The routine reduces the target of M by elementary moves (see elementary) involving just d+1 variables. The outcome is probabalistic, but if the routine fails, it gives an error message.
i1 : kk=ZZ/32003 o1 = kk o1 : QuotientRing |
i2 : S=kk[a..e] o2 = S o2 : PolynomialRing |
i3 : i=ideal(a^2,b^3,c^4, d^5) 2 3 4 5 o3 = ideal (a , b , c , d ) o3 : Ideal of S |
i4 : F=res i 1 4 6 4 1 o4 = S <-- S <-- S <-- S <-- S <-- 0 0 1 2 3 4 5 o4 : ChainComplex |
i5 : f=F.dd_3 o5 = {5} | c4 d5 0 0 | {6} | -b3 0 d5 0 | {7} | a2 0 0 d5 | {7} | 0 -b3 -c4 0 | {8} | 0 a2 0 -c4 | {9} | 0 0 a2 b3 | 6 4 o5 : Matrix S <--- S |
i6 : EG = evansGriffith(f,2) -- notice that we have a matrix with one less row, as described in elementary, and the target module rank is one less. o6 = {5} | c4 d5 0 {6} | -b3 0 d5 {7} | 0 -b3 8603a4+13471a3b+6098a2b2-10627a3c-4745a2bc+13615a2c2-c4 {7} | a2 0 9140a4-1150a3b-11566a2b2-12516a3c+11972a2bc+9806a2c2 {8} | 0 a2 -3924a3-7622a2b-10642a2c ------------------------------------------------------------------------ 0 | 0 | 8603a2b3+13471ab4+6098b5-10627ab3c-4745b4c+13615b3c2 | 9140a2b3-1150ab4-11566b5-12516ab3c+11972b4c+9806b3c2+d5 | -3924ab3-7622b4-10642b3c-c4 | 5 4 o6 : Matrix S <--- S |
i7 : isSyzygy(coker EG,2) o7 = true |