i1 : X1 = hirzebruchSurface 2; |
i2 : isNef X1_0 o2 = true |
i3 : isAmple X1_0 o3 = false |
i4 : isNef X1_1 o4 = false |
i5 : isNef X1_2 o5 = true |
i6 : isAmple X1_2 o6 = false |
i7 : isNef X1_3 o7 = true |
i8 : isAmple X1_3 o8 = false |
i9 : X2 = weightedProjectiveSpace {2,3,5} o9 = X2 o9 : NormalToricVariety |
i10 : D = X2_1-X2_0 o10 = - D + D 0 1 o10 : ToricDivisor on X2 |
i11 : isNef D o11 = true |
i12 : HH^0(X2, OO D) o12 = 0 o12 : QQ-module |
i13 : for i from 1 to dim X2 list HH^i(X2, OO D) o13 = {0, 0} o13 : List |
i14 : isCartier D o14 = false |
i15 : isCartier (30*D) o15 = true |
i16 : HH^0(X2, OO (30*D)) 21 o16 = QQ o16 : QQ-module, free |
i17 : for i from 1 to dim X2 list HH^i(X2, OO (30*D)) o17 = {0, 0} o17 : List |
i18 : R2 = {{1,0,0},{0,1,0},{0,0,1},{0,-1,2},{0,0,-1},{-1,1,-1},{-1,0,-1},{-1,-1,0}}; |
i19 : S2 = {{0,1,2},{0,2,3},{0,3,4},{0,4,5},{0,1,5},{1,2,7},{2,3,7},{3,4,7},{4,5,6},{4,6,7},{5,6,7},{1,5,7}}; |
i20 : X3 = normalToricVariety(R2,S2); |
i21 : isComplete X3 o21 = true |
i22 : isProjective X3 o22 = false |
i23 : isSmooth X3 o23 = true |
i24 : any(#rays X3, i -> isNef X3_i) o24 = false |
i25 : isNef (0*X3_1) o25 = true |
i26 : X4 = kleinschmidt(9,{1,2,3}); |
i27 : isNef X4_0 o27 = true |
i28 : isAmple X4_0 o28 = false |
i29 : for i from 1 to dim X4 list HH^i(X4, OO X4_0) o29 = {0, 0, 0, 0, 0, 0, 0, 0, 0} o29 : List |
i30 : D = X4_0+X4_4 o30 = D + D 0 4 o30 : ToricDivisor on X4 |
i31 : isNef D o31 = true |
i32 : isAmple D o32 = true |
i33 : for i from 1 to dim X4 list HH^i(X4, OO D) o33 = {0, 0, 0, 0, 0, 0, 0, 0, 0} o33 : List |