next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Divisor :: isWDiv

isWDiv -- Check if a rational/real divisor is a Weil divisor

Synopsis

Description

Check if a rational/real divisor is a Weil divisor

i1 : R = QQ[x, y, z]

o1 = R

o1 : PolynomialRing
i2 : D1 = divisor({1/1, 2/2, -6/3}, {ideal(x), ideal(y), ideal(z)}, CoeffType=>QQ)

o2 = -2*Div(z) + 1*Div(y) + 1*Div(x) of R

o2 : QDiv
i3 : D2 = divisor({1/2, 3/4, 5/6}, {ideal(y), ideal(z), ideal(x)}, CoeffType=>QQ)

o3 = 3/4*Div(z) + 1/2*Div(y) + 5/6*Div(x) of R

o3 : QDiv
i4 : isWDiv( D1 )

o4 = true
i5 : isWDiv( D2 )

o5 = false

See also

Ways to use isWDiv :