GNU Octave

A high-level interactive language for numerical computations
Edition 5 for Octave version 5.1.0
February 2019

Free Your Numbers

John W. Eaton
David Bateman
Sgren Hauberg
Rik Wehbring

Copyright (© 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2011, 2013, 2015, 2016,
2017, 2018 John W. Eaton.

This is the fifth edition of the Octave documentation, and is consistent with version 5.1.0
of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface 1
Acknowledgements 1
Citing Octave in Publications. e 5)
How You Can Contribute to Octave........ ... 6
Distribution 6

1 A Brief Introduction to Octave............................ 7
1.1 Running OCEavet e 7
1.2 Simple Examples 7

1.2.1 Elementary Calculations.......... ... 7
1.2.2 Creating a Matrixooi i e e 8
1.2.3 Matrix Arithmetic. ... 8
1.2.4 Solving Systems of Linear Equations.............ot 8
1.2.5 Integrating Differential Equations........... ... o it 9
1.2.6 Producing Graphical Output ... 10
1.2.7 Help and Documentationoiiiiiiiniiiiiii e 10
1.2.8 Editing What You Have Typedo 10
1.3 COnVENTIONS .« o ottt ettt et e e e e e 11
13,1 FOmtS. .o 11
1.3.2 Evaluation Notation......... ..o i 11
1.3.3 Printing Notationcoooii i e e 11
1.3.4 ErTor MeSSages . .« oo vttt ettt e 12
1.3.5 Format of Descriptionsouuiiiii e 12
1.3.5.1 A Sample Function Descriptiono i 12
1.3.5.2 A Sample Command Description..............ooiiiiiiiiiiaie .. 13

2 Getting Started.............. ... 15

2.1 Invoking Octave from the Command Line.............. o .. 15
2.1.1 Command Line Optionsuutiii i 15
2.1.2 Startup Files 18

2.2 Quitting OCtavet e 19

2.3 Commands for Getting Help..... ... i 20

2.4 Command Line Editing.........o i 25
2.4.1 Cursor Motion. . .o .v et e 25
2.4.2 Killing and Yanking 26
2.4.3 Commands for Changing Text, 27
2.4.4 Letting Readline Type for You......... .o, 27
2.4.5 Commands for Manipulating the History............ 28
2.4.6 Customizing readline.c.uuutiiintin i 32
2.4.7 Customizing the Prompt....... ... o i 32
2.4.8 Diary and Echo Commands.o, 34

2.5 How Octave Reports Errors e 35

ii

GNU Octave (version 5.1.0)

2.6 Executable Octave Programsot 36
2.7 Comments in Octave Programs......... 37
2.7.1 Single Line Commentsottt 37
2.7.2 Block Comments e 37
2.7.3 Comments and the Help System it 38
Data Types. ... 39
3.1 Built-in Data Types. ... e 39
3.1.1 Numeric ObjJects ... o.. oo 42
3.1.2 Missing Data. ... 43
3.1.3 String ObJects. .o eu it 43
3.1.4 Data Structure ObjJects. 43
3.1.5 Cell Array ODJectS .. vvvt ettt e e 44
3.2 User-defined Data Typesouuii e 44
3.3 ODbJECt SIZES. o ottt e 44
Numeric Data Types............cooiiiiiiiiii .. 47
A1 MaATICES . v vttt e 48
4.1.1 Empty Matriceso e o1
4.2 RAIZES . ettt 52
4.3 Single Precision Data Typeso 53
4.4 Tnteger Data Types. e 54
4.4.1 Integer Arithmetic. e 57
4.5 Bit Manipulations. e 58
4.6 Logical Values. e 60
4.7 Promotion and Demotion of Data Types.........c..coiiiiiiiiiiiii .. 62
4.8 Predicates for Numeric Objects. i 62
SErings. 67
5.1 Escape Sequences in String Constants, 67
5.2 Character ATTaYS. ...ttt ettt et ettt e e 68
5.3 Creating Strings.ottt e 70
5.3.1 Concatenating Stringsouuuiiitiiin i 70
5.3.2 Converting Numerical Data to Strings, 73
5.4 Comparing StIINgS .« .« ov vttt e 76
5.5 Manipulating Strings e 7
5.6 String CONVEISIONSttt ettt ettt et e 92
5.7 Character Class Functions........... ..o i 98
Data Containers..........., 101
6.1 STUCTUTES . o o ettt et e e e e 101
6.1.1 Basic Usage and Examplesooo i 101
6.1.2 SEructure ATTAYSottt e e 105
6.1.3 Creating Structuresot e 106
6.1.4 Manipulating Structures........... . .. i 109

6.1.5 Processing Data in Structurest 113

6.2 containers. VAttt e 114
6.3 Cell ATTayS .ottt 114
6.3.1 Basic Usage of Cell Arrays.o, 114
6.3.2 Creating Cell ATTayst e 116
6.3.3 Indexing Cell Arrayst e 120
6.3.4 Cell Arrays of Stringsovniin i 123
6.3.5 Processing Data in Cell Arrays ..., 124
6.4 Comma Separated Lists 124
6.4.1 Comma Separated Lists Generated from Cell Arrays.................... 125
6.4.2 Comma Separated Lists Generated from Structure Arrays............... 126

7 Variables......... 127
7.1 Global Variables 129
7.2 Persistent Variables i 130
7.3 Status of Variables 132
8 EXPressions..............coiiiiiiiiiii 139
8.1 Index EXPressionst 139
8.1.1 Advanced Indexingt 141
8.2 Calling Functionsottt 145
8.2.1 Call by Valueo 146
8.2.2 RECUISION . .ottt 147
8.2.3 Accessvia Handle....... ... 148
8.3 Arithmetic Operatorsot e 149
8.4 Comparison OPeratorsttt 152
8.5 Boolean EXpPressions. 153
8.5.1 Element-by-element Boolean Operators.............. ..., 153
8.5.2 Short-circuit Boolean Operators 155
8.6 Assignment EXpressionsttt 156
8.7 Increment OPerators 159
8.8 Operator Precedenceot 159
9 Evaluation.............. 161
9.1 Calling a Function by its Name........ ... oo i i 162
9.2 Evaluation in a Different Context............ ... 163
10 Statements 165
10.1 The if Statement e 165
10.2 The switch Statement i 167
10.2.1 Notes for the C Programmer ..., 168
10.3 The while Statement 169
10.4 The do-until Statement 170
10.5 The for Statement 170
10.5.1 Looping Over Structure Elements.......... i i, 171
10.6 The break Statement.......... ... 172

10.7 The continue Statementttt e 173

iv GNU Octave (version 5.1.0)
10.8 The unwind_protect Statement........... 174
10.9 The try Statementt e 174
10.10 Continuation Lines.ooi i e 175

11 Functions and Scripts.................... 177
11.1 Introduction to Function and Script Files........... oL, 177
11.2 Defining Functions e 177
11.3 Multiple Return Values ... 180
11.4 Variable-length Argument Lists i i 188
11.5 Ignoring Arguments.ouu ittt e 190
11.6 Variable-length Return Lists i i 191
11.7 Returning from a Function........ i 192
11.8 Default Arguments.t e 193
11.9 Function Files. 193

11.9.1 Manipulating the Load Path......... i 196
11.9.2 Subfunctions......... .. 199
11.9.3 Private Functions i i 200
11.9.4 Nested Functions. ... e 200
11.9.5 Overloading and Autoloading.......... ..., 202
11.9.6 Function Locking. ... i 204
11.9.7 Function Precedenceo i 205
11.10 Seript Files ..o 205
11.10.1 Publish Octave Script Files........ ..o 207
11.10.2 Publishing Markup....... ... i 209
11.10.2.1 Using Publishing Markup in Script Files................... 209
11.10.2.2 Text Formatting ... 210
11.10.2.3 SeCtiONS . . oo vttt e 210
11.10.2.4 Preformatted Code....... ..o 211
11.10.2.5 Preformatted Text 211
11.10.2.6 Bulleted Listso 212
11.10.2.7 Numbered Lists 212
11.10.2.8 Including File Content o i, 212
11.10.2.9 Including Graphics............oiiiiiii i 212
11.10.2.10 Including URLSot e 213
11.10.2.11 Mathematical Equationso i, 213
11.10.2.12 HTML Markupoov e 213
11.10.2.13 LaTeX Markupooveiiii e 214

11.11 Function Handles, Anonymous Functions, Inline Functions................. 214
11.11.1 Function Handles 214
11.11.2 Anonymous Functions. 215
11.11.3 Inline Functions. e 216
1112 Commandso.u ettt e e e 217

11.13 Organization of Functions Distributed with Octave 218

12 Errors and Warnings 221
12.1 Handling Errors. 221
12.1.1 Raising Errorsot e 221
12.1.2 Catching Errors. 224
12.1.3 Recovering From Errors........ ... o i i 227
12.2 Handling Warnings. e 227
12.2.1 Issuing Warningsouu ettt 228
12.2.2 Enabling and Disabling Warnings............... ... o i, 235
13 Debugging 237
13.1 Entering Debug Mode. ... 237
13.2 Leaving Debug Mode. e 238
13.3 Breakpoints.ot e 238
13.4 Debug Mode. e 242
13.5 Call Stack ... e 243
13.6 Profiling 244
13.7 Profiler Example. 246
14 Input and Output........ 251
14.1 Basic Input and Output........ ..o 251
14.1.1 Terminal OQutpubt 251
14.1.1.1 Paging Screen Outputouoiiiiiiii e 254
14.1.2 Terminal Input....... ..o e 256
14.1.3 Simple File I/Oo 258
14.1.3.1 Saving Data on Unexpected Exits....... ... 271

14.2 C-Style I/O Functions. 273
14.2.1 Opening and Closing Files.......... .o 273
14.2.2 Simple OUutput . ..o e 275
14.2.3 Line-Oriented Input..........c i e 276
14.2.4 Formatted Outpub . ..o e 277
14.2.5 Output Conversion for Matrices, 279
14.2.6 Output Conversion Syntaxoeiiuiiiiiiiiii e, 279
14.2.7 Table of Output COnVErSiOnSouutrerie i iiie .. 280
14.2.8 Integer CONVErSIONSuutn ettt 281
14.2.9 Floating-Point Conversionscouuuiiiiiiiiiiiiiinenineann.. 282
14.2.10 Other Output Conversionsouuuiiiiiieeniienniieannn. 282
14.2.11 Formatted Input ... 283
14.2.12 Input Conversion SYNTAXottt 284
14.2.13 Table of Input Conversionsouuuieeiiriteeniieenneannn. 285
14.2.14 Numeric Input Conversions.o.eeiiiiiiiiiiieiiiinannn.. 286
14.2.15 String Input Conversionseeuutteaiie i 286
14.2.16 Binary I/O ..o 286
14.2.17 Temporary Files ... 289
14.2.18 End of File and Errorso 290
14.2.19 File Positioning 292

vi GNU Octave (version 5.1.0)

15 Plotting.o 295
15.1 Introduction to Plotting........ ... o i 295
15.2 High-Level Plotting e e 295

15.2.1 Two-Dimensional Plots....... o i i 295
15.2.1.1 Axis Configuration ... 323
15.2.1.2 Two-dimensional Function Plotting............ 327
15.2.1.3 Two-dimensional Geometric Shapes.............., 331

15.2.2 Three-Dimensional Plots o i i 331
15.2.2.1 Aspect Ratio...... .o 358
15.2.2.2 Three-dimensional Function Plotting..........., 359
15.2.2.3 Three-dimensional Geometric Shapes 362

15.2.3 Plot Annotations.t 363

15.2.4 Multiple Plots on One Page oo i i, 371

15.2.5 Multiple Plot Windows. ... e 372

15.2.6 Manipulation of Plot Objects. ... 372

15.2.7 Manipulation of Plot Windows i, 374

15.2.8 Use of the interpreter Property, 378
15.2.8.1 Degree Symbol 381

15.2.9 Printing and Saving Plotso 381

15.2.10 Interacting with Plots....... ... o 392

15.2.11 Test Plotting Functions i 392

15.3 Graphics Data Structures ... 393

15.3.1 Introduction to Graphics Structures............... ..., 393

15.3.2 Graphics ObJects. ...t 395
15.3.2.1 Creating Graphics Objects., 395
15.3.2.2 Handle Functions............ . i 399

15.3.3 Graphics Object Properties.......... .o 405
15.3.3.1 Root Figure Properties........... ... 405
15.3.3.2 Figure Properties....... ..o 407
15.3.3.3 Axes Properties ... 412
15.3.3.4 Line Properties. 419
15.3.3.5 Text Properties.ot e 422
15.3.3.6 Image Properties. ... 425
15.3.3.7 Patch Propertieso 427
15.3.3.8 Surface Properties......... ..o 430
15.3.3.9 Light Properties. 434
15.3.3.10 Uimenu Propertiescoooiiiiiiiiiiiiii i, 436
15.3.3.11 Uibuttongroup Properties, 437
15.3.3.12 Uicontextmenu Properties............ ..., 440
15.3.3.13 Uipanel Properties ... 441
15.3.3.14 Uicontrol Properties.o 444
15.3.3.15 Uitable Properties. ... 446
15.3.3.16 Uitoolbar Properties. ... 449
15.3.3.17 Uipushtool Properties ..., 450
15.3.3.18 Uitoggletool Properties........... ... 452

15.3.4 Searching Propertieso 453

15.3.5 Managing Default Properties........... ... i 455

15.4 Advanced Plottingo e 456

1541 COlOTS .ottt 456
15.4.2 Line SEyles . ..o 456
15.4.3 Marker Styles 457
15.4.4 Callbackso 457
15.4.5 Application-defined Data......... ... i 459
15.4.6 ODJECt GIOUDPS « « v vttt ettt e et ettt et e 460
15.4.6.1 Data Sources in Object Groups...........coouiiiiiiiiinene.n. 465
15.4.6.2 Area Series.t 465
15.4.6.3 Bar Series.coiuuiiii 466
15.4.6.4 Contour GIrOUPSvtt et 467
15.4.6.5 Error Bar Series.........ooiiiiii 468
15.4.6.6 LAne Seriesottt 468
15.4.6.7 QUIVET GIOUD -« ettt ettt et et 469
15.4.6.8 Scatter GroUpuutii e e 470
15.4.6.9 Stair GrOUDttt e 470
15.4.6.10 Stem Seriesoiiinitt et e 471
15.4.6.11 Surface Group.oouu ittt e 472
15.4.7 Transform GroupS.ottt 472
15.4.8 Graphics ToolKits ... 473
15.4.8.1 Customizing Toolkit Behavior 473
15.4.8.2 Hardware vs. Software Rendering........... 474

16 Matrix Manipulation 475
16.1 Finding Elements and Checking Conditions.......... ... 475
16.2 Rearranging Matricesooouiiiiii i e 479
16.3 Special Utility Matricest e 489
16.4 Famous Matrices.o e e 500
17 Arithmetic....... 509
17.1 Exponents and Logarithms.......... 509
17.2 Complex Arithmetic e 511
17.3 TrigONOMEITY . o oottt e 512
17.4 Sums and Products ... 516
17.5 Utility Functions. e e 518
17.6 Special FUnctionst 526
17.7 Rational Approximations.oiuioii e 538
17.8 Coordinate Transformations., 539
17.9 Mathematical Constantso e 540
18 Linear Algebra......... i 545
18.1 Techniques Used for Linear Algebra 545
18.2 Basic Matrix Functions...... ... i 545
18.3 Matrix Factorizations ... 555
18.4 Functions of a Matrix e 568
18.5 Specialized SOIVErs 570

viii GNU Octave (version 5.1.0)

19 Vectorization and Faster Code Execution............. 583
19.1 Basic Vectorization.o e 583
19.2 Broadcasting.t 585

19.2.1 Broadcasting and Legacy Code ..., 588
19.3 Function Application. 588
19.4 Accumulationt e 593
19.5 JIT Compiler e 595
19.6 Miscellaneous Techniques.oou i e 596
19.7 EXAINPIES . 598

20 Nonlinear Equations...........................oo.... 599
20,1 SOIVETS . . ottt 599
20.2 MINIMIZETS. . . oottt e 603

21 Diagonal and Permutation Matrices................... 609
21.1 Creating and Manipulating Diagonal /Permutation Matrices................. 609

21.1.1 Creating Diagonal Matrices., 610

21.1.2 Creating Permutation Matrices........... .o .. 610

21.1.3 Explicit and Implicit Conversions.ooiiiiiiiieeeennnaannn. 611
21.2 Linear Algebra with Diagonal/Permutation Matrices........................ 612

21.2.1 Expressions Involving Diagonal Matrices....................oo it 612

21.2.2 Expressions Involving Permutation Matrices 613
21.3 Functions That Are Aware of These Matrices.............. ..., 614

21.3.1 Diagonal Matrix Functions i i 614

21.3.2 Permutation Matrix Functions........... i 614
21.4 Examples of USaget 614
21.5 Differences in Treatment of Zero Elements............., 615

22 Sparse Matrices...................... L. 617

22.1 Creation and Manipulation of Sparse Matrices................ 617
22.1.1 Storage of Sparse MatriCesc.ovuriirtii e 617
22.1.2 Creating Sparse Matricest 618
22.1.3 Finding Information about Sparse Matrices............................ 624
22.1.4 Basic Operators and Functions on Sparse Matrices..................... 627

22.1.4.1 Sparse Functionso e 628
22.1.4.2 Return Types of Operators and Functions 628
22.1.4.3 Mathematical Considerations...............ccooiiiiiiiiiiie... 630

22.2 Linear Algebra on Sparse Matricesoouiiiiiit i 638

22.3 TIterative Techniques Applied to Sparse Matricescoviia... 647

22.4 Real Life Example using Sparse Matrices, 655

23 Numerical Integration.................................. 659
23.1 Functions of One Variable....... 659
23.2 Orthogonal Collocationt 668

23.3 Functions of Multiple Variables.......... ... i 669

24 Differential Equations 677
24.1 Ordinary Differential Equations i i 677
24.1.1 Matlab-compatible SOlvers......... ... 679

24.2 Differential-Algebraic Equations............ ... i 688
25 Optimization i, 697
25.1 Linear Programmingoouuiiiiiiii i 697
25.2 Quadratic Programming....... ... e 703
25.3 Nonlinear Programming.......... ...t 705
25.4 Linear Least SQUATeSttt e 707
26 Statistics............... . 711
26.1 Descriptive Statistics.o 711
26.2 Statistics on Sliding Windows of Data.............oooiiiiii ... 719
26.3 Basic Statistical Functions 736
26.4 Correlation and Regression Analysis......... ..., 739
26.5 Distributions.ttt e 741
26.6 Random Number Generation........... ..., 741
2T St 743
27.1 Set Operationsttt e 743
28 Polynomial Manipulations.............................. 747
28.1 Evaluating Polynomials 747
28.2 Finding Roots o 748
28.3 Products of Polynomials 749
28.4 Derivatives / Integrals / Transforms.......... oo 752
28.5 Polynomial Interpolation.......... ... i 753
28.6 Miscellaneous Functions. ... e 763
29 Interpolation.............. 765
29.1 Omne-dimensional Interpolation......... i i 765
29.2 Multi-dimensional Interpolation i i 769
30 Geometry 775
30.1 Delaunay Triangulationo e 775
30.1.1 Plotting the Triangulation........... ... o i i, T
30.1.2 Identifying Points in Triangulation i .. 780

30.2 Voronoi Diagrams. 782
30.3 Convex Hull 786
30.4 Interpolation on Scattered Data........... ... i, 788

31 Signal Processing 791

X GNU Octave (version 5.1.0)

32 Image Processing 805
32.1 Loading and Saving Imagest 805
32.2 Displaying Images. 811
32.3 Representing Images e 813
32.4 Plotting on top of Images ... 824
32.5 Color COnVErSIONottt ettt e e et e e 824

33 Audio Processing 827
33.1 Audio File Utilities. o.oo e 827
33.2 Audio Device Information.......... ... i 828
33.3 Audio Player. 829

33.3.1 Playback.o 829
33.3.2 Properties. ..o e 830
33.4 Audio Recorder 830
33.4.1 RecOording. 831
33.4.2 Data Retrieval ... 831
33.4.3 Properties. ..o e 832
33.5 Audio Data Processing...... ... 832

34 Object Oriented Programming......................... 835
34.1 Creating a Classttt 835
34.2 Class Methodso e 837
34.3 Indexing ODbJectS.t e 840

34.3.1 Defining Indexing And Indexed Assignment............................ 840
34.3.2 Indexed Assignment Optimization.......... i 844
34.4 Overloading Objects 845
34.4.1 Function Overloading ... 845
34.4.2 Operator Overloadingo, 846
34.4.3 Precedence of Objectso 847
34.5 Inheritance and Aggregation 848
34.6 classderl Classesottt e 853
34.6.1 Creating a classdef Class ...t 853
34.6.2 Properties. ..o e 855
34.6.3 Methodst 855
34.6.4 TInheritance. e 857
34.6.5 Value Classes vs. Handle Classes ..., 857

35 GUI Development................... 861
35.1 I/O DIalogs . . .ottt 861
30.2 Progress Bar. 868
35.3 UL Elementsoooiiiii e 869
35.4 GUI Utility Functions......... .o i e 879

35.5 User-Defined Preferences i 81

36 System Utilities.......... L. 885
36.1 Timing Utilities.ottt e 885
36.2 Filesystem Utilities. 897
36.3 File Archiving Utilitiesooi i e 906
36.4 Networking Utilities. e 909

36.4.1 FTP ODbJects .« .vvintti i 909

36.4.2 URL Manipulationo 911

36.4.3 Base64 and Binary Data Transmission............., 912
36.5 Controlling SUDPIOCESSES . .« . v ettt e 913
36.6 Process, Group, and User IDs 921
36.7 Environment Variables..........cooii 922
36.8 Current Working Directoryo 922
36.9 Password Database Functionso i i 924
36.10 Group Database Functions. ... 925
36.11 System Information 926
36.12 Hashing Functions i 931

37 Packages........ ... 933
37.1 Installing and Removing Packages........ ... i .. 933
37.2 Using Packagesuuiiii 937
37.3 Administrating Packages 937
37.4 Creating Packages. 937

37.4.1 The DESCRIPTION File.iuuiiii e 939
3742 The INDEX Fileo e 941
37.4.3 PKG_ADD and PKG_DEL Directivescoiiiiiiiiiiinan... 942
37.4.4 Missing COMPONENES .« . .. v vttt ettt et 942

Appendix A External Code Interface..................... 945

AL OCt-Files . .ot 946
A.1.1 Getting Started with Oct-Files....... ... o i 946
A.1.2 Matrices and Arrays in Oct-Files........... ... i, 950
A.1.3 Character Strings in Oct-Files........ ... i, 953
A.1.4 Cell Arrays in Oct-Files.o e 955
A. 1.5 Structures in Oct-Files. e 955
A.1.6 Sparse Matrices in Oct-Files 957

A.1.6.1 Array and Sparse Class Differences................. 957
A.1.6.2 Creating Sparse Matrices in Oct-Files 958
A.1.6.3 Using Sparse Matrices in Oct-Files.......... 961
A.1.7 Accessing Global Variables in Oct-Files 962
A.1.8 Calling Octave Functions from Oct-Files, 962
A.1.9 Calling External Code from Oct-Files.......... 964
A.1.10 Allocating Local Memory in Oct-Files......... 966
A.1.11 Input Parameter Checking in Oct-Files......... 966
A.1.12 Exception and Error Handling in Oct-Files............... 968
A.1.13 Documentation and Testing of Oct-Files oL, 969
A2 Mex-Files. .o 970

A.2.1 Getting Started with Mex-Files i i 970

xii GNU Octave (version 5.1.0)

A.2.2 Working with Matrices and Arrays in Mex-Files........................ 972

A.2.3 Character Strings in Mex-Files.......... ... i 974

A.2.4 Cell Arrays with Mex-Files.o i 975

A.2.5 Structures with Mex-Files........ 976

A.2.6 Sparse Matrices with Mex-Files 978

A.2.7 Calling Other Functions in Mex-Files.................oiiiiiiiiin.. 981

A.3 Standalone Programs.......... ... 982
A4 JavaInterface 986
A.4.1 Making Java Classes Available......... i i 986

A.4.2 How to use Java from within Octave 987

A43 Setupthe JVM .o 989

A.4.4 Java Interface Functions i 990
Appendix B Test and Demo Functions 997
Bl Test FUNCtIONS. . ..o e e 997
B.2 Demonstration Functionso 1005
Appendix C Obsolete Functions 1009
Appendix D Known Causes of Trouble.................. 1015
D.1 Actual Bugs We Haven’t Fixed Yet 1015
D.2 Reporting Bugs. 1015
D.2.1 Have You Found a Bug?...... i 1015

D.2.2 Where to Report Bugs...... ..o 1016

D.2.3 How to Report Bugs......coovii e 1016

D.2.4 Sending Patches for Octave i i 1017

D.3 How To Get Help with Octave...... ... 1018
D.4 How to Distinguish Between Octave and Matlab 1018
Appendix E Installing Octave............................ 1021
E.1 Build Dependencies. ... 1021
E.1.1 Obtaining the Dependencies Automatically............................ 1021

E.1.2 Build ToolS. ..o 1021

E.1.3 External Packages ... 1022

E.2 Running Configure and Make o o i 1024
E.3 Compiling Octave with 64-bit Indexing...........o i i, 1029
E.4 Installation Problems....... ... i 1031
Appendix F Grammar and Parser....................... 1035
F.l KeywWords. ..o 1035

F L Parser . . oo 1035

Appendix G GNU GENERAL PUBLIC LICENSE 1037

Concept Index 1049

Function Index

Operator Index

Graphics Properties Index

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems. We
find that most students pick up the basics of Octave quickly, and are using it confidently in
just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department
at the University of Texas, and the math department at the University of Texas has been
using it for teaching differential equations and linear algebra as well. More recently, Octave
has been used as the primary computational tool for teaching Stanford’s online Machine
Learning class (ml-class.org) taught by Andrew Ng. Tens of thousands of students
participated in the course.

If you find Octave useful, please let us know. We are always interested to find out how
Octave is being used.

Virtually everyone thinks that the name Octave has something to do with music, but
it is actually the name of one of John W. Eaton’s former professors who wrote a famous
textbook on chemical reaction engineering, and who was also well known for his ability
to do quick ‘back of the envelope’ calculations. We hope that this software will make it
possible for many people to do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix G [Copying], page 1037). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Drew Abbot NVS Abhilash
Andy Adler Adam H. Aitkenhead Joakim Andén
Giles Anderson Joel Andersson Lachlan Andrew
Pedro Angelo Damjan Angelovski Muthiah Annamalai
Markus Appel Branden Archer Willem Atsma
Marco Atzeri Ander Aurrekoetxea Shai Ayal

Sahil Badyal Jeff Bai Roger Banks
Ben Barrowes Alexander Barth David Bateman
Heinz Bauschke Miguel Bazdresch Julien Bect
Stefan Beller Roman Belov Markus Bergholz
Karl Berry Atri Bhattacharya Ethan Biery

David Billinghurst Don Bindner Jakub Bogusz

ml-class.org

Moritz Borgmann
John Bradshaw
Remy Bruno

Marco Caliari

Juan Pablo Carbajal
Larrie Carr

Marco Cecchetti
Albert Chin-A-Young
Catalin Codreanu
Andre da Costa Barros
Richard Crozier
Jacob Dawid
Thomas D. Dean
Fabian Deutsch
Vivek Dogra

Carné Draug

John W. Eaton

Paul Eggert

Garrett Euler
Francesco Faccio
Stephen Fegan
David Finkel

Jose Daniel Munoz Frias
Eduardo Gallestey
Driss Ghaddab
Michele Ginesi
Michael D. Godfrey
Glenn Golden

Brian Gough

Steffen Groot

Kyle Guinn

Kai Habel

Jaroslav Hajek

Kim Hansen

Dave Hawthorne
Piotr Held

Martin Hepperle
Yozo Hida

A. Scottedward Hodel
Tom Holroyd

Craig Hudson

John Hunt

Alan W. Irwin
Vytautas Jancauskas
Robert Jenssen
Heikki Junes

Jarkko Kaleva

Paul Boven

Marcus Brinkmann
Clemens Buchacher
Daniel Calvelo
Jean-Francois Cardoso
David Castelow
Corbin Champion
Sunghyun Cho

J. D. Cole

Martin Costabel

Jeff Cunningham
Jorge Barros de Abreu
Philippe Defert
Christos Dimitrakakis
John Donoghue
Sergey Dudoladov
Dirk Eddelbuettel
Stephen Eglen
Edmund Grimley Evans
Gunnar Farnebéack
Ramon Garcia Fernandez
Guillaume Flandin
Brad Froehle

Walter Gautschi
Eugenio Gianniti
Nicolo Giorgetti

Dave Goel

Tomislav Goles
Alexander Graf
Etienne Grossmann
Vaibhav Gupta
Patrick Hacker
Benjamin Hall

Gene Harvey

Oliver Heimlich
Martin Helm

Jordi Gutiérrez Hermoso
Ryan Hinton

Julio Hoffimann
David Hoover
Christopher Hulbert
Stefan Husmann
Allan Jacobs

Nicholas R. Jankowski
Cai Jianming
Matthias Juschke
Avinoam Kalma

GNU Octave (version 5.1.0)

Richard Bovey
Max Brister
Ansgar Burchard
John C. Campbell
Joao Cardoso
Vincent Cautaerts
Clinton Chee
Carsten Clark
Jacopo Corno
Michael Creel
Martin Dalecki
Carlo de Falco
Bill Denney
Pantxo Diribarne
David M. Doolin
Pascal A. Dupuis
Pieter Eendebak
Peter Ekberg
Rolf Fabian
Massimiliano Fasi
Torsten Finke
Colin Foster
Castor Fu

Klaus Gebhardt
Hartmut Gimpel
Arun Giridhar
Michael Goffioul
Keith Goodman
Michael C. Grant
David Grundberg
Peter Gustafson
William P. Y. Hadisoeseno
Alexander Hansen
Sgren Hauberg
Daniel Heiserer
Stefan Hepp
Israel Herraiz
Roman Hodek
Richard Allan Holcombe
Kurt Hornik
Cyril Humbert
Teemu Ikonen
Geoff Jacobsen
Mats Jansson
Steven G. Johnson
Atsushi Kajita
Mohamed Kamoun

Preface

Lute Kamstra

Joel Keay

Lars Kindermann
Arno J. Klaassen
Geoffrey Knauth
Kacper Kowalik

Nir Krakauer

Artem Krosheninnikov
Ilya Kurdyukov
Philipp Kutin

Kai Labusch

Bill Lash

Friedrich Leisch
Thorsten Liebig

Timo Lindfors

Yu Liu

Sebastien Loisel

Emil Lucretiu

Colin Macdonald
Stefan Mahr

Ricardo Marranita
Makoto Matsumoto
Laurent Mazet

Julio Hoffimann Mendes
Stefan Miereis
Serviscope Minor
Stephen Montgomery-Smith
Amod Mulay

Victor Munoz

Nicholas Musolino
Todd Neal

Felipe G. Nievinski
Akira Noda

Victor Norton

Michael O’Brien
Thorsten Ohl

Valentin Ortega-Clavero
Janne Olavi Paanajarvi
Jason Alan Palmer
Rolando Pereira

Jim Peterson

Elias Pipping

Sergey Plotnikov

Orion Poplawski
Francesco Potorti

Fotios Kasolis
Mumit Khan
Aaron A. King
Alexander Klein
Heine Kolltveit
Endre Kozma
Aravindh Krishnamoorthy
Piotr Krzyzanowski
Tetsuro Kurita
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie
Michael Leitner
Torsten Lilge
Benjamin Lindner
David Livings

Erik de Castro Lopo
Yi-Hong Lyu
James Macnicol
Rob Mahurin
Orestes Mas
Tatsuro Matsuoka
G. D. McBain

Ed Meyer

Petr Mikulik
Stefan Monnier
Antoine Moreau
Armin Miuller
PrasannaKumar
Muralidharan
Markus Miitzel
Philip Nienhuis
Rick Niles

Kai Noda

Eric Norum

Cillian O’Driscoll
Kai T. Ohlhus

Luis F. Ortiz

Scott Pakin
Gabriele Pannocchia
Per Persson

Danilo Piazzalunga
Robert Platt

Tom Poage

Ondrej Popp
Konstantinos Poulios

Thomas Kasper
Paul Kienzle

FErik Kjellson

Lasse Kliemann
Ken Kouno

Daniel Kraft
Oyvind Kristiansen
Volker Kuhlmann
Ben Kurtz

Rafael Laboissiere
Walter Landry
Maurice LeBrun
Johannes Leuschner
Jyh-miin Lin

Ross Lippert
Barbara Locsi
Massimo Lorenzin
Hoxide Ma
Jens-Uwe Mager
Alexander Mamonov
Axel Mathéi
Christoph Mayer
Ronald van der Meer
Thorsten Meyer
Mike Miller

Rafael Monteiro
Kai P. Mueller
Hannes Miiller

Tain Murray

Carmen Navarrete
Al Niessner
Takuji Nishimura
Patrick Noffke
Krzesimir Nowak
Peter O’Gorman
Arno Onken

Carl Osterwisch

José Luis Garcia Pallero

Sylvain Pelissier
Primozz Peterlin
Nicholas Piper

Hans Ekkehard Plesser

Nathan Podlich
Jef Poskanzer
Tejaswi D. Prakash

Jarno Rajahalme
James B. Rawlings
Joshua Redstone
Michael Reifenberger
Anthony Richardson
Sander van Rijn
Melvin Robinson
Andrew Ross

Joe Rothweiler
Kristian Rumberg
Toni Saarela

Mike Sander

Alois Schlogl
Sebastian Schops
Lasse Schuirmann
Daniel J. Sebald
Marko Seric

Andriy Shinkarchuck
John Smith

Peter L. Sondergaard
Quentin H. Spencer
Andreas Stahel
Ryan Starret

Jen Stewart
Thomas Stuart
John Swensen

Falk Tannhéauser
Kris Thielemans
Andrew Thornton
Thomas Treichl
David Turner

José Vallet

James R. Van Zandt
Mihas Varantsou
Marco Vitetta

Jun Wang

Thomas Weber
Andreas Weingessel
David Wells

Joe Winegarden
Fook Fah Yap
Serhiy Zahoriya
Federico Zenith
Richard Zweig

Eduardo Ramos
Eric S. Raymond
Andy Register
Ernst Reissner
Jason Riedy

Petter Risholm
Dmitry Roshchin
Fabio Rossi

David Rorich

Ryan Rusaw

Juhani Saastamoinen
Ben Sapp

Michel D. Schmid
Nicol N. Schraudolph
Ludwig Schwardt
Dmitri A. Sergatskov
Ahsan Ali Shahid
Robert T. Short
Julius Smith
Riidiger Sonderfeld
Christoph Spiel
Richard Stallman
Brett Stewart
Jonathan Stickel
Bernardo Sulzbach
Daisuke Takago
Duncan Temple Lang
Georg Thimm

Olaf Till

Abhinav Tripathi
Frederick Umminger
Stefan van der Walt
Risto Vanhanen
Ivana Varekova
Daniel Wagenaar
Andreas Weber

Rik Wehbring
Martin Weiser
Joachim Wiesemann
Georg Wiora

Sean Young
Johannes Zarl
Claudius Zingerli

GNU Octave (version 5.1.0)

Pooja Rao

Balint Reczey
Lukas Reichlin
Jens Restemeier

E. Joshua Rigler
Matthew W. Roberts
Peter Rosin

Mark van Rossum
Kevin Ruland

Olli Saarela

Radek Salac
Aleksej Saushev
Julian Schnidder
Sebastian Schubert
Thomas L. Scofield
Vanya Sergeev
Baylis Shanks
Joseph P. Skudlarek
Shan G. Smith
Joerg Specht
David Spies
Russell Standish
Doug Stewart
Judd Storrs

Ivan Sutoris

Ariel Tankus
Matthew Tenny
Corey Thomasson
Christophe Tournery
Karsten Trulsen
Utkarsh Upadhyay
Peter Van Wieren
Gregory Vanuxem
Sébastien Villemot
Thomas Walter
Olaf Weber

Bob Weigel
Michael Weitzel
Alexander Wilms
Sahil Yadav
Michele Zaffalon
Michael Zeising
Alex Zvoleff

Special thanks to the following people and organizations for supporting the development

of Octave:

Preface 5

The United States Department of Energy, through grant number DE-FG02-04ER25635.

Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium

(TWMCC).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

Texaco Chemical Company, for providing funding to continue the development of this
software.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to

produce Octave.

Citing Octave in Publications

In view of the many contributions made by numerous developers over many years it is
common courtesy to cite Octave in publications when it has been used during the course of
research or the preparation of figures. The citation function can automatically generate
a recommended citation text for Octave or any of its packages. See the help text below on
how to use citation.

citation
citation package

Display instructions for citing GNU Octave or its packages in publications.

When called without an argument, display information on how to cite the core GNU
Octave system.

When given a package name package, display information on citing the specific named
package. Note that some packages may not yet have instructions on how to cite them.

octave.org

6 GNU Octave (version 5.1.0)

The GNU Octave developers and its active community of package authors have in-
vested a lot of time and effort in creating GNU Octave as it is today. Please give
credit where credit is due and cite GNU Octave and its packages when you use them.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving new
problems, and to make your code freely available for others to use. See https://www.
octave.org/get-involved.html for detailed information.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

Donations supporting Octave development may be made on the web at https://my.
fsf.org/donate/working-together/octave. These donations also help to support the
Free Software Foundation

If you’d prefer to pay by check or money order, you can do so by sending a check to the
FSF at the following address:

Free Software Foundation

51 Franklin Street, Suite 500
Boston, MA 02110-1335
USA

If you pay by check, please be sure to write “GNU Octave” in the memo field of your check.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix D [Trouble], page 1015, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix G [Copying], page 1037.

To download a copy of Octave, please visit https://www.octave.org/download.html.

https://www.octave.org/get-involved.html
https://www.octave.org/get-involved.html
https://my.fsf.org/donate/working-together/octave
https://my.fsf.org/donate/working-together/octave
https://www.octave.org/download.html

1 A Brief Introduction to Octave

GNU Octave is a high-level language primarily intended for numerical computations. It is
typically used for such problems as solving linear and nonlinear equations, numerical linear
algebra, statistical analysis, and for performing other numerical experiments. It may also
be used as a batch-oriented language for automated data processing.

The current version of Octave executes in a graphical user interface (GUI). The GUI
hosts an Integrated Development Environment (IDE) which includes a code editor with
syntax highlighting, built-in debugger, documentation browser, as well as the interpreter
for the language itself. A command-line interface for Octave is also available.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual, see Appendix G [Copying], page 1037.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 5.1.0.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. This starts the
graphical user interface. The central window in the GUI is the Octave command-line inter-
face. In this window Octave displays an initial message and then a prompt indicating it is
ready to accept input. If you have chosen the traditional command-line interface then only
the command prompt appears in the same window that was running a shell. In either case,
you can immediately begin typing Octave commands.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL and
then pressing c. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, we recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’) are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,*,/), exponentiation ("), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, ...). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of

8 GNU Octave (version 5.1.0)

the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

e = -1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp (i*pi)

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A =[1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave uses standard mathematical notation with the advantage over low-level languages
that operators may act on scalars, vector, matrices, or N-dimensional arrays. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A x B

and to form the matrix product ATA, type the command

octave:6> A' * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\D
This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

Chapter 1: A Brief Introduction to Octave 9

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H,; + O, — H,0O

The equation above is not accurate. The Law of Conservation of Mass requires that the num-
ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

z1Hy + 2,05 — Hy0
H: 2x,4+0xy —2
O 0$1+2$2—>1

The solution in Octave is found in just three steps.
[2, 0; 0, 21;

[2;11;

AND

octave:1> A
octave:2> b
octave:3> x

1.2.5 Integrating Differential Equations
Octave has built-in functions for solving nonlinear differential equations of the form

% = f(x,t), z(t =tg) = xg
For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k = 1.4;

> a 1.5;

> b 0.16;

> ¢ =0.9;

> d = 0.8;

>

> xdot(1) = r*x(1)*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = cxaxx(1)*x(2)/(1 + b*x(1)) - d*x(2);
>

> endfunction
Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)';

10 GNU Octave (version 5.1.0)

it is easy to integrate the set of differential equations:
octave:4> x = 1lsode ("f", x0, t);
The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described

in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55—64.

1.2.6 Producing Graphical Output

To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

Octave will automatically create a separate window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -dpdf foo.pdf
will create a file called foo.pdf that contains a rendering of the current plot in Portable
Document Format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you want
to use. The name of this function may not always be obvious, but a good place to start is to
type help —-1list. This will show you all the operators, keywords, built-in functions, and
loadable functions available in the current session of Octave. An alternative is to search
the documentation using the lookfor function (described in Section 2.3 [Getting Help],
page 20).

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.
The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke

Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual, see Section 2.3 [Getting Help], page 20.

1.2.8 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of

Chapter 1: A Brief Introduction to Octave 11

input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual,
see Section 2.4 [Command Line Editing], page 25.

1.3 Conventions

This section explains the notation conventions that are used in this manual. You may want
to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave --no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form:
foo —-bar --baz. Specific keys on your keyboard appear in this font or form: RET.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=’. For example:

sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.

In some cases, matrix values that are returned by expressions are displayed like this

(1, 2; 3, 4] == [1, 3; 2, 4]
= [1,0;0, 1]

and in other cases, they are displayed like this

eye (3)

= 0
0
1

O O -
O = O

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example:

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 41, 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ¢ 4’. The value that is returned

12 GNU Octave (version 5.1.0)

by evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: Invalid input argument

1.3.5 Format of Descriptions

Functions and commands are described in this manual in a uniform format. The first line
of a description contains the name of the item followed by its arguments, if any. If there
are multiple ways to invoke the function then each allowable form is listed.

The description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

After all of the calling forms have been enumerated, the next line is a concise one-sentence
summary of the function.

After the summary there may be documentation on the inputs and outputs, examples
of function usage, notes about the algorithm used, and references to related functions.

Here is a description of an imaginary function foo:

Chapter 1: A Brief Introduction to Octave 13

foo (x)
foo (x, y)

foo (x,y, ...)
Subtract x from y, then add any remaining arguments to the result.

The input x must be a numeric scalar, vector, or array.
The optional input y defaults to 19 if it is not supplied.

Example:

foo (1, [3, 5], 3, 9)
= [14, 16 1]
foo (5)
= 14

More generally,

foo (w, x, y, ...)

x-w+y+ ...

See also: bar

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

1.3.5.2 A Sample Command Description

Commands are functions that may be called without surrounding their arguments in paren-
theses. Command descriptions have a format similar to function descriptions. For example,
here is the description for Octave’s diary command:

14 GNU Octave (version 5.1.0)

diary

diary on

diary off

diary filename

[status, diaryfile] = diary
Record a list of all commands and the output they produce, mixed together just as
they appear on the terminal.

Valid options are:

on Start recording a session in a file called diary in the current working
directory.
off Stop recording the session in the diary file.

filename Record the session in the file named filename.

With no input or output arguments, diary toggles the current diary state.

If output arguments are requested, diary ignores inputs and returns the current
status. The boolean status indicates whether recording is on or off, and diaryfile is
the name of the file where the session is stored.

See also: history, evalc.

15

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of the command line options that Octave accepts.

--built-in-docstrings-file filename
Specify the name of the file containing documentation strings for the built-in
functions of Octave. This value is normally correct and should only need to
specified in extraordinary situations.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--debug-jit

Enable JIT compiler debugging and tracing.

-—doc-cache-file filename
Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of 0CTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

-—echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless —-persist is also specified.

--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

16 GNU Octave (version 5.1.0)

--gui Start the graphical user interface (GUI).

--help
-h Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in
the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

--info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

--info-program program
Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

-—interactive
-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer.

--jit-compiler
Enable the JIT compiler used for accelerating loops.
--line-editing
Force readline use for command-line editing.
--no-gui Disable the graphical user interface (GUI) and use the command line interface

(CLI) instead. This is the default behavior, but this option may be useful to
override a previous --gui.

--no-history
-H Disable recording of command-line history.

--no-init-file

Don’t read the initialization files ~/.octaverc and .octaverc.
--no-init-path

Don’t initialize the search path for function files to include default locations.
--no-line-editing

Disable command-line editing.
--no-site-file

Don’t read the site-wide octaverc initialization files.
--no-window-system

-W Disable use of a windowing system including graphics. This forces a strictly
terminal-only environment.

Chapter 2: Getting Started 17

--norc
-f Don’t read any of the system or user initialization files at startup. This is

equivalent to using both of the options —-no-init-file and —-no-site-file
--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist
Go to interactive mode after ——eval or reading from a file named on the com-
mand line.

--silent

--quiet

-q Don’t print the usual greeting and version message at startup.

--texi-macros-file filename
Specify the name of the file containing Texinfo macros for use by makeinfo.

-—traditiomnal

--braindead
For compatibility with MATLAB, set initial values for user preferences to the
following values

PS1 = ">> "

pPs2 = "
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
disable_diagonal _matrix = true
disable_permutation_matrix = true
disable_range = true
fixed_point_format = true
history_timestamp_format_string = "%%-- %D %I:UM %p —-%%h"
print_empty_dimensions = false
save_default_options = "-mat-binary"

0

struct_levels_to_print
and disable the following warnings

Octave:abbreviated-property-match
Octave:data-file-in-path
Octave:function-name-clash
Octave:possible-matlab-short-circuit-operator

Note that this does not enable the Octave:language-extension warning,
which you might want if you want to be told about writing code that works in
Octave but not MATLAB (see [warning], page 228, [warning_ids|, page 230).

--verbose
-V Turn on verbose output.

18 GNU Octave (version 5.1.0)

--version
-v Print the program version number and exit.

file Execute commands from file. Exit when done unless —-persist is also specified.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

argv ()

Return the command line arguments passed to Octave.
For example, if you invoked Octave using the command
octave --no-line-editing --silent
argv would return a cell array of strings with the elements -—no-line-editing and
--silent.

If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 36, for an example
of how to create an executable Octave script.

program_name ()
Return the last component of the value returned by program_invocation_name.

See also: [program_invocation_name|, page 18.

program_invocation_name ()
Return the name that was typed at the shell prompt to run Octave.
If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs|, page 36, for an example of how to create
an executable Octave script.

See also: [program_name|, page 18.

Here is an example of using these functions to reproduce the command line which invoked

Octave.

printf ("%s", program_name ());

arg_list = argv ();

for i = l:nargin

printf (" %s", arg_list{il});

endfor

printf ("\n");
See Section 6.3.3 [Indexing Cell Arrays|, page 120, for an explanation of how to retrieve
objects from cell arrays, and Section 11.2 [Defining Functions|, page 177, for information
about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default
is /usr/local). This file is provided so that changes to the default Octave

Chapter 2: Getting Started 19

environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home/share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default
is /usr/local), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc

.octaverc

startup.m

This file is used to make personal changes to the default Octave environment.

This file can be used to make changes to the default Octave environment for a
particular project. Octave searches for this file in the current directory after it
reads ~/.octaverc. Any use of the cd command in the ~/.octaverc file will
affect the directory where Octave searches for .octaverc.

If you start Octave in your home directory, commands from the file
~/.octaverc will only be executed once.

This file is used to make personal changes to the default Octave environment. It
is executed for MATLAB compatibility, but ~/.octaverc is the preferred location
for configuration changes.

A message will be displayed as each of the startup files is read if you invoke Octave with
the --verbose option but without the —-silent option.

2.2 Quitting Octave

Shutdown is initiated with the exit or quit commands (they are equivalent). Similar

to startup,

Octave has a shutdown process that can be customized by user script files.

During shutdown Octave will search for the script file finish.m in the function load path.
Commands to save all workspace variables or cleanup temporary files may be placed there.
Additional functions to execute on shutdown may be registered with atexit.

exit

exit (status)

quit

quit (status)
Exit the current Octave session.

If the optional integer value status is supplied, pass that value to the operating system
as Octave’s exit status. The default value is zero.

When exiting, Octave will attempt to run the m-file finish.m if it exists. User
commands to save the workspace or clean up temporary files may be placed in that
file. Alternatively, another m-file may be scheduled to run using atexit.

20

GNU Octave (version 5.1.0)

See also: [atexit], page 20.

atexit (fcn)
atexit (fcn, flag)

2.3

Register a function to be called when Octave exits.
For example,

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);
will remove the function from the list and Octave will not call last_words when it
exits.
Note that atexit only removes the first occurrence of a function from the list, so if a

function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

See also: [quit|, page 19.

Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.9 [Function Files], page 193, for more information about how to document the
functions you write.

help
help

name
—list

help .

help

Display the help text for name.

For example, the command help help prints a short message describing the help
command.

Given the single argument --1list, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

Given the single argument ., list all operators available in the current session of
Octave.

If invoked without any arguments, help displays instructions on how to access help
from the command line.

Chapter 2: Getting Started 21

The help command can provide information about most operators, but name must
be enclosed by single or double quotes to prevent the Octave interpreter from acting
on name. For example, help "+" displays help on the addition operator.

See also: [doc], page 21, [lookfor], page 21, [which], page 138, [info], page 22.

doc function_name

doc

Display documentation for the function function_name directly from an online version
of the printed manual, using the GNU Info browser.

If invoked without an argument, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the online version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 20.

lookfor str

lookfor -all str

[fcn, helplstr] = lookfor (str)

[fcn, helplstr] = lookfor ("-all", str)

Search for the string str in the documentation of all functions in the current function
search path.

By default, 1lookfor looks for str in just the first sentence of the help string for each
function found. The entire help text of each function can be searched by using the
"-all" argument. All searches are case insensitive.

When called with no output arguments, lookfor prints the list of matching functions
to the terminal. Otherwise, the output argument fcns contains the function names
and helplstr contains the first sentence from the help string of each function.

Programming Note: The ability of lookfor to correctly identify the first sentence
of the help text is dependent on the format of the function’s help. All Octave core
functions are correctly formatted, but the same can not be guaranteed for external
packages and user-supplied functions. Therefore, the use of the "-all" argument
may be necessary to find related functions that are not a part of Octave.

The speed of lookup is greatly enhanced by having a cached documentation file. See
doc_cache_create for more information.

See also: |help], page 20, [doc|, page 21, [which]|, page 138, [path]|, page 197,
[doc_cache_create], page 24.

To see what is new in the current release of Octave, use the news function.

news
news

package

Display the current NEWS file for Octave or an installed package.

When called without an argument, display the NEWS file for Octave.

When given a package name package, display the current NEWS file for that package.

See also: [ver|, page 928, [pkg], page 933.

22 GNU Octave (version 5.1.0)

info ()
Display contact information for the GNU Octave community.

warranty ()
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file ()
old_val = info_file (new_val)
info_file (new_val, "local")
Query or set the internal variable that specifies the name of the Octave info file.

The default value is octave-home/info/octave.info, in which octave-home is the
root directory of the Octave installation. The default value may be overridden by the
environment variable OCTAVE_INFO_FILE, or the command line argument --info-
file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_program]|, page 22, [doc], page 21, [help], page 20, [makeinfo_program],
page 22.

val = info_program ()
old_val = info_program (new_val)
info_program (new_val, "local")
Query or set the internal variable that specifies the name of the info program to run.

The default value is octave-home/libexec/octave/version/exec/arch/info
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument --info-program
NAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_file|, page 22, [doc|, page 21, [help], page 20, [makeinfo_program],
page 22.

val = makeinfo_program ()

old_val = makeinfo_program (new_val)

makeinfo_program (new_val, "local")
Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands.

The default value is makeinfo.

Chapter 2: Getting Started 23

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [texi_macros_file], page 23, [info_file], page 22, [info_program]|, page 22, [doc],
page 21, [help], page 20.

val = texi_macros_file ()

old_val = texi_macros_file (new_val)

texi_macros_file (new_val, "local")
Query or set the internal variable that specifies the name of the file containing Tex-
info macros that are prepended to documentation strings before they are passed to
makeinfo.

The default value is octave-home/share/octave/version/etc/macros.texi, in
which octave-home is the root directory of the Octave installation, and version
is the Octave version number. The default value may be overridden by the
environment variable OCTAVE_TEXI_MACROS_FILE, or the command line argument
--texi-macros-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [makeinfo_program]|, page 22.

val = doc_cache_file ()

old_val = doc_cache_file (new_val)

doc_cache_file (new_val, "local")
Query or set the internal variable that specifies the name of the Octave documentation
cache file.

A cache file significantly improves the performance of the lookfor command. The
default value is octave-home/share/octave/version/etc/doc-cache, in which
octave-home is the root directory of the Octave installation, and version is the Octave
version number. The default value may be overridden by the environment variable
OCTAVE_DOC_CACHE_FILE, or the command line argument --doc-cache-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [doc_cache_create], page 24, [lookfor|, page 21, [info_program], page 22,
[doc], page 21, [help], page 20, [makeinfo_program|, page 22.

See also: [lookfor|, page 21.

val = built_in_docstrings_file ()

old_val = built_in_docstrings_file (new_val)

built_in_docstrings_file (new_val, "local")
Query or set the internal variable that specifies the name of the file containing doc-
strings for built-in Octave functions.

The default value is octave-home/share/octave/version/etc/built-in-
docstrings, in which octave-home is the root directory of the Octave installation,

24

GNU Octave (version 5.1.0)

and version is the Octave version number. The default value may be overridden by
the environment variable OCTAVE_BUILT_IN_DOCSTRINGS_FILE, or the command
line argument --built-in-docstrings-file FNAME.

Note: This variable is only used when Octave is initializing itself. Modifying it during
a running session of Octave will have no effect.

val = suppress_verbose_help_message ()
old_val = suppress_verbose_help_message (new_val)
suppress_verbose_help_message (new_val, "local")

Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

The following functions are principally used internally by Octave for generating the docu-

mentation. They are documented here for completeness and because they may occasionally
be useful for users.

doc_cache_create (out_file, directory)
doc_cache_create (out_file)
doc_cache_create ()

Generate documentation cache for all functions in directory.

A documentation cache is generated for all functions in directory which may be a
single string or a cell array of strings. The cache is used to speed up the function
lookfor.

The cache is saved in the file out_file which defaults to the value doc-cache if not
given.

If no directory is given (or it is the empty matrix), a cache for built-in functions,
operators, and keywords is generated.

See also: [doc_cache_file], page 23, [lookfor|, page 21, [path], page 197.

[text, format] = get_help_text (name)

Return the raw help text of function name.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

See also: [get_help_text_from_file], page 24.

[text, format] = get_help_text_from_file (fname)

Return the raw help text from the file fname.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

See also: [get_help_text], page 24.

Chapter 2: Getting Started 25

text = get_first_help_sentence (name)

text = get_first_help_sentence (name, max_Ilen)

[text, status] = get_first_help_sentence (...)
Return the first sentence of a function’s help text.

The first sentence is defined as the text after the function declaration until either the
first period (".") or the first appearance of two consecutive newlines ("\n\n"). The
text is truncated to a maximum length of max_len, which defaults to 80. If the text
must be truncated the last three characters of the text are replaced with "..." to
indicate that more text was available.

The optional output argument status returns the status reported by makeinfo. If
only one output argument is requested, and status is nonzero, a warning is displayed.

As an example, the first sentence of this help text is

get_first_help_sentence ("get_first_help_sentence")
- ans = Return the first sentence of a function's help text.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type
C-a, hold down CTRL and then press a. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press u. Depending on the keyboard, the META key may be labeled
ALT or even WINDOWS. If your terminal does not have a META key, you can still type Meta
characters using two-character sequences starting with ESC. Thus, to enter M-u, you would
type ESC u. The ESC character sequences are also allowed on terminals with real Meta keys.
In the following sections, Meta characters such as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.
c-f Move forward one character.
BACKSPACE

Delete the character to the left of the cursor.

DEL Delete the character underneath the cursor.

26 GNU Octave (version 5.1.0)

c-d Delete the character underneath the cursor.

M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

Cc-1 Clear the screen, reprinting the current line at the top.

C-_

c-/ Undo the last action. You can undo all the way back to an empty line.

M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.

clc ()
home ()
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

Chapter 2: Getting Started 27

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands for Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C-q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word

if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type for You

The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char ()

old_val = completion_append_char (new_val)

completion_append_char (new_val, "local")
Query or set the internal character variable that is appended to successful command-
line completion attempts.

The default value is " " (a single space).

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

completion_matches (hint)
Generate possible completions given hint.

28 GNU Octave (version 5.1.0)

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands for Manipulating the History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the current line regardless of where the cursor is. If the line is non-
empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M—< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the

history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

history

history optl ...

h = history ()

h = history (opti, ...)
If invoked with no arguments, history displays a list of commands that you have
executed.

Valid options are:

n
-n Display only the most recent n lines of history.

-c Clear the history list.

-q Don’t number the displayed lines of history. This is useful for cutting and

pasting commands using the X Window System.

Chapter 2: Getting Started 29

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ~/.octave_hist).

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ~/.octave_hist).

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

If invoked with a single output argument, the history will be saved to that argument
as a cell string and will not be output to screen.

See also: [edit_history], page 29, [run_history], page 29.

edit_history
edit_history cmd_number
edit_history first last
Edit the history list using the editor named by the variable EDITOR.

The commands to be edited are first copied to a temporary file. When you exit
the editor, Octave executes the commands that remain in the file. It is often more
convenient to use edit_history to define functions rather than attempting to enter
them directly on the command line. The block of commands is executed as soon as
you exit the editor. To avoid executing any commands, simply delete all the lines
from the buffer before leaving the editor.

When invoked with no arguments, edit the previously executed command; With one
argument, edit the specified command cmd_number; With two arguments, edit the
list of commands between first and last. Command number specifiers may also be
negative where -1 refers to the most recently executed command. The following are
equivalent and edit the most recently executed command.

edit_history
edit_history -1
When using ranges, specifying a larger number for the first command than the last

command reverses the list of commands before they are placed in the buffer to be
edited.

See also: [run_history|, page 29, [history|, page 28.

run_history
run_history cmd_number
run_history first last

Run commands from the history list.

When invoked with no arguments, run the previously executed command;
With one argument, run the specified command cmd_number;

With two arguments, run the list of commands between first and last. Command
number specifiers may also be negative where -1 refers to the most recently executed
command. For example, the command

run_history
OR
run_history -1

30 GNU Octave (version 5.1.0)

executes the most recent command again. The command
run_history 13 169
executes commands 13 through 169.

Specifying a larger number for the first command than the last command reverses the
list of commands before executing them. For example:

disp (1)
disp (2)
run_history -1 -2
=

2

1

See also: [edit_history], page 29, [history], page 28.
Octave also allows you customize the details of when, where, and how history is saved.

val = history_save ()

old_val = history_save (new_val)

history_save (new_val, "local")
Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [history_control], page 30, [history_file], page 31, [history_size|, page 31,
[history_timestamp_format_string], page 31.

val = history_control ()

old_val = history_control (new_val)
Query or set the internal variable that specifies how commands are saved to the
history list.

The default value is an empty character string, but may be overridden by the envi-
ronment variable OCTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of history_save.

See also: |history_file|