity

of the residue class cl in U regarded as a multiset of residue classes.
Example

gap> U := UnionOfResidueClassesWithFixedReps(Integers,[[2,0],[3,0]]);

[0/2] U [0/3]

gap> List([0..20],n->Multiplicity(n,U));

[2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1]

gap> Multiplicity(ResidueClassWithFixedRep(2,0),U);

1

ResClasses 14

Let U be a union of residue classes with �xed representatives. The multiset U can have an attribute

Density which denotes its natural density as a multiset, i.e. elements with multiplicity k count k-

fold. The multiset U has the property IsOverlappingFree if it consists of pairwise disjoint residue

classes. The set-theoretic union of the residue classes forming U can be determined by the opera-

tion AsOrdinaryUnionOfResidueClasses. The object returned by this operation is an �ordinary�

residue class union as described in Chapter 1.

Example

gap> U := UnionOfResidueClassesWithFixedReps(Integers,[[2,0],[3,0]]);

[0/2] U [0/3]

gap> Density(U);

5/6

gap> IsOverlappingFree(U);

false

gap> AsOrdinaryUnionOfResidueClasses(U);

Z \ 1(6) U 5(6)

gap> Density(last);

2/3

In the sequel we abbreviate the term �the multiset of ring elements endowed with the structure of a

union of residue classes with �xed representatives� by �the multiset�.

There are methods for + and - available for computing the multiset of sums u+ x, u 2 U , the

multiset of differences u�x resp. x�u, u2U and the multiset of the additive inverses of the elements

of U . Further there are methods for * and / available for computing the multiset of products x � u,
u 2U and the multiset of quotients u=x, u 2U . The division method requires all elements of U to be

divisible by x. If the underlying ring is the ring of integers, scalar multiplication and division leave d

invariant (! Delta (2.3.1)).
Example

gap> U := UnionOfResidueClassesWithFixedReps(Integers,[[2,0],[3,0]]);

[0/2] U [0/3]

gap> U + 7;

[7/2] U [7/3]

gap> U - 7; 7 - U; -U;

[-7/2] U [-7/3]

[7/-3] U [7/-2]

[0/-3] U [0/-2]

gap> V := 2 * U;

[0/4] U [0/6]

gap> V/2;

[0/2] U [0/3]

ResClasses 15

2.2.2 Union (for unions of residue classes with �xed representatives)

. Union(U1, U2) (method)

Returns: the union of U1 and U2 .

The multiplicity of any ring element or residue class in the union is the sum of its multiplicities

in the arguments. It holds that Delta(Union(U1,U2)) = Delta(U1) + Delta(U2). (! Delta

(2.3.1)).
Example

gap> U := UnionOfResidueClassesWithFixedReps(Integers,[[2,0],[3,0]]);

[0/2] U [0/3]

gap> Union(U,U);

[0/2] U [0/2] U [0/3] U [0/3]

2.2.3 Intersection (for unions of residue classes with �xed representatives)

. Intersection(U1, U2) (method)

Returns: the intersection of U1 and U2 .

The multiplicity of any residue class in the intersection is the minimum of its multiplicities in the

arguments.

Example

gap> U := UnionOfResidueClassesWithFixedReps(Integers,[[2,0],[3,0]]);

[0/2] U [0/3]

gap> Intersection(U,ResidueClassWithFixedRep(2,0));

[0/2]

gap> Intersection(U,ResidueClassWithFixedRep(6,0));

[]

2.2.4 Difference (for unions of residue classes with �xed representatives)

. Difference(U1, U2) (method)

Returns: the difference of U1 and U2 .

The multiplicity of any residue class in the difference is its multiplicity in U1 minus its mul-

tiplicity in U2 , if this value is nonnegative. The difference of the empty residue class union

with �xed representatives and some residue class [r=m] is set equal to [(m� r)=m]. It holds that

Delta(Difference(U1,U2)) = Delta(U1) - Delta(U2). (! Delta (2.3.1)).
Example

gap> U := UnionOfResidueClassesWithFixedReps(Integers,[[2,0],[3,0]]);

[0/2] U [0/3]

gap> V := UnionOfResidueClassesWithFixedReps(Integers,[[3,0],[5,2]]);

[0/3] U [2/5]

gap> Difference(U,V);

[0/2] U [3/5]

ResClasses 16

2.3 The invariant Delta

2.3.1 Delta (for a union of residue classes with �xed representatives)

. Delta(U) (attribute)

Returns: the value of the invariant d of the residue class union U .

For a residue class [r=m] with �xed representative we set d ([r=m]) := r=m�1=2, and extend this
de�nition additively to unions of such residue classes. If no representatives are �xed, this de�nition

is still unique (mod 1). There is a related invariant r which is de�ned by ed (U)pi. The corresponding

attribute is called Rho.
Example

gap> U := UnionOfResidueClassesWithFixedReps(Integers,[[2,3],[3,4]]);

[3/2] U [4/3]

gap> Delta(U) = (3/2-1/2) + (4/3-1/2);

true

gap> V := RepresentativeStabilizingRefinement(U,3);

[3/6] U [5/6] U [7/6] U [4/9] U [7/9] U [10/9]

gap> Delta(V) = Delta(U);

true

gap> Rho(V);

E(12)^11

2.3.2 RepresentativeStabilizingRe�nement (of a union of res.-classes with �xed rep's)

. RepresentativeStabilizingRefinement(U, k) (method)

Returns: the representative stabilizing re�nement of U into k parts.

The representative stabilizing re�nement of a residue class [r=m] of Z into k parts is de�ned by

[r=km][[(r+m)=km][: : :[[(r+(k� 1)m)=km]. This de�nition is extended in the obvious way to

unions of residue classes.

If the argument k is zero, the method performs a simpli�cation of U by joining appropriate residue

classes, if this is possible.

In any case the value of Delta(U) is invariant under this operation (! Delta (2.3.1)).

Example

gap> U := UnionOfResidueClassesWithFixedReps(Integers,[[2,0],[3,0]]);

[0/2] U [0/3]

gap> RepresentativeStabilizingRefinement(U,4);

[0/8] U [2/8] U [4/8] U [6/8] U [0/12] U [3/12] U [6/12] U [9/12]

gap> RepresentativeStabilizingRefinement(last,0);

[0/2] U [0/3]

2.4 The categories of unions of residue classes with �xed rep's

The names of the categories of unions of residue classes with �xed representatives are

IsUnionOfResidueClassesOf[Z|Z_pi|ZorZ_pi|GFqx]WithFixedRepresentatives.

Chapter 3

Semilocalizations of the Integers

This package implements residue class unions of the semilocalizations Z(p) of the ring of integers. It

also provides the underlying GAP implementation of these rings themselves.

3.1 Entering semilocalizations of the integers

3.1.1 Z_pi (by set of non-invertible primes)

. Z_pi(pi) (function)

. Z_pi(p) (function)

Returns: the ring Z(p) or the ring Z(p), respectively.

The returned ring has the property IsZ_pi. The set pi of non-invertible primes can be retrieved

by the operation NoninvertiblePrimes.
Example

gap> R := Z_pi(2);

Z_(2)

gap> S := Z_pi([2,5,7]);

Z_(2, 5, 7)

3.2 Methods for semilocalizations of the integers

There are methods for the operations in, Intersection, IsSubset, StandardAssociate, Gcd,

Lcm, Factors and IsUnit available for semilocalizations of the integers. For the documentation of

these operations, see the GAP reference manual. The standard associate of an element of a ring Z(p)

is de�ned by the product of the non-invertible prime factors of its numerator.
Example

gap> 4/7 in R; 3/2 in R;

true

false

gap> Intersection(R,Z_pi([3,11])); IsSubset(R,S);

Z_(2, 3, 11)

true

17

ResClasses 18

Example

gap> StandardAssociate(R,-6/7);

2

gap> Gcd(S,90/3,60/17,120/33);

10

gap> Lcm(S,90/3,60/17,120/33);

40

gap> Factors(R,840);

[105, 2, 2, 2]

gap> Factors(R,-2/3);

[-1/3, 2]

gap> IsUnit(S,3/11);

true

Chapter 4

Installation and Auxiliary Functions

4.1 Requirements

This version of ResClasses needs at least GAP 4.8.5, Polycyclic 2.11 [EHN13], GAP-

Doc 1.5.1 [LN12] and Utils 0.40 [GKW16]. It can be used on all platforms for which GAP is

available. ResClasses is completely written in the GAP language and does neither contain nor

require external binaries.

4.2 Installation

Like any other GAP package, ResClasses is usually installed in the pkg subdirectory of the GAP

distribution. This is accomplished by extracting the distribution �le in this directory. By default, the

package ResClasses is autoloaded. If you have switched autoloading of packages off, you can load

ResClasses via LoadPackage("resclasses");.

4.3 The testing routines

4.3.1 ResClassesTest

. ResClassesTest() (function)

Returns: true if no errors were found, and false otherwise.

Performs tests of the ResClasses package. Errors, i.e. differences to the correct results of the

test computations, are reported. The processed test �les are in the directory pkg/resclasses/tst.

4.3.2 ResClassesTestExamples

. ResClassesTestExamples() (function)

Returns: nothing.

Runs all examples in the manual of theResClasses package, and reports any differences between

the actual output and the output printed in the manual.

19

ResClasses 20

4.4 Utilities for preparing the package for distribution

4.4.1 ResClassesBuildManual

. ResClassesBuildManual() (function)

Returns: nothing.

This function is a development tool which builds the manual of the ResClasses package in the

�le formats LATEX, PDF, HTML and ASCII text. This is accomplished using theGAPDoc package by

Frank Lübeck and Max Neunhöffer. Building the manual is possible only on UNIX-type systems and

requires PDFLATEX. As all �les generated by this function are included in the distribution �le anyway,

users will not need it.

4.4.2 ConvertPackageFilesToUNIXLineBreaks

. ConvertPackageFilesToUNIXLineBreaks(package) (function)

Returns: nothing.

This function is a development tool which converts the text �les of package package from

Windows- to UNIX line breaks. Here package is assumed to be either "resclasses" or "rcwa".

4.4.3 RemoveTemporaryPackageFiles

. RemoveTemporaryPackageFiles(package) (function)

Returns: nothing.

This function is a development tool which cleans up the temporary �les of package package .

Here package is assumed to be either "resclasses" or "rcwa".

4.5 Creating timestamped log�les

4.5.1 LogToDatedFile

. LogToDatedFile(directory) (function)

Returns: the full pathname of the created log�le.

This function opens a log�le in the speci�ed directory; the name of the log�le has the form of a

timestamp, i.e. year-month-day hour-minute-second.log. If GAP is already in logging mode,

the old log�le is closed before the new one is opened.

The availability of this function depends on that the package IO [HN16] is installed and compiled.

4.6 DownloadFile, SendEmail and EmailLogFile

4.6.1 DownloadFile

. DownloadFile(url) (function)

Returns: the contents of the �le with URL url in the form of a string if that �le exists and the

download was successful, and fail otherwise.

As most system-related functions, DownloadFile works only under UNIX / Linux. Also the

computer must of course be connected to the Internet.

ResClasses 21

4.6.2 SendEmail

. SendEmail(sendto, copyto, subject, text) (function)

Returns: zero if everything worked correctly, and a system error number otherwise.

Sends an e-mail with subject subject and body text to the addresses in the list sendto , and

copies it to those in the list copyto . The �rst two arguments must be lists of strings, and the latter

two must be strings.

As most system-related functions, SendEmail works only under UNIX / Linux. Also the com-

puter must of course be connected to the Internet.

4.6.3 EmailLogFile

. EmailLogFile(addresses) (function)

Returns: zero if everything worked correctly, and a system error number otherwise.

Sends the current log �le by e-mail to addresses , ifGAP is in logging mode and one is working

under UNIX / Linux, and does nothing otherwise. The argument addresses must be either a list of

e-mail addresses or a single e-mail address. Long log �les are abbreviated, i.e. if the log �le is larger

than 64KB, then any output is truncated at 1KB, and if the log �le is still longer than 64KB afterwards,

it is truncated at 64KB.

4.7 Creating bitmap pictures

ResClasses provides functions to generate bitmap picture �les from suitable pixel matrices and vice

versa. The author has successfully tested this feature both under Linux and under Windows, and the

generated pictures can be processed further with many common graphics programs:

4.7.1 SaveAsBitmapPicture (picture, �lename)

. SaveAsBitmapPicture(picture, filename) (function)

Returns: nothing.

Writes the pixel matrix picture to a bitmap- (bmp-) picture �le named filename . The �lename

should include the entire pathname. The argument picture can be a GF(2) matrix, in which case

a monochrome picture �le is generated. In this case, zeros stand for black pixels and ones stand

for white pixels. The argument picture can also be an integer matrix, in which case a 24-bit true

color picture �le is generated. In this case, the entries of the matrix are supposed to be integers

n= 65536 �red+256 �green+blue in the range 0; : : : ;224�1 specifying the RGB values of the colors

of the pixels.

The picture can be read back into GAP by the function LoadBitmapPicture(filename).
Example

gap> color := n->32*(n mod 8)+256*32*(Int(n/8) mod 8)+65536*32*Int(n/64);;

gap> picture := List([1..512],y->List([1..512],x->color(Gcd(x,y)-1)));;

gap> SaveAsBitmapPicture(picture,Filename(DirectoryTemporary(),"gcd.bmp"));

ResClasses 22

4.7.2 DrawLineNC (pic, x1, y1, x2, y2, color, width)

. DrawLineNC(pic, x1, y1, x2, y2, color, width) (function)

Returns: nothing.

Draws a line on picture pic from (x1 ,y1) to (x2 ,y2), with color color and of width width .

Example

gap> picture := NullMat(100,100)+2^24-1;;

gap> DrawLineNC(picture,30,20,70,80,255,8);

gap> SaveAsBitmapPicture(picture,Filename(DirectoryTemporary(),

> "example.bmp"));

4.8 Some general utility functions

ResClasses provides a few small utility functions and -operations which can be used in a more

general context. They are described in this section.

There is an operation PositionsSublist(list,sub) which returns the list of positions at

which sub occurs as a sublist of list .
Example

gap> PositionsSublist([1,2,6,2,7,2,7,2,3,1,6,2,7,2,8],[2,7,2]);

[4, 6, 12]

gap> PositionsSublist([1,2,3,4,3,2,1],[1,3,5]);

[]

gap> PositionsSublist("This is an example, isn't it?","is");

[3, 6, 21]

Also there are methods EquivalenceClasses(l,inv) and EquivalenceClasses(l,rel) which

decompose a list l into equivalence classes under an equivalence relation. The equivalence relation

is given either as a function inv computing a class invariant of a given list entry or as a function rel

which takes as arguments two list entries and returns either true or false depending on whether the

arguments belong to the same equivalence class or not.

Example

gap> EquivalenceClasses([2..50],n->Length(Factors(n)));

[[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47],

[4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49],

[8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50], [16, 24, 36, 40],

[32, 48]]

gap> EquivalenceClasses(AsList(AlternatingGroup(4)),

> function (g, h)

> return IsConjugate(SymmetricGroup(4),g,h);

> end);

[[(2,3,4), (2,4,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,4,2),

(1,4,3)], [(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)], [()]]

ResClasses 23

Further, there is an operation GraphClasses(n)which returns a list of isomorphism classes of graphs

with vertices 1;2; : : : ;n, and an operation AllGraphs(n) which returns a list of representatives of

these classes. The graphs are represented as lists of edges, where each edge is a list of the two

vertices it connects, and they are ordered by ascending number of edges. Given a graph graph with n

vertices, the operation IdGraphNC(graph,GraphClasses(n)) returns the index i such that graph

lies in GraphClasses(n)[i]. For reasons of ef�ciency, IdGraphNC performs no argument checks.

Example

gap> GraphClasses(3);

[[[]], [[[1, 2]], [[2, 3]], [[1, 3]]],

[[[1, 2], [1, 3]], [[1, 2], [2, 3]],

[[1, 3], [2, 3]]], [[[1, 2], [1, 3], [2, 3]]]]

gap> List(last,Length); # sizes of classes

[1, 3, 3, 1]

gap> AllGraphs(4);

[[], [[1, 2]], [[1, 2], [1, 3]], [[1, 2], [3, 4]],

[[1, 2], [1, 3], [1, 4]], [[1, 2], [1, 3], [2, 3]],

[[1, 2], [1, 3], [2, 4]],

[[1, 2], [1, 3], [1, 4], [2, 3]],

[[1, 2], [1, 3], [2, 4], [3, 4]],

[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4]],

[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]]

gap> List(last,Length); # numbers of edges

[0, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6]

gap> IdGraphNC([[1,3],[1,8],[3,8]],GraphClasses(4)); # a triangle graph

6

gap> AllGraphs(4)[last];

[[1, 2], [1, 3], [2, 3]]

References

[EHN13] B. Eick, M. Horn, and W. Nickel. Polycyclic � Computation with polycyclic groups

(Version 2.11), 2013. GAP package, http://www.gap-system.org/Packages/

polycyclic.html. 19

[GKW16] S. Gutsche, S. Kohl, and C. Wensley. Utils - Utility functions in GAP (Version 0.38), 2016.

GAP package, http://www.gap-system.org/Packages/utils.html. 19

[HN16] M. Horn and M. Neunhöffer. IO � Bindings for low level C library I/O routines (Version

4.4.5), 2016. GAP package, http://www.gap-system.org/Packages/io.html. 20

[Koh16] S. Kohl. RCWA - Residue-Class-Wise Af�ne Groups (Version 4.4.0), 2016. GAP package,

http://www.gap-system.org/Packages/rcwa.html. 2

[LN12] F. Lübeck and M. Neunhöffer. GAPDoc (Version 1.5.1). RWTH Aachen, 2012. GAP

package, http://www.gap-system.org/Packages/gapdoc.html. 19

24

http://www.gap-system.org/Packages/polycyclic.html
http://www.gap-system.org/Packages/polycyclic.html
http://www.gap-system.org/Packages/utils.html
http://www.gap-system.org/Packages/io.html
http://www.gap-system.org/Packages/rcwa.html
http://www.gap-system.org/Packages/gapdoc.html

Index

AllGraphs, 23

AllResidueClassesModulo

by modulus, of the default ring of that mod-

ulus, 5

of a given ring, modulo a given modulus, 5

AllResidueClassesWithFixedRepsModulo

by modulus, of the default ring of that mod-

ulus, 13

by ring and modulus, 13

AllResidues

for ring and modulus, 5

AsListOfClasses

for a union of residue classes with �xed rep's,

13

AsOrdinaryUnionOfResidueClasses

for a union of residue classes with �xed rep's,

14

AsUnionOfFewClasses

for a residue class union, 7

Classes

of a union of residue classes with �xed rep's,

13

ConvertPackageFilesToUNIXLineBreaks, 20

CoverByResidueClasses

of the integers, by residue classes with given

moduli, 8

CoversByResidueClasses

of the integers, by residue classes with given

moduli, 8

Delta

for a union of residue classes with �xed rep-

resentatives, 16

Density

of a residue class union, 9

Density

of a union of residue classes with �xed rep's,

14

Difference

for unions of residue classes with �xed rep-

resentatives, 15

Difference

for residue class unions, 6

Display

for a residue class union, 6

DownloadFile, 20

DrawLineNC

pic, x1, y1, x2, y2, color, width, 22

EmailLogFile, 21

EquivalenceClasses

for a list and a function computing a class in-

variant, 22

for a list and a function describing an equiv-

alence relation, 22

ExcludedElements

of a residue class union, 5

ExtRepOfObj, 11

Factors

of an element of a semilocalization of Z, 17

Gcd

of elements of a semilocalization of Z, 17

GraphClasses, 23

IdGraphNC, 23

IncludedElements

of a residue class union, 5

Intersection

for unions of residue classes with �xed rep-

resentatives, 15

Intersection

for residue class unions, 6

IsOverlappingFree

for a union of residue classes with �xed rep's,

14

IsResidueClass, 4

25

ResClasses 26

IsResidueClassUnion, 11

IsResidueClassUnionOfGFqx, 11

IsResidueClassUnionOfZ, 11

IsResidueClassUnionOfZ_pi, 11

IsResidueClassUnionOfZ_pi, 11

IsResidueClassUnionOfZxZ, 11

IsResidueClassUnionResidueListRep, 11

IsResidueClassWithFixedRep, 12

IsSubset

for residue class unions, 6

IsUnit

for an element of a semilocalization of Z, 17

IsZ_pi, 17

Iterator

for a residue class union, 9

Lcm

of elements of a semilocalization of Z, 17

LoadBitmapPicture

�lename, 21

LogToDatedFile, 20

Modulus

of a residue class, 4

of a residue class union, 5

of a union of residue classes with �xed rep's,

13

Multiplicity

of a residue class in a union of residue classes

with �xed rep's, 13

of an element in a union of residue classes

with �xed rep's, 13

NextIterator

for an iterator of a residue class union, 9

NoninvertiblePrimes

of a semilocalization of Z, 17

NrResidues

for ring and modulus, 5

NumberOfResidues

for ring and modulus, 5

ObjByExtRep, 11

PartitionsIntoResidueClasses

of a given ring, of given length, 8

of a given ring, of given length, with moduli

with given factors, 8

PositionsSublist, 22

Print

for a residue class union, 6

RandomPartitionIntoResidueClasses

of a given ring, of given length, 8

RemoveTemporaryPackageFiles, 20

RepresentativeStabilizingRefinement

of a union of res.-classes with �xed rep's, 16

ResClassesBuildManual, 20

ResClassesTest, 19

ResClassesTestExamples, 19

Residue

of a residue class, 4

residue class union

coercion, 11

de�nition, 5

ResidueClass

by modulus and residue, 4

by residue and modulus, 4

by ring, modulus and residue, 4

ResidueClassUnion

by ring and list of classes, 4

by ring, list of classes and included / ex-

cluded elements, 4

by ring, modulus and residues, 4

by ring, modulus, residues and included / ex-

cluded elements, 4

ResidueClassUnionsFamily

of a ring, 11

of a ring, with �xed representatives, 11

ResidueClassUnionViewingFormat, 5

ResidueClassWithFixedRepresentative

by ring, modulus and residue, 12

of Z, by modulus and residue, 12

Residues

of a residue class union, 5

Rho

for a union of residue classes with �xed rep's,

16

SaveAsBitmapPicture

picture, �lename, 21

SendEmail, 21

SparseRep

for a residue class union, 5

SplittedClass

ResClasses 27

for a residue class and a number of parts, 7

StandardAssociate

of an element of a semilocalization of Z, 17

StandardRep

for a residue class union, 5

String

for a residue class union, 6

Union

for unions of residue classes with �xed rep-

resentatives, 15

Union

for residue class unions, 6

UnionOfResidueClassesWithFixedReps

by ring and list of classes, 12

of Z, by list of classes, 12

Z_pi

by non-invertible prime, 17

by set of non-invertible primes, 17

	Set-Theoretic Unions of Residue Classes
	Entering residue classes and set-theoretic unions thereof
	Methods for residue class unions
	On residue class unions of Z2
	The categories and families of residue class unions

	Unions of Residue Classes with Fixed Representatives
	 Entering unions of residue classes with fixed representatives
	 Methods for unions of residue classes with fixed representatives
	 The invariant Delta
	 The categories of unions of residue classes with fixed rep's

	Semilocalizations of the Integers
	Entering semilocalizations of the integers
	Methods for semilocalizations of the integers

	Installation and Auxiliary Functions
	Requirements
	Installation
	The testing routines
	Utilities for preparing the package for distribution
	Creating timestamped logfiles
	DownloadFile, SendEmail and EmailLogFile
	Creating bitmap pictures
	Some general utility functions

	References
	Index

