
orb

Methods to enumerate Orbits

4.7.6

8 March 2016

Juergen Mueller

Max Neunhöffer

Felix Noeske

Max Horn

orb 2

Juergen Mueller

Email: juergen.mueller@math.rwth-aachen.de

Homepage: http://www.math.rwth-aachen.de/~Juergen.Mueller

Address: Juergen Mueller

Lehrstuhl D fuer Mathematik, RWTH Aachen

Templergraben 64

52056 Aachen

Germany

Max Neunhöffer

Email: max@9hoeffer.de

Homepage: http://www-groups.mcs.st-and.ac.uk/~neunhoef

Address: Gustav-Freytag-Straße 40

50354 Hürth

Germany

Felix Noeske

Email: felix.noeske@math.rwth-aachen.de

Homepage: http://www.math.rwth-aachen.de/~Felix.Noeske

Address: Felix Noeske

Lehrstuhl D fuer Mathematik, RWTH Aachen

Templergraben 64

52056 Aachen

Germany

Max Horn

Email: max.horn@math.uni-giessen.de

Homepage: http://www.quendi.de/math

Address: AG Algebra

Mathematisches Institut

Justus-Liebig-Universität Gießen

Arndtstraße 2

35392 Gießen

Germany

mailto://juergen.mueller@math.rwth-aachen.de
http://www.math.rwth-aachen.de/~Juergen.Mueller
mailto://max@9hoeffer.de
http://www-groups.mcs.st-and.ac.uk/~neunhoef
mailto://felix.noeske@math.rwth-aachen.de
http://www.math.rwth-aachen.de/~Felix.Noeske
mailto://max.horn@math.uni-giessen.de
http://www.quendi.de/math

orb 2

Copyright

© 2005-2014 by Jürgen Müller, Max Neunhöffer and Felix Noeske

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation, either version 3 of the License, or (at your

option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-

LAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of

the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

Contents

1 Introduction 5

1.1 Motivation for this package . 5

1.2 Overview over this manual . 5

1.3 Feedback . 6

2 Installation of the orb-Package 7

2.1 Recompiling the documentation . 7

3 Basic orbit enumeration 8

3.1 Enumerating orbits . 8

4 Hashing techniques 20

4.1 The idea of hashing . 20

4.2 Hash functions . 20

4.3 Using hash tables . 22

4.4 Using hash tables (legacy code) . 25

4.5 The data structures for hash tables . 26

5 Caching techniques 29

5.1 The idea of caching . 29

5.2 Using caches . 29

6 Random elements 31

6.1 Randomizing mutable objects . 31

6.2 Product replacement . 32

7 Searching in groups and orbits 35

7.1 Searching using orbit enumeration . 35

7.2 Random searches in groups . 36

7.3 The dihedral trick and applications . 37

7.4 Orbit statistics on vector spaces . 37

7.5 Finding generating sets of subgroups . 38

8 AVL trees 39

8.1 The idea of AVL trees . 39

8.2 Using AVL trees . 40

8.3 The internal data structures . 44

3

orb 4

9 Orbit enumeration by suborbits 46

9.1 OrbitBySuborbits and its resulting objects . 46

9.2 Preparation functions for OrbitBySuborbit (9.1.1) 49

9.3 Data structures for orbit-by-suborbits . 51

9.4 Lists of orbit-by-suborbit objects . 54

10 Finding nice quotients 56

11 Examples 57

11.1 The Mathieu group M11 acting in dimension 24 . 57

11.2 The Fischer group Fi23 acting in dimension 1494 59

11.3 The Conway group Co1 acting in dimension 24 . 59

11.4 The Baby Monster B acting on its 2A involutions 60

References 69

Chapter 1

Introduction

1.1 Motivation for this package

This package is about orbit enumeration. It bundles fundamental algorithms for orbit enumeration as

well as more sophisticated special-purpose algorithms for very large orbits.

The fundamental methods are basically an alternative implementation to the orbit algorithms in

the GAP library. We tried to make them more �exible and more ef�cient at the same time, therefore

backwards compatibility with respect to the user interface had to be given up. In addition, more

information about how an orbit was produced is retained and is available for further usage. These

orbit enumeration algorithms build on even more fundamental code for hash tables.

The higher level algorithms basically implement the idea to enumerate an orbit �by suborbits� with

respect to one or more subgroups. While these orbit-by-suborbit algorithms are much more ef�cient

in many cases, they very often need careful and sometimes dif�cult preparations by the user. They are

de�nitely not intended to be �push-the-button-tools� but require a considerable amount of knowledge

from the �pilot�.

Quite a bit of the code in this package consists in fact of interactive tools to enable users to prepare

the data for the orbit-by-suborbit algorithms to work.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. Chapter 3 describes our reimplementation of the

basic orbit algorithm. Chapter 4 describes our toolbox for hash tables, Chapter 5 explains caching data

structures, whereas Chapter 8 describes our implementation of AVL trees. Chapter 6 covers tools to

use random methods in groups. Chapter 7 describes a lot of tools to search in groups and orbits. These

techniques are basically intended to provide the data structures necessary to run the code described in

Chapter 9 to use the orbit-by-suborbit algorithms. Currently, Chapter 10 is an empty placeholder. In

some future version of this package it will contain a description of code which helps users to �nd nice

quotients of modules which is also needed for the orbit-by-suborbit algorithms. However, since the

interface to this code is not yet stable, we chose not to document it as of now, in particular because it

relies on other not yet published packages as of the time of this writing. Finally, Chapter 11 shows an

instructive examples for the more sophisticated usage of this package.

5

orb 6

1.3 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

https://github.com/neunhoef/orb/issues

Chapter 2

Installation of the orb-Package

To install this package just extract the package's archive �le to the GAP pkg directory.

By default the orb package is not automatically loaded by GAP when it is installed. You must

load the package with LoadPackage("orb"); before its functions become available.

As of version 3.0, the orb package has a GAP kernel component which should be compiled. This

component does not actually contain new functionality but will improve the performance of AVL trees

and hash tables signi�cantly since many core routines are implemented in the C language at kernel

level.

To compile the C part of the package do (in the pkg directory)

cd orb

./configure

make

If you installed the package in another �pkg� directory than the standard �pkg� directory in your

GAP 4 installation, then you have to do two things. Firstly during compilation you have to use the

option �with-gaproot=PATH of the configure script where �PATH� is a path to the mainGAP root

directory (if not given the default �../..� is assumed).

Secondly you have to specify the path to the directory containing your �pkg� directory to GAP's

list of directories. This can be done by starting GAP with the �-l� command line option followed by

the name of the directory and a semicolon. Then your directory is prepended to the list of directories

searched. Otherwise the package is not found by GAP. Of course, you can add this option to your

GAP startup script.

If you installed GAP on several architectures, you must execute the con�gure/make step for each

of the architectures. You can either do this immediately after con�guring and compiling GAP itself

on this architecture, or alternatively (when using version 4.5 of GAP or newer) set the environment

variable CONFIGNAME to the name of the con�guration you used when compilingGAP before running

./configure. Note however that your compiler choice and �ags (environment variables CC and

CFLAGS) need to be chosen to match the setup of the original GAP compilation. For example you

have to specify 32-bit or 64-bit mode correctly!

2.1 Recompiling the documentation

Recompiling the documentation is possible by the command �gap makedoc.g� in the orb directory.

But this should not be necessary.

7

Chapter 3

Basic orbit enumeration

This package contains a new implementation of the standard orbit enumeration algorithm. The design

principles for this implementation have been:

� Allow partial orbit enumeration and later continuation.

� Consequently use hashing techniques.

� Implement stabiliser calculation and Schreier transversals on demand.

� Allow for searching in orbits during orbit enumeration.

Some of these design principles made it necessary to change the user interface in comparison to the

standard GAP one.

3.1 Enumerating orbits

The enumeration of an orbit works in at least two stages: First an orbit object is created with all

the necessary information to describe the orbit. Then the actual enumeration is started. The latter

stage can be repeated as many times as needed in the case that the orbit enumeration stopped for

some reason before the orbit was enumerated completely. See below for conditions under which this

happens.

For orbit object creation there is the following function:

3.1.1 Orb

. Orb(gens, point, op[, opt]) (function)

Returns: An orbit object

The argument gens is either a GAP group, semigroup or monoid object or a list of generators of

the magma acting, point is a point in the orbit to be enumerated, op is a GAP function describing

the action of the generators on points in the usual way, that is, op(p,g) returns the result of the action

of the element g on the point p.

Note that in the case of a semigroup or monoid acting not all options make sense (for example

stabilisers only work for groups). In this case the �directed� or �weak� orbit is computed.

The optional argument opt is a GAP record which can contain quite a few options changing the

orbit enumeration. For a list of possible options see Subsection 3.1.4 at the end of this section.

8

orb 9

The function returns an �orbit� object that can later be used to enumerate (a part of) the orbit of

point under the action of the group generated by gens .

If gens is a group, semigroup or monoid object, then its generators are taken as the list of gener-

ators acting. If a group object knows its size, then this size is used to speed up orbit and in particular

stabiliser computations.

The following operation actually starts the orbit enumeration:

3.1.2 Enumerate

. Enumerate(orb[, limit]) (operation)

Returns: The orbit object orb

orb must be an orbit object created by Orb (3.1.1). The optional argument limit must be a

positive integer meaning that the orbit enumeration should stop if limit points have been found,

regardless whether the orbit is complete or not. Note that the orbit enumeration can be continued

by again calling the Enumerate operation. If the argument limit is omitted, the whole orbit is

enumerated, unless other options lead to prior termination.

To see whether an orbit is closed you can use the following �lter:

3.1.3 IsClosed

. IsClosed(orb) (�lter)

Returns: true or false

The result indicates, whether the orbit orb is already complete or not.

Here is an example of an orbit enumeration:

Example
gap> g := GeneratorsOfGroup(MathieuGroup(24));

[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),

(3,17,10,7,9)(4,13,14,19,5)(8,18,11,12,23)(15,20,22,21,16),

(1,24)(2,23)(3,12)(4,16)(5,18)(6,10)(7,20)(8,14)(9,21)(11,17)

(13,22)(15,19)

]

gap> o := Orb(g,2,OnPoints);

<open Int-orbit, 1 points>

gap> Enumerate(o,20);

<open Int-orbit, 21 points>

gap> IsClosed(o);

false

gap> Enumerate(o);

<closed Int-orbit, 24 points>

gap> IsClosed(o);

true

The orbit object o now behaves like an immutable dense list, the entries of which are the points in the

orbit in the order as they were found during the orbit enumeration (note that this is not always true

when one uses the function AddGeneratorsToOrbit (3.1.20)). So you can ask the orbit for its length,

access entries, and ask, whether a given point lies in the orbit or not. Due to the hashing techniques

used such lookups are quite fast, they usually only use a constant time regardless of the length of the

orbit!

orb 10

Example
gap> Length(o);

24

gap> o[1];

2

gap> o[2];

3

gap> o{[3..5]};

[23, 4, 17]

gap> 17 in o;

true

gap> Position(o,17);

5

3.1.4 Options for orbits

The optional fourth argument opt of the function Orb (3.1.1) is a GAP record and its components

change the behaviour of the orbit enumeration. In this subsection we explain the use of the components

of this options record. All components are themselves optional. For every component we also describe

the possible values in the following list:

eqfunc

This component always has to be given together with the component hashfunc. If both are

given, they are used to set up a hash table to store the points in the orbit. You have to use this if

the automatic mechanism to �nd a suitable hash function does not work for your starting point

in the orbit.

Note that if you use this feature, the hash table cannot grow automatically any more, unless you

also use the components hfbig and hfdbig as well. See the description of GrowHT (4.4.5) for

an explanation how to use this feature.

genstoapply

This is only used internally and is intentionally not documented.

gradingfunc

If this component is bound it must be bound to a function taking two arguments, the �rst is

the orbit object, the second is a new point. This function is called for every new point and

is supposed to compute a �grade� for the point which can be an arbitrary GAP object. The

resulting values are then stored in a list of equal length to the orbit and can later be queried

with the Grades (3.1.11) operation. If this feature is used the orbit object will lie in the �lter

IsGradedOrbit (3.1.10). In connection with the onlygrades option the enumeration of an

orbit can be limited to points with certain grades, see below.

grpsizebound

Possible values for this component are positive integers. By setting this value one can help the

orbit enumeration to complete earlier. The given number must be an upper bound for the order

of the group. If the exact group order is given and the stabiliser is calculated during the orbit

enumeration (see component permgens), then the orbit enumeration can stop as soon as the

orbit is found completely and the stabiliser is complete, which is usually much earlier than after

all generator are applied to all points in the orbit.

orb 11

forflatplainlists

If this component is set to true then the user guarantees that all the points in the orbit will be

�at plain lists, that is, plain lists with no subobjects. For example lists of immediate integers

will ful�ll this requirement, but ranges don't. In this case, a particularly good and ef�cient

hash function will automatically be taken and the components hf, hfd, hfbig and hfdbig are

ignored. Note that this cannot be automatically detected because it depends not only on the �rst

point of the orbit but also on the other points in the orbit and thus on the group generators given.

hashfunc

This component always has to be given together with the eqfunc component (see also there).

The value should be a record with components func and data. The former is used as the hash

function (component hf in the options to HTCreate (4.3.1)) and the latter as data argument

(component hfd). The length of the hash is determined by the value of the component hashlen.

If a tree hash is to be used, the component treehashsize has to be used instead of hashlen. If

you want to use a hash table that can grow automatically, use the hfbig and htdbig components

together with hashlen for the initial size. See HTCreate (4.3.1) for details.

hashlen

Possible values are positive integers. This component determines the initial size of the hash

used for the orbit enumeration. The default value is 10000. If the hash table turns out not to be

large enough, it is automatically increased by a factor of two during the calculation. Although

this process is quite fast it still improves performance to give a sensible hash size in advance.

hfbig and hfdbig

These components can only be used in connection with eqfunc and hashfunc and are other-

wise ignored. There values are simply passed on to the hash table created. The idea is to still

be able to grow the hash table if need be. See Section 4.5 for more details.

treehashsize

This component indicates that instead of a normal hash table a tree hash table (TreeHashTab)

should be used (see Section 4.1). If bound, it must be set to the length of the tree hash table.

You should still choose this length big enough, however, this type of hash table should be more

resilient to bad hash functions since the performance of operations will only deteriorate up

to log(n) instead of to n (number of entries). If you use this option your hash keys must be

comparable by < and not only by =. You can supply your own three-way comparison function

(see HTCreate (4.3.1)) by using the cmpfunc component.

cmpfunc

If the previous component treehashsize is bound, you can specify a three-way comparison

function for the hash keys in this component. See HTCreate (4.3.1) and AVLCmp (8.2.2) for

details.

log If this component is set to true then a log of the enumeration of the orbit is written into the

components log, logind and logpos. Every time a new point is found in the orbit enumeration,

two numbers are appended to the log, �rst the number of the generator applied, then the index,

under which the new point is stored in the orbit. For each point in the orbit, the start of the

entries for that point in log is stored in logind and the end of those entries is marked by

storing the number of the last generator producing a new point negated.

orb 12

The purpose of a log is the following: With a log one can later add group generators to the orbit

and thus get a different Schreier tree, such that the resulting orbit enumeration is still a breadth

�rst enumeration using the new generating set! This is desirable to decrease the depth of the

Schreier tree. The log helps to implement this in a way, such that the old generators do not

again have to be applied to all the points in the orbit. See AddGeneratorsToOrbit (3.1.20) for

details.

A log needs roughly 3 machine words per point in the orbit as memory.

lookingfor

This component is used to search for something in the orbit. The idea is that the orbit enu-

meration is stopped when some condition is met. This condition can be speci�ed with a great

�exibility. The �rst way is to store a list of points into orb.lookingfor. In that case the orbit

enumeration stops, when a point is found that is in that list. A second possiblity is to store a hash

table object into orb.lookingfor. Then every newly found point in the orbit is looked up in

that hash table and the orbit enumeration stops as soon as a point is found that is also in the hash

table. The third possibility is functional: You can store a GAP function into opt.lookingfor

which is called for every newly found point in the orbit. It gets both the orbit object and the

point as its two arguments. This function has to return false or true and in the latter case the

orbit enumeration is stopped.

Whenever the orbit enumeration is stopped the component found is set to the number of the

found point in the orbit. Access this information using PositionOfFound(orb).

matgens

This is not yet implemented. It will allow for stabiliser computations in matrix groups.

onlygrades

This option is to limit the orbit enumeration to points with certain grades (see option

gradingfunc). The primary way to do this is to bind onlygrades to a function taking

two arguments. The �rst is the grade value, the second is the value bound to the option

onlygradesdata below. The function is then called for every new point after its grade is

computed. If the function returns true the point is stored in the orbit as usual, if it returns

false the point is dropped. Note that using this option can (and ought to) lead to incomplete

orbits which claim to be closed.

As a shorthand notation one can bind a list or hash table to the component onlygrades. In

this case a standard membership test of the grade value in the list or hash table is performed to

decide whether or not the point is stored. One does not have to assign onlygradesdata in this

case.

onlygradesdata

As described above this component holds the data for the second argument of the onlygrades

test function. See option onlygrades above.

onlystab

If this boolean �ag is set to true then the orbit enumeration stops once the stabiliser is com-

pletely determined. Note that this can only be known, if a bound for the group size is given in

the opt.grpsizebound option and when more than half of the orbit is already found, or when

opt.stabsizebound is given.

orb 13

orbsizebound

Possible values for this component are positive integers. The given number must be an upper

bound for the orbit length. Giving this number helps the orbit enumeration to stop earlier, when

the orbit is found completely.

orbitgraph

If this component is true then the so called orbit graph is computed. The vertices of this graph

are the points of the orbit and the (directed) edges are given by the generators acting. So if

a generator g maps point a to b then there is a directed edge from the vertex a to the vertex

b. This graph can later be queried using the OrbitGraph (3.1.12) and OrbitGraphAsSets

(3.1.13) operations. The data format in which the graph is returned is described there.

permbase

This component is used to tell the orbit enumerator that a certain list of points is a base of

the permutation representation given in the opt.permgens component. This information is

often available beforehand and can drastically speed up the calculation of Schreier generators,

especially for the common case that they are trivial. The value is just a list of integers.

permgens

If this component is set, it must be set to a list of permutations, that represent the same group

as the generators used to de�ne the orbit. This permutation representation is then used to cal-

culate the stabiliser of the starting point. After the orbit enumeration is complete, you can

call Stabilizer(orb) with orb being the orbit object and get the stabiliser as a permutation

group. The stabiliser is also stored in the stab component of the orbit object. Furthermore, the

size of the stabiliser is stored in the stabsize component of the orbit object and the component

stabwords contains the stabiliser generators as words in the original group generators. Access

these words with StabWords(orb). Here, a word is a list of integers, where positive integers

are numbers of generators and a negative integer i indicates the inverse of the generator with

number �i. In this way, complete information about the stabiliser can be derived from the orbit

object.

report

Possible values are non-negative integers. This value asks for a status report whenever the

orbit enumeration has applied all generators to opt.report points. A value of 0, which is the

default, switches off this report. In each report, the total number of points already found are

given.

schreier

This boolean �ag decides, whether a Schreier tree is stored together with the orbit. A

Schreier tree just stores for each point, which generator was applied to which other point

in the orbit to get it. Thus, having the Schreier tree enables the usage of the operations

TraceSchreierTreeForward (3.1.16) and TraceSchreierTreeBack (3.1.17). A Schreier

tree needs two additional machine words of memory per point in the orbit. The opt.schreier

�ag is automatically set when a stabiliser is computed during orbit enumeration (see compo-

nents opt.permgens and opt.matgens).

schreiergenaction

The value of this component must be a function with 4 arguments: the orbit object, an index i ,

an integer j , and an index pos . It is called, whenever during the orbit enumeration generator

orb 14

number j was applied to point number i and the result was an already known point with number

pos . The function has to return true or false. The former case is used internally and triggers

the evaluation of some conditions for stabiliser computations. Simply return false if you do

not want this to happen.

Once the component stabcomplete is set to true during the orbit computation (which happens

when there is evidence that the stabiliser is already completely determined), no more calls to

schreiergenaction happen.

This component is mainly used internally when the permgens component was set and the sta-

biliser is calculated.

seeds

In this component you can specify a list of additional seed points, which are appended to the

orbit before the enumeration starts.

stab

This component is used to tell the orbit enumerator that a subgroup of the stabiliser of the

starting point is already known. Store a subgroup of the group generated by the permutations in

opt.permgens stabilising the starting point into this component.

stabchainrandom

This value can be a positive integer between 1 and 1000. If opt.permgens is given, an integer

value is used to set the random option when calculating a stabiliser chain to compute the size of

the group generated by the Schreier generators. Although this size computation can be speeded

up considerably, the user should be aware that for values smaller than 1000 this triggers a Monte

Carlo algorithm that can produce wrong results with a certain error probability. A veri�cation

of the obtained results is advisable. Note however, that such computations can only err in one

direction, namely underestimating the size of the group.

stabsizebound

Possible values for this component are positive integers. The given number must be an upper

bound for the size of the stabiliser. Giving this number helps the orbit enumeration to stop ear-

lier, when also opt.orbsizebound or opt.grpsizebound are given or when opt.onlystab

is set.

storenumbers

This boolean �ag decides, whether the positions of points in the orbit are stored in the hash. The

memory requirement for this is one machine word (4 or 8 bytes depending on the architecture)

per point in the orbit. If you just need the orbit itself this is not necessary. If you however want

to �nd the position of a point in the orbit ef�ciently after enumeration, then you should switch

this on. That is, the operation \in is always fast, but Position(orb, point) is only fast if

opt.storenumbers was set to true or the orbit is �permutations acting on positive integers�.

In the latter case this �ag is ignored.

For some examples using these options see Chapter 11.

3.1.5 Output components of orbits

The following components are bound in an orbit object. There might be some more, but those are

implementation speci�c and not guaranteed to be there in future versions. Note that you have to

orb 15

access these components using the �.~� dot exclamation mark notation and you should avoid using

these if at all possible.

depth and depthmarks

If the orbit has either a Schreier tree or a log, then the component depth holds its depth, that

is the maximal number of generator applications needed to reach any point in the orbit. The

corresponding component depthmarks is a list of indices, at position i it holds the index of the

�rst point in the orbit in depth i in the Schreier tree.

gens

The list of group generators.

ht If the orbit uses a hash table it is stored in this component.

op The operation function.

orbind

If generators have been added to the orbit later then the order in which the points are actually

stored in the orbit might not correspond to a breadth �rst search. To cover this case, the com-

ponent orbind contains in position i the index under which the i-th point in the breadth-�rst

search using the new generating set is actually stored in the orbit.

schreiergen and schreierpos

If a Schreier tree of the orbit was kept then both these components are lists containing inte-

gers. If point number i was found by applying generator number j to point number p then

position i of schreiergen is j and position i of schreierpos is p. You can use the opera-

tions TraceSchreierTreeForward (3.1.16) and TraceSchreierTreeBack (3.1.17) to com-

pute words in the generators using these two components.

tab For an orbit in which permutations act on positive integers this component is bound to a list

containing in position i the index in the orbit, where the number i is stored.

The following operations help to ask additional information about orbit objects:

3.1.6 StabWords (basic)

. StabWords(orb) (operation)

Returns: A list of words

If the stabiliser was computed during the orbit enumeration, then this function returns the stabiliser

generators found as words in the generators. A word is a sequence of integers, where positive integers

stand for generators and negative numbers for their inverses.

3.1.7 PositionOfFound

. PositionOfFound(orb) (operation)

Returns: An integer

If during the orbit enumeration the option lookingfor was used and the orbit enumerator looked

for something, then this operation returns the index in the orbit, where the something was found most

recently.

orb 16

3.1.8 UnderlyingPlist

. UnderlyingPlist(orb) (operation)

Returns: An plain list

This returns the current elements in the orbit represented by orb as a plain list. This is guaranteed

to be a very fast operation using only constant time. However, it does give you a part of the internal

data structure of orb . Note that it is not allowed to change the resulting list in any way because that

would corrupt the data structures of the orbit.

3.1.9 DepthOfSchreierTree

. DepthOfSchreierTree(orb) (operation)

Returns: An integer

If a Schreier tree or a log was stored during orbit enumeration, then this operation returns the

depth of the Schreier tree.

3.1.10 IsGradedOrbit

. IsGradedOrbit(orb) (�lter)

Returns: true or false

If the option gradingfunc has been used when creating the orbit object, then a �grade� is com-

puted for every point in the orbit. In this case the orbit object lies in this �lter. The list of grades can

then be queried using the Grades (3.1.11) operation below.

3.1.11 Grades

. Grades(orb) (operation)

Returns: a list of grades

If the option gradingfunc has been used when creating the orbit object, then a �grade� is com-

puted for every point in the orbit. This operation retrieves the list of grades from the orbit object orb .

Note that this is in general a mutable list which must not be changed. It needs to be mutable if the

orbit enumeration goes on and this operation does not copy it for ef�ciency reasons.

3.1.12 OrbitGraph

. OrbitGraph(orb) (operation)

Returns: a list of lists

The vertices of the orbit graph are the points of the orbit and the (directed) edges are given by the

generators acting. So if a generator g maps point a to b then there is a directed edge from the vertex a

to the vertex b. This operation returns the orbit graph can in the following format: The result is a list

of equal length as the orbit. Each entry (corresponding to a point in the orbit) contains a list of orbit

point numbers, one for each generator used for the orbit enumeration. That is, position [i][j] in the list
contains the number in the orbit of the image of orbit point number i under the generator with number

j.

Note that if the gradingfunc and onlygrades options are used some entries in these lists can

be unbound. This shows that some edges of the complete orbit graph leave the part of the orbit which

has been enumerated by the grade restriction.

orb 17

3.1.13 OrbitGraphAsSets

. OrbitGraphAsSets(orb) (operation)

Returns: a list of sets

This operation returns the same graph as OrbitGraph (3.1.12) in a slightly different format. The

neighbours of a point are reported as a set of numbers rather than as a tuple. That is, position [i] of the
resulting lists is the set of numbers of the (directed) neighbours of point number i.

We present a few more operations one can do with orbit objects. One can express the action of a

given group element in the group generated by the generators given in the Orb command on this orbit

as a permutation:

3.1.14 ActionOnOrbit

. ActionOnOrbit(orb, grpels) (operation)

Returns: A permutation or fail

orb must be an orbit object and grpels a list of group elements acting on the orbit. This operation

calculates the action of grpels on orb as GAP permutations, where the numbering of the points is

in the same order as the points have been found in the orbit. Note that this operation is particularly

fast if the orbit is an orbit of a permutation group acting on positive integers or if you used the option

storenumbers described in Subsection 3.1.4.

3.1.15 OrbActionHomomorphism

. OrbActionHomomorphism(g, orb) (operation)

Returns: An action homomorphism

The argument g must be a group and orb an orbit on which g acts in the action of the orbit object.

This operation returns a homomorphism into a permutation group acquired by taking the action of g

on the orbit.

3.1.16 TraceSchreierTreeForward

. TraceSchreierTreeForward(orb, nr) (operation)

Returns: A word in the generators

orb must be an orbit object with a Schreier tree, that is, the option schreier must have been set

during creation, and nr must be the number of a point in the orbit. This operation traces the Schreier

tree and returns a word in the generators that maps the starting point to the point with number nr .

Here, a word is a list of positive integers which are numbers of generators of the orbit.

3.1.17 TraceSchreierTreeBack

. TraceSchreierTreeBack(orb, nr) (operation)

Returns: A word in the generators

orb must be an orbit object with a Schreier tree, that is, the option schreier must have been set

during creation, and nr must be the number of a point in the orbit. This operation traces the Schreier

tree and returns a word in the inverses of the generators that maps the point with number nr to the

starting point. As above, a word is here a list of positive integers which are numbers of inverses of the

generators of the orbit.

orb 18

3.1.18 ActWithWord

. ActWithWord(gens, w, op, p) (operation)

Returns: A point

gens must be a list of group generators, w a list of positive integers less than or equal to the length

of gens , op an action function and p a point. This operation computes the action of the word w in the

generators gens on the point p and returns the result.

3.1.19 EvaluateWord

. EvaluateWord(gens, w) (operation)

Returns: A group element

gens must be a list of group generators, w a list of positive integers less than or equal to the length

of gens . This operation evaluates the word w in the generators gens and returns the result.

3.1.20 AddGeneratorsToOrbit

. AddGeneratorsToOrbit(orb, l[, p]) (operation)

Returns: The orbit object orb

orb must be an orbit object, l a list of new generators and, if given, p must be a list of per-

mutations of equal length. p must be given if and only if the component permgens was speci�ed

upon creation of the orbit object. The new generators are appended to the old list of generators. The

orbit object is changed such that it then shows the outcome of a breadth-�rst orbit enumeration with

the new list of generators. Note that the order of the points already enumerated will not be changed.

However, the Schreier tree changes, the component orbind is changed to indicate the order in which

the points were found in the breadth-�rst search with the new generators and the components depth

and depthmarks are changed.

Note that all this is particularly ef�cient if the orbit has a log. If you add generators to an orbit

with log, the old generators do not have to be applied again to all points!

Note that new generators can actually enlarge an orbit if they generate a larger group than the old

ones alone. Note also that when adding generators, the orbit is automatically enumerated completely

3.1.21 MakeSchreierTreeShallow

. MakeSchreierTreeShallow(orb[, d]) (operation)

Returns: nothing

The argument orb must be a closed orbit object with a log and a Schreier tree, that is, the options

log and schreier must have been set to true during creation.

Uses AddGeneratorsToOrbit (3.1.20) to add more generators to the orbit in order to make the

Schreier tree shallower. If d it is given, generators are added until the depth is less than or equal to d

or until three more generators did not reduce the depth any more. If d is not given, then the logarithm

to base 2 of the orbit length is taken as a default value.

3.1.22 FindSuborbits

. FindSuborbits(orb, subgens[, nrsuborbits]) (operation)

Returns: A record

orb 19

The argument orb must be a closed orbit object with a Schreier vector, subgens a list of gener-

ators for a subgroup of the originally acting group. If given, nrsuborbits must be a lower limit for

the number of suborbits.

The returned record describes the suborbit structure of orb with respect to the group generated

by subgens using the following components: issuborbitrecord is bound to true, o is bound to

orb , nrsuborbits is bound to the number of suborbits and reps is a list of length nrsuborbits

containing the index in the orbit of a representative for each suborbit. Likewise, words contains

words in the original group generators of the orbit that map the starting point of the orbit to those

representatives. lens is a list containing the lengths of the suborbits. The component suborbs is

bound to a list of lists, one for each suborbit containing the indices of the points in the orbit. The

component suborbnr is a list with the same length as the orbit, containing in position i the number

of the suborbit in which point i in the orbit is contained.

Finally, the component conjsuborbit is bound to a list of length nrsuborbits, containing for

each suborbit the number the suborbit reached from the starting point by the inverse of the word

used to reach the orbit representative. This latter information probably only makes sense when the

subgroup generated by subgens is contained in the point stabiliser of the starting point of the orbit,

because then this is the so-called conjugate suborbit of a suborbit.

3.1.23 OrbitIntersectionMatrix

. OrbitIntersectionMatrix(r, g) (operation)

Returns: An integer matrix

The argument r must be a suborbit record as returned by the operation FindSuborbits (3.1.22)

above, describing the suborbit structure of an orbit with respect to a subgroup. g must be an element

of the acting group. If k is the number of suborbits and the suborbits are O1; : : : ;Ok, then the matrix

returned by this operation has the integer jOi �g \O jj in its (i; j)-entry.

3.1.24 ORB_EstimateOrbitSize

. ORB_EstimateOrbitSize(gens, pt, op, L, limit, timeout) (function)

Returns: fail or a record

The argument gens is a list of group generators for a group G, the argument pt a point and op

and action function for a group action of G acting on points like pt . This function starts to act with

random elements of G on pt producing random elements of the orbit pt �G and uses the birthday

paradox to estimate the orbit size. To this end it creates points of the orbit until L coincidences (points

found twice) have been found. If before this happens limit tries have been reached or if more than

timeout milliseconds have ellapsed, the function gives up and returns fail. Otherwise it estimates

the orbit size giving an estimate in the component estimate, a con�dence interval described by the

components lowerbound and upperbound, a list of generators for the stabiliser in the component

Sgens and the number of coincidences that were caused by picking the same group element. The

length of Sgens is L�grpcoinc. Use at least 15 for L , otherwise the statistics are not valid.

Chapter 4

Hashing techniques

4.1 The idea of hashing

If one wants to store a certain set of similar objects and wants to quickly access a given one (or come

back with the result that it is unknown), the �rst idea would be to store them in a list, possibly sorted

for faster access. This however still would need log(n) comparisons to �nd a given element or to

decide that it is not yet stored.

Therefore one uses a much bigger array and uses a function on the space of possible objects with

integer values to decide, where in the array to store a certain object. If this so called hash function

distributes the actually stored objects well enough over the array, the access time is constant in average.

Of course, a hash function will usually not be injective, so one needs a strategy what to do in case of

a so-called �collision�, that is, if more than one object with the same hash value has to be stored. This

package provides two ways to deal with collisions, one is implemented in the so called �HashTabs�

and another in the �TreeHashTabs�. The former simply uses other parts of the array to store the data

involved in the collisions and the latter uses an AVL tree (see Chapter 8) to store all data objects with

the same hash value. Both are used basically in the same way but sometimes behave a bit differently.

The basic functions to work with hash tables are HTCreate (4.3.1), HTAdd (4.3.2), HTValue

(4.3.3), HTDelete (4.3.5) and HTUpdate (4.3.4). They are described in Section 4.3.

The legacy functions from older versions of this package to work with hash tables are NewHT

(4.4.1), AddHT (4.4.2), and ValueHT (4.4.3). They are described in Section 4.4. In the next section,

we �rst describe the infrastructure for hash functions.

4.2 Hash functions

In the orb package hash functions are chosen automatically by giving a sample object together with

the length of the hash table. This is done with the following operation:

4.2.1 ChooseHashFunction

. ChooseHashFunction(ob, len) (operation)

Returns: a record

The �rst argument ob must be a sample object, that is, an object like those we want to store in

the hash table later on. The argument len is an integer that gives the length of the hash table. Note

that this might be called later on automatically, when a hash table is increased in size. The operation

20

orb 21

returns a record with two components. The component func is aGAP function taking two arguments,

see below. The component data is some GAP object. Later on, the hash function will be called with

two arguments, the �rst is the object for which it should call the hash value and the second argument

must be the data stored in the data component.

The hash function has to return values between 1 and the hash length len inclusively.

This setup is chosen such that the hash functions can be global objects that are not created during

the execution of ChooseHashFunction but still can change their behaviour depending on the data.

In the following we just document, for which types of objects there are hash functions that can be

found using ChooseHashFunction (4.2.1).

4.2.2 ChooseHashFunction (gf2vec)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for compressed vectors over the �eld GF(2) of two elements. Note that there is

no hash function for non-compressed vectors over GF(2) because those objects cannot ef�ciently be

recognised from their type.

Note that you can only use the resulting hash functions for vectors of the same length.

4.2.3 ChooseHashFunction (8bitvec)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for compressed vectors over a �nite �eld with up to 256 elements. Note that

there is no hash function for non-compressed such vectors because those objects cannot ef�ciently be

recognised from their type.

Note that you can only use the resulting hash functions for vectors of the same length.

4.2.4 ChooseHashFunction (gf2mat)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for compressed matrices over the �eld GF(2) of two elements. Note that there is

no hash function for non-compressed matrices over GF(2) because those objects cannot ef�ciently be

recognised from their type.

Note that you can only use the resulting hash functions for matrices of the same size.

4.2.5 ChooseHashFunction (8bitmat)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for compressed matrices over a �nite �eld with up to 256 elements. Note that

there is no hash function for non-compressed such vectors because those objects cannot ef�ciently be

recognised from their type.

Note that you can only use the resulting hash functions for matrices of the same size.

orb 22

4.2.6 ChooseHashFunction (int)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for integers.

4.2.7 ChooseHashFunction (perm)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for permutations.

4.2.8 ChooseHashFunction (intlist)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for lists of integers.

4.2.9 ChooseHashFunction (NBitsPcWord)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for kernel Pc words.

4.2.10 ChooseHashFunction (IntLists)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for lists of integers.

4.2.11 ChooseHashFunction (MatLists)

. ChooseHashFunction(ob, len) (method)

Returns: a record

This method is for lists of matrices.

4.3 Using hash tables

4.3.1 HTCreate

. HTCreate(sample[, opt]) (operation)

Returns: a new hash table object

A new hash table for objects like sample is created. The second argument opt is an optional

options record, which will supplied in most cases, if only to specify the length and type of the hash

table to be used. The following components in this record can be bound:

treehashsize

If this component is bound the type of the hash table is a TreeHashTab. The value must be a

positive integer and will be the size of the hash table. Note that for this type of hash table the

orb 23

keys to be stored in the hash must be comparable using <. A three-way comparison function

can be supplied using the component cmpfunc (see below).

treehashtab

If this component is bound the type of the hash table is a TreeHashTab. This option is super�u-

ous if treehashsize is used.

forflatplainlists

If this component is set to true then the user guarantees that all the elements in the hash will

be �at plain lists, that is, plain lists with no subobjects. For example lists of immediate integers

will ful�ll this requirement, but ranges don't. In this case, a particularly good and ef�cient

hash function will automatically be taken and the components hashfunc, hfbig and hfdbig

are ignored. Note that this cannot be automatically detected because it depends not only on the

sample point but also potentially on all the other points to be stored in the hash table.

hf and hfd

If these components are bound, they are used as the hash function. The value of hf must be

a function taking two arguments, the �rst being the object for which the hash function shall

be computed and the second being the value of hfd. The returned value must be an integer

in the range from 1 to the length of the hash. If either of these components is not bound, an

automatic choice for the hash function is done using ChooseHashFunction (4.2.1) and the

supplied sample object sample .

Note that if you specify these two components and are using a HashTab table then this table

cannot grow unless you also bind the components hfbig, hfdbig and cangrow.

cmpfunc

This component can be bound to a three-way comparison function taking two arguments a and

b (which will be keys for the TreeHashTab) and returns �1 if a < b , 0 if a = b and 1 if a > b .

If this component is not bound the function AVLCmp (8.2.2) is taken, which simply calls the

generic operations < and = to do the job.

hashlen

If this component is bound the type of the hash table is a standard HashTab table. That is,

collisions are dealt with by storing additional entries in other slots. This is the traditional way

to implement a hash table. Note that currently deleting entries in such a hash table is not

implemented, since it could only be done by leaving a �deleted� mark which could pollute that

hash table. Use TreeHashTabs instead if you need deletion. The value bound to hashlen must

be a positive integer and will be the initial length of the hash table.

Note that it is a good idea to choose a prime number as the hash length due to the algorithm

for collision handling which works particularly well in that case. The hash function is chosen

automatically.

hashtab

If this component is bound the type of the hash table is a standard HashTab table. This compo-

nent is super�uous if hashlen is bound.

eqf For HashTab tables the function taking two arguments bound to this component is used to

compare keys in the hash table. If this component is not bound the usual = operation is taken.

orb 24

hfbig and hfdbig and cangrow

If you have used the components hf and hfd then your hash table cannot automatically grow

when it �lls up. This is because the length of the table is built into the hash function. If you

still want your hash table to be able to grow automatically, then bind a hash function returning

arbitrary integers to hfbig, the corresponding data for the second argument to hfdbig and bind

cangrow to true. Then the hash table will automatically grow and take this new hash function

modulo the new length of the hash table as hash function.

4.3.2 HTAdd

. HTAdd(ht, key, value) (operation)

Returns: a hash value

Stores the object key into the hash table ht and stores the value val together with ob . The result

is fail if an error occurred, which can be that an object equal to key is already stored in the hash table

or that the hash table is already full. The latter can only happen, if the hash table is no TreeHashTab

and cannot grow automatically.

If no error occurs, the result is an integer indicating the place in the hash table where the object is

stored. Note that once the hash table grows automatically this number is no longer the same!

If the value val is true for all objects in the hash, no extra memory is used for the values. All

other values are stored in the hash. The value fail cannot be stored as it indicates that the object is

not found in the hash.

See Section 4.5 for details on the data structures and especially about memory requirements.

4.3.3 HTValue

. HTValue(ht, key) (operation)

Returns: fail or true or a value

Looks up the object key in the hash table ht . If the object is not found, fail is returned. Other-

wise, the value stored with the object is returned. Note that if this value was true no extra memory is

used for this.

4.3.4 HTUpdate

. HTUpdate(ht, key, value) (operation)

Returns: fail or true or a value

The object key must already be stored in the hash table ht , otherwise this operation returns

fail. The value stored with key in the hash is replaced by value and the previously stored value is

returned.

4.3.5 HTDelete

. HTDelete(ht, key) (operation)

Returns: fail or true or a value

The object key along with its stored value is removed from the hash table ht . Note that this

currently only works for TreeHashTabs and not for HashTab tables. It is an error if key is not found

in the hash table and fail is returned in this case.

orb 25

4.3.6 HTGrow

. HTGrow(ht, ob) (function)

Returns: nothing

This is a more or less internal operation. It is called when the space in a hash table becomes scarce.

The �rst argument ht must be a hash table object, the second a sample point. The function increases

the hash size by a factor of 2. This makes it necessary to choose a new hash function. Usually this

is done with the usual ChooseHashFunction method. However, one can bind the two components

hfbig and hfdbig in the options record of HTCreate (4.3.1) to a function and a record respectively

and bind cangrow to true. In that case, upon growing the hash, a new hash function is created by

taking the function hfbig together with hfdbig as second data argument and reducing the resulting

integer modulo the hash length. In this way one can specify a hash function suitable for all hash sizes

by simply producing big enough hash values.

4.4 Using hash tables (legacy code)

Note that the functions described in this section are obsolete since version 3.0 of orb and are only kept

for backward compatibility. Please use the functions in Section 4.3 in new code.

The following functions are needed to use hash tables. For details about the data structures see

Section 4.5.

4.4.1 NewHT

. NewHT(sample, len) (function)

Returns: a new hash table object

A new hash table for objects like sample of length len is created. Note that it is a good idea to

choose a prime number as the hash length due to the algorithm for collision handling which works

particularly well in that case. The hash function is chosen automatically. The resulting object can be

used with the functions AddHT (4.4.2) and ValueHT (4.4.3). It will start with length len but will grow

as necessary.

4.4.2 AddHT

. AddHT(ht, ob, val) (function)

Returns: an integer or fail

Stores the object ob into the hash table ht and stores the value val together with ob . The result is

fail if an error occurred, which can only be that the hash table is already full. This can only happen,

if the hash table cannot grow automatically.

If no error occurs, the result is an integer indicating the place in the hash table where the object is

stored. Note that once the hash table grows automatically this number is no longer the same!

If the value val is true for all objects in the hash, no extra memory is used for the values. All

other values are stored in the hash. The value fail cannot be stored as it indicates that the object is

not found in the hash.

See Section 4.5 for details on the data structures and especially about memory requirements.

orb 26

4.4.3 ValueHT

. ValueHT(ht, ob) (function)

Returns: the stored value, true, or fail

Looks up the object ob in the hash table ht . If the object is not found, fail is returned. Otherwise,

the value stored with the object is returned. Note that if this value was true no extra memory is used

for this.

The following function is only documented for the sake of completeness and for emergency situ-

ations, where NewHT (4.4.1) tries to be too intelligent.

4.4.4 InitHT

. InitHT(len, hfun, eqfun) (function)

Returns: a new hash table object

This is usually only an internal function. It is called from NewHT (4.4.1). The argument len is

the length of the hash table, hfun is the hash function record as returned by ChooseHashFunction

(4.2.1) and eqfun is a comparison function taking two arguments and returning true or false.

Note that automatic growing is switched on for the new hash table which means that if the hash

table grows, a new hash function is chosen using ChooseHashFunction (4.2.1). If you do not want

this, change the component cangrow to false after creating the hash table.

4.4.5 GrowHT

. GrowHT(ht, ob) (function)

Returns: nothing

This is a more or less internal function. It is called when the space in a hash table becomes

scarce. The �rst argument ht must be a hash table object, the second a sample point. The function

increases the hash size by a factor of 2 for hash tables and 20 for tree hash tables. This makes it

necessary to choose a new hash function. Usually this is done with the usual ChooseHashFunction

method. However, one can assign the two components hfbig and hfdbig to a function and a record

respectively. In that case, upon growing the hash, a new hash function is created by taking the function

hfbig together with hfdbig as second data argument and reducing the resulting integer modulo the

hash length. In this way one can specify a hash function suitable for all hash sizes by simply producing

big enough hash values.

4.5 The data structures for hash tables

A legacy hash table object is just a record with the following components:

els A GAP list storing the elements. Its length can be as long as the component len indicates but

will only grow as necessary when elements are stored in the hash.

vals

A GAP list storing the corresponding values. If a value is true nothing is stored here to save

memory.

len Length of the hash table.

nr Number of elements stored in the hash table.

orb 27

hf The hash function (value of the func component in the record returned by

ChooseHashFunction (4.2.1)).

hfd The data for the second argument of the hash function (value of the data component in the

record returned by ChooseHashFunction (4.2.1)).

eqf A comparison function taking two arguments and returning true for equality or false other-

wise.

collisions

Number of collisions (see below).

accesses

Number of lookup or store accesses to the hash.

cangrow

A boolean value indicating whether the hash can grow automatically or not.

ishash

Is true to indicate that this is a hash table record.

hfbig and hfdbig

Used for hash tables which need to be able to grow but where the user supplied the hash func-

tion. See Section HTCreate (4.3.1) for more details.

A new style HashTab objects are component objects with the same components except that there is no

component ishash since these objects are recognised by their type.

A TreeHashTab is very similar. It is a positional object with basically the same components,

except that eqf is replaced by the three-way comparison function cmpfunc. Since TreeHashTabs

do not grow, the components hfbig, hfdbig and cangrow are never bound. Each slot in the els

component is either unbound (empty), or bound to the only key stored in the hash which has this hash

value or, if there is more than one key for that hash value, the slot is bound to an AVL tree containing

all such keys (and values).

4.5.1 Memory requirements

Due to the data structure de�ned above the hash table will need one machine word (4 bytes on 32bit

machines and 8 bytes on 64bit machines) per possible entry in the hash if all values corresponding

to objects in the hash are true and two machine words otherwise. This means that the memory

requirement for the hash itself is proportional to the hash table length and not to the number of objects

actually stored in the hash!

In addition one of course needs the memory to store the objects themselves.

For TreeHashTabs there are additional memory requirements. As soon as there are more than one

key hashing to the same value, the memory for an AVL tree object is needed in addition. An AVL tree

objects needs about 10 machine words for the tree object and then another 4 machine words for each

entry stored in the tree. Note that for many collisions this can be signi�cantly more than for HashTab

tables. However, the advantage of TreeHashTabs is that even for a bad hash function the performance

is never worse than log(n) for each operation where n is the number of keys in the hash with the same

hash value.

orb 28

4.5.2 Handling of collisions

This section is only relevant for HashTab objects.

If two or more objects have the same hash value, the following is done: If the hash value is coprime

to the hash length, the hash value is taken as �the increment�, otherwise 1 is taken. The code to �nd

the proper place for an object just repeatedly adds the increment to the current position modulo the

hash length. Due to the choice of the increment this will eventually try all places in the hash table.

Every such increment step is counted as a collision in the collisions component in the hash table.

This algorithm explains why it is sensible to choose a prime number as the length of a hash table.

4.5.3 Ef�ciency

Hashing is ef�cient as long as there are not too many collisions. It is not a problem if the number of

collisions (counted in the collisions component) is smaller than the number of accesses (counted

in the accesses component).

A high number of collisions can be caused by a bad hash function, because the hash table is too

small (do not �ll a hash table to more than about 80%), or because the objects to store are just not well

enough distributed. Hash tables will grow automatically if too many collisions are detected or if they

are �lled to 80%.

The advantage of TreeHashTabs is that even for a bad hash function the performance is never

worse than log(n) for each operation where n is the number of keys in the hash with the same hash

value. However, they need a bit more memory.

Chapter 5

Caching techniques

5.1 The idea of caching

If one wants to work with a large number of large objects which require some time to prepare and

one does not know beforehand, how often one will need each one, it makes sense to work with some

sort of cache. A cache is a data structure to keep some of the objects already produced but not too

many of them to waste a lot of memory. That is, objects which have not been used for some time

can automatically be removed from the cache, whereas the objects which are used more frequently

stay in the cache. This chapter describes an implementation of this idea used in the orbit-by-suborbit

algorithms.

5.2 Using caches

A cache is created using the following operation:

5.2.1 LinkedListCache

. LinkedListCache(memorylimit) (operation)

Returns: A new cache object

This operation creates a new linked list cache that uses at most memorylimit bytes to store its

entries. The cache is organised as a linked list, newly cached objects are appended at the beginning

of the list, when the used memory grows over the limit, old objects are removed at the end of this list

automatically.

New objects are entered into the hash with the following function:

5.2.2 CacheObject

. CacheObject(c, ob, mem) (operation)

Returns: A new node in the linked list cache

This operation enters the object ob into the cache c . The argument mem is an integer with the

memory usage of the object ob . The object is prepended to the linked list cache and enough objects

at the end are removed to enforce the memory usage limit.

29

orb 30

5.2.3 ClearCache

. ClearCache(c) (operation)

Returns: Nothing

Completely clears the cache c removing all nodes.

A linked list cache is used as follows: Whenever you compute one of the objects you store it in

the cache using CacheObject (5.2.2) and retain the linked list node that is returned. The usual place

to retain it would be in a weak pointer object, such that this reference does not prevent the object to be

garbage collected. When you next need this object, you check its corresponding position in the weak

pointer object, if the reference is still there, you just use it and tell the cache that it was used again by

calling UseCacheObject (5.2.4), otherwise you create it anew and store it in the cache again.

As long as the object stays in the cache it is not garbage collected and the weak pointer object will

still have its reference. As soon as the object is thrown out of the cache, the only reference to its node

is the weak pointer object, thus if a garbage collection happens, it can be garbage collected. Note

that before that garbage collection happens, the object might still be accessible via the weak pointer

object. In this way, the available main memory in the workspace is used very ef�ciently and can be

freed immediately when needed.

5.2.4 UseCacheObject

. UseCacheObject(c, r) (operation)

Returns: Nothing

The argument c must be a cache object and r a node for such a cache. The object is either moved

to the front of the linked list (if it is still in the cache) or it is re-cached. If necessary, objects at the

end are removed from the cache to enforce the memory usage limit.

Chapter 6

Random elements

In this chapter we describe some fundamental mechanisms to produce (pseudo-) random elements

that are used later in Chapter 7 about searching in groups and orbits.

6.1 Randomizing mutable objects

For certain types of mutable objects one can get a �random one� by calling the following operation:

6.1.1 Randomize

. Randomize(ob[, rs]) (operation)

Returns: nothing

The mutable object ob is changed in place. The value afterwards is random. The optional second

argument rs must be a random source and the random numbers used to randomize ob are created

using the random source rs (see (Reference: Random Sources)). If rs is not given, then the global

GAP random number generator is used.

Currently, there are Randomize methods for compressed vectors and compressed matrices over

�nite �elds. See also the cvec package for methods for cvecs and cmats.

For vectors and one-dimensional subspaces there are two special functions to create a list of ran-

dom objects:

6.1.2 MakeRandomVectors

. MakeRandomVectors(sample, number[, rs]) (function)

Returns: a list of random vectors

sample must be a vector for the mutable copies of which Randomize (6.1.1) is applicable and

number must be a positive integer. If given, rs must be a random source. This function creates a list

of number random vectors with the same type as sample using Randomize (6.1.1). For the creation

of random numbers the random source rs is used or, if not given, the global GAP random number

generator.

6.1.3 MakeRandomLines

. MakeRandomLines(sample, number[, rs]) (function)

Returns: a list of normalised random vectors

31

orb 32

sample must be a vector for the mutable copies of which Randomize (6.1.1) is applicable and

number must be a positive integer. If given, rs must be a random source. This function creates a

list of number normalised random vectors with the same type as sample using Randomize (6.1.1).

�Normalised� here means that the �rst non-zero entry in the vector is equal to 1. For the creation

of random numbers the random source rs is used or, if not given, the global GAP random number

generator.

6.2 Product replacement

For computations in �nite groups product replacement algorithms are a viable method of generating

pseudo-random elements. This section describes a framework and an object type to provide these

algorithms. Roughly speaking a �product replacer object� is something that is created with a list of

group generators and produces a sequence of pseudo random group elements using some random

source for random numbers.

6.2.1 ProductReplacer

. ProductReplacer(gens[, opt]) (operation)

Returns: a new product replacer object

gens must be a list of group generators. If given, opt is aGAP record with options. The operation

creates a new product replacer object producing pseudo random elements in the group generated by

the generators gens .

The exact algorithm used is explained below after the description of the options.

The following components in the options record have a de�ned meaning:

randomsource

A random source object that is used to generate the random numbers used. If none is speci�ed

the global GAP random number generator is used.

scramble

The scramble value in the algorithm described below can be set using this option. The default

value is 30.

scramblefactor

The scramblefactor value in the algorithm described below can be set using this option. The

default value is 4.

addslots

The addslots value in the algorithm described below can be set using this option. The default

value is 5.

maxdepth

If maxdepth is set, then the production of pseudo random elements starts all over whenever

maxdepth product replacements have been performed. The rationale behind this is that the

elements created should be evenly distributed but that the expressions in the generators should

not be too long. A good compromise is usually to set maxdepth to 300 or 400.

orb 33

noaccu

Without this option set to true the �rattle� version of product replacement is used which in-

volves an accumulator and uses two or three products per random element. To use the �shake�

version with only one or two product replacement per random element set this component to

true. The exact number of multiplications per random element also depends on the value of

the accelerator component.

normalin

There is a variant of the product replacement algorithm that produces elements in the normal

closure of the group generated by a list of elements. It needs random elements in the ambient

group in which the normal closure is de�ned. This is implemented here by setting the normalin

component to a product replacer object working in the ambient group. In every step two ele-

ments a and b are picked and then a is either replaced by a�bc or bc �a (with equal probability),
where c is a random element from the ambient group produced by the product replacer in the

normalin component. It is recommended to switch off the accumulator and accelerator in the

product replacer object for the ambient group. Then to produce one random element in the

normal closure needs four multiplications.

accelerator

If this option is set to true (which is the default), then the accelerator is used. This means that in

each step two product replacement steps are performed, where both involve one distinguished

slot called the �captain�. The idea is that the current �team� of random elements uses one

amongst them more often to increase the length of the words produced. See below for details

of the algorithm with and without accelerator.

retirecaptain

If this component is bound to a positive integer then the captain retires after so many steps of

the algorithm. This is to use only two multiplications for each random element in the long run

after proper mixing. The default value for retirecaptain is twice the scrambling time.

accus

This component (default is 5) is the number of accumulators to use in the rattle variant. All

accus are used in a round robin fashion. The purpose of multiple accus is to have a greater

stochastical independence of adjacent random elements in the sequence.

The algorithm used does the following: A list of Length(gens)+addslots elements is created that

starts with the elements gens and is �lled up with random generators from gens . This element is

called the �team�. A product replacement without accelerator randomly chooses two elements in the

list and replaces one of them by the product of the two. If an accelerator is used, then one product

replacement step randomly chooses two slots i and j where i; j > 1 but i = j is possible. Then �rst

l[1] is replaced by l[1]� l[i] and after that l[j] is replaced by l[j]� l[1]. The �rst team member is called

the �captain�, so the captain is involved in every product replacement.

One step in the algorithm is to do one product replacement followed by post-multiplying the result

to the accumulator if one (or more) is used. Multiple accus (see the accus component) are used in a

round robin fashion.

First Maximum(Length(gens)*scramblefactor,scramble) steps are performed. After this

initialisation for every random element requested one step is done and the resulting element returned.

orb 34

6.2.2 Next

. Next(pr) (operation)

Returns: a (pseudo-) random group element g

pr must be a product replacer object. This operation makes the object generate the next random

element and return it.

6.2.3 Reset

. Reset(pr) (operation)

Returns: nothing

pr must be a product replacer object. This operation resets the object in the sense that it resets

the product replacement back to the state it had after scrambling. Note that since the random source

is not reset, the product replacer object will return another sequence of random elements than before.

6.2.4 AddGeneratorToProductReplacer

. AddGeneratorToProductReplacer(pr, el) (operation)

Returns: nothing

pr must be a product replacer object. This operation adds the new generator el to the product

replacer without needing a completely new initialisation phase. From after this call on the product

replacer will generate random elements in the group generated by the old generators and the new

element el .

Chapter 7

Searching in groups and orbits

7.1 Searching using orbit enumeration

As described in Subsection 3.1.4 the standard orbit enumeration routines can perform search opera-

tions during orbit enumeration. If one is looking for a shortest word in the generators of a group to

express a group element with a certain property, then this natural breadth-�rst search can be used, for

example by letting the group act on its own elements, either by multiplication or by conjugation.

All technical instructions to do this are already given in Subsection 3.1.4, so we are content to

provide an example here. Assume you want to �nd the shortest way to express some 7-cycle in

the symmetric group S10 as a product of generators a :=(1,2,3,4,5,6,7,8,9,10) and b :=(1,2).

Then you could do this in the following way:

Example
gap> gens := [(1,2,3,4,5,6,7,8,9,10),(1,2)];

[(1,2,3,4,5,6,7,8,9,10), (1,2)]

gap> o := Orb(gens,(),OnRight,rec(report := 2000,

> lookingfor :=

> function(o,x) return NrMovedPoints(x) = 7 and Order(x)=7; end,

> schreier := true));

<open orbit, 1 points with Schreier tree looking for sth.>

gap> Enumerate(o);

<open orbit, 614 points with Schreier tree looking for sth.>

gap> w := TraceSchreierTreeForward(o,PositionOfFound(o));

[1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2]

gap> ActWithWord(o!.gens,w,o!.op,o[1]);

(1,10,9,8,7,6,5)

gap> o[PositionOfFound(o)] = ActWithWord(o!.gens,w,o!.op,o[1]);

true

gap> EvaluateWord(o!.gens,w);

(1,10,9,8,7,6,5)

The result shows that a6 � (a �b)3 is a 7-cycle and that there is no word in a and b with fewer than 12

letters expressing a 7-cycle.

Note that we can go on with the above orbit enumeration to �nd further words to express 7-cycles.

35

orb 36

7.2 Random searches in groups

Another possibility to look for elements in a group satisfying certain properties is to look at random

elements, usually obtained by doing product replacement (see Section 6.2). Although this can lead

to very long expressions as words in the generators, one can cope with this problem by using the

maxdepth option of the product replacer objects, which just reinitialises the product replacement table

after a certain number of product replacements has been performed. To organise all this conveniently,

there is the concept of �random searcher objects� described here.

7.2.1 RandomSearcher

. RandomSearcher(gens, testfunc[, opt]) (operation)

Returns: a random searcher object

gens must be a list of group generators, testfunc a function taking as argument one group

element and returning true or false. opt is an optional options record. For possible options see

below.

At �rst, the random searcher object is just initialised but no random searching is performed. The

actual search is triggered by the Search (7.2.2) operation (see below). The idea of random searcher

objects is that a product replacer object is created and during a search random elements are produced

using this product replacer object, and for each group element produced the function testfunc is

called. If this function returns true, the search stops and the group element found is returned.

The following options can be bound in the options record opt :

exceptions

This component can be a list to initialise the exception list in the random searcher object. Group

elements in this list are not considered as successful searches. This list is also used to continue

search operations to found more suitable group elements as every group element considered

�found� is added to that list before returning it. Thus every element will only be found once.

maxdepth

Sets the maxdepth option of the created product replacer object. This limits the length of the

expression as product of the generators of the found group elements.

addslots

Sets the addslots option of the created product replacer object.

scramble

If this component is bound at all, then the created product replacer object is created with

options scramble=100 and scramblefactor=10 (the default values), otherwise the op-

tions scramble=0 and scramblefactor=0 are used, leading to no scrambling at all. See

ProductReplacer (6.2.1) for details on the product replacement algorithm.

Note that of course the generators in gens may have memory. However, the function testfunc is

called with the group element with memory stripped off.

7.2.2 Search

. Search(rs) (operation)

Returns: a group element

orb 37

Runs the search with the random searcher object rs and returns with the �rst group element

found.

7.3 The dihedral trick and applications

With the �dihedral� trick we mean the following: Two involutions a and b in a group always generate

a dihedral group. Thus, to �nd a pseudo-random element in the centraliser of an involution a, we can

proceed as follows: Create a pseudo-random element c, then b := ac is another involution. If then ab

has order 2o, we can use (ab)o. Otherwise, if the order of ab is 2o�1, then (ab)o � c�1 centralises a.

This trick allows to ef�ciently produce elements in the centraliser of an involution and thus, with

high probability, generators for the full centraliser.

There are the following functions:

7.3.1 FindInvolution

. FindInvolution(pr) (function)

Returns: an involution

pr must be a product replacer object (see Section 6.2). Searches an involution by �nding a random

element of even order and powering up. Returns the involution.

7.3.2 FindCentralisingElementOfInvolution

. FindCentralisingElementOfInvolution(pr, a) (function)

Returns: a group element

pr must be a product replacer object (see Section 6.2). Produces one random element and builds

an element the centralises the involution a using the dihedral trick described above.

7.3.3 FindInvolutionCentralizer

. FindInvolutionCentralizer(pr, a, nr) (function)

Returns: a list of nr group elements

pr must be a product replacer object (see Section 6.2) and a and involution. This function uses

FindCentralisingElementOfInvolution (7.3.2) nr times to produce an element centralising the

involution a and returns the list of results.

7.4 Orbit statistics on vector spaces

The following two functions are tools to get a rough and quick estimate about the average orbit length

of a group acting on a vector space.

7.4.1 OrbitStatisticOnVectorSpace

. OrbitStatisticOnVectorSpace(gens, size, ti) (function)

Returns: nothing

gens must be a list of matrix group generators and size an integer giving an upper bound for the

lengths of orbits (for example given by the order of the group generated by gens). ti is an integer

specifying the number of seconds to run. This function enumerates orbits of random vectors in the

orb 38

natural space the group is acting on (with an upper limit of length given by size). The average length

and some other information is printed on the screen.

7.4.2 OrbitStatisticOnVectorSpaceLines

. OrbitStatisticOnVectorSpaceLines(gens, size, ti) (function)

Returns: nothing

gens must be a list of matrix group generators and size an integer giving an upper bound for the

lengths of orbits (for example the order of the group generated by gens). ti is an integer specifying

the number of seconds to run. This function enumerates orbits of random one-dimensional subspaces

in the natural space the group is acting on (with an upper limit of length given by size). The average

length and some other information is printed on the screen.

7.5 Finding generating sets of subgroups

The following function can be used to �nd generators of a subgroup of a group G, expressed as a

straight line program in the generators of G.

7.5.1 FindShortGeneratorsOfSubgroup

. FindShortGeneratorsOfSubgroup(G, U[, membopt]) (method)

Returns: a record described below

The arguments U and G must be GAP group objects with U being a subgroup of G . The argument

membopt can be a function taking two arguments, namely a group element and a group, that checks,

whether the group element lies in the group or not, returning true or false accordingly. You can

usually just use the function \in as third argument. Note that this function will only ever be called

with U as its second argument so you can in fact provide a function which ignores its second argument

and has U somehow built in it.

Optionally, the third argument membopt can also be an options record. The component

membershiptest has the same meaning like the third argument membopt above. The compo-

nent sizetester can be bound to a function which estimates the size of a group generated by

some elements in U . This estimate function can for example be a function which runs a random

Schreier-Sims algorithm. In particular it may underestimate the size with a certain probability. The

method FindShortGeneratorsOfSubgroup will keep looking for elements to generate U until the

sizetester returns the same number as for U itself. Note that to avoid the possibility that the

sizetester underestimates the size of U in the �rst place you can bind the component sizeU in the

options record to the correct size of U or make sure that the group object U does know its size before

the call to FindShortGeneratorsOfSubgroup.

This function does a breadth-�rst search to �nd elements in U using the generators of G . It then

uses calculates the size of the group generated and proceeds in this way, until a generating system for

U is found in terms of the generators of G . Those generators are guaranteed to be shortest words in

the generators of G lying in U .

The function returns a record with two components bound: gens is a list of generators for U and

slp is a GAP straight line program expressing exactly those generators in the generators of G .

Note that this function only performs satisfactorily when the index of U in G is not to huge. It also

helps if the groups come in a representation in which GAP can compute ef�ciently for example as

permutation groups.

Chapter 8

AVL trees

8.1 The idea of AVL trees

AVL trees are balanced binary trees called �AVL trees� in honour of their inventors G.M. Adelson-

Velskii and E.M. Landis (see [AVM62]). A description in English can be found in [Knu97] in Section

6.2.3 about balanced trees.

The general idea is to store data in a binary tree such that all entries in the left subtree of a node

are smaller than the entry at the node and all entries in the right subtree are bigger. The tree is kept

�balanced� which means that for each node the depth of the left and right subtrees differs by at most

1. In this way, �nding something in the tree, adding a new entry, deleting an entry all have complexity

log(n) where n is the number of entries in the tree. If one additionally stores the number of entries in

the left subtree of each node, then �nding the k-th entry, removing the k-th entry and inserting an entry

in position k also have complexity log(n). The orb contains an implementation of such tree objects

providing all these operations.

�Entries� in AVL tree objects are key-value pairs and the sorting is done by the key. If all values as

true then no memory is needed to store the values (see the corresponding behaviour for hash tables).

The only requirement on the type of the keys is that two arbitrary keys must be comparable in the

sense that one can decide which of them is smaller. If GAPs standard comparison operations < and

= work for your keys, no further action is required, if not, then you must provide your own three-way

comparison function (see below).

Note that the AVL trees implemented here can be used in basically two different ways, which can

sometimes be mixed: The usual way is by accessing entries by their key, the tree is then automatically

kept sorted. The alternative way is by accessing entries by their index in the tree! Since the nodes of

the trees remember how many elements are stored in their left subtree, it is in fact possible to access

the k-th entry in the tree or delete it. It is even possible to insert something in position k. However,

note that if you do this latter operation, you are yourself responsible to keep the entries in the tree

sorted. You can ignore this responsibility, but then you can no longer access the entries in the tree by

their key and the corresponding functions might fail or even run into errors.

This usage can be useful, since in this way AVL trees provide an implementation of a list data

structure where the operation list access (by index), adding an element (in an arbitrary position) and

deleting an element (by its index) all have complexity log(n) where n is the number of entries in the

list.

39

orb 40

8.2 Using AVL trees

An AVL tree is created using the following function:

8.2.1 AVLTree

. AVLTree([opt]) (function)

Returns: A new AVL tree object

This function creates a new AVL tree object. The optional argument opt is an options record, in

which you can bind the following components:

cmpfunc is a three-way comparison function taking two arguments a and b and returning �1 if

a < b , +1 if a > b and 0 if a = b . If no function is given then the generic function AVLCmp (8.2.2) is

taken. This three-way comparison function is stored with the tree and is used for all comparisons in

tree operations. allocsize is the number of nodes which are allocated for the tree initially. It can be

useful to specify this if you know that your tree will eventually contain a lot of entries, since then the

tree object does not have to grow that many times.

For every AVL tree a three-way comparison function is needed, usually you can get away with

using the following default one:

8.2.2 AVLCmp

. AVLCmp(a, b) (function)

Returns: -1, 0 or 1

This function calls the < operation and the = operation to provide a generic three-way comparison

function to be used in AVL tree operations. See AVLTree (8.2.1) for a description of the return value.

This function is implemented in the kernel and should be particularly fast.

The following functions are used to access entries by key:

8.2.3 AVLAdd

. AVLAdd(t, key, val) (function)

Returns: true or fail

The �rst argument t must be an AVL tree. This function stores the key key with value value in

the tree assuming that the keys in it are sorted according to the three-way comparison function stored

with the tree. If value is true then no additional memory is needed. It is an error if there is already

a key equal to key in the tree, in this case the function returns fail. Otherwise it returns true.

8.2.4 AVLLookup

. AVLLookup(t, key) (function)

Returns: an value or fail

The �rst argument t must be an AVL tree. This function looks up the key key in the tree and

returns the value which is associated to it. If the key is not in the tree, the value fail is returned. This

function assumes that the keys in the tree are sorted according to the three-way comparison function

stored with the tree.

orb 41

8.2.5 AVLDelete

. AVLDelete(t, key) (function)

Returns: an value or fail

The �rst argument t must be an AVL tree. This function looks up the key key in the tree, deletes

it and returns the value which was associated with it. If key is not contained in the tree then fail

is returned. This function assumes that the keys in the tree are sorted according to the three-way

comparison function stored with the tree.

8.2.6 AVLFindIndex

. AVLFindIndex(t, key) (function)

Returns: an integer or fail

The �rst argument t must be an AVL tree. This function looks up the key key in the tree and

returns the index, under which it is stored in the tree. This index is one-based, that is, it takes values

from 1 to the number of entries in the tree. If key is not contained in the tree then fail is returned.

This function assumes that the keys in the tree are sorted according to the three-way comparison

function stored with the tree.

The following functions are used to access entries in trees by their index:

8.2.7 AVLIndex

. AVLIndex(t, index) (function)

Returns: a key or fail

The �rst argument t must be an AVL tree. This function returns the key at index index in the

tree, so index must be an integer in the range 1 to the number of elements in the tree. If the value is

out of these bounds, fail is returned. Note that to use this function it is not necessary that the keys in

the tree are sorted according to the three-way comparison function stored with the tree.

8.2.8 AVLIndexLookup

. AVLIndexLookup(t, index) (function)

Returns: a value or fail

The �rst argument t must be an AVL tree. This function returns the value associated to the key

at index index in the tree, so index must be an integer in the range 1 to the number of elements in

the tree. If the value is out of these bounds, fail is returned. Note that to use this function it is not

necessary that the keys in the tree are sorted according to the three-way comparison function stored

with the tree.

8.2.9 AVLIndexAdd

. AVLIndexAdd(t, key, value, index) (function)

Returns: a key or fail

The �rst argument t must be an AVL tree. This function inserts the key key at index index in the

tree and associates the value value with it. If value is true then no additional memory is needed to

store the value. The index index must be an integer in the range 1 to n+1 where n is the number of

entries in the tree. The new key is inserted before the key which currently is stored at index index ,

orb 42

so calling with index equal to n+1 puts the new key at the end. If index is not in the corrent range,

this function returns fail and the tree remains unchanged.

CAUTION: With this function it is possible to put a key into the tree at a position such that the keys

in the tree are no longer sorted according to the three-way comparison function stored with the tree! If

you do this, the functions AVLAdd (8.2.3), AVLLookup (8.2.4), AVLDelete (8.2.5) and AVLFindIndex

(8.2.6) will no longer work since they assume that the keys are sorted!

8.2.10 AVLIndexDelete

. AVLIndexDelete(t, index) (function)

Returns: a key or fail

The �rst argument t must be an AVL tree. This function deletes the key at index index in the

tree and returns the value which was associated with it.

The following functions allow low level access to the AVL tree object:

8.2.11 AVLFind

. AVLFind(t, key) (function)

Returns: an integer or fail

The �rst argument t must be an AVL tree. This function locates the key key in the tree and returns

the position in the positional object, at which the node which contains the key is stored. This position

will always be divisible by 4. Use the functions AVLData (8.2.13) and AVLValue (8.2.14) to access

the key and value of the node respectively. The function returns fail if the key is not found in the

tree. This function assumes that the keys in the tree are sorted according to the three-way comparison

function stored with the tree.

8.2.12 AVLIndexFind

. AVLIndexFind(t, index) (function)

Returns: an integer or fail

The �rst argument t must be an AVL tree. This function locates the index index in the tree and

returns the position in the positional object, at which the node which hash this index is stored. This

position will always be divisible by 4. Use the functions AVLData (8.2.13) and AVLValue (8.2.14) to

access the key and value of the node respectively. The function returns fail if the key is not found in

the tree. This function does not assume that the keys in the tree are sorted according to the three-way

comparison function stored with the tree.

8.2.13 AVLData

. AVLData(t, pos) (function)

Returns: an key

The �rst argument t must be an AVL tree and the second a position in the positional object

corresponding to a node as returned by AVLFind (8.2.11). The function returns the key associated

with this node.

orb 43

8.2.14 AVLValue

. AVLValue(t, pos) (function)

Returns: a value

The �rst argument t must be an AVL tree and the second a position in the positional object

corresponding to a node as returned by AVLFind (8.2.11). The function returns the value associated

with this node.

The following convenience methods for standard list methods are implemented for AVL tree ob-

jects:

8.2.15 Display

. Display(t) (method)

Returns: nothing

This function displays the tree in a user-friendly way. Do not try this with trees containing many

nodes!

8.2.16 ELM_LIST

. ELM_LIST(t, index) (method)

Returns: A key or fail

This method allows for easy access to the key at index index in the tree using the square bracket

notation t[index]. It does exactly the same as AVLIndex (8.2.7). This is to make AVL trees behave

more like lists.

8.2.17 Position

. Position(t, key) (method)

Returns: an integer or fail

This method allows to use the Position operation to locate the index at which the key key is

stored in the tree. It does exactly the same as AVLFindIndex (8.2.6). This is to make AVL trees

behave more like lists.

8.2.18 Add

. Add(t, key[, index]) (method)

Returns: nothing

This method allows to use the Add operation to add a key (with associated value true) to the

tree at index index . It does exactly the same as AVLIndexAdd (8.2.9), so the same warning about

sortedness as there applies! If index is omitted, the key is added at the end. This is to make AVL

trees behave more like lists.

8.2.19 Remove

. Remove(t, index) (method)

Returns: a key

This method allows to use the Remove operation to remove a key from the tree at index index . If

index is omitted, the last key in the tree is remove. This method returns the deleted key or fail if

the tree was empty. This is to make AVL trees behave more like lists.

orb 44

8.2.20 Length

. Length(t) (method)

Returns: a key

This method returns the number of entries stored in the tree t . This is to make AVL trees behave

more like lists.

8.2.21 \in

. \in(key, t) (method)

Returns: true or false

This method tests whether or not the key key is stored in the AVL tree t . This is to make AVL

trees behave more like lists.

8.3 The internal data structures

An AVL tree is a positional object in which the �rst 7 positions are used for administrative data (see

table below) and then from position 8 on follow the nodes of the tree. Each node uses 4 positions such

that all nodes begin at positions divisible by 4. The system allocates the positional object larger than

actually needed such that not every new node leads to the object being copied. Nodes which become

free are collected in a free list. The following table contains the information what is stored in each of

the �rst 7 entries:

1 last actually used position, is always congruent 3 mod 4

2 position of �rst node in free list

3 number of currently used nodes in the tree

4 position of largest allocated position is always congruent 3 mod 4

5 three-way comparison function

6 position of the top node

7 a plain list holding the values stored under the keys

The four positions used for a node contain the following information, recall that each node starts

at a position divisible by 4:

0 mod 4 reference to the key

1 mod 4 position of left node or 0 if empty, balance factor (see below)

2 mod 4 position of right node or 0 if empty

3 mod 4 index: number of nodes in left subtree plus one

Since all positions of nodes are divisible by 4, we can use the least signi�cant two bits of the left

node reference for the so called balance factor. Balance factor 0 (both bits 0) indicates that the depth

of the left subtree is equal to the depth of the right subtree. Balance factor 1 (bits 01) indicates that

the depth of the right subtree is one greater than the depth of the left subtree. Balance factor 2 (or -1

in [Knu97], here bits 10) indicates that the depth of the left subtree is one greater than the depth of the

right subtree.

For freed nodes the position of the next free node in the free list is held in the 0 mod 4 position

and 0 means the end of the free list.

Position 7 in the positional object can contain the value fail, in this case all stored values are

true. This is a measure to limit the memory usage in the case that the only relevant information in

orb 45

the tree is the key and no values are stored there. This is in particular interesting if the tree structure

is just used as a list implementation.

Note that all functions dealing with AVL trees are both implemented on the GAP level and on the

kernel level. Both implementations do exactly the same thing, the kernel version is only much faster

and tuned for ef�ciency whereas the GAP version documents the functionality better and is used as a

fallback if the C-part of the orb is not compiled.

Chapter 9

Orbit enumeration by suborbits

The code described in this chapter is quite complicated and one has to understand quite a lot of theory

to use it. The reason for this is that a lot of preparatory data has to be found and supplied by the user in

order for this code to run at all. Also the situations in which it can be used are quite special. However,

in such a situation, the user is rewarded with impressive performance.

The main reference for the theory is [MNW07]. We brie�y recall the basic setup: Let G be a

group acting from the right on some set X . Let k be a natural number, set Xk+1 := X , and let

U1 <U2 < :: : <Uk <Uk+1 = G

be a chain of �helper� subgroups. Further, for 1 � i � k let Xi be a Ui set and let pi : Xi+1 ! Xi be a

homomorphism ofUi-sets.

This chapter starts with a section about the main orbit enumeration function and the corresponding

preparation functions. It then proceeds with a section on the used data structures, which will necessar-

ily be rather technical. Finally, the chapter concludes with a section on higher level data structures like

lists of orbit-by-suborbit objects and their administration. Note that there are quite a few examples in

Chapter 11.

9.1 OrbitBySuborbits and its resulting objects

9.1.1 OrbitBySuborbit

. OrbitBySuborbit(setup, p, j, l, i, percentage) (function)

Returns: an orbit-by-suborbit object

This is the main function in the whole business. All notations from the beginning of this

Chapter 9 remain in place. The argument setup must be a setup record lying in the �lter

IsOrbitBySuborbitSetup (9.3.1) described in detail in Section 9.3 and produced for example

by OrbitBySuborbitBootstrapForVectors (9.2.1) or OrbitBySuborbitBootstrapForLines

(9.2.2) described below. In particular, it contains all the generators for G and the helper subgroups

acting on the various sets. The argument p must be the starting point of the orbit. Note that the

function possibly does not take p itself as starting point but rather its Uk-minimalisation, which is a

point in the same Uk-orbit as p . This information is important for the resulting stabiliser and words

representing theUk-suborbits.

The integers j , l , and i , for which k+ 1 � j � l > i � 1 must hold, determine the running

mode. j indicates in which set X j the point p lies and thus in which set the orbit enumeration takes

46

orb 47

place, with j = k+1 indicating the original set X . The value l indicates which group to use for orbit

enumeration. So the result will be a Ul orbit, with l = k +1 indicating a G-orbit. Finally, the value

i indicates which group to use for the �by suborbit� part, that is, the orbit will be enumerated �by

Ui -orbits�. Note that nearly all possible combinations of these parameters actually occur, because

this function is also used in the �on-the-�y� precomputation happening behind the scenes. The most

common usage of this function for the user is j = l = k +1 and i = k.

Finally, the integer percentage says, how much of the full orbit should be enumerated, the value

is in percent, thus 100 means the full orbit. Usually, only values greater than 50 are sensible, because

one can only prove the size of the orbit after enumerating at least half of it.

The result is an �orbit-by-suborbit� object. For such an object in particular the operations

Size (9.1.3), Seed (9.1.4), SuborbitsDb (9.1.5), WordsToSuborbits (9.1.6), Memory (9.1.7),

Stabilizer (9.1.8), and Seed (9.1.4) are de�ned, see below.

9.1.2 OrbitBySuborbitKnownSize

. OrbitBySuborbitKnownSize(setup, p, j, l, i, percentage, knownsize) (function)

Returns: an orbit-by-suborbit object

Basically does the same as OrbitBySuborbit (9.1.1) but does not compute the stabiliser by

evaluating Schreier words. Instead, the size of the orbit to enumerate must already be known and be

given in the argument knownsize . The other arguments are as for the function OrbitBySuborbit

(9.1.1).

9.1.3 Size (fororb)

. Size(orb) (method)

Returns: an integer

Returns the number of points in the orbit-by-suborbit orb .

9.1.4 Seed

. Seed(orb) (method)

Returns: a point in the orbit

Returns the starting point of the orbit-by-suborbit orb . It is the Ui-minimalisation of the starting

point given to OrbitBySuborbit (9.1.1).

9.1.5 SuborbitsDb

. SuborbitsDb(orb) (operation)

Returns: a database of suborbits

Returns the data base of suborbits of the orbit-by-suborbit object orb . In particular, such

a database object has methods for the operations Memory (9.1.7), TotalLength (9.1.11), and

Representatives (9.1.12). For descriptions see below.

9.1.6 WordsToSuborbits

. WordsToSuborbits(orb) (operation)

Returns: a list of words

orb 48

Returns a list of words in the groupsU� reaching each of the suborbits in the orbit-by-suborbit orb .

Here a word is a list of integers. Positive numbers index generators in following numbering: The �rst

few numbers are numbers of generators of U1 the next few adjacent numbers index the generators

of U2 and so on until the generators of G in the end. Negative numbers indicate the corresponding

inverses of these generators.

Note that OrbitBySuborbit (9.1.1) takes theUi-minimalisation of the starting point as its starting

point and the words here are all relative to this new starting point.

9.1.7 Memory (forob)

. Memory(ob) (operation)

Returns: an integer

Returns the amount of memory needed by the object ob , which can be either an orbit-by-suborbit

object, a suborbit database object, or an object in the �lter IsOrbitBySuborbitSetup (9.3.1). The

amount of memory used is given in bytes. Note that this includes all hashes, databases, and preparatory

data of substantial size. For orbit-by-suborbits the memory needed for the precomputation is not

included, ask the setup object for that.

9.1.8 Stabilizer (obso)

. Stabilizer(orb) (method)

Returns: a permutation group

Returns the stabiliser of the starting point of the orbit-by-suborbit in orb in form of a permutation

group, using the given faithful permutation representation in the setup record.

Note that OrbitBySuborbit (9.1.1) takes theUi-minimalisation of the starting point as its starting

point and the stabiliser returned here is the one of this new starting point.

9.1.9 StabWords

. StabWords(orb) (operation)

Returns: a list of words

Returns generators for the stabiliser of the starting point of the orbit-by-suborbit in orb in

form of words as described with the operation WordsToSuborbits (9.1.6). Note again that

OrbitBySuborbit (9.1.1) takes the Ui-minimalisation of the starting point as its starting point and

the stabiliser returned here is the one of this new starting point.

9.1.10 SavingFactor (fororb)

. SavingFactor(orb) (operation)

Returns: an integer

Returns the quotient of the total number of points stored in the orbit-by-suborbit orb and the total

number ofU-minimal points stored. Note that the memory for the precomputations is not considered

here!

The following operations apply to orbit-by-suborbit database objects:

orb 49

9.1.11 TotalLength (fordb)

. TotalLength(db) (operation)

Returns: an integer

Returns the total number of points stored in all suborbits in the orbit-by-suborbit database db .

9.1.12 Representatives

. Representatives(db) (operation)

Returns: a list of points

Returns a list of representatives of the suborbits stored in the orbit-by-suborbit database db .

9.1.13 SavingFactor (fordb)

. SavingFactor(db) (operation)

Returns: an integer

Returns the quotient of the total number of points stored in the suborbit database db and the total

number ofU-minimal points stored. Note that the memory for the precomputations is not considered

here!

9.1.14 OrigSeed

. OrigSeed(orb) (operation)

Returns: a point

Returns the original starting point for the orbit, not yet minimalised.

9.2 Preparation functions for OrbitBySuborbit (9.1.1)

9.2.1 OrbitBySuborbitBootstrapForVectors

. OrbitBySuborbitBootstrapForVectors(gens, permgens, sizes, codims, opt) (func-

tion)

Returns: a setup record in the �lter IsOrbitBySuborbitSetup (9.3.1)

All notations from the beginning of this Chapter 9 remain in place. This function is for the action

of matrices on row vectors, so all generators must be matrices. The set X thus is a row space usually

over a �nite �eld and the sets Xi are quotient spaces. The matrix generators for the various groups

have to be adjusted with a base change, such that the canonical projection onto Xi is just to take the

�rst few entries in a vector, which means, that the submodules divided out are generated by the last

standard basis vectors.

The �rst argument gens must be a list of lists of generators. The outer list must have length

k+1 with entry i being a list of matrices generating Ui, given in the action on X = Xk+1. The above

mentioned base change must have been done. The second argument permgens must be an analogous

list with generator lists for theUi. These representations are used to compute membership and group

orders of stabilisers. In its simplest form, permgens is a list of permutation representations of the

same degree, giving a set of generators for each individual group Ui. Alternatively, if for some Ui,

i> 1, it is required that the stabilizer of its action is to be calculated as a matrix group, generators ofUi

in some matrix representation may be supplied. However, it is then mandatory that for all 1< i� k+1

the generator lists have the following format: The i-th entry of permgens is a list concatenating the

orb 50

generator lists of U1 up to Ui (in this order) all of whose elements are in either some permutation or

some matrix representation. Note that currently, the generators of U1 need to be always given in a

permutation representation. The argument sizes must be a list of length k+1 and entry imust be the

group order of Ui (again with Uk+1 being G). Finally, the argument codims must be a list of length

k containing integers with the ith entry being the codimension of the Ui-invariant subspace Yi of X

with Xi = X=Yi. These codimensions must not decrease for obvious reasons, but some of them may

be equal. The last argument opt is an options record. See below for possible entries.

The function does all necessary steps to �ll a setup record (see 9.3) to be used with

OrbitBySuborbit (9.1.1). For details see the code.

Currently, the following components in the options record opt have a meaning:

regvecfachints

If bound it must be a list. In position i for i> 1 there may be a list of vectors in the i-th quotient

space Xi that can be used to distinguish the leftUi�1 cosets inUi. All vectors in this list are tried

and the �rst one that actually works is used.

regvecfullhints

If bound it must be a list. In position i for i> 1 there may be a list of vectors in the full space X

that can be used to distinguish the leftUi�1 cosets inUi. All vectors in this list are tried and the

�rst one that actually works is used.

stabchainrandom

If bound the value is copied into the stabchainrandom component of the setup record.

nostabchainfullgroup

If bound it must be true or false. If it is unbound or set to true, no stabilizer chain is

computed for the groupUk+1. Its default value is false.

9.2.2 OrbitBySuborbitBootstrapForLines

. OrbitBySuborbitBootstrapForLines(gens, permgens, sizes, codims, opt) (function)

Returns: a setup record in the �lter IsOrbitBySuborbitSetup (9.3.1)

All notations from the beginning of this Chapter 9 remain in place. This does exactly the same

as OrbitBySuborbitBootstrapForVectors (9.2.1) except that it handles the case of matrices act-

ing on one-dimensional subspaces. Those one-dimensional subspaces are represented by normalised

vectors, where a vector is normalised if its �rst non-vanishing entry is equal to 1.

9.2.3 OrbitBySuborbitBootstrapForSpaces

. OrbitBySuborbitBootstrapForSpaces(gens, permgens, sizes, codims, spcdim,

opt) (function)

Returns: a setup record in the �lter IsOrbitBySuborbitSetup (9.3.1)

All notations from the beginning of this Chapter 9 remain in place. This does exactly the same as

OrbitBySuborbitBootstrapForVectors (9.2.1) except that it handles the case of matrices acting

on spcdim -dimensional subspaces. Those subspaces are represented by fully echelonised bases.

orb 51

9.3 Data structures for orbit-by-suborbits

The description in this section is necessarily technical. It is meant more as extended annotations to

the source code than as user documentation. Usually it should not be necessary for the user to know

the details presented here. The function OrbitBySuborbit (9.1.1) needs an information record of the

following form:

9.3.1 IsOrbitBySuborbitSetup

. IsOrbitBySuborbitSetup(ob) (Category)

Returns: true or false

Objects in this category are also in IsComponentObjRep. We describe the components, refering

to the setup at the beginning of this Chapter 9.

k The number of helper subgroups.

size

A list of length k+1 containing the orders of the groupsUi, includingUk+1 = G.

index

A list of length k with the index [Ui :Ui�1] in position i (U0 = f1g).

els A list of length k+ 1 containing generators of the groups in their action on various sets. In

position i we store all the generators for all groups acting on Xi, that is for the groupsU1; : : : ;Ui

(where position k+1 includes the generators for G. In each position the generators of all those

groups are concatentated starting withU1 and ending withUi.

elsinv

The inverses of all the elements in the els component in the same arrangement.

trans

A list of length k in which position i for i > 1 contains a list of words in the generators for a

transversal ofUi�1 inUi (withU0 = 1).

pifunc

Projection functions. This is a list of length k+1 containing in position j a list of length j�1

containing in position i a GAP function doing the projection X j ! Xi. These GAP functions

take two arguments, namely the point to map and secondly the value of the pi component at

positions [j][i]. Usually pifunc is just the slicing operator in GAP and pi contains the

components to project onto as a range object.

pi See the description of the pifunc component.

op A list of k+ 1 GAP operation functions, each taking a point p and a generator g in the action

given by the index and returning pg.

info

A list of length k containing a hash table with the minimalisation lookup data. These hash tables

grow during orbit enumerations as precomputations are done behind the scenes.

info[1] contains precomputation data for X1. Assume x2 X1 to beU1-minimal. For all z2 xU1

with z 6= x we store the number of an element in the wordcache mapping z to x. For z = x

orb 52

we store a record with two components gens and size, where gens stores generators for the

stabiliser StabU1
(x) as words in the group generators and size stores the size of that stabiliser.

info[i] for i> 1 contains precomputation data for Xi. Assume x2 Xi to beUi-minimal. For all

Ui�1-minimal z 2 xUi n xUi�1 we store the number of an element in trans[i] mapping z into

xUi�1. For allUi�1-minimal z 2 xUi�1 with z 6= x we store the negative of the number of a word

in wordcache that is in the generators ofUi�1 and maps z to x. For z= x we store the stabiliser

information as in the case i= 1.

This information together with the information in the following componente allows the mini-

malisation function to do its job.

cosetrecog

A list of length k beginning with the index 1. The entry at position i is bound to a function

taking 3 arguments, namely i itself, a word in the group generators of U1; : : : ;Uk which lies in

Ui, and the setup record. The function computes the number j of an element in trans[i], such

that the element ofUi described by the word lies in trans[i][j] U_{{i-1}}.

cosetinfo

A list of things that can be used by the functions in cosetrecog.

suborbnr

A list of length k that contains in position i the number of Ui-orbits in Xi archived in info[i]

during precomputation.

sumstabl

A list of length k that contains in position i the sum of the point stabiliser sizes of all Ui-orbits

Xi archived in info[i] during precomputation.

permgens

A list of length k + 1 containing in position i generators for U1; : : : ;Ui in a faithful per-

mutation representation of Ui. Generators �t to the generators in els. For the variant

OrbitBySuborbitKnownSize (9.1.2) the k+1 entry can be unbound.

permgensinv

The inverses of the generators in permgens in the same arrangement.

sample

A list of length k+1 containing sample points in the sets Xi.

stabchainrandom

The value is used as the value for the random option for StabChain calculations to determine

stabiliser sizes. Note that the algorithms are randomized if you use this feature with a value

smaller than 1000.

wordhash

A hash to quickly recognise already used words. For every word in the hash the position of that

word in the wordcache list is stored as value in the hash.

wordcache

A list of words in the wordcache for indexing purposes.

orb 53

hashlen

Initial length of hash tables used for the enumeration of lists ofUi-minimal points.

staborblenlimit

This contains the limit, up to which orbits of stabilisers are computed using word action. After

this limit, the stabiliser elements are actually evaluated in the group.

stabsizelimitnostore

If the stabiliser in the quotient is larger than this limit, the suborbit is not stored.

cache

A linked list cache object (see LinkedListCache (5.2.1)) to store already computed transversal

elements. The cache nodes are referenced in the transcache component and are stored in the

cache cache.

transcache

This is a list of lists of weak pointer objects. The weak pointer object at position [i][j] holds

references to cache nodes of transversal elements ofUi�1 inUi in representation j.

9.3.2 The global record ORB

In this section we describe the global record ORB, which contains some entries that can tune the

behaviour of the orbit-by-suborbit functions. The record has the following components:

MINSHASHLEN

This positive integer is the initial value of the hash size when enumerating orbits of stored

stabilisers to �nd all or search through Ui�1-minimal vectors in an Ui-orbit. The default value

is 1000.

ORBITBYSUBORBITDEPTH

This integer indicates how many recursive calls to OrbitBySubOrbitInner have been done.

The initial value is 0 to indicate that no such call has happened. This variable is neces-

sary since the minimalisation routine sometimes uses OrbitBySubOrbitInner recursively to

complete some precomputation �on the �y� during some other orbit-by-suborbit enumeration.

This component is always set to 0 automatically when calling OrbitBySuborbit (9.1.1) or

OrbitBySuborbitKnownSize (9.1.2) so the user should usually not have to worry about it at

all.

PATIENCEFORSTAB

This integer indicates how many Schreier generators for the stabiliser are tried before assum-

ing that the stabiliser is complete. Whenever a new generator for the stabiliser is found that

increases the size of the currently known stabiliser, the count is reset to 0 that is, only when

ORB.PATIENCEFORSTAB unsuccessful Schreier generators have been tried no more Schreier

generators are created. The default value for this component is 1000. This feature is purely

heuristical and therefore this value has to be adjusted for some orbit enumerations.

PLEASEEXITNOW

This value is usually set to false. Setting it to true in a break loop tells the orbit-by-suborbit

routines to exit gracefully at the next possible time. Simply leaving such a break loop with

quit; is not safe, since the routines might be in the process of updating precomputation data

orb 54

and the data structures might be left corrupt. Always use this component to leave an orbit

enumeration prematurely.

REPORTSUBORBITS

This positive integer governs how often information messages about newly found suborbits are

printed. The default value is 1000 saying that after every 1000 suborbits a message is printed,

if the info level is at its default value 1. If the info level is increased, then this component does

no longer affect the printing and all found suborbits are reported.

TRIESINQUOTIENT and TRIESINWHOLESPACE

The bootstrap routines OrbitBySuborbitBootstrapForVectors

(9.2.1), OrbitBySuborbitBootstrapForLines (9.2.2) and

OrbitBySuborbitBootstrapForSpaces (9.2.3) all need to compute transversals of one

helper subgroup in the next one. They use orbit enumerations in various spaces to achieve this.

The component TRIESINQUOTIENT must be a non-negative integer and indicates how often a

random vector in the corresponding quotient space is tried to �nd an orbit that can distinguish

between cosets. The other component TRIESINWHOLESPACE also must be a non-negative

integer and indicates how often a random vector in the whole space is tried. The default values

are 3 and 20 resepectively.

9.4 Lists of orbit-by-suborbit objects

There are a few functions that help to administrate lists of orbit-by-suborbits.

9.4.1 InitOrbitBySuborbitList

. InitOrbitBySuborbitList(setup, nrrandels) (function)

Returns: a list of orbit-by-suborbits object

Creates an object that stores a list of orbit-by-suborbits. The argument setup must be an orbit-

by-suborbit setup record and nrrandels must be an integer. It indicates how many random elements

in G should be used to do a probabilistic check for membership in case an orbit-by-suborbit is only

partially known.

9.4.2 IsVectorInOrbitBySuborbitList

. IsVectorInOrbitBySuborbitList(v, obsol) (function)

Returns: fail or an integer

Checks probabilistically, if the element v lies in one of the partially enumerated orbit-by-suborbits

in the orbit-by-suborbit list object obsol . If yes, the number of that orbit-by-suborbit is returned and

the answer is guaranteed to be correct. If the answer is fail there is a small probability that the point

actually lies in one of the orbits but this could not be shown.

9.4.3 OrbitsFromSeedsToOrbitList

. OrbitsFromSeedsToOrbitList(obsol, li) (function)

Returns: nothing

Takes the elements in the list li as seeds for orbit-by-suborbits. For each such seed it is �rst

checked whether it lies in one of the orbit-by-suborbits in obsol , which must be an orbit-by-suborbit

orb 55

list object. If not found, 51% of the orbit-by-suborbit of the seed is enumerated and added to the list

obsol .

This function is a good way to quickly enumerate a greater number of orbit-by-suborbits.

9.4.4 VerifyDisjointness

. VerifyDisjointness(obsol) (function)

Returns: true or false

This function checks deterministically, whether the orbit-by-suborbits in the orbit-by-suborbit list

object obsol are disjoint or not and returns the corresponding boolean value. This is not a Monte-

Carlo algorithm. If the answer is false, the function writes out, which orbits are in fact identical.

9.4.5 Memory (forobsol)

. Memory(obsol) (operation)

Returns: an integer

Returns the total memory used for all orbit-by-suborbits in the orbit-by-suborbit-list obsol . Pre-

computation data is not included, ask the setup object instead.

9.4.6 TotalLength (forobsol)

. TotalLength(obsol) (operation)

Returns: an integer

Returns the total number of points stored in all orbit-by-suborbits in the orbit-by-suborbit-list

obsol .

9.4.7 Size (forobsol)

. Size(obsol) (method)

Returns: an integer

Returns the total number of points in the orbit-by-suborbit-list obsol .

9.4.8 SavingFactor (forobsol)

. SavingFactor(obsol) (operation)

Returns: an integer

Returns the quotient of the total number of points stored in all orbit-by-suborbits in the orbit-by-

suborbit-list obsol and the total number of U-minimal points stored, which is the average saving

factor considering all orbit-by-suborbits together. Note that the memory for the precomputations is

not considered here!

Chapter 10

Finding nice quotients

This chapter will be written when the chop is documented and released, because the functions to be

described here depend on that package.

For the moment it should be enough to say that the functions to be described here are used to

�nd nice quotient modules for the orbit algorithms using the orbit-by-suborbit techniques described

in Chapter 9.

56

Chapter 11

Examples

To actually run an orbit enumeration by suborbits, we have to collect some insight into the structure of

the group under consideration and into its representation theory. In general, preparing the input data

is more of an art than a science. The mathematical details are described in [MNW07].

In Section 11.1 we present a small example of the usage of the orbit-by-suborbit machinery. We

use the sporadic simple Mathieu groupM11 acting projectively on its irreducible module of dimension

24 over the �eld with 3 elements.

In Section 11.2 we present another example of the usage of the orbit-by-suborbit programs. In

this example we determine 35 of the 36 double coset representatives of the sporadic simple Fischer

group Fi23 with respect to its seventh maximal subgroup.

In Section 11.3 we present a bigger example of the usage of the orbit-by-suborbit machinery. In

this example the orbit lengths of the sporadic simple Conway group Co1 acting in in its irreducible

projective representation over the �eld with 5 elements in dimension 24 are determined, which were

previously unknown. These orbit lengths were needed to rule out a case in [Mal06].

In Section 11.4 we present as an extended worked example how to enumerate the smallest non-

trivial orbit of the sporadic simple Baby Monster group B. We give a log of a GAP session with

explanations in between, being intended to illustrate a few of the tools which are available in the orb

package as well as in related packages. Actually, the orb package has also been applied to two much

larger permutation actions of B, namely its action on its 2B involutions, having degree � 1:2 � 1013,
and its action on the cosets of a maximal subgroup isomorphic to Fi23, having degree � 1:0 �1015; for
details see [Mül08] and [MNW07], respectively.

Note that for all this to work you have to acquire and install the packages IO, cvec, and atlasrep,

and for Section 11.4 you additionally need the packages chop and genss.

11.1 The Mathieu groupM11 acting in dimension 24

The example in this section is very small but our intention is that everything can still be analysed

and looked at more or less by hand. We want to enumerate orbits of the Mathieu group M11 acting

projectively on its irreducible module of dimension 24 over the �eld with 3 elements. All the �les

for this example are located in the examples/m11PF3d24 subdirectory of the orb package. Then you

simply run the example in the following way:
Example

gap> ReadPackage("orb","examples/m11PF3d24/M11OrbitOnPF3d24.g");

...

gap> o := OrbitBySuborbit(setup,v,3,3,2,100);

57

orb 58

...

#I OrbitBySuborbit found 100% of a U3-orbit of size 7 920

...

Everything works instantly as it would have without the orbit-by-suborbits method. (Depending

on whether the matrix and permutation generators forM11 are already stored locally, some time might

be needed to fetch them.) The details of this computation can be directly read off from the code in the

�le M11OrbitOnPF3d24.g:
Example

LoadPackage("orb");

LoadPackage("io");

LoadPackage("cvec");

LoadPackage("atlasrep");

SetInfoLevel(InfoOrb,2);

pgens := AtlasGenerators("M11",1).generators;

gens := AtlasGenerators("M11",14).generators;

cgens := List(gens,CMat);

basech := CVEC_ReadMatFromFile(Filename(DirectoriesPackageLibrary("orb",""),

"examples/m11PF3d24/m11basech.cmat"));

basechi := basech^-1;

cgens := List(cgens,x->basech*x*basechi);

ReadPackage("orb","examples/m11PF3d24/m11slps.g");

pgu2 := ResultOfStraightLineProgram(s2,pgens);

pgu1 := ResultOfStraightLineProgram(s1,pgu2);

cu2 := ResultOfStraightLineProgram(s2,cgens);

cu1 := ResultOfStraightLineProgram(s1,cu2);

setup := OrbitBySuborbitBootstrapForLines(

[cu1,cu2,cgens],[pgu1,pgu2,pgens],[20,720,7920],[5,11],rec());

setup!.stabchainrandom := 900;

v := ZeroMutable(cgens[1][1]);

Randomize(v);

ORB_NormalizeVector(v);

Print("Now do\n o := OrbitBySuborbit(setup,v,3,3,2,100);\n");

We are using two helper subgroupsU1 <U2 <M11, whereU2
�= A6:2 is the largest maximal sub-

group ofM11, having order 720, andU2
�= 5 : 4 is a maximal subgroup ofU2 of order 20, see [CCN

+85]

or the CTblLib package. The quotient spaces we use for the helper subgroups have dimensions 5 and

11 respectively. Straight line programs to compute generators of the helper subgroups in terms of the

given generators of M11, and an appropriate basis exhibiting the quotients, have already been com-

puted, and are stored in the �les m11slps.g and m11basech.cmat, respectively. (In Section 11.4

we show in detail how such straight line programs and suitable bases can be found using the tools

available in in the orb package.) The command OrbitBySuborbitBootstrapForLines invokes the

precomputation, and in particular says that we want to use projective action.

orb 59

11.2 The Fischer group Fi23 acting in dimension 1494

The example in this section shows how to compute 35 of the 36 double coset representatives of the

Fischer group Fi23 with respect to its seventh maximal subgroup H �= 31+8
+ :21+6

�
:31+2
+ :2S4, which has

order 3265173504 � 3:2 � 109 and index [Fi23:H] = 1252451200 � 1:3 � 109, see [CCN+85] or the
CTblLib package. All the �les for this example are located in the examples/fi23m7 subdirectory of

the orb package. You simply run the example in the following way:

Example
gap> ReadPackage("orb","examples/fi23m7/GOrbitByKOrbitsPrepare.g");

...

gap> ReadPackage("orb","examples/fi23m7/GOrbitByKOrbitsSearch35.g");

...

We will not go into the details of the computation here, but they can be read off directly from the

code in the �les in that directory. In the �rst part, run by the �le GOrbitByKOrbitsPrepare.g, we

prepare the necessary input data, by using similar techniques as described at length in Section 11.4.

(Actually, this example has been dealt with before the advent of the packages chop and genss, hence

we are using appropriate private code instead.) We are using two helper subgroups U1 <U2 < H <
Fi23, being 3-subgroups of H of order 81 and 6561, respectively. The 1494-dimensional irreducible

representation of Fi23 over the �eld with 2 elements contains a vector that is �xed by H, such that the

action on its Fi23-orbit is isomorphic to the action on the cosets of H.

The second part, in the �le GOrbitByKOrbitsSearch35.g, is the actual enumeration ofH-orbits:

Example
setup := OrbitBySuborbitBootstrapForVectors(

[cu1gens,cu2gens,cngens],[u1gensp,u2gensp,ngensp],

[81,6561,3265173504],[10,30],rec());

obsol := InitOrbitBySuborbitList(setup,40);

l := Orb(cggens,v,OnRight,rec(schreier := true));

Enumerate(l,100000);

OrbitsFromSeedsToOrbitList(obsol,l);

origseeds := List(obsol,OrigSeed);

positions := List(origseeds,x->Position(l,x));

words := List(positions,x->TraceSchreierTreeForward(l,x));

Note that this computation �nds only 35 of the 36 double coset representatives. The last corresponds

to a very short suborbit which is very dif�cult to �nd. Knowing the number of missing points, we

guess the stabiliser in H of a missing representative, and �nd the latter amongst the �xed points of the

stabiliser. We can then choose the one which lies in the G-orbit we have nearly enumerated above.

These double coset representatives were needed to determine the 2-modular character table of

Fi23. Details of this can be found in [HNN06].

11.3 The Conway groupCo1 acting in dimension 24

The example in this section shows how to compute all suborbit lengths of the Conway group Co1, in

its irreducible projective action on a module of dimension 24 over the �eld with 5 elements. All the

�les for this example are located in the examples/co1F5d24 subdirectory of the orb package. Then

you simply run the example in the following way:

orb 60

Example
gap> ReadPackage("orb","examples/co1F5d24/Co1OrbitOnPF5d24.g");

...

gap> ReadPackage("orb","examples/co1F5d24/Co1OrbitOnPF5d24.findall.g");

...

We will not go into the details of the �rst part of the computation here, as they are very sim-

ilar to those reproduced in Section 11.1, and can be directly read off from the code in the �le

Co1OrbitOnPF5d24.g: We are using three helper subgroups U1 < U2 < U3 < Co1, where Co1
has order 4157776806543360000 � 4:2 � 1018, see [CCN+85] or the CTblLib package, and where

U3
�= 21+8

+ :O8(2) is the �fth maximal subgroup ofCo1, having order 89181388800� 8:9 �1010, while
U2

�= [28]:S6(2) is a maximal subgroup of U3 of order 371589120 � 3:7 � 108, and U1
�= 26:L3(2) is

a maximal subgroup of S6(2) of order 10752 � 1:1 �104. The projective action comes from the irre-

ducible 24-dimensional linear representation of the Schur cover 2:Co1 ofCo1, which by [Jan05] is the
smallest faithful representation of 2:Co1 over the �eld GF(5), and the quotient spaces we use for the

helper subgroups have dimensions 8, 8 and 16 respectively.

The details of the second part can be directly read off from the code in the �le

Co1OrbitOnPF5d24.findall.g:
Example

oo := InitOrbitBySuborbitList(setup,80);

l := MakeRandomLines(v,1000);

OrbitsFromSeedsToOrbitList(oo,l);

intervecs := CVEC_ReadMatFromFile(Filename(DirectoriesPackageLibrary("orb",""),

"examples/co1F5d24/co1interestingvecs.cmat"));

OrbitsFromSeedsToOrbitList(oo,intervecs);

Length(oo!.obsos);

Sum(oo!.obsos,Size);

(5^24-1)/(5-1);

Note that this example needs about 2GB of main memory on a 32bit machine and probably nearly

4GB on a 64bit machine. However, the orbit lengths were previously unknown before they were

computed with this program. The orbit lengths were needed to rule out a case in [Mal06].

11.4 The Baby Monster B acting on its 2A involutions

The example in this section shows how to enumerate the smallest non-trivial orbit of the BabyMonster

group B. All the �les for this example are located in the examples/bmF2d4370 subdirectory of the

orb package. You may simply run the example in the following way:
Example

gap> ReadPackage("orb","examples/bmF2d4370/BMOrbitOnF2d4370partI.g");

...

gap> ReadPackage("orb","examples/bmF2d4370/BMOrbitOnF2d4370partII.g");

...

In the sequel we comment in detail on how the necessary input data actually is prepared. We begin

by loading the packages we are going to use.
Example

gap> LoadPackage("orb");

...

orb 61

gap> LoadPackage("io");

...

gap> LoadPackage("cvec");

...

gap> LoadPackage("atlasrep");

...

gap> LoadPackage("chop");

...

gap> LoadPackage("genss");

...

The one-point stabilisers associated to the smallest non-trivial orbit of B are its largest maximal

subgroups E �= 2:2E6(2):2, which are the centralisers of its 2A involutions. Here E is a bicyclic

extension of the twisted Lie type group 2E6(2), and has index [B:E] = 13571955000� 1:4 �1010, see
[CCN+85] or the CTblLib package.

We �rst try to �nd a matrix representation of B such that the B-orbit we look for is realised as a

set of vectors in the underlying vector space. The smallest faithful representation of B over the �eld

GF(2), by [Jan05] having dimension 4370, springs to mind. Explicit matrices in terms of standard

generators in the sense of [Wil96] are available in [Wil], and are accessibe through the atlasrep

package. Moreover, we �nd generators of E by applying a straight line program, also available in the

atlasrep package, expressing generators of E in terms of the generators of B.
Example

gap> gens := AtlasGenerators("B",1).generators;

[<an immutable 4370x4370 matrix over GF2>,

<an immutable 4370x4370 matrix over GF2>]

gap> bgens := List(gens,CMat);

[<cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)>]

gap> slpbtoe := AtlasStraightLineProgram("B",1).program;;

gap> egens := ResultOfStraightLineProgram(slpbtoe,bgens);

[<cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)>]

We look for a non-zero vector being �xed by both generators of E. It turns out that the latter have

a common �xed space of dimension 1. Then, since E is a maximal subgroup, the stabiliser in B of the

non-zero vector v in that �xed space coincides with E.
Example

gap> x := egens[1]-egens[1]^0;;

gap> nsx := NullspaceMat(x);

<immutable cmat 2202x4370 over GF(2,1)>

gap> y := nsx * (egens[2]-egens[2]^0);;

gap> nsy := NullspaceMat(y);

<immutable cmat 1x2202 over GF(2,1)>

gap> v := nsy[1]*nsx;

<immutable cvec over GF(2,1) of length 4370>

Storing eight elements of GF(2) into 1 byte, to store a vector of length 4370 needs 547 bytes plus

some organisational overhead resulting in about 580 bytes, hence to store the full B-orbit of v we need

580 � [B:E]� 7:9 �1012 bytes. Hence we try to �nd helper subgroups suitable to achieve a saving factor
of� 104, i. e. allowing to store only one out of� 104 vectors. To this end, we look for a pairU1 <U2

of helper subgroups such that jU2j � 105, where we take into account that typically the overall saving

factor achieved is somewhat smaller than the order of the largest helper subgroup.

orb 62

By [CCN+85], and a few computations with subgroup fusions using the CTblLib package, the

derived subgroup E 0 �= 2:2E6(2) of E turns out to possess maximal subgroups 2�Fi22 and 2:Fi22,
where Fi22 denotes one of the sporadic simple Fischer groups, and where the former constitute a

unique conjugacy class with associated normalizers in E of shape 2�Fi22:2, while the latter consist
of two conjugacy classes being self-normalising and interchanged by E.

Now Fi22 has a unique conjugacy class of maximal subgroupsM12, where the latter denotes one of

the sporadic simple Mathieu groups; the subgroups M12 lift to a unique conjugacy class of subgroups

M12 of 2:Fi22, which turn out to constitute a conjugacy class of subgroups of E different from the

subgroups M12 being contained in Fi22. Anyway, we have jM12j = 95040, hence U2 = M12 seems

to be a good candidate for the larger helper subgroup. In particular, there is a unique conjugacy

class of maximal subgroups L2(11) of M12, and since jL2(11)j= 660 and [M12:L2(11)] = 144 letting

U1 = L2(11) seems to be a good candidate for the smaller helper subgroup. Recall that U1 and U2

are useful helper subgroups only if we are able to �nd suitable quotient modules allowing for the

envisaged saving factor.

To �nd U1 and U2, we �rst try to �nd a subgroup Fi22 or 2:Fi22 of E. We start a random search,

aiming at �nding standard generators of either Fi22 or 2:Fi22, and we use GeneratorsWithMemory

in order to be able to express the generators found as words in the generators of E. To accelerate

computations we �rst construct a small representation of E; by [Jan05] the smallest faithful irreducible

representation of Fi22 over GF(2) has dimension 78, hence we cannot do better for E; note that the

latter is a representation of E := E=Z(E)�= 2E6(2):2.
Example

gap> SetInfoLevel(InfoChop,2);

gap> m := Module(egens);

<module of dim. 4370 over GF(2)>

gap> r := Chop(m);

...

rec(ischoprecord := true,

db := [<abs. simple module of dim. 78 over GF(2)>,

<trivial module of dim. 1 over GF(2)>,

<abs. simple module of dim. 1702 over GF(2)>,

<abs. simple module of dim. 572 over GF(2)>],

mult := [5, 4, 2, 1], acs := [1, 2, 3, 1, 4, 1, 1, 2, 2, 3, 1, 2],

module := <reducible module of dim. 4370 over GF(2)>)

gap> i := Position(List(r.db,Dimension),78);;

gap> egens78 := GeneratorsWithMemory(RepresentingMatrices(r.db[i]));

[<<immutable cmat 78x78 over GF(2,1)> with mem>,

<<immutable cmat 78x78 over GF(2,1)> with mem>]

By [Wil], standard generators a;b of Fi22 are given as follows: a is an element of the 2A conju-

gacy class of Fi22, and b, ab, and (ab)4bab(abb)2 have order 13, 11, and 12, respectively; standard

generators of 2:Fi22 are lifts of standard generators of Fi22 having the same order �ngerprint. The

2A conjugacy class of Fi22 fuses into the 2A conjugacy class of E, where the latter is obtained as the

11-th power of the unique conjugacy class of elements of order 22, and E has only one conjugacy

class of elements of order 13.
Example

gap> o := Orb(egens78,StripMemory(egens78[1])^0,OnRight,rec(schreier := true,

> lookingfor := function(o,x) return Order(x)=22; end));

<open orbit, 1 points with Schreier tree looking for sth.>

gap> Enumerate(o);

<open orbit, 393 points with Schreier tree looking for sth.>

orb 63

gap> word := TraceSchreierTreeForward(o,PositionOfFound(o));

[1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2]

gap> g2a := Product(egens78{word})^11;

<<immutable cmat 78x78 over GF(2,1)> with mem>

gap> o := Orb(egens78,StripMemory(egens78[1])^0,OnRight,rec(schreier := true,

> lookingfor := function(o,x) return Order(x)=13; end));

<open orbit, 1 points with Schreier tree looking for sth.>

gap> Enumerate(o);

<open orbit, 144 points with Schreier tree looking for sth.>

gap> word := TraceSchreierTreeForward(o,PositionOfFound(o));

[1, 2, 1, 2, 1, 2, 1, 2, 2]

gap> b := Product(egens78{word});

<<immutable cmat 78x78 over GF(2,1)> with mem>

We search through the E-conjugates of g2a until we �nd a conjugate a together with b ful�lling

the de�ning conditions of standard generators of Fi22, and moreover ful�lling the relations of the

associated presentation of Fi22 available in [Wil].

To �nd conjugates, we use the product replacement algorithm to produce pseudo random ele-

ments of E. Assuming a genuine random search, the success probability of this approach is as

follows: Letting E 0 := E 0=Z(E 0) �= 2E6(2), out of the jE 0j=jCE 0(g2a)j conjugates of g2a there are

jCE 0(b)j=jCE 0(Fi22)j= jCE 0(b)j elements together with the �xed element b giving standard generators

of Fi22. Since Fi22 has two conjugacy classes of elements of order 13, and there are three conjugacy

classes of subgroups Fi22 of E 0, the success probability is 6 � jCE 0(g2a)j � jCE 0(b)j=jE 0j � 2 �10�5.

Example
gap> pr := ProductReplacer(egens78,rec(maxdepth := 150));

<product replacer nrgens=2 slots=12 scramble=100 maxdepth=150 steps=0 (rattle)>

gap> i := 0;;

gap> repeat

> i := i + 1;

> x := Next(pr);

> a := g2a^x;

> until IsOne((a*b)^11) and IsOne(((a*b)^4*b*a*b*(a*b*b)^2)^12) and

> IsOne((a*b^2)^21) and IsOne(Comm(a,b)^3) and

> IsOne(Comm(a,b^2)^3) and IsOne(Comm(a,b^3)^3) and

> IsOne(Comm(a,b^4)^2) and IsOne(Comm(a,b^5)^3) and

> IsOne(Comm(a,b*a*b^2)^3) and IsOne(Comm(a,b^-1*a*b^-2)^2) and

> IsOne(Comm(a,b*a*b^5)^2) and IsOne(Comm(a,b^2*a*b^5)^2);

gap> i;

53271

Note that the initial state of the random number generator does in�uence this randomised result:

it may very well be that you see some other value for i.

Due to a presentation being available we have proved that the elements found generate a subgroup

Fi22. If we had not had a presentation at hand, we might only have been able to �nd elements ful�lling

the de�ning conditions of standard generators of Fi22, but still generating a subgroup of another

isomorphism type. In that case, for further checks we can use the following tools: We try to �nd a

short orbit of vectors, and using a randomized Schreier-Sims algorithm gives a lower bound for the

order of the group seen. However, we can use the action on the orbit to get a homomorphism into a

permutation group, allowing to prove that the group generated indeed has Fi22 as a quotient.

orb 64

Example
gap> S := StabilizerChain(Group(a,b),rec(TryShortOrbit := 30,

> OrbitLengthLimit := 5000));

...

<stabchain size=64561751654400 orblen=3510 layer=1 SchreierDepth=8>

<stabchain size=18393661440 orblen=2816 layer=2 SchreierDepth=7>

<stabchain size=6531840 orblen=1680 layer=3 SchreierDepth=7>

<stabchain size=3888 orblen=243 layer=4 SchreierDepth=5>

<stabchain size=16 orblen=16 layer=5 SchreierDepth=2>

gap> Size(S)=Size(CharacterTable("Fi22"));

true

gap> p := Group(ActionOnOrbit(S!.orb,[a,b]));;

gap> DisplayCompositionSeries(p);

G (2 gens, size 64561751654400)

| Fi(22)

1 (0 gens, size 1)

We now return to our original representation.

Example
gap> SetInfoLevel(InfoSLP,2);

gap> slpetofi22 := SLPOfElms([a,b]);

<straight line program>

gap> Length(LinesOfStraightLineProgram(slpetofi22));

278

gap> SlotUsagePattern(slpetofi22);;

gap> fgens := ResultOfStraightLineProgram(slpetofi22,egens);

...

[<cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)>]

gap> a := fgens[1];;

gap> b := fgens[2];;

gap> IsOne(b^13);

true

gap> IsOne((a*b)^11);

true

gap> IsOne((a*b^2)^21);

true

By construction the group generated by a;b is Fi22 or 2�Fi22 or 2:Fi22. Note that due to different
seeds in the random number generator it is in fact possible at this stage that you have created a different

group as displayed here! In our outcome, since a has even order, and both b and ab have odd order,

we cannot possibly have 2�Fi22; and by the presentation of 2:Fi22 available in [Wil] the order of ab2

being 21 implies that we cannot possibly have 2:Fi22 either. Hence we indeed have found standard

generators of Fi22. If we had hit one of the cases 2�Fi22 or 2:Fi22, we could just continue the above
search until we �nd a subgroup Fi22, or using the above order �ngerprint we could easily modify the

elements found to obtain standard generators of either Fi22 or 2:Fi22.
Now, standard generators of U2 =M12 in terms of standard generators of Fi22, and generators of

U1 = L2(11) in terms of standard generators ofM12 are accessible in the atlasrep package. Note that

if we had found a subgroup 2:Fi22 above, since M12 lifts to a subgroup 2�M12 of 2:Fi22, it would
again be easy to �nd standard generators of M12 from the generators of M12 or 2�M12 respectively

provided by the atlasrep package. Anyway, the next task is to �nd good quotient modules such that

orb 65

the helper subgroups have longish orbits on vectors. To this end, we restrict to M12 and compute the

radical series of the restricted module.
Example

gap> slpfi22tom12 := AtlasStraightLineProgram("Fi22",14).program;;

gap> slpm12tol211 := AtlasStraightLineProgram("M12",5).program;;

gap> mgens := ResultOfStraightLineProgram(slpfi22tom12,fgens);

[<cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)>]

gap> lgens := ResultOfStraightLineProgram(slpm12tol211,mgens);

[<cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)>]

gap> m := Module(mgens);;

gap> r := Chop(m);;

...

gap> rad := RadicalSeries(m,r.db);

...

rec(

db := [<abs. simple module of dim. 144 over GF(2)>,

<abs. simple module of dim. 44 over GF(2)>,

<simple module of dim. 32 over GF(2) splitting field degree 2>,

<abs. simple module of dim. 10 over GF(2)>,

<trivial module of dim. 1 over GF(2)>],

module := <reducible module of dim. 4370 over GF(2)>,

basis := <immutable cmat 4370x4370 over GF(2,1)>,

ibasis := <immutable cmat 4370x4370 over GF(2,1)>,

cfposs := [[[1 .. 144], [145 .. 288], [289 .. 432], [433 .. 576],

...

isotypes := [[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5],

...

isradicalrecord := true)

We observe that there are faithful irreducible quotients of dimensions 10, 32, 44, and 144. Since

we look for a quotient module such that M12 has many regular orbits on vectors, we ignore the irre-

ducible module of dimension 10. We consider the one of dimension 32.
Example

gap> i := Position(List(rad.db,Dimension),32);;

gap> mgens32 := RepresentingMatrices(rad.db[i]);

[<immutable cmat 32x32 over GF(2,1)>, <immutable cmat 32x32 over GF(2,1)>]

gap> OrbitStatisticOnVectorSpace(mgens32,95040,30);

Found length 95040, have now 24 orbits, average length: 93060

This is excellent indeed. Hence we pick a summand of dimension 32 in the �rst radical layer, and

apply the associated base change to all the generators.

Example
gap> bgens := List(bgens,x->rad.basis*x*rad.ibasis);;

gap> egens := List(egens,x->rad.basis*x*rad.ibasis);;

gap> fgens := List(fgens,x->rad.basis*x*rad.ibasis);;

gap> mgens := List(mgens,x->rad.basis*x*rad.ibasis);;

gap> lgens := List(lgens,x->rad.basis*x*rad.ibasis);;

gap> j := Position(rad.isotypes[1],i);;

gap> l := rad.cfposs[1][j];;

gap> Append(l,Difference([1..4370],l));

gap> bgens := List(bgens,x->ORB_PermuteBasisVectors(x,l));;

orb 66

gap> egens := List(egens,x->ORB_PermuteBasisVectors(x,l));;

gap> fgens := List(fgens,x->ORB_PermuteBasisVectors(x,l));;

gap> mgens := List(mgens,x->ORB_PermuteBasisVectors(x,l));;

gap> lgens := List(lgens,x->ORB_PermuteBasisVectors(x,l));;

We consider the irreducible quotient module of M12 of dimension 32, whose restriction to L2(11)
turns out to be is semisimple. The irreducible quotients of dimension 10 are too small to have too

many regular orbits, but the direct sum of two of them turns out to work �ne.
Example

gap> lgens32 := List(lgens,x->ExtractSubMatrix(x,[1..32],[1..32]));

[<cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1)>]

gap> m := Module(lgens32);;

gap> r := Chop(m);

...

gap> soc := SocleSeries(m,r.db);

...

rec(issoclerecord := true,

db := [<simple module of dim. 10 over GF(2) splitting field degree 2>,

<trivial module of dim. 1 over GF(2)>,

<abs. simple module of dim. 10 over GF(2)>],

module := <reducible module of dim. 32 over GF(2)>,

basis := <cmat 32x32 over GF(2,1)>, ibasis := <cmat 32x32 over GF(2,1)>,

cfposs := [[[1 .. 10], [11], [12], [13 .. 22], [23 .. 32]]],

isotypes := [[1, 2, 2, 3, 3]])

gap> i := Position(List(soc.db,x->[Dimension(x),DegreeOfSplittingField(x)]),

> [10,1]);;

gap> j := Position(soc.isotypes[1],i);;

gap> l := Concatenation(soc.cfposs[1]{[j,j+1]});;

gap> lgens32 := List(lgens32,x->soc.basis*x*soc.ibasis);

[<cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1)>]

gap> lgens20 := List(lgens32,x->ExtractSubMatrix(x,l,l));

[<cmat 20x20 over GF(2,1)>, <cmat 20x20 over GF(2,1)>]

gap> OrbitStatisticOnVectorSpace(lgens20,660,30);

Found length 660, have now 4401 orbits, average length: 598

We apply the appropriate base change to all the generators.
Example

gap> t := ORB_EmbedBaseChangeTopLeft(soc.basis,4370);

<cmat 4370x4370 over GF(2,1)>

gap> ti := ORB_EmbedBaseChangeTopLeft(soc.ibasis,4370);

<cmat 4370x4370 over GF(2,1)>

gap> bgens := List(bgens,x->t*x*ti);;

gap> egens := List(egens,x->t*x*ti);;

gap> fgens := List(fgens,x->t*x*ti);;

gap> mgens := List(mgens,x->t*x*ti);;

gap> lgens := List(lgens,x->t*x*ti);;

gap> Append(l,Difference([1..4370],l));

gap> bgens := List(bgens,x->ORB_PermuteBasisVectors(x,l));;

gap> egens := List(egens,x->ORB_PermuteBasisVectors(x,l));;

gap> fgens := List(fgens,x->ORB_PermuteBasisVectors(x,l));;

gap> mgens := List(mgens,x->ORB_PermuteBasisVectors(x,l));;

gap> lgens := List(lgens,x->ORB_PermuteBasisVectors(x,l));;

orb 67

Having reached the ultimate choice of basis, we recreate the �xed vector v.
Example

gap> x := egens[1]-egens[1]^0;;

gap> nsx := NullspaceMat(x);;

gap> y := nsx * (egens[2]-egens[2]^0);;

gap> nsy := NullspaceMat(y);;

gap> v := nsy[1]*nsx;;

Finally we need small faithful permutation representations of the helper subgroups.

Example
gap> mgens32 := List(mgens,x->ExtractSubMatrix(x,[1..32],[1..32]));

[<cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1)>]

gap> S := StabilizerChain(Group(mgens32),rec(TryShortOrbit := 10));

...

<stabchain size=95040 orblen=3960 layer=1 SchreierDepth=7>

<stabchain size=24 orblen=24 layer=2 SchreierDepth=4>

gap> p := Group(ActionOnOrbit(S!.orb,mgens32));

<permutation group with 2 generators>

gap> i := SmallerDegreePermutationRepresentation(p);;

gap> pp := Group(List(GeneratorsOfGroup(p),x->ImageElm(i,x)));

<permutation group with 2 generators>

gap> m12 := MathieuGroup(12);;

gap> i := IsomorphismGroups(pp,m12);;

gap> mpermgens := List(GeneratorsOfGroup(pp),x->ImageElm(i,x));

[(5,7)(6,11)(8,9)(10,12), (1,10,3)(2,11,12)(4,5,6)(7,9,8)]

gap> lpermgens := ResultOfStraightLineProgram(slpm12tol211,mpermgens);

[(1,8)(2,5)(3,9)(4,7)(6,11)(10,12), (1,8,3)(2,7,12)(4,6,9)(5,11,10)]

We could just go on from here, however, sometimes it is useful to save all the created data to disk.

Example
gap> f := IO_File("data.gp","w");;

gap> IO_Pickle(f,"seed");;

gap> IO_Pickle(f,v);;

gap> IO_Pickle(f,"generators");;

gap> IO_Pickle(f,bgens);;

gap> IO_Pickle(f,egens);;

gap> IO_Pickle(f,fgens);;

gap> IO_Pickle(f,mgens);;

gap> IO_Pickle(f,lgens);;

gap> IO_Pickle(f,"permutations");;

gap> IO_Pickle(f,mpermgens);;

gap> IO_Pickle(f,lpermgens);;

gap> IO_Close(f);;

This can be loaded again, in particular into a new GAP session, as follows.

Example
gap> LoadPackage("orb");;

...

gap> LoadPackage("cvec");;

...

gap> f := IO_File("data.gp");

<file fd=4 rbufsize=65536 rpos=1 rdata=0>

orb 68

gap> IO_Unpickle(f);

"seed"

gap> v:=IO_Unpickle(f);;

gap> IO_Unpickle(f);

"generators"

gap> bgens := IO_Unpickle(f);;

gap> egens := IO_Unpickle(f);;

gap> fgens := IO_Unpickle(f);;

gap> mgens := IO_Unpickle(f);;

gap> lgens := IO_Unpickle(f);;

gap> IO_Unpickle(f);

"permutations"

gap> mpermgens := IO_Unpickle(f);;

gap> lpermgens := IO_Unpickle(f);;

gap> IO_Close(f);;

Now we are prepared to actually run the orbit enumeration. Note that for the following memory

estimates we assume that we are running things on a 64bit machine. On a 32bit machine the overhead

is smaller. We expect that all the vectors in the smaller quotient of dimension 20 will enumerated;

needing 3 bytes per vector for the actual data which results in 40 bytes including overhead, this

amounts to 40 �220 � 42 MB of memory space. Since 232 � 4:3 �109 is less than [B:E], we also expect
that the larger quotient of dimension 32 will be enumerated completely, by L2(11)-orbits; needing 4

bytes per vector for the actual data resulting in 40 bytes including overhead, and assuming a saving

factor as suggested by OrbitStatisticOnVectorSpace yields an estimated memory requirement of

40 �232 �1=598� 287 MB. For the large B-orbit, being enumerated byM12-orbits, we similarly get an

estimated memory requirement of 584 � [B:E] �1=93060� 85 MB.

Example
gap> setup := OrbitBySuborbitBootstrapForVectors(

> [lgens,mgens,bgens],[lpermgens,mpermgens,[(),()]],

> [660,95040,4154781481226426191177580544000000],[20,32],rec());

#I Calculating stabilizer chain for whole group...

#I Trying smaller degree permutation representation for U2...

#I Trying smaller degree permutation representation for U1...

#I Enumerating permutation base images of U_1...

#I Looking for U1-coset-recognising U2-orbit in factor space...

#I OrbitBySuborbit found 100% of a U2-orbit of size 95 040

#I Found 144 suborbits (need 144)

<setup for an orbit-by-suborbit enumeration, k=2>

gap> o := OrbitBySuborbitKnownSize(setup,v,3,3,2,51,13571955000);

#I OrbitBySuborbit found 100% of a U2-orbit of size 1

#I OrbitBySuborbit found 100% of a U2-orbit of size 23 760

...

#I OrbitBySuborbit found 51% of a U3-orbit of size 13 571 955 000

<orbit-by-suborbit size=13571955000 stabsize=306129918735099415756800 (

51%) saving factor=56404>

Indeed the saving factor actually achieved is smaller than the best possible estimate given above,

but it still has the same order of magnitude.

References

[AVM62] G. Adelson-Velskii and Landis E. M. An algorithm for the organization of information.

Proceedings of the USSR Academy of Sciences, 146:263�266, 1962. Russian. 39

[CCN+85] J[ohn] H. Conway, R[obert] T. Curtis, S[imon] P. Norton, R[ichard] A. Parker, and

R[obert] A. Wilson. Atlas of �nite groups. Oxford University Press, 1985. 58, 59, 60, 61,

62

[HNN06] Gerhard Hiss, Max Neunhöffer, and Felix Noeske. The 2-modular characters of the Fis-

cher group Fi23. J. Algebra, 300(2):555�570, 2006. 59

[Jan05] C. Jansen. The minimal degrees of faithful representations of the sporadic simple groups

and their covering groups. LMS J. Comput. Math., 8:122�144, 2005. 60, 61, 62

[Knu97] Donald Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.

Addison-Wesley, third edition, 1997. 39, 44

[Mal06] Gunter Malle. Fast-einfache Gruppen mit langen Bahnen in absolut irreduzibler Opera-

tion. J. Algebra, 300(2):655�672, 2006. 57, 60

[MNW07] J. Müller, M. Neunhöffer, and R. A. Wilson. Enumerating big orbits and an application:

B acting on the cosets of Fi23. J. Algebra, 314(1):75�96, 2007. 46, 57

[Mül08] J. Müller. On the action of the sporadic simple baby monster group on its conjugacy class

2B. LMS J. Comput. Math., 11:15�27, 2008. 57

[Wil] Robert A. Wilson. ATLAS of Finite Group Representations.

http://brauer.maths.qmul.ac.uk/Atlas. 61, 62, 63, 64

[Wil96] R[obert] A. Wilson. Standard generators for sporadic simple groups. Journal of Algebra,

184:505�515, 1996. 61

69

http://brauer.maths.qmul.ac.uk/Atlas

Index

orb, 7

ActionOnOrbit, 17

ActWithWord, 18

Add, 43

AddGeneratorsToOrbit, 18

AddGeneratorToProductReplacer, 34

AddHT, 25

AVLAdd, 40

AVLCmp, 40

AVLData, 42

AVLDelete, 41

AVLFind, 42

AVLFindIndex, 41

AVLIndex, 41

AVLIndexAdd, 41

AVLIndexDelete, 42

AVLIndexFind, 42

AVLIndexLookup, 41

AVLLookup, 40

AVLTree, 40

AVLValue, 43

CacheObject, 29

ChooseHashFunction, 20

8bitmat, 21

8bitvec, 21

gf2mat, 21

gf2vec, 21

int, 22

intlist, 22

IntLists, 22

MatLists, 22

NBitsPcWord, 22

perm, 22

ClearCache, 30

DepthOfSchreierTree, 16

Display, 43

ELM_LIST, 43

Enumerate, 9

EvaluateWord, 18

FindCentralisingElementOfInvolution, 37

FindInvolution, 37

FindInvolutionCentralizer, 37

FindShortGeneratorsOfSubgroup, 38

FindSuborbits, 18

Grades, 16

GrowHT, 26

HTAdd, 24

HTCreate, 22

HTDelete, 24

HTGrow, 25

HTUpdate, 24

HTValue, 24

\in, 44

InitHT, 26

InitOrbitBySuborbitList, 54

IsClosed, 9

IsGradedOrbit, 16

IsOrbitBySuborbitSetup, 51

IsVectorInOrbitBySuborbitList, 54

Length, 44

LinkedListCache, 29

MakeRandomLines, 31

MakeRandomVectors, 31

MakeSchreierTreeShallow, 18

Memory

forob, 48

forobsol, 55

NewHT, 25

Next, 34

70

orb 71

Orb, 8

OrbActionHomomorphism, 17

ORB_EstimateOrbitSize, 19

OrbitBySuborbit, 46

OrbitBySuborbitBootstrapForLines, 50

OrbitBySuborbitBootstrapForSpaces, 50

OrbitBySuborbitBootstrapForVectors, 49

OrbitBySuborbitKnownSize, 47

OrbitGraph, 16

OrbitGraphAsSets, 17

OrbitIntersectionMatrix, 19

OrbitsFromSeedsToOrbitList, 54

OrbitStatisticOnVectorSpace, 37

OrbitStatisticOnVectorSpaceLines, 38

OrigSeed, 49

Position, 43

PositionOfFound, 15

ProductReplacer, 32

Randomize, 31

RandomSearcher, 36

Remove, 43

Representatives, 49

Reset, 34

SavingFactor

fordb, 49

forobsol, 55

fororb, 48

Search, 36

Seed, 47

Size

forobsol, 55

fororb, 47

Stabilizer

obso, 48

StabWords, 48

basic, 15

SuborbitsDb, 47

TotalLength

fordb, 49

forobsol, 55

TraceSchreierTreeBack, 17

TraceSchreierTreeForward, 17

UnderlyingPlist, 16

UseCacheObject, 30

ValueHT, 26

VerifyDisjointness, 55

WordsToSuborbits, 47

	Introduction
	Motivation for this package
	Overview over this manual
	Feedback

	Installation of the orb-Package
	Recompiling the documentation

	Basic orbit enumeration
	Enumerating orbits

	Hashing techniques
	The idea of hashing
	Hash functions
	Using hash tables
	Using hash tables (legacy code)
	 The data structures for hash tables

	Caching techniques
	The idea of caching
	Using caches

	Random elements
	Randomizing mutable objects
	Product replacement

	Searching in groups and orbits
	Searching using orbit enumeration
	Random searches in groups
	The dihedral trick and applications
	Orbit statistics on vector spaces
	Finding generating sets of subgroups

	AVL trees
	The idea of AVL trees
	Using AVL trees
	The internal data structures

	Orbit enumeration by suborbits
	OrbitBySuborbits and its resulting objects
	Preparation functions for OrbitBySuborbit (9.1.1)
	Data structures for orbit-by-suborbits
	Lists of orbit-by-suborbit objects

	Finding nice quotients
	Examples
	The Mathieu group M11 acting in dimension 24
	The Fischer group Fi23 acting in dimension 1494
	The Conway group Co1 acting in dimension 24
	The Baby Monster B acting on its 2A involutions

	References

