Construct a divisor as a formal sum of height one prime ideals whose coefficients are rational numbers
i1 : R = QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : D = rationalDivisor({5/2, -3/5}, {ideal(x+y+z), ideal(x)}) o2 = 5/2*Div(x+y+z) + -3/5*Div(x) of R o2 : QDiv |