Cowboy User Guide

Cowboy User Guide

Cowboy User Guide ii

Contents

I Rationale 1
1 The modern Web 2
1.1 The prehistoric Web o e e e e 2
1.2 HTTP/L.L . . o e e e e e e 2
1.3 REST . . 2
14 XmlHtpRequest o . . e e e 3
1.5 Long-polling e 3
1.6 HTMLS . . . 3
1.7 EventSource i i e e e e e e e e 4
1.8 Websocket L e e e 4
1.9 SPDY . . . o 4
110 HTTP/2.0 . . . o o e e e e e e e e e e 4
2 Erlang and the Web 5
2.1 The Webisconcurrent e e e e e 5
2.2 TheWebissoftreal time L e 5
2.3 The Webisasynchronous e e 6
2.4 The Webisomnipresent o e e e e e e e e e e 6
2.5 Erlangis the ideal platform forthe Web L 7
II Introduction 8
3 Introduction 9
3.1 PrerequiSites o o . e e e e e e e e e e e e e e e e 9
3.2 Supported platforms 9
33 Versioning e e e e e 9

3.4 ConventionsS vt e e e e e e 10

Cowboy User Guide

4 Getting started
4.1 BOOLSIrap o i e e e e e e e
42 Cowboy Setup oo
4.3 Listening for connectionso

4.4 Handling requests o ot i e e e e e e e e

Request overview

5.1 Request/response i i e e e e e
52 Andthen?
5.3 Keep-alive (HTTP/1.1) o o e
5.4 Pipelining (HTTP/1.1) e
5.5 Asynchronous requests (SPDY)

Erlang for beginners

6.1 Learn You Some Erlang for Great Good!

III Configuration

7.1 Structure e
7.2 Matchsyntax e e e e e
7.3 Constraints
74 Compilation oL
7.5 Liveupdate e e e

8.1 Structure. e
8.2 Built-inconstraints e e e e e e e e e

8.3 Customeconstraint e e

7 Routing
Constraints
Static files

9.1 Serveonefile
9.2 Serve all files fromadirectory
9.3 Customize the mimetype detection

9.4 Generate an €tag e e e e e e e e e e

IV Request and response

10 Handlers
10.1 Plain HTTP handlers
10.2 Otherhandlers
103 Cleaningup oo e

11
11
12
12
12

13
13
14
14
14
15

16
16
16

17

18
18
18
20
20
20

21
21
21
21

22
22
22
23
23

24

Cowboy User Guide

11 Loop handlers
11.1 Initialization o o e e e e e e
11.2 Receive loop o o o o e e e e e
11.3 Streaming loop L L e e
11.3.1 Cleaning up o o v v o e e e e
11.4 TIMEOUL o o o e e e e e e e
11.5 Hibernate L . e e e

12 The Req object
12.1 Aspecial variable oL e e
12.2 Overview of the cowboy_req interface e
123 ReqUESt . . . o o o o e e e
12.4 Bindings o o e e e e e
125 Query String e e e e
12.6 Request URL o . e
12,7 Headers
12,8 Meta L
12.9 Peer e e

13 Reading the request body
13.1 Check forrequestbody e
13.2 Requestbody length e
13.3 Readingthe body L e e e
13.4 Streaming thebody
13.5 Rate of data tranSmission oLl e e e e e e e e
13.6 Transfer and content decoding L. e e e e e e

13.7 Reading a form urlencoded body L e

14 Sending a response
141 Reply . . o o e e e
142 Chunkedreply o o o e e
14.3 Presetresponse headers L e
14.4 Presetresponse body e e e e e
14.5 Sending files e

15 Using cookies
15.1 Setting COOKIES o o i e e e e e e e e

15.2 Reading cookies o L e e e

Cowboy User Guide v
16 Multipart requests 42
16.1 STrucCture o o o e e e e e e e e e 42
16.2 Form-data o e e e e e 42
16.3 Checking the content-type o o i e e e e e e e e e e e 42
16.4 Reading a multipart MmeSSAZe« o i e e e e e e e e e e e e e e e e 43
16.5 Skipping unwanted partS L. e e e e e e e e e e e e e e e e e 43
V REST 45
17 REST principles 46
17.1 REST architecture e e e e e 46
17.2 Resources and resource identifiers L Lo 46
17.3 Resource representations u it e e e e e e e e e e 47
17.4 Self-descriptive MEeSSAZES v v v v v v it e e e e e e e e e e e e e e 47
17.5 Hypermedia as the engine of applicationstate e 47
18 REST handlers 48
18.1 Initialization L e e e e e e 48
182 Methods o e e 48
18.3 Callbacks o e 48
18.4 Metadata e e e e 49
18.5 Response headers L e e 50
19 REST flowcharts 51
19.1 Start e e e 51
19.2 OPTIONS method 53
19.3 Content negotiation L e e e e e e e e e e e e e e e 53
19.4 GETand HEAD methods e 55
19.5 PUT, POST and PATCH methods 0 e e e e e s s e s e e 57
19.6 DELETE method e 59
19.7 Conditional TeqUESES e e e e e e e e e e e e e 61
20 Designing a resource handler 64
20.1 The SerVICe v o v e e e 64
20.2 Type of resource handler L e e e e 64
20.3 Collectionhandler L e e e 64
20.4 Singleresource handler L e e e e e e e 65
20.5 TheresoUrCe v v it e e e e e e e e e e e 65
20.6 Representations it e 65
20.7 RedireCtions o o i e e e e e e e e e e e e 66

Cowboy User Guide vi
20.8 Therequest e e e e e 66
20.9 OPTIONS method e e e 66
20.10GET and HEAD methods e e e 66
20.11PUT, POST and PATCH methods et e e e e e 66
20.12DELETE methods o e e e 66

VI Websocket 67

21 The Websocket protocol 68
21.1 DesCription v o vt e e e e e e e e e e 68
21.2 Implementation e e e e e e e e 68

22 Handling Websocket connections 69
22,1 Initialization e e e 69
22.2 Handling frames from the client e e 70
22.3 Handling Erlang messages oL o e e e e e e e e 70
22.4 Sending frames tothe socket L e 70
22.5 Pingand timeout L e e e e e e e e e e e e e e e e 71
22.6 Hibernate L e e e e e e e 71
22.7 Supporting older Browsers e e e e e e 71

VII Internals 72

23 Architecture 73
23.1 One process Per CONNECHION o v v v v vt vt i e e e e e e e e e e e e e e e e e 73
232 BINAri€S« o e e e e 73
233 Dateheader e e 73
23.4 Max CONNECLIONS v v v v vt v e it e e e e e e e e e e e e e e e e e 73

24 Dealing with broken clients 74
24.1 Lowercase headers e e e e 74
242 Camel-case headers L . e e 74
24.3 Chunked transfer-encoding L L e e e e e e 74

25 Middlewares 75
25.1 USAZE .« v v o o e e e e e e 75
25.2 Configuration e e e e 75
25.3 Routing middleware L e e 76
25.4 Handler middleware L. e e e 76

Cowboy User Guide

Vii

26 Sub protocols

26.1 Usage . . .
26.2 Upgrade . .

27 Hooks
27.1 Onresponse

77
77
71

78

Cowboy User Guide 1/78

Part I

Rationale

Cowboy User Guide 2/78

Chapter 1

The modern Web

Let’s take a look at various technologies from the beginnings of the Web up to this day, and get a preview of what’s coming next.

Cowboy is compatible with all the technology cited in this chapter except of course HTTP/2.0 which has no implementation in
the wild at the time of writing.

1.1 The prehistoric Web

HTTP was initially created to serve HTML pages and only had the GET method for retrieving them. This initial version is
documented and is sometimes called HTTP/0.9. HTTP/1.0 defined the GET, HEAD and POST methods, and was able to send
data with POST requests.

HTTP/1.0 works in a very simple way. A TCP connection is first established to the server. Then a request is sent. Then the server
sends a response back and closes the connection.

Suffice to say, HTTP/1.0 is not very efficient. Opening a TCP connection takes some time, and pages containing many assets
load much slower than they could because of this.

Most improvements done in recent years focused on reducing this load time and reducing the latency of the requests.

1.2 HTTPAA

HTTP/1.1 quickly followed and added a keep-alive mechanism to allow using the same connection for many requests, as well as
streaming capabilities, allowing an endpoint to send a body in well defined chunks.

HTTP/1.1 defines the OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE and CONNECT methods. The PATCH method
was added in more recent years. It also improves the caching capabilities with the introduction of many headers.

HTTP/1.1 still works like HTTP/1.0 does, except the connection can be kept alive for subsequent requests. This however allows
clients to perform what is called as pipelining: sending many requests in a row, and then processing the responses which will be
received in the same order as the requests.

1.3 REST

The design of HTTP/1.1 was influenced by the REST architectural style. REST, or REpresentational State Transfer, is a style of
architecture for loosely connected distributed systems.

REST defines constraints that systems must obey to in order to be RESTful. A system which doesn’t follow all the constraints
cannot be considered RESTful.

Cowboy User Guide 3/78

REST is a client-server architecture with a clean separation of concerns between the client and the server. They communicate
by referencing resources. Resources can be identified, but also manipulated. A resource representation has a media type and
information about whether it can be cached and how. Hypermedia determines how resources are related and how they can be
used. REST is also stateless. All requests contain the complete information necessary to perform the action.

HTTP/1.1 defines all the methods, headers and semantics required to implement RESTful systems.

REST is most often used when designing web application APIs which are generally meant to be used by executable code directly.

1.4 XmiHttpRequest

Also know as AJAX, this technology allows Javascript code running on a web page to perform asynchronous requests to the
server. This is what started the move from static websites to dynamic web applications.

XmlHttpRequest still performs HTTP requests under the hood, and then waits for a response, but the Javascript code can continue
to run until the response arrives. It will then receive the response through a callback previously defined.

This is of course still requests initiated by the client, the server still had no way of pushing data to the client on its own, so new
technology appeared to allow that.

1.5 Long-polling

Polling was a technique used to overcome the fact that the server cannot push data directly to the client. Therefore the client had
to repeatedly create a connection, make a request, get a response, then try again a few seconds later. This is overly expensive and
adds an additional delay before the client receives the data.

Polling was necessary to implement message queues and other similar mechanisms, where a user must be informed of something
when it happens, rather than when he refreshes the page next. A typical example would be a chat application.

Long-polling was created to reduce the server load by creating less connections, but also to improve latency by getting the
response back to the client as soon as it becomes available on the server.

Long-polling works in a similar manner to polling, except the request will not get a response immediately. Instead the server
leaves it open until it has a response to send. After getting the response, the client creates a new request and gets back to waiting.

You probably guessed by now that long-polling is a hack, and like most hacks it can suffer from unforeseen issues, in this case it
doesn’t always play well with proxies.

1.6 HTML5

HTMLS is, of course, the HTML version after HTML4. But HTMLS emerged to solve a specific problem: dynamic web
applications.

HTML was initially created to write web pages which compose a website. But soon people and companies wanted to use HTML
to write more and more complex websites, eventually known as web applications. They are for example your news reader, your
email client in the browser, or your video streaming website.

Because HTML wasn’t enough, they started using proprietary solutions, often implemented using plug-ins. This wasn’t perfect
of course, but worked well enough for most people.

However, the needs for a standard solution eventually became apparent. The browser needed to be able to play media natively.
It needed to be able to draw anything. It needed an efficient way of streaming events to the server, but also receiving events from
the server.

The solution went on to become HTMLS. At the time of writing it is being standardized.

Cowboy User Guide 4/78

1.7 EventSource

EventSource, sometimes also called Server-Sent Events, is a technology allowing servers to push data to HTMLS applications.

EventSource is one-way communication channel from the server to the client. The client has no means to talk to the server other
than by using HTTP requests.

It consists of a Javascript object allowing setting up an EventSource connection to the server, and a very small protocol for
sending events to the client on top of the HTTP/1.1 connection.

EventSource is a lightweight solution that only works for UTF-8 encoded text data. Binary data and text data encoded differently
are not allowed by the protocol. A heavier but more generic approach can be found in Websocket.

1.8 Websocket

Websocket is a protocol built on top of HTTP/1.1 that provides a two-ways communication channel between the client and the
server. Communication is asynchronous and can occur concurrently.

It consists of a Javascript object allowing setting up a Websocket connection to the server, and a binary based protocol for sending
data to the server or the client.

Websocket connections can transfer either UTF-8 encoded text data or binary data. The protocol also includes support for
implementing a ping/pong mechanism, allowing the server and the client to have more confidence that the connection is still
alive.

A Websocket connection can be used to transfer any kind of data, small or big, text or binary. Because of this Websocket is
sometimes used for communication between systems.

1.9 SPDY

SPDY is an attempt to reduce page loading time by opening a single connection per server, keeping it open for subsequent
requests, and also by compressing the HTTP headers to reduce the size of requests.

SPDY is compatible with HTTP/1.1 semantics, and is actually just a different way of performing HTTP requests and responses,
by using binary frames instead of a text-based protocol. SPDY also allows the server to send extra responses following a request.
This is meant to allow sending the resources associated with the request before the client requests them, saving latency when
loading websites.

SPDY is an experiment that has proven successful and is used as the basis for the HTTP/2.0 standard.
Browsers make use of TLS Next Protocol Negotiation to upgrade to a SPDY connection seamlessly if the protocol supports it.

The protocol itself has a few shortcomings which are being fixed in HTTP/2.0.

1.10 HTTP/2.0

HTTP/2.0 is the long-awaited update to the HTTP/1.1 protocol. It is based on SPDY although a lot has been improved at the time
of writing.

HTTP/2.0 is an asynchronous two-ways communication channel between two endpoints.

Cowboy User Guide 5/78

Chapter 2

Erlang and the Web

2.1 The Web is concurrent

When you access a website there is little concurrency involved. A few connections are opened and requests are sent through
these connections. Then the web page is displayed on your screen. Your browser will only open up to 4 or 8 connections to the
server, depending on your settings. This isn’t much.

But think about it. You are not the only one accessing the server at the same time. There can be hundreds, if not thousands, if not
millions of connections to the same server at the same time.

Even today a lot of systems used in production haven’t solved the C10K problem (ten thousand concurrent connections). And
the ones who did are trying hard to get to the next step, C100K, and are pretty far from it.

Erlang meanwhile has no problem handling millions of connections. At the time of writing there are application servers written in
Erlang that can handle more than two million connections on a single server in a real production application, with spare memory
and CPU!

The Web is concurrent, and Erlang is a language designed for concurrency, so it is a perfect match.

Of course, various platforms need to scale beyond a few million connections. This is where Erlang’s built-in distribution mecha-
nisms come in. If one server isn’t enough, add more! Erlang allows you to use the same code for talking to local processes or to
processes in other parts of your cluster, which means you can scale very quickly if the need arises.

The Web has large userbases, and the Erlang platform was designed to work in a distributed setting, so it is a perfect match.

Or is it? Surely you can find solutions to handle that many concurrent connections with your favorite language... But all these
solutions will break down in the next few years. Why? Firstly because servers don’t get any more powerful, they instead get a
lot more cores and memory. This is only useful if your application can use them properly, and Erlang is light-years away from
anything else in that area. Secondly, today your computer and your phone are online, tomorrow your watch, goggles, bike, car,
fridge and tons of other devices will also connect to various applications on the Internet.

Only Erlang is prepared to deal with what’s coming.

2.2 The Web is soft real time

What does soft real time mean, you ask? It means we want the operations done as quickly as possible, and in the case of web
applications, it means we want the data propagated fast.

In comparison, hard real time has a similar meaning, but also has a hard time constraint, for example an operation needs to be
done in under N milliseconds otherwise the system fails entirely.

Users aren’t that needy yet, they just want to get access to their content in a reasonable delay, and they want the actions they
make to register at most a few seconds after they submitted them, otherwise they’ll start worrying about whether it successfully
went through.

Cowboy User Guide 6/78

The Web is soft real time because taking longer to perform an operation would be seen as bad quality of service.

Erlang is a soft real time system. It will always run processes fairly, a little at a time, switching to another process after a while
and preventing a single process to steal resources from all others. This means that Erlang can guarantee stable low latency of
operations.

Erlang provides the guarantees that the soft real time Web requires.

2.3 The Web is asynchronous

Long ago, the Web was synchronous because HTTP was synchronous. You fired a request, and then waited for a response. Not
anymore. It all began when XmlIHttpRequest started being used. It allowed the client to perform asynchronous calls to the server.

Then Websocket appeared and allowed both the server and the client to send data to the other endpoint completely asyn-
chronously. The data is contained within frames and no response is necessary.

Erlang processes work the same. They send each other data contained within messages and then continue running without
needing a response. They tend to spend most of their time inactive, waiting for a new message, and the Erlang VM happily
activate them when one is received.

It is therefore quite easy to imagine Erlang being good at receiving Websocket frames, which may come in at unpredictable times,
pass the data to the responsible processes which are always ready waiting for new messages, and perform the operations required
by only activating the required parts of the system.

The more recent Web technologies, like Websocket of course, but also SPDY and HTTP/2.0, are all fully asynchronous protocols.
The concept of requests and responses is retained of course, but anything could be sent in between, by both the client or the
browser, and the responses could also be received in a completely different order.

Erlang is by nature asynchronous and really good at it thanks to the great engineering that has been done in the VM over the
years. It’s only natural that it’s so good at dealing with the asynchronous Web.

2.4 The Web is omnipresent

The Web has taken a very important part of our lives. We’re connected at all times, when we’re on our phone, using our computer,
passing time using a tablet while in the bathroom... And this isn’t going to slow down, every single device at home or on us will
be connected.

All these devices are always connected. And with the number of alternatives to give you access to the content you seek, users
tend to not stick around when problems arise. Users today want their applications to be always available and if it’s having too
many issues they just move on.

Despite this, when developers choose a product to use for building web applications, their only concern seem to be "Is it fast?",
and they look around for synthetic benchmarks showing which one is the fastest at sending "Hello world" with only a handful
concurrent connections. Web benchmarks haven’t been representative of reality in a long time, and are drifting further away as
time goes on.

What developers should really ask themselves is "Can I service all my users with no interruption?" and they’d find that they have
two choices. They can either hope for the best, or they can use Erlang.

Erlang is built for fault tolerance. When writing code in any other language, you have to check all the return values and act
accordingly to avoid any unforeseen issues. If you’re lucky, you won’t miss anything important. When writing Erlang code, you
can just check the success condition and ignore all errors. If an error happen, the Erlang process crashes and is then restarted by
a special process called a supervisor.

The Erlang developer thus has no need to fear about unhandled errors, and can focus on handling only the errors that should give
some feedback to the user and let the system take care of the rest. This also has the advantage of allowing him to write a lot less
code, and letting him sleep at night.

Erlang’s fault tolerance oriented design is the first piece of what makes it the best choice for the omnipresent, always available
Web.

Cowboy User Guide 7/78

The second piece is Erlang’s built-in distribution. Distribution is a key part of building a fault tolerant system, because it allows
you to handle bigger failures, like a whole server going down, or even a data center entirely.

Fault tolerance and distribution are important today, and will be vital in the future of the Web. Erlang is ready.

2.5 Erlang is the ideal platform for the Web

Erlang provides all the important features that the Web requires or will require in the near future. Erlang is a perfect match for
the Web, and it only makes sense to use it to build web applications.

Cowboy User Guide 8/78

Part 11

Introduction

Cowboy User Guide 9/78

Chapter 3

Introduction

Cowboy is a small, fast and modular HTTP server written in Erlang.

Cowboy aims to provide a complete HTTP stack, including its derivatives SPDY, Websocket and REST. Cowboy currently
supports HTTP/1.0, HTTP/1.1, Websocket (all implemented drafts + standard) and Webmachine-based REST.

Cowboy is a high quality project. It has a small code base, is very efficient (both in latency and memory use) and can easily be
embedded in another application.

Cowboy is clean Erlang code. It includes hundreds of tests and its code is fully compliant with the Dialyzer. It is also well
documented and features both a Function Reference and a User Guide.

3.1 Prerequisites

Beginner Erlang knowledge is recommended for reading this guide.

Knowledge of the HTTP protocol is recommended but not required, as it will be detailed throughout the guide.

3.2 Supported platforms

Cowboy is tested and supported on Linux.

Cowboy has been reported to work on other platforms, but we make no guarantee that the experience will be safe and smooth.
You are advised to perform the necessary testing and security audits prior to deploying on other platforms.

Cowboy is developed for Erlang/OTP 17.0, 17.1.2 and 17.3. By the time this branch gets released the target version will probably
be 18.0 and above.

Cowboy may be compiled on other Erlang versions with small source code modifications but there is no guarantee that it will
work as expected.

Cowboy uses the maps data type which was introduced in Erlang 17.0.

3.3 Versioning

Cowboy uses Semantic Versioning 2.0.0.

http://semver.org/

Cowboy User Guide 10/78

3.4 Conventions

In the HTTP protocol, the method name is case sensitive. All standard method names are uppercase.

Header names are case insensitive. Cowboy converts all the request header names to lowercase, and expects your application to
provide lowercase header names in the response.

The same applies to any other case insensitive value.

Cowboy User Guide 11/78

Chapter 4

Getting started

Erlang is more than a language, it is also an operating system for your applications. Erlang developers rarely write standalone
modules, they write libraries or applications, and then bundle those into what is called a release. A release contains the Erlang
VM plus all applications required to run the node, so it can be pushed to production directly.

This chapter walks you through all the steps of setting up Cowboy, writing your first application and generating your first release.
At the end of this chapter you should know everything you need to push your first Cowboy application to production.

4.1 Bootstrap

We are going to use the Erlang.mk build system. It also offers bootstrap features allowing us to quickly get started without having
to deal with minute details.

First, let’s create the directory for our application.

$ mkdir hello_erlang
$ cd hello_erlang

Then we need to download Erlang.mk. Either use the following command or download it manually.

$ wget https://raw.githubusercontent.com/ninenines/erlang.mk/master/erlang.mk

We can now bootstrap our application. Since we are going to generate a release, we will also bootstrap it at the same time.

$ make -f erlang.mk bootstrap bootstrap-rel

This creates a Makefile, a base application, and the release files necessary for creating the release. We can already build and start
this release.

S make run

(hello_erlang@127.0.0.1)1>

Entering the command i () . will show the running processes, including one called hello_erlang_sup. This is the super-
visor for our application.

The release currently does nothing. In the rest of this chapter we will add Cowboy as a dependency and write a simple "Hello
world!" handler.

https://github.com/ninenines/erlang.mk

Cowboy User Guide 12/78

4.2 Cowboy setup

Modifying the Makefile allows the build system to know it needs to fetch and compile Cowboy. To do that we simply need to add
two lines to our Makefile to make it look like this:

PROJECT = hello_erlang

DEPS = cowboy
dep_cowboy_commit = master

include erlang.mk

If you run make run now, Cowboy will be included in the release and started automatically. This is not enough however, as
Cowboy doesn’t do anything by default. We still need to tell Cowboy to listen for connections.

4.3 Listening for connections

We will do this when our application starts. It’s a two step process. First we need to define and compile the dispatch list, a list of
routes that Cowboy will use to map requests to handler modules. Then we tell Cowboy to listen for connections.

Open the src/hello_erlang_app.erl file and add the necessary code to the start /2 function to make it look like this:

start (_Type, _Args) —>
Dispatch = cowboy_router:compile ([
{"_", [{"/", hello_handler, []}]}
1)
{ok, _} = cowboy:start_http(my_http_listener, 100, [{port, 8080}],
[{env, [{dispatch, Dispatch}]}]

)y
hello_erlang_sup:start_link() .

The dispatch list is explained in great details in the Routing Chapter 7 chapter. For this tutorial we map the path / to the handler
module hello_handler. This module doesn’t exist yet, we still have to write it.

If you build and start the release, then open http://localhost:8080 in your browser, you will get an error because the module is
missing. Any other URL, like http://localhost:8080/test, will result in a 404 error.

4.4 Handling requests

Cowboy features different kinds of handlers, including REST and Websocket handlers. For this tutorial we will use a plain HTTP
handler.

First, let’s generate a handler from a template.

$ make new t=cowboy_http n=hello_handler

You can then open the src/hello_handler.erl file and modify the init /2 function like this to send a reply.

init (Req, Opts) ->
Reqg2 = cowboy_reqg:reply (200,
[{<<"content-type">>, <<"text/plain">>}],
<<"Hello Erlang!">>,
Req),
{ok, Reg2, Opts}.

What the above code does is send a 200 OK reply, with the content—-type header set to text/plain and the response
body setto Hello Erlang!.

If you run the release and open http://localhost:8080 in your browser, you should get a nice Hello Erlang! displayed!

http://localhost:8080
http://localhost:8080/test
http://localhost:8080

Cowboy User Guide 13/78

Chapter 5

Request overview

This chapter explains the different steps a request goes through until a response is sent, along with details of the Cowboy
implementation.

5.1 Request/response

As you already know, HTTP clients connect to the server and send a request for a resource; the server then sends a response
containing the resource if it could obtain it.

Before the server can send the resource, however, it needs to perform many different operations to read the request, find the
resource, prepare the response being sent and often other related operations the user can add like writing logs.

Requests take the following route in Cowboy:

client

acceptor
- < = === szsszszsszeszeszesees _ reply
router | onresponse

middlewares

handler (client }

Cowboy User Guide 14/78

This shows the default middlewares, but they may be configured differently in your setup. The dark green indicates the points
where you can hook your own code, the light green is the Cowboy code that you can of course configure as needed.

The acceptor is the part of the server that accepts the connection and create an Erlang process to handle it. The parser then
starts reading from the socket and handling requests as they come until the socket is closed.

A response may be sent at many different points in the life of the request. If Cowboy can’t parse the request, it gives up with an
error response. If the router can’t find the resource, it sends a not found error. Your own code can of course send a response at
any time.

When a response is sent, you can optionally modify it or act upon it by enabling the onresponse hook. By default the response
is sent directly to the client.

5.2 And then?

Behavior depends on what protocol is in use.

HTTP/1.0 can only process one request per connection, so Cowboy will close the connection immediately after it sends the
response.

HTTP/1.1 allows the client to request that the server keeps the connection alive. This mechanism is described in the next section.

SPDY is designed to allow sending multiple requests asynchronously on the same connection. Details on what this means for
your application is described in this chapter.

5.3 Keep-alive (HTTP/1.1)

With HTTP/1.1, the connection may be left open for subsequent requests to come. This mechanism is called keep-alive.

When the client sends a request to the server, it includes a header indicating whether it would like to leave the socket open. The
server may or may not accept, indicating its choice by sending the same header in the response.

Cowboy will include this header automatically in all responses to HTTP/1.1 requests. You can however force the closing of the
socket if you want. When Cowboy sees you want to send a connection:close header, it will not override it and will close
the connection as soon as the reply is sent.

This snippet will force Cowboy to close the connection.

Reg2 = cowboy_req:reply (200, [
{<<"connection">>, <<"close">>},
], <<"Closing the socket in 3.. 2.. 1..">>, Req).

Cowboy will only accept a certain number of new requests on the same connection. By default it will run up to 100 requests.
This number can be changed by setting the max_keepal ive configuration value when starting an HTTP listener.

cowboy:start_http (my_http_listener, 100, [{port, 8080}], I
{env, [{dispatch, Dispatch}]},
{max_keepalive, 5}

1) .

Cowboy implements the keep-alive mechanism by reusing the same process for all requests. This allows Cowboy to save memory.
This works well because most code will not have any side effect impacting subsequent requests. But it also means you need to
clean up if you do have code with side effects. The terminate/3 function can be used for this purpose.

5.4 Pipelining (HTTP/1.1)

While HTTP is designed as a sequential protocol, with the client sending a request and then waiting for the response from the
server, nothing prevents the client from sending more requests to the server without waiting for the response, due to how sockets
work. The server still handles the requests sequentially and sends the responses in the same order.

Cowboy User Guide 15/78

This mechanism is called pipelining. It allows reducing latency when a client needs to request many resources at the same time.
This is used by browsers when requesting static files for example.

This is handled automatically by the server.

5.5 Asynchronous requests (SPDY)

In SPDY, the client can send a request at any time. And the server can send a response at any time too.

This means for example that the client does not need to wait for a request to be fully sent to send another, it is possible to
interleave a request with the request body of another request. The same is true with responses. Responses may also be sent in a
different order.

Because requests and responses are fully asynchronous, Cowboy creates a new process for each request, and these processes are
managed by another process that handles the connection itself.

SPDY servers may also decide to send resources to the client before the client requests them. This is especially useful for
sending static files associated with the HTML page requested, as this reduces the latency of the overall response. Cowboy does
not support this particular mechanism at this point, however.

Cowboy User Guide 16/78

Chapter 6

Erlang for beginners

Chances are you are interested in using Cowboy, but have no idea how to write an Erlang program. Fear not! This chapter will
help you get started.

We recommend two books for beginners. You should read them both at some point, as they cover Erlang from two entirely
different perspectives.

6.1 Learn You Some Erlang for Great Good!

The quickest way to get started with Erlang is by reading a book with the funny name of LYSE, as we affectionately call it.

It will get right into the syntax and quickly answer the questions a beginner would ask themselves, all the while showing funny
pictures and making insightful jokes.

You can read an early version of the book online for free, but you really should buy the much more refined paper and ebook
versions.

6.2 Programming Erlang

After writing some code, you will probably want to understand the very concepts that make Erlang what it is today. These are
best explained by Joe Armstrong, the godfather of Erlang, in his book Programming Erlang.

Instead of going into every single details of the language, Joe focuses on the central concepts behind Erlang, and shows you how
they can be used to write a variety of different applications.

http://learnyousomeerlang.com
http://pragprog.com/book/jaerlang2/programming-erlang

Cowboy User Guide 17/78

Part 111

Configuration

Cowboy User Guide 18/78

Chapter 7

Routing

Cowboy does nothing by default.
To make Cowboy useful, you need to map URLs to Erlang modules that will handle the requests. This is called routing.

When Cowboy receives a request, it tries to match the requested host and path to the resources given in the dispatch rules. If it
matches, then the associated Erlang code will be executed.

Routing rules are given per host. Cowboy will first match on the host, and then try to find a matching path.

Routes need to be compiled before they can be used by Cowboy.

7.1 Structure

The general structure for the routes is defined as follow.

Routes = [Hostl, Host2, ... HostN].

Each host contains matching rules for the host along with optional constraints, and a list of routes for the path component.

Hostl = {HostMatch, PathsList}.
Host2 = {HostMatch, Constraints, PathsList}.

The list of routes for the path component is defined similar to the list of hosts.

PathsList = [Pathl, Path2, ... PathN].

Finally, each path contains matching rules for the path along with optional constraints, and gives us the handler module to be
used along with options that will be given to it on initialization.

Pathl = {PathMatch, Handler, Opts}.
Path2 = {PathMatch, Constraints, Handler, Opts}.

Continue reading to learn more about the match syntax and the optional constraints.

7.2 Match syntax

The match syntax is used to associate host names and paths with their respective handlers.

The match syntax is the same for host and path with a few subtleties. Indeed, the segments separator is different, and the host is
matched starting from the last segment going to the first. All examples will feature both host and path match rules and explain
the differences when encountered.

Excluding special values that we will explain at the end of this section, the simplest match value is a host or a path. It can be
given as either a string () orabinary ().

Cowboy User Guide 19/78

PathMatchl = "/".
PathMatch2 = "/path/to/resource".
HostMatchl = "cowboy.example.org".

As you can see, all paths defined this way must start with a slash character. Note that these two paths are identical as far as
routing is concerned.

PathMatch2 = "/path/to/resource".
PathMatch3 "/path/to/resource/".

Hosts with and without a trailing dot are equivalent for routing. Similarly, hosts with and without a leading dot are also equivalent.

HostMatchl = "cowboy.example.org".
HostMatch2 "cowboy.example.org.".
HostMatch3 ".cowboy.example.org".

It is possible to extract segments of the host and path and to store the values in the Req object for later use. We call these kind of
values bindings.

The syntax for bindings is very simple. A segment that begins with the : character means that what follows until the end of the
segment is the name of the binding in which the segment value will be stored.

PathMatch = "/hats/:name/prices".
HostMatch = ":subdomain.example.org".

If these two end up matching when routing, you will end up with two bindings defined, subdomain and name, each containing
the segment value where they were defined. For example, the URL http://test.example.org/hats/wild_cowbo
yv_legendary/prices will result in having the value test bound to the name subdomain and the value wild_cowbo
y_legendary bound to the name name. They can later be retrieved using cowboy_req:binding/ {2, 3}. The binding
name must be given as an atom.

There is a special binding name you can use to mimic the underscore variable in Erlang. Any match against the _ binding will
succeed but the data will be discarded. This is especially useful for matching against many domain names in one go.

HostMatch = "ninenines.:_".

Similarly, it is possible to have optional segments. Anything between brackets is optional.

PathMatch = "/hats/[page/:number]".
HostMatch = "[www.]ninenines.eu".

You can also have imbricated optional segments.

PathMatch = "/hats/[page/[:number]]".

You can retrieve the rest of the host or path using [...]. In the case of hosts it will match anything before, in the case of
paths anything after the previously matched segments. It is a special case of optional segments, in that it can have zero, one or
many segments. You can then find the segments using cowboy_reqg:host_info/1 and cowboy_reqg:path_info/1
respectively. They will be represented as a list of segments.

PathMatch = "/hats/[...]".
HostMatch = "[...]ninenines.eu".

If a binding appears twice in the routing rules, then the match will succeed only if they share the same value. This copies the
Erlang pattern matching behavior.

PathMatch = "/hats/:name/:name".

This is also true when an optional segment is present. In this case the two values must be identical only if the segment is available.

Cowboy User Guide 20/78

PathMatch = "/hats/:name/[:name]".

If a binding is defined in both the host and path, then they must also share the same value.

PathMatch = "/:user/[...]".
HostMatch = ":user.github.com".

Finally, there are two special match values that can be used. The first is the atom ’ _’" which will match any host or path.

PathMatch = 7_’.
HostMatch = 7_'.

The second is the special host match " =" which will match the wildcard path, generally used alongside the OPTIONS method.

HostMatch = "x".

7.3 Constraints

After the matching has completed, the resulting bindings can be tested against a set of constraints. Constraints are only tested
when the binding is defined. They run in the order you defined them. The match will succeed only if they all succeed. If the
match fails, then Cowboy tries the next route in the list.

The format used for constraints is the same as match functions in cowboy_req: they are provided as a list of fields which may
have one or more constraints. While the router accepts the same format, it will skip fields with no constraints and will also ignore
default values, if any.

Read more about constraints Chapter 8.

7.4 Compilation

The structure defined in this chapter needs to be compiled before it is passed to Cowboy. This allows Cowboy to efficiently
lookup the correct handler to run instead of having to parse the routes repeatedly.

This can be done with a simple call to cowboy_router:compile/1.

Dispatch = cowboy_router:compile ([
%% {HostMatch, list ({PathMatch, Handler, Opts})}
{"_", [{"_", my_handler, []}]}
)I
% Name, NbAcceptors, TransOpts, ProtoOpts
cowboy:start_http (my_http_listener, 100,
[{port, 8080}17,
[{env, [{dispatch, Dispatch}]}]

oo

Note that this function will return {error, badarg} if the structure given is incorrect.

7.5 Live update

You can use the cowboy:set_env/3 function for updating the dispatch list used by routing. This will apply to all new
connections accepted by the listener.

cowboy:set_env (my_http_listener, dispatch, cowboy_router:compile (Dispatch)) .

Note that you need to compile the routes before updating.

Cowboy User Guide 21/78

Chapter 8

Constraints

Cowboy provides an optional constraints based validation feature when interacting with user input.

Constraints are first used during routing. The router uses constraints to more accurately match bound values, allowing to create
routes where a segment is an integer for example, and rejecting the others.

Constraints are also used when performing a match operation on input data, like the query string or cookies. There, a default
value can also be provided for optional values.

Finally, constraints can be used to not only validate input, but also convert said input into proper Erlang terms, all in one step.

8.1 Structure

Constraints are provided as a list of fields and for each field a list of constraints for that field can be provided.

Fields are either the name of the field; the name and one or more constraints; or the name, one or more constraints and a default
value.

When no default value is provided then the field is required. Otherwise the default value is used.

All constraints for a field will be used to match its value in the order they are given. If the value is modified by a constraint, the
next constraint receives the updated value.

8.2 Built-in constraints

Constraint Description
int Convert binary value to integer.
nonempty Ensures the binary value is non-empty.

8.3 Custom constraint

In addition to the predefined constraints, Cowboy will accept a fun. This fun must accept one argument and return one of t rue,
{true, NewValue} or false. The result indicates whether the value matches the constraint, and if it does it can optionally
be modified. This allows converting the value to a more appropriate Erlang term.

Note that constraint functions SHOULD be pure and MUST NOT crash.

Cowboy User Guide 22/78

Chapter 9

Static files

Cowboy comes with a special handler built as a REST handler and designed specifically for serving static files. It is provided as
a convenience and provides a quick solution for serving files during development.

For systems in production, consider using one of the many Content Distribution Network (CDN) available on the market, as they
are the best solution for serving files. They are covered in the next chapter. If you decide against using a CDN solution, then
please look at the chapter after that, as it explains how to efficiently serve static files on your own.

The static handler can serve either one file or all files from a given directory. It can also send etag headers for client-side caching.

To use the static file handler, simply add routes for it with the appropriate options.

9.1 Serve one file

You can use the static handler to serve one specific file from an application’s private directory. This is particularly useful to serve
an index.html file when the client requests the / path, for example. The path configured is relative to the given application’s
private directory.

The following rule will serve the file static/index.html from the application my_app’s priv directory whenever the path / is
accessed.

{"/", cowboy_static, {priv_file, my_app, "static/index.html"}}

You can also specify the absolute path to a file, or the path to the file relative to the current directory.

{"/", cowboy_static, {file, "/var/www/index.html"}}

9.2 Serve all files from a directory

You can also use the static handler to serve all files that can be found in the configured directory. The handler will use the
path_info information to resolve the file location, which means that your route must end witha [. . .] pattern for it to work.
All files are served, including the ones that may be found in subfolders.

You can specify the directory relative to an application’s private directory.

The following rule will serve any file found in the application my_app’s priv directory inside the static/assets folder
whenever the requested path begins with /assets/.

{"/assets/[...]", cowboy_static, {priv_dir, my_app, "static/assets"}}

You can also specify the absolute path to the directory or set it relative to the current directory.

{"/assets/[...]", cowboy_static, {dir, "/var/www/assets"}}

Cowboy User Guide 23/78

9.3 Customize the mimetype detection

By default, Cowboy will attempt to recognize the mimetype of your static files by looking at the extension.

You can override the function that figures out the mimetype of the static files. It can be useful when Cowboy is missing a
mimetype you need to handle, or when you want to reduce the list to make lookups faster. You can also give a hard-coded
mimetype that will be used unconditionally.

Cowboy comes with two functions built-in. The default function only handles common file types used when building Web
applications. The other function is an extensive list of hundreds of mimetypes that should cover almost any need you may have.
You can of course create your own function.

To use the default function, you should not have to configure anything, as it is the default. If you insist, though, the following
will do the job.

{"/assets/[...]", cowboy_static, {priv_dir, my_app, "static/assets",
[{mimetypes, cow_mimetypes, web}]}}

As you can see, there is an optional field that may contain a list of less used options, like mimetypes or etag. All option types
have this optional field.

To use the function that will detect almost any mimetype, the following configuration will do.

{"/assets/[...]", cowboy_static, {priv_dir, my_app, "static/assets",
[{mimetypes, cow_mimetypes, all}]l}}

You probably noticed the pattern by now. The configuration expects a module and a function name, so you can use any of your
own functions instead.

{"/assets/[...]", cowboy_static, {priv_dir, my_app, "static/assets",
[{mimetypes, Module, Function}]}}

The function that performs the mimetype detection receives a single argument that is the path to the file on disk. It is recom-
mended to return the mimetype in tuple form, although a binary string is also allowed (but will require extra processing). If the
function can’t figure out the mimetype, then it should return {<<"application">>, <<"octet-stream">>, []}.

When the static handler fails to find the extension in the list, it will send the file as application/octet—stream. A
browser receiving such file will attempt to download it directly to disk.

Finally, the mimetype can be hard-coded for all files. This is especially useful in combination with the file and priv_file
options as it avoids needless computation.

{"/", cowboy_static, {priv_file, my_app, "static/index.html",
[{mimetypes, {<<"text">>, <<"html">>, []}}]}}

9.4 Generate an etag

By default, the static handler will generate an etag header value based on the size and modified time. This solution can not be
applied to all systems though. It would perform rather poorly over a cluster of nodes, for example, as the file metadata will vary
from server to server, giving a different etag on each server.

You can however change the way the etag is calculated.
{"/assets/[...]", cowboy_static, {priv_dir, my_app, "static/assets",

[{etag, Module, Function}]}}

This function will receive three arguments: the path to the file on disk, the size of the file and the last modification time. In a
distributed setup, you would typically use the file path to retrieve an etag value that is identical across all your servers.

You can also completely disable etag handling.

{"/assets/[...]", cowboy_static, {priv_dir, my_app, "static/assets",
[{etag, false}]}}

Cowboy User Guide 24 /78

Part IV

Request and response

Cowboy User Guide 25/78

Chapter 10

Handlers

Handlers are Erlang modules that handle HTTP requests.

10.1 Plain HTTP handlers

The most basic handler in Cowboy implements the mandatory init /2 callback, manipulates the request, optionally sends a
response and then returns.

This callback receives the Req object Chapter 12 and the options defined during the router configuration Chapter 7.
A handler that does nothing would look like this:
init (Req, _Opts) —->

{ok, Req, #state{}}.

Despite sending no reply, a 204 No Content reply will be sent to the client, as Cowboy makes sure that a reply is sent for
every request.

We need to use the Req object for sending a reply.

init (Req, _Opts) —->
Reg2 = cowboy_req:reply (200, [
{<<"content-type">>, <<"text/plain">>}
], <<"Hello World!">>, Req),
{ok, Reqg2, #state{}}.

As you can see we return a 3-tuple. ok means that the handler ran successfully. The Req object is returned as it may have been
modified as is the case here: replying returns a modified Req object that you need to return back to Cowboy for proper operations.

The last value of the tuple is a state that will be used in every subsequent callbacks to this handler. Plain HTTP handlers only
have one additional callback, the optional terminate/3.

10.2 Other handlers

The init /2 callback can also be used to inform Cowboy that this is a different kind of handler and that Cowboy should switch
to it. To do this you simply need to return the module name of the handler type you want to switch to.

Cowboy comes with three handler types you can switch to: cowboy_rest Chapter 18, cowboy_websocket Chapter 22 and cow-
boy_loop Chapter 11. In addition to those you can define your own handler types.

Switching is simple. Instead of returning ok, you simply return the name of the handler type you want to use. The following
snippet switches to a Websocket handler:

Cowboy User Guide 26/78

init (Req, _Opts) —>

{cowboy_websocket, Req, #state{}}.
You can also switch to your own custom handler type:
init (Req, _Opts) —->

{my_handler_type, Req, #state{}}.

How to implement a custom handler type is described in the Sub protocols Chapter 26 chapter.

10.3 Cleaning up

All handlers coming with Cowboy allow the use of the optional terminate/3 callback.

terminate (_Reason, Reqg, State) —>
ok.

This callback is strictly reserved for any required cleanup. You cannot send a response from this function. There is no other
return value.

If you used the process dictionary, timers, monitors or may be receiving messages, then you can use this function to clean them
up, as Cowboy might reuse the process for the next keep-alive request.

Note that while this function may be called in a Websocket handler, it is generally not useful to do any clean up as the process
terminates immediately after calling this callback when using Websocket.

Cowboy User Guide 27/78

Chapter 11

Loop handlers

Loop handlers are a special kind of HTTP handlers used when the response can not be sent right away. The handler enters instead
areceive loop waiting for the right message before it can send a response.

Loop handlers are used for requests where a response might not be immediately available, but where you would like to keep the
connection open for a while in case the response arrives. The most known example of such practice is known as long polling.

Loop handlers can also be used for requests where a response is partially available and you need to stream the response body
while the connection is open. The most known example of such practice is known as server-sent events.

While the same can be accomplished using plain HTTP handlers, it is recommended to use loop handlers because they are
well-tested and allow using built-in features like hibernation and timeouts.

Loop handlers essentially wait for one or more Erlang messages and feed these messages to the info/ 3 callback. It also features
the init/2 and terminate/3 callbacks which work the same as for plain HTTP handlers.

11.1 Initialization

The init /2 function must return a cowboy_loop tuple to enable loop handler behavior. This tuple may optionally contain a
timeout value and/or the atom hibernate to make the process enter hibernation until a message is received.

This snippet enables the loop handler.
init (Req, _Opts) ->

{cowboy_loop, Req, #state{}}.

However it is largely recommended that you set a timeout value. The next example sets a timeout value of 30s and also makes
the process hibernate.

init (Req, _Opts) —>
{cowboy_loop, Req, #state{}, 30000, hibernate}.

11.2 Receive loop

Once initialized, Cowboy will wait for messages to arrive in the process’ mailbox. When a message arrives, Cowboy calls the
info/ 3 function with the message, the Req object and the handler’s state.

The following snippet sends a reply when it receives a reply message from another process, or waits for another message
otherwise.

Cowboy User Guide 28/78

info({reply, Body}, Req, State) —->
Reg2 = cowboy_req:reply (200, [], Body, Req),
{stop, Reqg2, State};

info(_Msg, Req, State) —->
{ok, Req, State, hibernate}.

Do note that the reply tuple here may be any message and is simply an example.

This callback may perform any necessary operation including sending all or parts of a reply, and will subsequently return a tuple
indicating if more messages are to be expected.

The callback may also choose to do nothing at all and just skip the message received.
If a reply is sent, then the st op tuple should be returned. This will instruct Cowboy to end the request.

Otherwise an ok tuple should be returned.

11.3 Streaming loop

Another common case well suited for loop handlers is streaming data received in the form of Erlang messages. This can be
done by initiating a chunked reply in the init /2 callback and then using cowboy_req:chunk/2 every time a message is
received.

The following snippet does exactly that. As you can see a chunk is sent every time a chunk message is received, and the loop is
stopped by sending an eof message.

init (Req, _Opts) —->
Reg2 = cowboy_req:chunked_reply (200, [], Req),
{cowboy_loop, Reqg2, f#state{}}.

info(eof, Req, State) ->
{stop, Req, State};

info ({chunk, Chunk}, Reqg, State) —>
cowboy_reqg:chunk (Chunk, Req),
{ok, Req, State};

info(_Msg, Reqg, State) —>
{ok, Req, State}.

11.3.1 Cleaning up
It is recommended that you set the connection header to c1ose when replying, as this process may be reused for a subsequent
request.

Please refer to the Handlers chapter Chapter 10 for general instructions about cleaning up.

11.4 Timeout

By default Cowboy will not attempt to close the connection if there is no activity from the client. This is not always desirable,
which is why you can set a timeout. Cowboy will close the connection if no data was received from the client after the configured
time. The timeout only needs to be set once and can’t be modified afterwards.

Because the request may have had a body, or may be followed by another request, Cowboy is forced to buffer all data it receives.
This data may grow to become too large though, so there is a configurable limit for it. The default buffer size is of 5000 bytes,
but it may be changed by setting the 1oop_max_buf fer middleware environment value.

Cowboy User Guide 29/78

11.5 Hibernate

To save memory, you may hibernate the process in between messages received. This is done by returning the atom hibernate
as part of the 1oop tuple callbacks normally return. Just add the atom at the end and Cowboy will hibernate accordingly.

Cowboy User Guide 30/78

Chapter 12

The Req object

The Req object is this variable that you will use to obtain information about a request, read the body of the request and send a
response.

12.1 A special variable

While we call it an "object", it is not an object in the OOP sense of the term. In fact it is completely opaque to you and the only
way you can perform operations using it is by calling the functions from the cowboy_ req module.

Almost all the calls to the cowboy_req module will return an updated request object. Just like you would keep the updated
State variable in a gen_server, you MUST keep the updated Req variable in a Cowboy handler. Cowboy will use this object
to know whether a response has been sent when the handler has finished executing.

The Req object allows accessing both immutable and mutable state. This means that calling some of the functions twice will not
produce the same result. For example, when streaming the request body, the function will return the body by chunks, one at a
time, until there is none left.

12.2 Overview of the cowboy_req interface

With the exception of functions manipulating the request body, all functions return a single value. Depending on the function this
can be the requested value (method, host, path, ...), a boolean (has_body, has_resp_header...) a new Req object (set_resp_body,
set_resp_header...), or simply the atom ok (chunk, continue, ...).

The request body reading functions may return {Result, Reqg} or {Result, Value, Reqg}. The functions in this
category are body/{1,2},body_qgs/{1,2},part/{1,2},part_body/{1,2}.

This chapter covers the access functions mainly. Cookies, request body and response functions are covered in their own chapters.

12.3 Request

When a client performs a request, it first sends a few required values. They are sent differently depending on the protocol being
used, but the intent is the same. They indicate to the server the type of action it wants to do and how to locate the resource to
perform it on.

The method identifies the action. Standard methods include GET, HEAD, OPTIONS, PATCH, POST, PUT, DELETE. Method
names are case sensitive.

Method = cowboy_reg:method (Req) .

Cowboy User Guide 31/78

The host, port and path parts of the URL identify the resource being accessed. The host and port information may not be available
if the client uses HTTP/1.0.

Host = cowboy_reqg:host (Req),
Port = cowboy_reqg:port (Req),
Path = cowboy_reqg:path (Req) .
The version used by the client can of course also be obtained.

Version = cowboy_reqg:version (Req) .

Do note however that clients claiming to implement one version of the protocol does not mean they implement it fully, or even
properly.

12.4 Bindings

After routing the request, bindings are available. Bindings are these parts of the host or path that you chose to extract when
defining the routes of your application.

You can fetch a single binding. The value will be undefined if the binding doesn’t exist.

Binding = cowboy_req:binding (my_binding, Req).

If you need a different value when the binding doesn’t exist, you can change the default.

Binding = cowboy_reqg:binding (my_binding, Req, 42).

You can also obtain all bindings in one call. They will be returned as a list of key/value tuples.

AllBindings = cowboy_reqg:bindings (Req) .

If you used . . . at the beginning of the route’s pattern for the host, you can retrieve the matched part of the host. The value will
be undefined otherwise.

HostInfo = cowboy_req:host_info (Req) .

Similarly, if you used . . . at the end of the route’s pattern for the path, you can retrieve the matched part, or get undefined
otherwise.

PathInfo = cowboy_req:path_info (Req) .

12.5 Query string

The raw query string can be obtained directly.

Qs = cowboy_reqg:gs (Req) .

You can parse the query string and then use standard library functions to access individual values.
QsVals = cowboy_req:parse_gs (Req),

{_, Lang} = lists:keyfind(<<"lang">>, 1, QsVals).

You can match the query string into a map.

#{id := ID, lang := Lang} = cowboy_req:match_gs([id, lang], Req).

Cowboy User Guide 32/78

You can use constraints to validate the values while matching them. The following snippet will crash if the id value is not an
integer number or if the lang value is empty. Additionally the id value will be converted to an integer term, saving you a
conversion step.

QsMap = cowboy_reqg:match_gs([{id, int}, {lang, nonempty}], Req).

Note that in the case of duplicate query string keys, the map value will become a list of the different values.
Read more about constraints.

A default value can be provided. The default will be used if the 1ang key is not found. It will not be used if the key is found but
has an empty value.

#{lang := Lang} = cowboy_req:match_gs([{lang, [], <<"en-US">>}], Req).

If no default is provided and the value is missing, the query string is deemed invalid and the process will crash.

12.6 Request URL

You can reconstruct the full URL of the resource.

URL = cowboy_reqg:url (Req) .

You can also obtain only the base of the URL, excluding the path and query string.

BaseURL = cowboy_reqg:host_url (Req) .

12.7 Headers

Cowboy allows you to obtain the header values as string, or parsed into a more meaningful representation.
This will get the string value of a header.

HeaderVal = cowboy_reqg:header (<<"content-type">>, Req).

You can of course set a default in case the header is missing.

HeaderVal = cowboy_reqg:header (<<"content-type">>, Req, <<"text/plain">>).

And also obtain all headers.

AllHeaders = cowboy_reqg:headers (Req) .

To parse the previous header, simply call parse_header/ {2, 3} where you would call header/ {2, 3} otherwise.

ParsedVal = cowboy_redg:parse_header (<<"content-type">>, Req).

Cowboy will crash if it doesn’t know how to parse the given header, or if the value is invalid.

You can of course define a default value. Note that the default value you specify here is the parsed value you’d like to get by
default.

ParsedVal = cowboy_reqg:parse_header (<<"content-type">>, Req,
{<<M"text">>, <<Mplain">>, []}).

The list of known headers and default values is defined in the manual.

Cowboy User Guide 33/78

12.8 Meta

Cowboy will sometimes associate some meta information with the request. Built-in meta values are listed in the manual for their
respective modules.

This will get a meta value. The returned value will be undefined if it isn’t defined.

MetaVal = cowboy_reqg:meta (websocket_version, Req).

You can change the default value if needed.

MetaVal = cowboy_reqg:meta (websocket_version, Req, 13).

You can also define your own meta values. The name must be an atom () .

Reg2 = cowboy_req:set_meta (the_answer, 42, Req).

12.9 Peer

You can obtain the peer address and port number. This is not necessarily the actual IP and port of the client, but rather the one of
the machine that connected to the server.

{IP, Port} = cowboy_reqg:peer (Req) .

Cowboy User Guide 34/78

Chapter 13

Reading the request body

The Req object also allows you to read the request body.

Because the request body can be of any size, all body reading operations will only work once, as Cowboy will not cache the
result of these operations.

Cowboy will not attempt to read the body until you do. If handler execution ends without reading it, Cowboy will simply skip it.

Cowboy provides different ways to read the request body. You can read it directly, stream it, but also read and parse in a single
call for form urlencoded formats or multipart. All of these except multipart are covered in this chapter. Multipart is covered later
on in the guide.

13.1 Check for request body

You can check whether a body was sent with the request.

cowboy_reqg:has_body (Req) .

It will return t rue if there is a request body, and false otherwise.

Note that it is generally safe to assume that a body is sent for POST, PUT and PATCH requests, without having to explicitly check
for it.

13.2 Request body length

You can obtain the body length if it was sent with the request.

Length = cowboy_reqg:body_length (Req) .

The value returned will be undefined if the length couldn’t be figured out from the request headers. If there’s a body but
no length is given, this means that the chunked transfer-encoding was used. You can read chunked bodies by using the stream
functions.

13.3 Reading the body

You can read the whole body directly in one call.

{ok, Body, Reg2} = cowboy_reqg:body (Req) .

By default, Cowboy will attempt to read up to a size of 8MB. You can override this limit as needed.

Cowboy User Guide 35/78

{ok, Body, Reqg2} = cowboy_reqg:body(Req, [{length, 100000000}17) .

You can also disable it.

{ok, Body, Reg2} = cowboy_reqg:body(Req, [{length, infinity}]).

It is recommended that you do not disable it for public facing websites.

If the body is larger than the limit, then Cowboy will return a more tuple instead, allowing you to stream it if you would like to.

13.4 Streaming the body

You can stream the request body by chunks.

Cowboy returns a more tuple when there is more body to be read, and an ok tuple for the last chunk. This allows you to loop
over all chunks.

body_to_console (Req) —>
case cowboy_reqg:body (Req) of
{ok, Data, Reg2} —>

io:format ("~s", [Datal),
Reqg2;

{more, Data, Reg2} —>
io:format ("~s", [Datal),

body_to_console (Reg2)
end.

You can of course set the 1ength option to configure the size of chunks.

13.5 Rate of data transmission

You can control the rate of data transmission by setting options when calling body functions. This applies not only to the functions
described in this chapter, but also to the multipart functions.

The read_length option defines the maximum amount of data to be received from the socket at once, in bytes.

The read_timeout option defines the time Cowboy waits before that amount is received, in milliseconds.

13.6 Transfer and content decoding

Cowboy will by default decode the chunked transfer-encoding if any. It will not decode any content-encoding by default.

The first time you call a body function you can set the transfer_ decode and content_decode options. If the body was
already started being read these options are simply ignored.

The following example shows how to set both options.

{ok, Data, Reg2} = cowboy_reqg:body (Req, [
{transfer_decode, fun transfer_decode/2, TransferState},
{content_decode, fun content_decode/1}

1) .

Cowboy User Guide 36/78

13.7 Reading a form urlencoded body

You can directly obtain a list of key/value pairs if the body was sent using the application/x-www-form-urlencoded content-type.

{ok, KeyValues, Reg2} = cowboy_reqg:body_gs (Req) .

You can then retrieve an individual value from that list.

{_, Lang} = lists:keyfind(lang, 1, KeyValues).

You should not attempt to match on the list as the order of the values is undefined.

By default Cowboy will reject bodies with a size above 64KB when using this function. You can override this limit by setting
the length option.

{ok, KeyValues, Reg2} = cowboy_reqg:body_gs(Req, [{length, 2000000}]) .

Cowboy User Guide 37/78

Chapter 14

Sending a response

The Req object also allows you to send a response.

You can only send one response. Any other attempt will trigger a crash. The response may be sent in one go or with its body
streamed by chunks of arbitrary size.

You can also set headers or the response body in advance and Cowboy will use them when you finally do reply.

14.1 Reply

You can send a reply with no particular headers or body. Cowboy will make sure to send the mandatory headers with the response.

Reg2 = cowboy_req:reply (200, Req).

You can define headers to be sent with the response. Note that header names must be lowercase. Again, Cowboy will make sure
to send the mandatory headers with the response.

Reg2 = cowboy_req:reply (303, [
{<<"location">>, <<"http://ninenines.eu">>}
1, Req).

You can override headers that Cowboy would send otherwise. Any header set by the user will be used over the ones set by
Cowboy. For example, you can advertise yourself as a different server.

Reg2 = cowboy_req:reply (200, [
{<<"server">>, <<"yaws">>}
1, Req).

We also saw earlier how to force close the connection by overriding the connection header.

Finally, you can also send a body with the response. Cowboy will automatically set the content-length header if you do. We
recommend that you set the content-type header so the client may know how to read the body.

Reg2 = cowboy_req:reply (200, [
{<<"content-type">>, <<"text/plain">>}
], "Hello world!", Req).

Here is the same example but sending HTML this time.

Reg2 = cowboy_req:reply (200, [
{<<"content-type">>, <<"text/html">>}
1, "<html><head>Hello world!</head><body><p>Hats off!</p></body></html>", Req) .

Note that the reply is sent immediately.

Cowboy User Guide 38/78

14.2 Chunked reply

You can also stream the response body. First, you need to initiate the reply by sending the response status code. Then you can
send the body in chunks of arbitrary size.

Reg2 = cowboy_reqg:chunked_reply (200, Req),
cowboy_req:chunk ("Hello...", Reqg2),
cowboy_req:chunk ("chunked...", Reg2),
cowboy_req:chunk ("world!!", Reqg2).

You should make sure to match on ok as an error may be returned.

While it is possible to send a chunked response without a content-type header, it is still recommended. You can set this header or
any other just like for normal replies.

Reg2 = cowboy_reqg:chunked_reply (200, [
{<<"content-type">>, <<"text/html">>}

1, Req),
cowboy_req:chunk ("<html><head>Hello world!</head>", Reqg2),
cowboy_req:chunk ("<body><p>Hats off!</p></body></html>", Reqg2).

Note that the reply and each chunk following it are sent immediately.

14.3 Preset response headers

You can define response headers in advance. They will be merged into the headers given in the reply call. Headers in the reply
call override preset response headers which override the default Cowboy headers.

Reg2 = cowboy_req:set_resp_header (<<"allow">>, "GET", Req).

You can check if a response header has already been set. This will only check the response headers that you set, and not the ones
Cowboy will add when actually sending the reply.

cowboy_req:has_resp_header (<<"allow">>, Req).

It will return t rue if the header is defined, and £alse otherwise.
Finally, you can also delete a preset response header if needed. If you do, it will not be sent.

Reg2 = cowboy_reqg:delete_resp_header (<<"allow">>, Req).

14.4 Preset response body

You can set the response body in advance. Note that this body will be ignored if you then choose to send a chunked reply, or if
you send a reply with an explicit body.

Reg2 = cowboy_req:set_resp_body ("Hello world!", Req).

You can also set a fun that will be called when it is time to send the body. There are three different ways of doing that.

If you know the length of the body that needs to be sent, you should specify it, as it will help clients determine the remaining
download time and allow them to inform the user.

F = fun (Socket, Transport) —->
Transport:send(Socket, "Hello world!")

end,

Reg2 = cowboy_req:set_resp_body_fun(l2, F, Req).

Cowboy User Guide 39/78

If you do not know the length of the body, you should use a chunked response body fun instead.

F = fun (SendChunk) ->
Body = lists:duplicate (random:uniform (1024, $a)),
SendChunk (Body)

end,

Reg2 = cowboy_req:set_resp_body_fun (chunked, F, Req).

Finally, you can also send data on the socket directly, without knowing the length in advance. Cowboy may be forced to close
the connection at the end of the response though depending on the protocol capabilities.

F = fun (Socket, Transport) —>
Body = lists:duplicate (random:uniform (1024, $a)),
Transport:send (Socket, Body)

end,

Reqg2 = cowboy_req:set_resp_body_fun(F, Req).

14.5 Sending files

You can send files directly from disk without having to read them. Cowboy will use the sendfile syscall when possible, which
means that the file is sent to the socket directly from the kernel, which is a lot more performant than doing it from userland.

Again, it is recommended to set the size of the file if it can be known in advance.

F = fun (Socket, Transport) —>
Transport:sendfile (Socket, "priv/styles.css")
end,
Reg2 = cowboy_req:set_resp_body_fun(FileSize, F, Req).

Please see the Ranch guide for more information about sending files.

Cowboy User Guide 40/78

Chapter 15

Using cookies

Cookies are a mechanism allowing applications to maintain state on top of the stateless HTTP protocol.

Cowboy provides facilities for handling cookies. It is highly recommended to use them instead of writing your own, as the
implementation of cookies can vary greatly between clients.

Cookies are stored client-side and sent with every subsequent request that matches the domain and path for which they were
stored, including requests for static files. For this reason they can incur a cost which must be taken in consideration.

Also consider that, regardless of the options used, cookies are not to be trusted. They may be read and modified by any program
on the user’s computer, but also by proxies. You should always validate cookie values before using them. Do not store any
sensitive information in cookies either.

When explicitly setting the domain, the cookie will be sent for the domain and all subdomains from that domain. Otherwise the
current domain will be used. The same is true for the path.

When the server sets cookies, they will only be available for requests that are sent after the client receives the response.

Cookies are sent in HTTP headers, therefore they must have text values. It is your responsibility to encode any other data type.
Also note that cookie names are de facto case sensitive.

Cookies can be set for the client session (which generally means until the browser is closed), or it can be set for a number of
seconds. Once it expires, or when the server says the cookie must exist for up to 0 seconds, the cookie is deleted by the client.
To avoid this while the user is browsing your site, you should set the cookie for every request, essentially resetting the expiration
time.

Cookies can be restricted to secure channels. This typically means that such a cookie will only be sent over HTTPS, and that it
will only be available by client-side scripts that run from HTTPS webpages.

Finally, cookies can be restricted to HTTP and HTTPS requests, essentially disabling their access from client-side scripts.

15.1 Setting cookies

By default, cookies you set are defined for the session.

SessionID = generate_session_id(),
Reg2 = cowboy_req:set_resp_cookie (<<"sessionid">>, SessionID, [], Req).

You can also make them expire at a specific point in the future.

SessionID = generate_session_id(),

Reg2 = cowboy_reqg:set_resp_cookie (<<"sessionid">>, SessionID, [
{max_age, 3600}

1, Req).

You can delete cookies that have already been set. The value is ignored.

Cowboy User Guide 41/78

Reg2 = cowboy_req:set_resp_cookie (<<"sessionid">>, <<>>, [
{max_age, 0}
1, Req).

You can restrict them to a specific domain and path. For example, the following cookie will be set for the domain my . example.
org and all its subdomains, but only on the path /account and all its subdirectories.

Reg2 = cowboy_reqg:set_resp_cookie (<<"inaccount">>, <<"1">>,6 [
{domain, "my.example.org"},
{path, "/account"}

1, Req).

You can restrict the cookie to secure channels, typically HTTPS.

SessionID = generate_session_id(),

Reg2 = cowboy_req:set_resp_cookie (<<"sessionid">>, SessionID, [
{secure, true}

1, Req).

You can restrict the cookie to client-server communication only. Such a cookie will not be available to client-side scripts.

SessionID = generate_session_id(),

Reg2 = cowboy_req:set_resp_cookie (<<"sessionid">>, SessionID, [
{http_only, true}

1, Req).

Cookies may also be set client-side, for example using Javascript.

15.2 Reading cookies

As we said, the client sends cookies with every request. But unlike the server, the client only sends the cookie name and value.

Cowboy provides two different ways to read cookies. You can either parse them as a list of key/value pairs, or match them into a
map, optionally applying constraints to the values or providing a default if they are missing.

You can parse the cookies and then use standard library functions to access individual values.
Cookies = cowboy_reqg:parse_cookies (Req),

{_, Lang} = lists:keyfind(<<"lang">>, 1, Cookies).

You can match the cookies into a map.

#{id := ID, lang := Lang} = cowboy_req:match_cookies ([id, lang], Req).

You can use constraints to validate the values while matching them. The following snippet will crash if the id cookie is not an
integer number or if the 1ang cookie is empty. Additionally the id cookie value will be converted to an integer term, saving
you a conversion step.

CookiesMap = cowboy_reqg:match_cookies ([{id, int}, {lang, nonempty}], Req).

Note that if two cookies share the same name, then the map value will be a list of the two cookie values.
Read more about constraints Chapter 8.

A default value can be provided. The default will be used if the 1ang cookie is not found. It will not be used if the cookie is
found but has an empty value.

#{lang := Lang} = cowboy_req:match_cookies ([{lang, [], <<"en-US">>}], Req).

If no default is provided and the value is missing, the query string is deemed invalid and the process will crash.

Cowboy User Guide 42 /78

Chapter 16

Multipart requests

Multipart originates from MIME, an Internet standard that extends the format of emails. Multipart messages are a container for
parts of any content-type.

For example, a multipart message may have a part containing text and a second part containing an image. This is what allows
you to attach files to emails.

In the context of HTTP, multipart is most often used with the multipart/form—-data content-type. This is the content-type
you have to use when you want browsers to be allowed to upload files through HTML forms.

Multipart is of course not required for uploading files, it is only required when you want to do so through HTML forms.
You can read and parse multipart messages using the Req object directly.

Cowboy defines two functions that allows you to get information about each part and read their contents.

16.1 Structure

A multipart message is a list of parts. Parts may contain either a multipart message or a non-multipart content-type. This allows
parts to be arranged in a tree structure, although this is a rare case as far as the Web is concerned.

16.2 Form-data

In the normal case, when a form is submitted, the browser will use the application/x-www—form—-urlencoded content-
type. This type is just a list of keys and values and is therefore not fit for uploading files.

That’s where the multipart/form-data content-type comes in. When the form is configured to use this content-type, the
browser will use one part of the message for each form field. This means that a file input field will be sent in its own part, but the
same applies to all other kinds of fields.

A form with a text input, a file input and a select choice box will result in a multipart message with three parts, one for each field.

The browser does its best to determine the content-type of the files it sends this way, but you should not rely on it for determining
the contents of the file. Proper investigation of the contents is recommended.

16.3 Checking the content-type

While there is a variety of multipart messages, the most common on the Web is multipart/form-data. It’s the type of
message being sent when an HTML form allows uploading files.

You can quickly figure out if a multipart message has been sent by parsing the content—type header.

{<<"multipart">>, <<"form-data">>, _}
= cowboy_reqg:parse_header (<<"content-type">>, Req).

Cowboy User Guide 43/78

16.4 Reading a multipart message

To read a message you have to iterate over all its parts. Then, for each part, you can inspect its headers and read its body.

multipart (Req) ->
case cowboy_reqg:part (Req) of
{ok, _Headers, Reqg2} —>
{ok, _Body, Reg3} = cowboy_reqg:part_body (Reg2),
multipart (Reg3) ;
{done, Reqg2} ->
Reg2
end.

Parts do not have a size limit. When a part body is too big, Cowboy will return what it read so far and allow you to continue if
you wish to do so.

The function cow_multipart:form_data/1 can be used to quickly obtain information about a part from amultipart/
form—data message. This function will tell you if the part is for a normal field or if it is a file being uploaded.

This can be used for example to allow large part bodies for files but crash when a normal field is too large.

multipart (Req) ->
case cowboy_reqg:part (Req) of
{ok, Headers, Reqg2} —->

Reg4 = case cow_multipart:form_data (Headers) of
{data, _FieldName} ->
{ok, _Body, Reg3} = cowboy_req:part_body (Reqg2),
Reqg3;

{file, _FieldName, _Filename, _CType, _CTransferEncoding} ->
stream_file (Reg2)
end,
multipart (Reqg4) ;
{done, Reqg2} ->
Reg2
end.

stream_file (Req) —>
case cowboy_reqg:part_body (Req) of
{ok, _Body, Reg2} —>
Reqg2;
{more, _Body, Reg2} —->
stream_file (Reg2)
end.

By default the body chunk Cowboy will return is limited to 8MB. This can of course be overriden. Both functions can take a
second argument, the same list of options that will be passed to cowboy_reqg:body/2 function.

16.5 Skipping unwanted parts

If you do not want to read a part’s body, you can skip it. Skipping is easy. If you do not call the function to read the part’s body,
Cowboy will automatically skip it when you request the next part.

The following snippet reads all part headers and skips all bodies:

multipart (Req) —>
case cowboy_reqg:part (Req) of
{ok, _Headers, Reqg2} ->
multipart (Reg2) ;
{done, Reqg2} —>
Reqg?2
end.

Cowboy User Guide 44 /78

Similarly, if you start reading the body and it ends up being too big, you can simply continue with the next part, Cowboy will
automatically skip what remains.

Note that the skipping rate may not be adequate for your application. If you observe poor performance when skipping, you might
want to consider manually skipping by calling the cowboy_req:part_body/1 function directly.

And if you started reading the message but decide that you do not need the remaining parts, you can simply stop reading entirely
and Cowboy will automatically figure out what to do.

Cowboy User Guide 45/78

Part V

REST

Cowboy User Guide 46 /78

Chapter 17

REST principles

This chapter will attempt to define the concepts behind REST and explain what makes a service RESTful.

REST is often confused with performing a distinct operation depending on the HTTP method, while using more than the GET
and POST methods. That’s highly misguided at best.

We will first attempt to define REST and will look at what it means in the context of HTTP and the Web. For a more in-depth
explanation of REST, you can read Roy T. Fielding’s dissertation as it does a great job explaining where it comes from and what
it achieves.

17.1 REST architecture

REST is a client-server architecture. The client and the server both have a different set of concerns. The server stores and/or
manipulates information and makes it available to the user in an efficient manner. The client takes that information and displays
it to the user and/or uses it to perform subsequent requests for information. This separation of concerns allows both the client
and the server to evolve independently as it only requires that the interface stays the same.

REST is stateless. That means the communication between the client and the server always contains all the information needed
to perform the request. There is no session state in the server, it is kept entirely on the client’s side. If access to a resource
requires authentication, then the client needs to authenticate itself with every request.

REST is cacheable. The client, the server and any intermediary components can all cache resources in order to improve perfor-
mance.

REST provides a uniform interface between components. This simplifies the architecture, as all components follow the same
rules to speak to one another. It also makes it easier to understand the interactions between the different components of the
system. A number of constraints are required to achieve this. They are covered in the rest of the chapter.

REST is a layered system. Individual components cannot see beyond the immediate layer with which they are interacting. This
means that a client connecting to an intermediate component, like a proxy, has no knowledge of what lies beyond. This allows
components to be independent and thus easily replaceable or extendable.

REST optionally provides code on demand. Code may be downloaded to extend client functionality. This is optional however
because the client may not be able to download or run this code, and so a REST component cannot rely on it being executed.

17.2 Resources and resource identifiers

A resource is an abstract concept. In a REST system, any information that can be named may be a resource. This includes
documents, images, a collection of resources and any other information. Any information that can be the target of an hypertext
link can be a resource.

A resource is a conceptual mapping to a set of entities. The set of entities evolves over time; a resource doesn’t. For example, a
resource can map to "users who have logged in this past month" and another to "all users". At some point in time they may map

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Cowboy User Guide 47 /78

to the same set of entities, because all users logged in this past month. But they are still different resources. Similarly, if nobody
logged in recently, then the first resource may map to the empty set. This resource exists regardless of the information it maps to.

Resources are identified by uniform resource identifiers, also known as URIs. Sometimes internationalized resource identifiers,
or IRIs, may also be used, but these can be directly translated into a URL.

In practice we will identify two kinds of resources. Individual resources map to a set of one element, for example "user Joe".
Collection of resources map to a set of O to N elements, for example "all users".

17.3 Resource representations

The representation of a resource is a sequence of bytes associated with metadata.

The metadata comes as a list of key-value pairs, where the name corresponds to a standard that defines the value’s structure and
semantics. With HTTP, the metadata comes in the form of request or response headers. The headers’ structure and semantics are
well defined in the HTTP standard. Metadata includes representation metadata, resource metadata and control data.

The representation metadata gives information about the representation, such as its media type, the date of last modification, or
even a checksum.

Resource metadata could be link to related resources or information about additional representations of the resource.

Control data allows parameterizing the request or response. For example, we may only want the representation returned if it
is more recent than the one we have in cache. Similarly, we may want to instruct the client about how it should cache the
representation. This isn’t restricted to caching. We may, for example, want to store a new representation of a resource only if it
wasn’t modified since we first retrieved it.

The data format of a representation is also known as the media type. Some media types are intended for direct rendering to the
user, while others are intended for automated processing. The media type is a key component of the REST architecture.

17.4 Self-descriptive messages

Messages must be self-descriptive. That means that the data format of a representation must always come with its media type
(and similarly requesting a resource involves choosing the media type of the representation returned). If you are sending HTML,
then you must say it is HTML by sending the media type with the representation. In HTTP this is done using the content-type
header.

The media type is often an IANA registered media type, like text /html or image/png, but does not need to be. Exactly two
things are important for respecting this constraint: that the media type is well specified, and that the sender and recipient agree
about what the media type refers to.

This means that you can create your own media types, like application/x-mine, and that as long as you write the specifi-
cations for it and that both endpoints agree about it then the constraint is respected.

17.5 Hypermedia as the engine of application state

The last constraint is generally where services that claim to be RESTful fail. Interactions with a server must be entirely driven
by hypermedia. The client does not need any prior knowledge of the service in order to use it, other than an entry point and of
course basic understanding of the media type of the representations, at the very least enough to find and identify hyperlinks and
link relations.

To give a simple example, if your service only works with the application/json media type then this constraint cannot be
respected (as there are no concept of links in JSON) and thus your service isn’t RESTful. This is the case for the majority of
self-proclaimed REST services.

On the other hand if you create a JSON based media type that has a concept of links and link relations, then your service might
be RESTful.

Respecting this constraint means that the entirety of the service becomes self-discoverable, not only the resources in it, but also
the operations you can perform on it. This makes clients very thin as there is no need to implement anything specific to the
service to operate on it.

Cowboy User Guide 48 /78

Chapter 18

REST handlers

REST is implemented in Cowboy as a sub protocol. The request is handled as a state machine with many optional callbacks
describing the resource and modifying the machine’s behavior.

The REST handler is the recommended way to handle HTTP requests.

18.1 Initialization

First, the init /2 callback is called. This callback is common to all handlers. To use REST for the current request, this function
must return a cowboy_rest tuple.

init (Req, _Opts) —>
{cowboy_rest, Req, f#state{}}.
Cowboy will then switch to the REST protocol and start executing the state machine.

After reaching the end of the flowchart, the terminate/3 callback will be called if it is defined.

18.2 Methods

The REST component has code for handling the following HTTP methods: HEAD, GET, POST, PATCH, PUT, DELETE and
OPTIONS.

Other methods can be accepted, however they have no specific callback defined for them at this time.

18.3 Callbacks

All callbacks are optional. Some may become mandatory depending on what other defined callbacks return. The various
flowcharts in the next chapter should be a useful to determine which callbacks you need.

All callbacks take two arguments, the Req object and the State, and return a three-element tuple of the form {Value, Req,
State}.

All callbacks can also return { stop, Reqg, State} to stop execution of the request.

The following table summarizes the callbacks and their default values. If the callback isn’t defined, then the default value will be
used. Please look at the flowcharts to find out the result of each return value.

In the following table, "skip" means the callback is entirely skipped if it is undefined, moving directly to the next step. Similarly,
"none" means there is no default value for this callback.

Cowboy User Guide

49/78

Callback name

Default value

allowed_methods

[<<"GET">>, <<"HEAD">>, <<"OPTIONS">>]

allow_missing_post true
charsets_provided skip
content_types_accepted none
content_types_provided [{{<<"text">>, <<"html">>, ’'«'},
to_html}]
delete_completed true
delete_resource false
expires undefined
forbidden false
generate_etag undefined
is_authorized true
is_conflict false

known_methods

[<<"GET">>, <<"HEAD">>, <<"POST">>,
<<"PUT">>, <<"PATCH">>, <<"DELETE">>,
<<"OPTIONS">>]

languages_provided skip
last_modified undefined
malformed_request false
moved_permanently false
moved_temporarily false
multiple_choices false
options ok
previously_existed false
resource_exists true
service_available true
uri_too_long false
valid_content_headers true
valid_entity_length true

variances

[]

As you can see, Cowboy tries to move on with the request whenever possible by using well thought out default values.

In addition to these, there can be any number of user-defined callbacks that are specified through content_types_accep
ted/2 and content_types_provided/2. They can take any name, however it is recommended to use a separate prefix
for the callbacks of each function. For example, from_html and to_html indicate in the first case that we’re accepting a
resource given as HTML, and in the second case that we send one as HTML.

18.4 Meta data

Cowboy will set informative meta values at various points of the execution. You can retrieve them using cowboy_reqg:meta/

{2, 3}. The values are defined in the following table.

Meta key Details

media_type The content-type negotiated for the response entity.
language The language negotiated for the response entity.
charset The charset negotiated for the response entity.

They can be used to send a proper body with the response to a request that used a method other than HEAD or GET.

Cowboy User Guide 50/78

18.5 Response headers

Cowboy will set response headers automatically over the execution of the REST code. They are listed in the following table.

Header name Details

content-language Language used in the response body

content-type Media type and charset of the response body

etag Etag of the resource

expires Expiration date of the resource

last-modified Last modification date for the resource

location Relative or absolute URI to the requested resource

vary List of headers that may change the representation of the
resource

Cowboy User Guide 51/78

Chapter 19

REST flowcharts

This chapter will explain the REST handler state machine through a number of different diagrams.

There are four main paths that requests may follow. One for the method OPTIONS; one for the methods GET and HEAD; one
for the methods PUT, POST and PATCH; and one for the method DELETE.

All paths start with the "Start" diagram, and all paths excluding the OPTIONS path go through the "Content negotiation" diagram
and optionally the "Conditional requests" diagram if the resource exists.

The red squares refer to another diagram. The light green squares indicate a response. Other squares may be either a callback or
a question answered by Cowboy itself. Green arrows tend to indicate the default behavior if the callback is undefined.

19.1 Start

All requests start from here.

Cowboy User Guide 52/78

false
(service_available :} h(503 service unavailable)
l true
\ unknown*
(known_methods) h(501 not implemented)
l known*
true
(uri_too_long J P(414 request URI too long)
l false
N\ unallowed*
(allowed_methods) »(405 method not allowed)
l allowed*
true
(malformed_request) Ib-(400 bad request)

l false
false*

(is_authorized

l true
true

P(401 unauthorized)

o’

. ™)
(forbidden > 403 forbidden)
l false
false
(valid_content_headers} P(501 not implemented)
l true
false
(valid_entity_length } b(413 request entity too large)

] o
D

Cowboy User Guide 53/78

A series of callbacks are called in succession to perform a general checkup of the service, the request line and request headers.

The request body, if any, is not expected to have been received for any of these steps. It is only processed at the end of the "PUT,
POST and PATCH methods" diagram, when all conditions have been met.

The known_methods and allowed_methods callbacks return a list of methods. Cowboy then checks if the request method
is in the list, and stops otherwise.

The is_authorized callback may be used to check that access to the resource is authorized. Authentication may also be
performed as needed. When authorization is denied, the return value from the callback must include a challenge applicable to
the requested resource, which will be sent back to the client in the www-authenticate header.

This diagram is immediately followed by either the "OPTIONS method" diagram when the request method is OPTIONS, or the
"Content negotiation" diagram otherwise.

19.2 OPTIONS method

This diagram only applies to OPTIONS requests.

options

200 OK

The opt ions callback may be used to add information about the resource, such as media types or languages provided; allowed
methods; any extra information. A response body may also be set, although clients should not be expected to read it.

If the opt ions callback is not defined, Cowboy will send a response containing the list of allowed methods by default.

19.3 Content negotiation

This diagram applies to all request methods other than OPTIONS. It is executed right after the "Start" diagram is completed.

Cowboy User Guide 54/78

has accept?

true

false content_types provided

l provided*

has accept-language?

l true
not provided*

false languages provided = 406 not acceptable

l provided*

has accept-charset?

| e

false charsets_provided

l provided*

Variances

:

The purpose of these steps is to determine an appropriate representation to be sent back to the client.

The request may contain any of the accept header; the accept-language header; or the accept-charset header. When present,
Cowboy will parse the headers and then call the corresponding callback to obtain the list of provided content-type, language or
charset for this resource. It then automatically select the best match based on the request.

If a callback is not defined, Cowboy will select the content-type, language or charset that the client prefers.

The content_types_provided also returns the name of a callback for every content-type it accepts. This callback will
only be called at the end of the "GET and HEAD methods" diagram, when all conditions have been met.

Cowboy User Guide 55/78

The selected content-type, language and charset are saved as meta values in the Req object. You should use the appropriate
representation if you set a response body manually (alongside an error code, for example).

This diagram is immediately followed by the "GET and HEAD methods" diagram, the "PUT, POST and PATCH methods"
diagram, or the "DELETE method" diagram, depending on the method.

19.4 GET and HEAD methods

This diagram only applies to GET and HEAD requests.

For a description of the cond step, please see the "Conditional requests" diagram.

Cowboy User Guide 56/78

(resource_exists

true false

(has if-match?

l true

(generate_etag) (412 precondition failed J false
(last_modified) (previously _existed
l l false
(expires) (404 not found) true
(ProvideResource) (moved_permanently
l l true*
multiple_choices) (301 moved permanentlyj false
false l
true | [200 OK) (moved_temporarily
l true*
300 multiple choices) (30? moved tempnrarilyj false

(410 gone

Cowboy User Guide 57/78

When the resource exists, and the conditional steps succeed, the resource can be retrieved.

Cowboy prepares the response by first retrieving metadata about the representation, then by calling the ProvideResource
callback. This is the callback you defined for each content-types you returned from content_types_provided. This
callback returns the body that will be sent back to the client, or a fun if the body must be streamed.

When the resource does not exist, Cowboy will figure out whether the resource existed previously, and if so whether it was moved
elsewhere in order to redirect the client to the new URI.

The moved_permanently and moved_temporarily callbacks must return the new location of the resource if it was in
fact moved.

19.5 PUT, POST and PATCH methods

This diagram only applies to PUT, POST and PATCH requests.

For a description of the cond step, please see the "Conditional requests" diagram.

Cowboy User Guide

58/78

(resource_exists

false

(has if-match?

true

[412 precondition failed) false

false | method is POST/PATCH?

true

previously_existed)

(method is POST?

true false true
v y
(allow_missing_post) (moved_permanently
true false true*
v y

404 not found [301 moved permanently) false

(

(moved_temporarily

true*
4

(307 moved temporarily) false

false
method is PUT? |4——— method is POST?
false true true
v 4
(is_conflict (allow_missing_post
true false false true
v v
409 conflict) (410 gone)

content_types_accepted

h 4 false

(AcceptResource H 400 bad request)

/:rue true, UF\I*\é

(new resource?) (new resource?
true true
true
(has resp location? J—b(201 created) false
false
false (303 see other)
A 4 true
(has resp body?)—b(multiple_choices
false false
v v
(204 no content) [200 OK) true

(300 multiple choices

Cowboy User Guide 59/78

When the resource exists, first the conditional steps are executed. When that succeeds, and the method is PUT, Cowboy will
call the is_conflict callback. This function can be used to prevent potential race conditions, by locking the resource for
example.

Then all three methods reach the content_types_accepted step that we will describe in a few paragraphs.

When the resource does not exist, and the method is PUT, Cowboy will check for conflicts and then move on to the content_
types_accepted step. For other methods, Cowboy will figure out whether the resource existed previously, and if so whether
it was moved elsewhere. If the resource is truly non-existent, the method is POST and the call for allow_missing_post
returns t rue, then Cowboy will move on to the content_types_accepted step. Otherwise the request processing ends
there.

The moved_permanently and moved_temporarily callbacks must return the new location of the resource if it was in
fact moved.

The content_types_accepted returns a list of content-types it accepts, but also the name of a callback for each of them.
Cowboy will select the appropriate callback for processing the request body and call it.

This callback may return one of three different return values.
If an error occurred while processing the request body, it must return £a 1 se and Cowboy will send an appropriate error response.

If the method is POST, then you may return t rue with an URI of where the resource has been created. This is especially useful
for writing handlers for collections.

Otherwise, return t rue to indicate success. Cowboy will select the appropriate response to be sent depending on whether a
resource has been created, rather than modified, and on the availability of a location header or a body in the response.

19.6 DELETE method

This diagram only applies to DELETE requests.

For a description of the cond step, please see the "Conditional requests" diagram.

Cowboy User Guide 60/78

(resource_exists

true false

(has if-match?

| e

delete_resource) (412 precondition failed J false
false l
true (EDD internal server errnr) (previously existed
l false
delete_completed) (404 not found J true
false l
true (202 accepted) (moved_permanently
l true*
has response body?) (301 moved permanently) false
false l
true (204 no content) (moved_temporarily
l true*
multiple_choices) (307 moved tempnrarily) false
false l
true | | 200 OK) (410 gone

(300 multiple choices)

Cowboy User Guide 61/78

When the resource exists, and the conditional steps succeed, the resource can be deleted.

Deleting the resource is a two steps process. First the callback delete_resource is executed. Use this callback to delete the
resource.

Because the resource may be cached, you must also delete all cached representations of this resource in the system. This operation
may take a while though, so you may return before it finished.

Cowboy will then call the delete_completed callback. If you know that the resource has been completely deleted from
your system, including from caches, then you can return t rue. If any doubts persist, return false. Cowboy will assume t rue
by default.

To finish, Cowboy checks if you set a response body, and depending on that, sends the appropriate response.

When the resource does not exist, Cowboy will figure out whether the resource existed previously, and if so whether it was moved
elsewhere in order to redirect the client to the new URIL

The moved_permanently and moved_temporarily callbacks must return the new location of the resource if it was in
fact moved.

19.7 Conditional requests

This diagram applies to all request methods other than OPTIONS. It is executed right after the resource_exists callback,
when the resource exists.

Cowboy User Guide 62/78

has if-match?)

l true

false (generate_etag

l match#*
)

has if-unmodiﬁed-since?) Oo)@
(¢
e

true

false, or (

e B .)
invalid last_modified » 412 precondition failed)

modified* A

l not modified*

has if-none-match?)

l true false

false (generate etag) »(method is GET/HEAD?)
match#*
l no match* true

has if-modified-since?)

) e

false, or (date is in the future?)

invalid
true l false
A 4
(last_modified h! generate_etag)
not modified*
l modified* l

() (expires)

I

(304 not modified |

Cowboy User Guide 63/78

A request becomes conditional when it includes either of the if-match header; the if-unmodified-since header; the if-none-match
header; or the if-modified-since header.

If the condition fails, the request ends immediately without any retrieval or modification of the resource.

The generate_etagand last_modified are called as needed. Cowboy will only call them once and then cache the results
for subsequent use.

Cowboy User Guide 64/78

Chapter 20

Designing a resource handler

This chapter aims to provide you with a list of questions you must answer in order to write a good resource handler. It is meant
to be usable as a step by step guide.

20.1 The service

Can the service become unavailable, and when it does, can we detect it? For example, database connectivity problems may be
detected early. We may also have planned outages of all or parts of the system. Implement the service_available callback.

What HTTP methods does the service implement? Do we need more than the standard OPTIONS, HEAD, GET, PUT, POST,
PATCH and DELETE? Are we not using one of those at all? Implement the known_methods callback.

20.2 Type of resource handler

Am I writing a handler for a collection of resources, or for a single resource?

The semantics for each of these are quite different. You should not mix collection and single resource in the same handler.

20.3 Collection handler

Skip this section if you are not doing a collection.

Is the collection hardcoded or dynamic? For example, if you use the route /users for the collection of users then the collection
is hardcoded; if you use /forums/:category for the collection of threads then it isn’t. When the collection is hardcoded
you can safely assume the resource always exists.

‘What methods should I implement?

OPTIONS is used to get some information about the collection. It is recommended to allow it even if you do not implement it,
as Cowboy has a default implementation built-in.

HEAD and GET are used to retrieve the collection. If you allow GET, also allow HEAD as there’s no extra work required to
make it work.

POST is used to create a new resource inside the collection. Creating a resource by using POST on the collection is useful when
resources may be created before knowing their URI, usually because parts of it are generated dynamically. A common case is
some kind of auto incremented integer identifier.

The next methods are more rarely allowed.

PUT is used to create a new collection (when the collection isn’t hardcoded), or replace the entire collection.

Cowboy User Guide 65/78

DELETE is used to delete the entire collection.

PATCH is used to modify the collection using instructions given in the request body. A PATCH operation is atomic. The PATCH
operation may be used for such things as reordering; adding, modifying or deleting parts of the collection.

20.4 Single resource handler

Skip this section if you are doing a collection.
What methods should I implement?

OPTIONS is used to get some information about the resource. It is recommended to allow it even if you do not implement it, as
Cowboy has a default implementation built-in.

HEAD and GET are used to retrieve the resource. If you allow GET, also allow HEAD as there’s no extra work required to make
it work.

POST is used to update the resource.
PUT is used to create a new resource (when it doesn’t already exist) or replace the resource.
DELETE is used to delete the resource.

PATCH is used to modify the resource using instructions given in the request body. A PATCH operation is atomic. The PATCH
operation may be used for adding, removing or modifying specific values in the resource.

20.5 The resource

Following the above discussion, implement the allowed_methods callback.
Does the resource always exist? If it may not, implement the resource_exists callback.

Do I need to authenticate the client before they can access the resource? What authentication mechanisms should I provide? This
may include form-based, token-based (in the URL or a cookie), HTTP basic, HTTP digest, SSL certificate or any other form of
authentication. Implement the i s_authorized callback.

Do I need fine-grained access control? How do I determine that they are authorized access? Handle that in your is_authori
zed callback.

Can access to a resource be forbidden regardless of access being authorized? A simple example of that is censorship of a resource.
Implement the forbidden callback.

Are there any constraints on the length of the resource URI? For example, the URI may be used as a key in storage and may have
a limit in length. Implement uri_too_long.

20.6 Representations

What media types do I provide? If text based, what charsets are provided? What languages do I provide?

Implement the mandatory content_types_provided. Prefix the callbacks with to_ for clarity. For example, to_html
or to_text.

Implement the languages_provided or charsets_provided callbacks if applicable.
Is there any other header that may make the representation of the resource vary? Implement the variances callback.

Depending on your choices for caching content, you may want to implement one or more of the generate_etag, last_mo
dified and expires callbacks.

Do I want the user or user agent to actively choose a representation available? Send a list of available representations in the
response body and implement the multiple_choices callback.

Cowboy User Guide 66/78

20.7 Redirections

Do I need to keep track of what resources were deleted? For example, you may have a mechanism where moving a resource
leaves a redirect link to its new location. Implement the previously_existed callback.

Was the resource moved, and is the move temporary? If it is explicitly temporary, for example due to maintenance, implement
the moved_temporarily callback. Otherwise, implement the moved_permanently callback.

20.8 The request

Do we need to perform extra checks to make sure the request is valid? Cowboy will do many checks when receiving the request
already, do we need more? Note that this only applies to the request-line and headers of the request, and not the body. Implement
malformed_request.

May there be a request body? Will I know its size? What’s the maximum size of the request body I'm willing to accept?
Implement valid_entity_length.

Finally, take a look at the sections corresponding to the methods you are implementing.

20.9 OPTIONS method

Cowboy by default will send back a list of allowed methods. Do I need to add more information to the response? Implement the
options method.

20.10 GET and HEAD methods

If you implement the methods GET and/or HEAD, you must implement one ProvideResource callback for each content-type
returned by the content_types_provided callback.

20.11 PUT, POST and PATCH methods

If you implement the methods PUT, POST and/or PATCH, you must implement the content_types_accepted callback,
and one AcceptResource callback for each content-type it returns. Prefix the AcceptResource callback names with
from__ for clarity. For example, from_html or from_Jjson.

Do we want to allow the POST method to create individual resources directly through their URI (like PUT)? Implement the
allow_missing_post callback. It is recommended to explicitly use PUT in these cases instead.

May there be conflicts when using PUT to create or replace a resource? Do we want to make sure that two updates around the
same time are not cancelling one another? Implement the i s_conflict callback.

20.12 DELETE methods

If you implement the method DELETE, you must implement the delete_resource callback.

When delete_resource returns, is the resource completely removed from the server, including from any caching service?
If not, and/or if the deletion is asynchronous and we have no way of knowing it has been completed yet, implement the delete
_completed callback.

Cowboy User Guide 67/78

Part VI

Websocket

Cowboy User Guide 68/78

Chapter 21

The Websocket protocol

This chapter explains what Websocket is and why it is a vital component of soft realtime Web applications.

21.1 Description

Websocket is an extension to HTTP that emulates plain TCP connections between the client, typically a Web browser, and the
server. It uses the HTTP Upgrade mechanism to establish the connection.

Websocket connections are asynchronous, unlike HTTP. This means that not only can the client send frames to the server at any
time, but the server can also send frames to the client without the client initiating anything other than the Websocket connection
itself. This allows the server to push data to the client directly.

Websocket is an IETF standard. Cowboy supports the standard and all drafts that were previously implemented by browsers,
excluding the initial flawed draft sometimes known as "version 0".

21.2 Implementation

Cowboy implements Websocket as a protocol upgrade. Once the upgrade is performed from the init /2 callback, Cowboy
switches to Websocket. Please consult the next chapter for more information on initiating and handling Websocket connections.

The implementation of Websocket in Cowboy is validated using the Autobahn test suite, which is an extensive suite of tests
covering all aspects of the protocol. Cowboy passes the suite with 100% success, including all optional tests.

Cowboy’s Websocket implementation also includes the x-webkit-deflate-frame compression draft which is being used by some
browsers to reduce the size of data being transmitted. Cowboy will automatically use compression as long as the compress
protocol option is set when starting the listener.

Cowboy User Guide 69/78

Chapter 22

Handling Websocket connections

A special handler is required for handling Websocket connections. Websocket handlers allow you to initialize the connection,
handle incoming frames from the socket, handle incoming Erlang messages and then clean up on termination.

Websocket handlers essentially act as a bridge between the client and the Erlang system. They will typically do little more than
socket communication and decoding/encoding of frames.

22.1 Initialization

First, the init /2 callback is called. This callback is common to all handlers. To establish a Websocket connection, this function
must return a ws tuple.

init (Req, _Opts) —->
{cowboy_websocket, Req, #state{}}.

Upon receiving this tuple, Cowboy will switch to the code that handles Websocket connections and perform the handshake
immediately.

If the sec-websocket-protocol header was sent with the request for establishing a Websocket connection, then the Websocket
handler must select one of these subprotocol and send it back to the client, otherwise the client might decide to close the
connection, assuming no correct subprotocol was found.

init (Req, _Opts) —>
case cowboy_reqg:parse_header (<<"sec-websocket-protocol">>, Req) of
undefined —>
{ok, Req, #state{}};
Subprotocols —>
case lists:keymember (<<"mychat2">>, 1, Subprotocols) of
true ->
Reg2 = cowboy_req:set_resp_header (<<"sec-websocket-protocol">>,
<<"mychat2">>, Req),
{ok, Reqg2, #state{}};
false —>
{stop, Reqg, undefined}
end
end.

It is not recommended to wait too long inside the init /2 function. Any extra initialization may be done after returning by
sending yourself a message before doing anything. Any message sent to self () from init /2 is guaranteed to arrive before
any frames from the client.

It is also very easy to ensure that this message arrives before any message from other processes by sending it before registering
or enabling timers.

Cowboy User Guide 70/78

init (Req, _Opts) —>
self () ! post_init,
%% Register process here...
{cowboy_websocket, Req, #state{}}.

websocket_info (post_init, Req, State) ->

o

% Perform post_init initialization here...
{ok, Req, State}.

22.2 Handling frames from the client

Cowboy will call websocket_handle/3 whenever a text, binary, ping or pong frame arrives from the client. Note that in the
case of ping and pong frames, no action is expected as Cowboy automatically replies to ping frames.

The handler can decide to send frames to the socket, stop or just continue without sending anything.
The following snippet echoes back any text frame received and ignores all others.

websocket_handle (Frame = {text, _}, Req, State) —->
{reply, Frame, Reqg, State};

websocket_handle (_Frame, Reqg, State) —>
{ok, Req, State}.

22.3 Handling Erlang messages

Cowboy will call websocket_info/3 whenever an Erlang message arrives.
The handler can decide to send frames to the socket, stop or just continue without sending anything.
The following snippet forwards any 1og message to the socket and ignores all others.

websocket_info({log, Text}, Req, State) ->
{reply, {text, Text}, Req, State};
websocket_info(_Info, Req, State) —->
{ok, Req, State}.

22.4 Sending frames to the socket

Cowboy allows sending either a single frame or a list of frames to the socket, in which case the frames are sent sequentially. Any
frame can be sent: text, binary, ping, pong or close frames.

The following example sends three frames using a single reply tuple.

websocket_info (hello_world, Req, State) —>
{reply, I
{text, "Hello"},
{text, <<"world!">>},
{binary, <<0:8000>>}
1, Req, State};
%% More websocket_info/3 clauses here...

Note that the payload for text and binary frames is of type 1odata (), meaning it can be eitherabinary () oran iolist ().

Sending a close frame will immediately initiate the closing of the Websocket connection. Be aware that any additional frames
sent by the client or any Erlang messages waiting to be received will not be processed. Also note that when replying a list of
frames that includes close, any frame found after the close frame will not be sent.

Cowboy User Guide 71/78

22.5 Ping and timeout

The biggest performance improvement you can do when dealing with a huge number of Websocket connections is to reduce the
number of timers that are started on the server. A common use of timers when dealing with connections is for sending a ping
every once in a while. This should be done exclusively on the client side. Indeed, a server handling one million Websocket
connections will perform a lot better when it doesn’t have to handle one million extra timers too!

Cowboy will automatically respond to ping frames sent by the client. It will still forward the frame to the handler for informative
purpose, but no further action is required.

Cowboy can be configured to automatically close the Websocket connection when no data arrives on the socket. It is highly
recommended to configure a timeout for it, as otherwise you may end up with zombie "half-connected" sockets that may leave
the process alive forever.

A good timeout value is 60 seconds.
init (Req, _Opts) —>

{cowboy_websocket, Reqg, #state{}, 60000}.

This value cannot be changed once it is set. It defaults to infinity.

22.6 Hibernate

Most tuples returned from handler callbacks can include an extra value hibernate. After doing any necessary operations
following the return of the callback, Cowboy will hibernate the process.

It is highly recommended to hibernate processes that do not handle much traffic. It is a good idea to hibernate all connections by
default and investigate only when you start noticing increased CPU usage.

22.7 Supporting older browsers

Unfortunately Websocket is a relatively recent technology, which means that not all browsers support it. A library like Bullet can
be used to emulate Websocket connections on older browsers.

https://github.com/ninenines/bullet

Cowboy User Guide 72178

Part VII

Internals

Cowboy User Guide 73/78

Chapter 23

Architecture

Cowboy is a lightweight HTTP server.

It is built on top of Ranch. Please see the Ranch guide for more information.

23.1 One process per connection

It uses only one process per connection. The process where your code runs is the process controlling the socket. Using one
process instead of two allows for lower memory usage.

Because there can be more than one request per connection with the keepalive feature of HTTP/1.1, that means the same process
will be used to handle many requests.

Because of this, you are expected to make sure your process cleans up before terminating the handling of the current request.
This may include cleaning up the process dictionary, timers, monitoring and more.

23.2 Binaries

It uses binaries. Binaries are more efficient than lists for representing strings because they take less memory space. Processing
performance can vary depending on the operation. Binaries are known for generally getting a great boost if the code is compiled
natively. Please see the HiPE documentation for more details.

23.3 Date header

Because querying for the current date and time can be expensive, Cowboy generates one Dat e header value every second, shares
it to all other processes, which then simply copy it in the response. This allows compliance with HTTP/1.1 with no actual
performance loss.

23.4 Max connections

By default the maximum number of active connections is set to a generally accepted big enough number. This is meant to prevent
having too many processes performing potentially heavy work and slowing everything else down, or taking up all the memory.

Disabling this feature, by setting the {max_connections, infinity} protocol option, would give you greater perfor-
mance when you are only processing short-lived requests.

Cowboy User Guide 74/78

Chapter 24

Dealing with broken clients

There exists a very large number of implementations for the HTTP protocol. Most widely used clients, like browsers, follow the
standard quite well, but others may not. In particular custom enterprise clients tend to be very badly written.

Cowboy tries to follow the standard as much as possible, but is not trying to handle every possible special cases. Instead Cowboy
focuses on the cases reported in the wild, on the public Web.

That means clients that ignore the HTTP standard completely may fail to understand Cowboy’s responses. There are of course
workarounds. This chapter aims to cover them.

24.1 Lowercase headers

Cowboy converts all headers it receives to lowercase, and similarly sends back headers all in lowercase. Some broken HTTP
clients have issues with that.

A simple way to solve this is to create an onresponse hook that will format the header names with the expected case.

capitalize_hook (Status, Headers, Body, Req) ->
Headers2 = [{cowboy_lbstr:capitalize_token(N), V}
|| {N, V} <- Headers],
cowboy_req:reply (Status, Headers2, Body, Req).

Note that SPDY clients do not have that particular issue because the specification explicitly says all headers are lowercase, unlike
HTTP which allows any case but treats them as case insensitive.

24.2 Camel-case headers

Sometimes it is desirable to keep the actual case used by clients, for example when acting as a proxy between two broken
implementations. There is no easy solution for this other than forking the project and editing the cowboy_protocol file
directly.

24.3 Chunked transfer-encoding

Sometimes an HTTP client advertises itself as HTTP/1.1 but does not support chunked transfer-encoding. This is invalid behavior,
as HTTP/1.1 clients are required to support it.

A simple workaround exists in these cases. By changing the Req object response state to waiting_stream, Cowboy will
understand that it must use the identity transfer-encoding when replying, just like if it was an HTTP/1.0 client.

Reg2 = cowboy_req:set (resp_state, waiting_stream).

Cowboy User Guide 75/78

Chapter 25

Middlewares

Cowboy delegates the request processing to middleware components. By default, two middlewares are defined, for the routing
and handling of the request, as is detailed in most of this guide.

Middlewares give you complete control over how requests are to be processed. You can add your own middlewares to the mix or
completely change the chain of middlewares as needed.

Cowboy will execute all middlewares in the given order, unless one of them decides to stop processing.

25.1 Usage

Middlewares only need to implement a single callback: execute/2. Itis defined in the cowboy_middleware behavior.
This callback has two arguments. The first is the Req object. The second is the environment.

Middlewares can return one of three different values:
* {ok, Req, Env} to continue the request processing
e {suspend, Module, Function, Args} to hibernate

* {stop, Req} to stop processing and move on to the next request
Of note is that when hibernating, processing will resume on the given MFA, discarding all previous stacktrace. Make sure you
keep the Reqg and Env in the arguments of this MFA for later use.

If an error happens during middleware processing, Cowboy will not try to send an error back to the socket, the process will just
crash. It is up to the middleware to make sure that a reply is sent if something goes wrong.

25.2 Configuration

The middleware environment is defined as the env protocol option. In the previous chapters we saw it briefly when we needed
to pass the routing information. It is a list of tuples with the first element being an atom and the second any Erlang term.

Two values in the environment are reserved:

e listener contains the name of the listener

* result contains the result of the processing

The 1istener value is always defined. The result value can be set by any middleware. If set to anything other than ok,
Cowboy will not process any subsequent requests on this connection.

The middlewares that come with Cowboy may define or require other environment values to perform.

You can update the environment by calling the cowboy : set_env/3 convenience function, adding or replacing a value in the
environment.

Cowboy User Guide 76/78

25.3 Routing middleware

The routing middleware requires the dispatch value. If routing succeeds, it will put the handler name and options in the
handler and handler_opts values of the environment, respectively.

25.4 Handler middleware

The handler middleware requires the handler and handler_opts values. It puts the result of the request handling into
result.

Cowboy User Guide 77178

Chapter 26

Sub protocols

Sub protocols are used for creating new types of handlers that provide extra functionality in a reusable way. Cowboy uses this
mechanism to provide its loop, REST and Websocket handlers.

This chapter will explain how to create your own sub protocols and handler types.

26.1 Usage

To switch to a sub protocol, the init /2 callback must return the name of the sub protocol module. Everything past this point is
handled by the sub protocol.

init (Req, _Opts) —->
{cowboy_websocket, Req, #state{}}.

The return value may also have a Timeout value and/or the atom hibernate. These options are useful for long living
connections. When they are not provided, the timeout value defaults to infinity and the hibernate value to run.

The following snippet switches to the my_protocol sub protocol, sets the timeout value to 5 seconds and enables hibernation:
init (Req, _Opts) —>

{my_protocol, Req, f#state{}, 5000, hibernate}.

If a sub protocol does not make use of these options, it should crash if it receives anything other than the default values.

26.2 Upgrade

After the init /2 function returns, Cowboy will then call the upgrade/ 6 function. This is the only callback defined by the
cowboy_sub_protocol behavior.

The function is named upgrade because it mimics the mechanism of HTTP protocol upgrades. For some sub protocols, like
Websocket, an actual upgrade is performed. For others, like REST, this is only an upgrade at Cowboy’s level and the client has
nothing to do about it.

The upgrade callback receives the Req object, the middleware environment, the handler and its options, and the aforementioned
timeout and hibernate values.

upgrade (Req, Env, Handler, HandlerOpts, Timeout, Hibernate) ->

)

%% Sub protocol code here.

This callback is expected to behave like a middleware and to return an updated environment and Req object.

Sub protocols are expected to call the cowboy_handler:terminate/4 function when they terminate. This function will
make sure that the optional terminate/ 3 callback is called, if present.

Cowboy User Guide 78/78

Chapter 27

Hooks

Hooks allow the user to customize Cowboy’s behavior during specific operations.

27.1 Onresponse

The onresponse hook is called right before sending the response to the socket. It can be used for the purposes of logging
responses, or for modifying the response headers or body. The best example is providing custom error pages.

Note that this function MUST NOT crash. Cowboy may or may not send a reply if this function crashes. If a reply is sent, the
hook MUST explicitly provide all headers that are needed.

You can specify the onresponse hook when creating the listener.

cowboy:start_http (my_http_listener, 100,
[{port, 8080}],
[
{env, [{dispatch, Dispatch}]},
{onresponse, fun ?MODULE:custom_404_hook/4}

The following hook function will provide a custom body for 404 errors when it has not been provided before, and will let Cowboy
proceed with the default response otherwise.

custom_404_hook (404, Headers, <<>>, Req) -—>
Body = <<"404 Not Found.">>,
Headers2 = lists:keyreplace (<<"content-length">>, 1, Headers,
{<<"content-length">>, integer_to_list (byte_size(Body))}),
cowboy_req:reply (404, Headers2, Body, Req);
custom_404_hook(_, _, _, Req) —>
Req.

Again, make sure to always return the last request object obtained.

	I Rationale
	The modern Web
	The prehistoric Web
	HTTP/1.1
	REST
	XmlHttpRequest
	Long-polling
	HTML5
	EventSource
	Websocket
	SPDY
	HTTP/2.0

	Erlang and the Web
	The Web is concurrent
	The Web is soft real time
	The Web is asynchronous
	The Web is omnipresent
	Erlang is the ideal platform for the Web

	II Introduction
	Introduction
	Prerequisites
	Supported platforms
	Versioning
	Conventions

	Getting started
	Bootstrap
	Cowboy setup
	Listening for connections
	Handling requests

	Request overview
	Request/response
	And then?
	Keep-alive (HTTP/1.1)
	Pipelining (HTTP/1.1)
	Asynchronous requests (SPDY)

	Erlang for beginners
	Learn You Some Erlang for Great Good!
	Programming Erlang

	III Configuration
	Routing
	Structure
	Match syntax
	Constraints
	Compilation
	Live update

	Constraints
	Structure
	Built-in constraints
	Custom constraint

	Static files
	Serve one file
	Serve all files from a directory
	Customize the mimetype detection
	Generate an etag

	IV Request and response
	Handlers
	Plain HTTP handlers
	Other handlers
	Cleaning up

	Loop handlers
	Initialization
	Receive loop
	Streaming loop
	Cleaning up

	Timeout
	Hibernate

	The Req object
	A special variable
	Overview of the cowboy_req interface
	Request
	Bindings
	Query string
	Request URL
	Headers
	Meta
	Peer

	Reading the request body
	Check for request body
	Request body length
	Reading the body
	Streaming the body
	Rate of data transmission
	Transfer and content decoding
	Reading a form urlencoded body

	Sending a response
	Reply
	Chunked reply
	Preset response headers
	Preset response body
	Sending files

	Using cookies
	Setting cookies
	Reading cookies

	Multipart requests
	Structure
	Form-data
	Checking the content-type
	Reading a multipart message
	Skipping unwanted parts

	V REST
	REST principles
	REST architecture
	Resources and resource identifiers
	Resource representations
	Self-descriptive messages
	Hypermedia as the engine of application state

	REST handlers
	Initialization
	Methods
	Callbacks
	Meta data
	Response headers

	REST flowcharts
	Start
	OPTIONS method
	Content negotiation
	GET and HEAD methods
	PUT, POST and PATCH methods
	DELETE method
	Conditional requests

	Designing a resource handler
	The service
	Type of resource handler
	Collection handler
	Single resource handler
	The resource
	Representations
	Redirections
	The request
	OPTIONS method
	GET and HEAD methods
	PUT, POST and PATCH methods
	DELETE methods

	VI Websocket
	The Websocket protocol
	Description
	Implementation

	Handling Websocket connections
	Initialization
	Handling frames from the client
	Handling Erlang messages
	Sending frames to the socket
	Ping and timeout
	Hibernate
	Supporting older browsers

	VII Internals
	Architecture
	One process per connection
	Binaries
	Date header
	Max connections

	Dealing with broken clients
	Lowercase headers
	Camel-case headers
	Chunked transfer-encoding

	Middlewares
	Usage
	Configuration
	Routing middleware
	Handler middleware

	Sub protocols
	Usage
	Upgrade

	Hooks
	Onresponse

