The symmetric group Sn acts on M0,n by permuting the marked points.
This function computes the image of a divisor class representative C under a permutation σ of the marked points.
Enter σ as a list {σ(1),σ(2),...,σ(n)}. Cycle class notation is not supported for this function.
i1 : L= { {{1,3},1}, {{1,4},-3}}; |
i2 : D=divisorClassRepresentativeM0nbar(5,L); |
i3 : permute({5,2,1,3,4}, D) o3 = DivisorClassRepresentativeM0nbar{DivisorExpression => HashTable{{1, 5} => 1 }} {3, 5} => -3 NumberOfMarkedPoints => 5 o3 : DivisorClassRepresentativeM0nbar |