next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Divisor :: RDiv == RDiv

RDiv == RDiv -- Check if two divisors are equal

Synopsis

Description

Returns true if the two divisors are equal

i1 : R = QQ[x,y]

o1 = R

o1 : PolynomialRing
i2 : D = divisor(x*y)

o2 = 1*Div(y) + 1*Div(x) of R

o2 : WDiv
i3 : E = divisor(x)

o3 = 1*Div(x) of R

o3 : WDiv
i4 : F = divisor(y)

o4 = 1*Div(y) of R

o4 : WDiv
i5 : D == E

o5 = false
i6 : D == E+F

o6 = true

Here is an example with rational coefficients compared with integer coefficients

i7 : R = QQ[x,y];
i8 : D = (1/2)*divisor(x)

o8 = 1/2*Div(x) of R

o8 : QDiv
i9 : D == 2*D

o9 = false
i10 : D + D == 2*D

o10 = true
i11 : E = divisor(x)

o11 = 1*Div(x) of R

o11 : WDiv
i12 : D == E

o12 = false
i13 : 2*D == E

o13 = true