Returns true if the ambient ring of D1 is equal (===) to the ambient ring of D2. Otherwise it returns false.
i1 : R1 = QQ[x, y, z] / ideal(x * y - z^2) o1 = R1 o1 : QuotientRing |
i2 : R2 = QQ[a, b, c, d] / ideal(a * b - c * d) o2 = R2 o2 : QuotientRing |
i3 : D1 = divisor({1, -2}, {ideal(x, z), ideal(y, z)}) o3 = 1*Div(x, z) + -2*Div(y, z) of R1 o3 : WDiv |
i4 : D2 = divisor({-3, 4}, {ideal(a, c), ideal(b, d)}) o4 = -3*Div(a, c) + 4*Div(b, d) of R2 o4 : WDiv |
i5 : sameDivAmbient(D1, 2*D1) o5 = true |
i6 : sameDivAmbient(D1, D2) o6 = false |
If either D1 or D2 is the zero divisor, it always returns true.