i1 : -- map from P^4 to G(1,3) given by the quadrics through a rational normal curve of degree 4 GF(331^2)[t_0..t_4]; phi=toMap minors(2,matrix{{t_0..t_3},{t_1..t_4}}) 2 2 2 o2 = map(GF 109561[t , t , t , t , t ],GF 109561[x , x , x , x , x , x ],{- t + t t , - t t + t t , - t + t t , - t t + t t , - t t + t t , - t + t t , a}) 0 1 2 3 4 0 1 2 3 4 5 1 0 2 1 2 0 3 2 1 3 1 3 0 4 2 3 1 4 3 2 4 o2 : RingMap GF 109561[t , t , t , t , t ] <--- GF 109561[x , x , x , x , x , x ] 0 1 2 3 4 0 1 2 3 4 5 |
i3 : time projectiveDegrees phi -- used 0.0449441 seconds o3 = {1, 2, 4, 4, 2} o3 : List |
i4 : time projectiveDegrees(phi,MathMode=>true) MathMode: output certified! -- used 0.23504 seconds o4 = {1, 2, 4, 4, 2} o4 : List |
i5 : psi=invertBirMap(toMap(phi,Dominant=>infinity)) GF 109561[x , x , x , x , x , x ] 0 1 2 3 4 5 2 2 2 o5 = map(---------------------------------,GF 109561[t , t , t , t , t ],{x - x x - x x , x x - x x , x - x x , x x - x x , x - x x - x x , a}) x x - x x + x x 0 1 2 3 4 1 0 2 0 3 1 2 0 4 2 0 5 2 4 1 5 4 2 5 3 5 2 3 1 4 0 5 GF 109561[x , x , x , x , x , x ] 0 1 2 3 4 5 o5 : RingMap --------------------------------- <--- GF 109561[t , t , t , t , t ] x x - x x + x x 0 1 2 3 4 2 3 1 4 0 5 |
i6 : time projectiveDegrees psi -- used 0.0846515 seconds o6 = {2, 4, 4, 2, 1} o6 : List |
i7 : time projectiveDegrees(psi,MathMode=>true) MathMode: output certified! -- used 0.144803 seconds o7 = {2, 4, 4, 2, 1} o7 : List |
i8 : -- map P^8--->P^8 defined by the quadrics through P^2 x P^2 phi=toMap minors(2,genericMatrix(ZZ/3331[x_0..x_8],3,3)) ZZ ZZ o8 = map(----[x , x , x , x , x , x , x , x , x ],----[x , x , x , x , x , x , x , x , x ],{- x x + x x , - x x + x x , - x x + x x , - x x + x x , - x x + x x , - x x + x x , - x x + x x , - x x + x x , - x x + x x }) 3331 0 1 2 3 4 5 6 7 8 3331 0 1 2 3 4 5 6 7 8 1 3 0 4 2 3 0 5 2 4 1 5 1 6 0 7 2 6 0 8 2 7 1 8 4 6 3 7 5 6 3 8 5 7 4 8 ZZ ZZ o8 : RingMap ----[x , x , x , x , x , x , x , x , x ] <--- ----[x , x , x , x , x , x , x , x , x ] 3331 0 1 2 3 4 5 6 7 8 3331 0 1 2 3 4 5 6 7 8 |
i9 : time projectiveDegrees phi -- used 0.220821 seconds o9 = {1, 2, 4, 8, 10, 8, 4, 2, 1} o9 : List |
i10 : time projectiveDegrees(phi,OnlySublist=>1) -- used 0.0366407 seconds o10 = {2, 1} o10 : List |