Performance Co-Pilot™
Programmer's Guide

Performance Co-Pilot™ Programmer's Guide
Maintained by:
The Performance Co-Pilot Development Team

<pcp@roups.i o>

http://pcp.io

Copyright © 2000, 2013 Silicon Graphics, Inc.
Copyright © 2013, 2015, 2016 Red Hat, Inc.

LICENSE

Permission is granted to copy, distribute, and/or modify this document under the terms of the Creative Commons Attribution-Share Alike, Version
3.0 or any later version published by the Creative Commons Corp. A copy of the license is available at http://creativecommons.org/licenses/by-
sa/3.0/ug/

TRADEMARKSAND ATTRIBUTIONS

Silicon Graphics, SGI and the SGI logo are registered trademarks and Performance Co-Pilot is atrademark of Silicon Graphics, Inc.
Red Hat and the Shadowman logo are trademarks of Red Hat, Inc., registered in the United States and other countries.

Ciscoisaregistered trademark of Cisco Systems, Inc. Linux isaregistered trademark of Linus Torvalds, used with permission. UNIX isaregistered
trademark of The Open Group.

http://pcp.io
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

Table of Contents

ADOUL THIS GUITE ...ttt et et e et e e et e e et e e et e e et e eanaees X
What ThiS GUIAE CONLAINSceeertieeeiii ettt ettt e e et ettt e e e ab e e e eb e e ene e eenees X
AUdience TOr ThiS GUITEociiiiiieiiii et e e e e eees X
REIGEE RESOUICESeeiieiieeie ettt e et e et e et e e et e e et e e et e e e e eannas X
MBI PAOES ...t Xi
LAY ¢ TS 1 (= PP Xi
1000117 01 1[0 = ST PPTRN Xi
REAAEr COMIMENTS ...ttt e e et e et e e e e et e e et e eanaeeees Xii

1. Programming Performance CO-PilOtuiiiiiiiiiii e 1
[O N (o 1] (o (U = PP 1

Distributed COHECIONuiieiie e 2
NBIME SPBCE ...cireiiei ettt 3
DIistribDULed PIMINS ...ttt e e 3
Retrospective Sources of Performance MEFiCSovvvvveiiiiiiiiiciii e 4
Overview of CoOmMPONENt SOFEWEAIEiiieiiiiee et 4
Application and Agent DeVEIOPMENToiiiiiiiiiiii e 4
PMDA DEVEIODMENT ...ttt ettt ettt e ettt e et et e e et et e e et et e e e e et e e e eere e eeees 5
L@ oY T PP 5
BUIIAING @ PMDA ...t 5
Client Development and PMAPIo 6
Library Reentrancy and Threaded APPliCatioNSuvieiiiiiiiiiiie e 6

2. WIEING @ PMIDA Lottt et e et e 7
IMplementing @ PMDA ... e 7
PMDA ATFCHITECIUIE ...ttt et e et e et e e e et e e eaneaeenaas 8

L@ oY T PP 8
DSO PMDA oo 9
DaEmON PIMID A . 10
CaChing PMDA ..o et 11
Domains, MEriCs, and INSLANCESiviiriiiii et e e eas 11
L@ < oV PP 11
[o 0= R PP 12
= o PP 12
INSLBNCES ...ttt e e aaas 15
(01 0= g £ 1= PP 18
Extracting the INformationooooiiiiii i 19
Latency and Threads of CONIOlcoeeuiiiiiiii i e 19
NAIME SPBCEciieii it 20
PMDA HEID TEXE oottt et e e e e eaens 21
Management of Evolution within @ PMDA ... 22
[D N [1= 1 = ST 23
L@ < oV PP 23
PMDA SEUCHUIES ...ttt ettt et e e et et e e e e e eaeeans 29
INItIAliZING @ PMDA ..ottt e b 31
L@ < oV PP 31
CommOoN TNITAIIZALHONc.uieie e e 31
Daemon INItTAlIZAtTIONooeeeeii e 33
Testing and Debugging @ PMDA ..o 35
L@ < oV PP 35
Debugging INfOrMELIONcoeeuiiiieii e e 35
dbpmda Debug ULHTILYcoovniiiiiii e 36
Integration Of @ PMDA ... ettt 36

Performance Co-Pilot™

Programmer's Guide

INSEAlING @ PMDA ... 36
Upgrading a PMNS to Include MetricsfromaNew PMDAccocoiveiiiiiiiieeiieenn, 39
ReEMOVING @ PMDA ... 39
Configuring PCP TOOISciuuiiiiici e e e e e e e e aa e 40

3. PMAPI--The Performance MEtriCS APlouuiiiiiiiie e 41
Naming and Identifying Performance MELTCSccovviiiiiiiiiii e 41
Performance MELNC INSEANCESuiiiiiiiii e et e et eeeat e e eees 42
Current PMAPI CONEEXE ... c.uieiiiei ittt e et e e e e e eenns 43
Performance MEriC DESCIIPLIONScvvvuiiii e e e e e e e e e e e e aan s 43
Performance METCS VAIUEScoouuiiiiiiii et e e 45
Performance EVENT IMELIICSo.uuneiiiii et e e e et e e e e e eaees 47
Event Monitor CONSIAEIAtiONScevvveieiiiiieee e e et e e e e e e e e eaens 50
Event Collector CONSIAErationsc.euuuieiiiiiieeiiin et e et e et e e e e ere s 51
PMAPI Programming Style and INteractionccoociuiiiiiiiiiiiieie e, 52
Variable Length Argument and ReSUItS ListScccuviviiiiiiiiiiiiii e 53
Python SPECITIC ISSUBSuuiiiiiiiii e e e e e 53
PMAPI Error Handlingocvuueiiicii e e e e e et e e e e eans 54
PMAPI Procedural INtErfaCeuuiiiiiiiieiii e 54
PMAPI NaME SPECE SEIVICES ..uuciviiiii e e ettt e e e e e e e e e e e e aens 55
PMAPI Metrics DESCIiption SEIVICES ...uivunieiiii et e e e e e e e e e 58
PMAPI INStance DOMEIN SENVICES ...cvvvuueiiiiiiieeeiii e et e et e et eeeetn e e eeienaeeeees 59
PMAPI CONEXE SEIVICES ...iiiiviieiiiiie et e e e et e e et e e et e e e aaa e e eenenns 60
PMAPI TIMEZONE SEIVICES ..vvueiiiiiiet ittt e ettt e et e et e e et e e e era s 66
PMAPI MELTTICS SEIVICES ..vueiiiii ettt e e e e e et s e et s e e eaa e e e eannns 68
PMAPI FEChGIOUD SEIVICEScvuciii e e e e e e e e eea e ees 70
PMAPI ReCOrd-MOOE SEIVICESvuiiiiiiiieeiiii ettt e et e e e e e e eainae e 72
PMAPI Archive-SpecifiCc SEIVICESuuiiiiiiii e 75
PMAPI Time CONLrOl SEIVICESovvviiieiiiiie ettt e et e e e e e e e eannes 77
PMAPI ANcillary SUPPOIt SEIVICESciieciiiieeii e e e e e e e e e e e e e e aaeees 78
PMAPI Programming Issues and EXamMpPIESoovviiiiiiiiii e, 86
Symbolic Association between a Metric's Nameand Valuecoocoeveviiiiiineeinneennn, 86
INItIAlIZING NEW MEITICS . oovniiii e e e e e e e e e e aens 87
Iterative Processing Of ValUBSco.uuiiiiiiiii i e e e e 88
Accommodating Program EVOIULIONoiiiiiiiiiiicii e e 88

[P 110 T g o Y N o I o PPN 89
Compiling and Linking PMAPI AppliCationsc.ccuviiiiiieiiiiiccieecie e 90

4, Instrumenting APPLICAHIONS ... couuiiiii e e 92
Application and Performance Co-Pilot Relationshipcccocoiiiiiiiiii e, 93
Performance Instrumentation and Samplingccooiiiiiiiiiiii e 93
MMY PIMDA DESION ottuiiiiiiiee et e ettt e et e e ettt s e e ettt e e e e et e e e e et e e e e et e eaeaan s 94
Memory Mapped ValUES APlcoiiiii e 94
Starting and Stopping INSIrUMENAioNcc.viiiiiee e 94
Getting a Handle on Mapped VaUESiiiiieiiii e 97
Updating Mapped VAIUEScouuiiiiiiiiie e e e 97
ElapSed TimE MEASUIESuiiiiiciie e et et e e e e e e e et e e e ean e eeen 99
Performance Instrumentation and TraCingcceuueeiiieiiieeei e e e e e e e e e eens 99
I o =T Y AN B = T [T 99
Yo ol 1oz o g I N 1= = ox o) o [P 100
Sampling TECANIGUESccvneii e e e e e e e e e eaes 100
Configuring the Trace PMDA ..o e e e e 103
THACE APl e e 104
LI 1 o) SR 104

o gL I =T o P 104
Observations and COUNENSiiieeiie et e e et e e eeeae s 105

Performance Co-Pilot™

Programmer's Guide
Configuring the Trace LIbraryeeeuiiiiii e e e 105
YN o (0017 1 PPN 107
g0 1= PSPPI 108

List of Figures

1.1
1.2
13
3.1
3.2
3.3.
4.1.
4.2,
4.3.
4.4,
4.5.

PCP Global Process ArChItECIUNEcoeuuiiiiiii e e e e e e 2
Process Structure for Distributed OPErationc..uuieieiiiiiiiii e e 3
Architecture for RetroSpeCtive ANAYSISuuiiiiiii et 4
A Structured Result for Performance Metrics from pmFetchooiviviiiiiiiiiineeeee, 46
Sample write(2) syscall entry point @NCOMINGccovvunieiiiiiie i 48
Result Format for Event Performance Metrics from pmFetch ..o, 49
Application and PCP RelationShipuiiiiiiiiiii e 93
Memory Mapped Page SNariNgcoouuui it 94
Trace PMDA OVEIVIEIW ...oouuiiiiiiii et ettt e et e e e et e e eena e eees 100
Sample DUration COMPAINTSONuuueeiiiineeeetir ettt e et e ettt e et e e e ri e e e ai e eeana s 102
SaAMPlING INEEIVEIS ...t et 103

Vi

List of Tables

2.1. Variables to Control Behavior of Generic pndapr oc. sh Procedurescccevveveviinneeenn. 37
3.1. Context Components of PMAPI FUNCLIONSooiiiiiiiiiiiieeeeii e 60
3.2. Time Control FUNCEiONS iN PMAPLuiii e 78
3.3. PMAPI TYPE CONVEISION ..covtueiiiiieeeieti e ettt e ettt e ettt e et e e e e et e e e eebt e e e e et e e e eeneaeeenns 80
4.1. Selected Command-Ling OPLIONSiciieuunieieiii ettt eeeans 103
42.trace. tranSaACt MEICScoouuii it 104
4.3.trace. POIi Nt MELTICS oooveieiiii e e e e e e e eees 105
A4, 11 acCe. ODSEIVE MELIICS ...uiiiiiii ettt 105
4.5, ENVIronment VariablESooiiiiiei e 105

A6, SHALE FIAGS ... et 106
A.1. Performance Co-Pilot Acronyms and Their Meanings

Vii

List of Examples

2.1 SIMPIE PMDA @S @ DSO ...ttt 9
2.2. SIMPle PMDA @S @ D@BMONceuiiiiiiiii ettt ettt e e e e 10
G T o1 B B T T 0L A 1 (1 = R PP 13
2.4, PITOAMBE T T C SITUCKUIE ..ottt ettt e e et e e et e e e et e e e ente e eeenes 14
2.5, THVIEI PMDA .ottt et et et 14
2.6. Effect of SEManticS 0N @ IMELIICcoouuiiiiiii e 15
2.7. Al NST T d SIUCLUIE ...oeveiieii e ettt e et e et e e e e et e eeeees 16
2.8. POAl NAOM SITUCIUIE ...ttt ettt e e e e e e na e e enees 17
2.9. Pl NDOM I Nt SEUCIUIE ...ttt e e e e e e e e et e e e e e ean s 17
2.10. SIMPIE PMDA oo e et e aen 17
2.11. prs File for the SIMpIe PMDA e 20
2.12. Alternate prms File for the SIMmple PMDA ... 20
2.13. Dynamic metrics prms File for the Simple PMDA ... 21
2.14. Help Text for the SImple PMDA ... e 21
2.15. SEING VBIUES ...ttt ettt et e e e e e aee 22
2.16. Request Handling Callbacks in the Trivial PMDAcoooiiiiiiiiiee e 24
2.17. Request Handling Callbacks in the SImple PMDA ..o 24
2.18. si npl e. nuUNT €t Ch MELTC ..ccoovi e 25
2.19. Si NP €. COL OF MEIIC oottt e e et eees 25
2.20. Si NPl €. 11 MB MELTC eeee ettt e e e eeees 26
221 Si NPl €. NOW MELTC ettt et e e e eaans 26
2.22. sinpl e_store inthe SIMple PMDA ... 27
2.23.sinple.col or and PM ERR I NST EITOISc.uiiiiiiiiiieii e 27
2.24. PM_ERR PM D EITOIS ...ttt ettt 28
2.25. PM_ERR_PERM SSI ON and PM_ERR PM D EITOIScccuuieiiiiiiieeiiiie e 28
2.26. prdal nterface SIructure HEadErooooiiiiiiiii e 29
2.27. prdal nt er f ace Structure, Latest VErSIONuviiunieiiieii e 30
2.28. PMUAEXT SIUCTUMEeiiiit ettt e ettt e e e e e ent e e 30
2.29. Initialization in the Trivial PMDA ..o e e 32
2.30. Initialization in the SIMPIEe PMDAot e 32
231 mai N inthe SIMPIE PMDA ..o et 34
2.32. sinple.nunfetchinthe SIMPIE PMDAo 36
2.33. I nstal | Script for the Trivial PMDA ... 37
2.34. Changing Variable ASSIONMENTSuuiiiiiiee ittt e e e s 38
3.1. Metrics Sharing the Same INStance DOMEINoeeiiiiieiii e 42
3.2, PMDESC SEMUCIUIE ...ttt et et e e e et e e et e e e eenas 43
3.3.prrni t's and PDESC SIUCIUIES ... 45
3.4. pmValueBlock and pmValue SIUCTUIEScviviiiiiii e 46
3.5. prVal UEBI OCK SHUCIUIE ...t 46
3.6. PIMVAL UESET SITUCKUIEeeiiiii ettt ettt e e e e e et e e e at e eeees 47
BT PITRESUI T SIIUCIUIE ...t ettt e e e e e e e eeaans 47
3.8. pmEventArray and pmEVENtRECOrd SIUCIUIESiiiiiiiiiiii e 49
3.9. pEvVEeNt Par amBt €5 SHUCIUIEvvriiiiieei e e 49
3.10. Unpacking Event Records from an Event Metric pnmal ueSetocciiiiiiiiiiiiiiiiinnenes 50
3.11. Dumping Vaues in TEMPOral SEQUENCEccuuuieiiiieee ettt e e 65
3.12. Replaying INterpolated MELIICSuuiiiiii e 65
3.13. PMAPI MELICS SEIVICES ...ceitieeiiiti ettt ettt e e e et e e 68
3.14. pTRECON AHOST SIIUCIUIE ...ttt et e e e e e e ene e eees 74
3.15. pLogLabel SHUCIUME ...ttt et e e e e e 75
3.16. PMAL ONMVAIL U SHTUCIUIE ...ttt et e et e e e et eeees 79
3.17. Using pmPrintValue to Print ValUEScoeuiiiiiiiii e 83

viii

Performance Co-Pilot™

Programmer's Guide
3.18. PITIVEL i CSPEC SITUCIUIE ...t i e e e et e e e e e e e e e e et e e e e et e e saeeeanees 85
3.19. C Code Produced by pmgenmap INPULcoouiiiiiiiiieci e ee e e e e e e e e e 87
3.20. Initializing MEetric SPECITICAIONSccvvniiiiieiie e e e 87
G I N (= (Y[0= o 88
7 N (o [0 - W01, =« o 88
T T N o I (o T e T | T 89
4.1. Memory Mapped Value INStanCe SITUCIUMESuuciivniiiii e e e e e e e e aens 95
4.2. Memory Mapped Value METICS SETUCLUMEScuuiiiiiii e e e e e e e 96
4.3. Memory Mapped Value HandlESoiiiiiiiiie e 97
4.4, Memory Mapped Valug UPAaEScccuiiiiiieiiii e e e e e e aan s 98
4.5. Memory Mapped Value REPOIScouuiiiiieiiie e ee e e e e e e e e e e anaeeeen 98
4.6. Rolling-Window Sampling TECANIQUEccuuiiiiiiiie e e e e e e e e e 100

About This Guide

This guide describes how to program the Performance Co-Pilot (PCP) performance analysis toolkit.
PCP provides a systems-level suite of tools that cooperate to deliver distributed performance monitoring
and performance management services spanning hardware platforms, operating systems, service layers,
database internal s, user applications and distributed architectures.

PCP is an open source, cross-platform software package - customizations, extensions, source code
inspection, and tinkering in general is actively encouraged.

“About This Guide” includes short descriptions of the chapters in this book, directs you to additional
sources of information, and explains typographical conventions.

What This Guide Contains

This guide contains the following chapters:

» Chapter 1, Programming Performance Co-Pilot, contains a thumbnail sketch of how to program the
various PCP components.

» Chapter 2, Writing a PMDA, describes how to write Performance Metrics Domain Agents (PMDAYS)
for PCP.

» Chapter 3, PMAPI--The Performance Metrics API, describes the interface that allows you to design
custom performance monitoring tools.

» Chapter 4, Instrumenting Applications, introduces techniques, tools and interfaces to assist with
exporting performance data from within applications.

* Appendix A, Acronyms, provides a comprehensive list of the acronyms used in this guide, in the PCP
man pages, and in the release notes.

Audience for This Guide

The guide describesthe programming interfacesto Performance Co-Pilot (PCP) for thefollowing intended
audience:

» Performance analysts or system administrators who want to extend or customize performance
monitoring tools available with PCP

» Developers who wish to integrate performance data from within their applications into the PCP
framework

This book is written for those who are competent with the C programming language, the UNIX or the
Linux operating systems, and the target domain from which the desired performance metrics are to be
extracted. Familiarity with the PCP tool suite is assumed.

Related Resources

The Performance Co-Pilot User'sand Administrator's Guide isacompanion document to the Performance
Co-Pilot Programmer's Guide, and is intended for system administrators and performance analysts who
are directly using and administering PCP installations.

About This Guide

The Performance Co-Pilot Tutorials and Case Studies provides a series of real-world examples of using
various PCP tools, and lessons learned from deploying the toolkit in production environments. It serves
to provide reinforcement of the general concepts discussed in the other two books with additional case
studies, and in some cases very detailed discussion of specifics of individual tools.

Additional resourcesinclude man pages and the project web site.

Man Pages

The operating system man pages provide concise reference information on the use of commands,
subroutines, and system resources. Thereis usually a man page for each PCP command or subroutine. To
see alist of all the PCP man pages, start from the following command:

man PCPIntro
Each man page usually hasa"SEE AL SO" section, linking to other, related entries.

To see aparticular man page, supply its name to the man command, for example:

man pcp

The man pages are arranged in different sections separating commands, programming interfaces, and so
on. For acomplete list of manual sections on a platform enter the command:

man man

When referring to man pages, this guide follows a standard convention: the section number in parentheses
follows the item. For example, pminfo(1) refersto the man pagein section 1 for the pminfo command.

Web Site

The following web site is accessible to everyone:

URL Description
http://pcp.io PCP isopen source software rel eased under the GNU General Public
License (GPL) and GNU Lesser General Public License (LGPL)
Conventions
The following conventions are used throughout this document:
Convention Meaning
${ PCP_VARI ABLE} A brace-enclosed all-capital-letters syntax indicates a variable that

has been sourced from the global / et c/ pcp. conf file. These
special variablesindicate parameters that affect all PCP commands,
and are likely to be different between platforms.

comand This fixed-space font denotes literal items such as commands, files,
routines, path names, signal's, messages, and programming language
structures.

Xi

http://pcp.io

About This Guide

vari abl e Italic typeface denotes variable entries and words or concepts being
defined.
user i nput Thisbold, fixed-spacefont denotesliteral itemsthat the user entersin

interactive sessions. (Output is shown in nonbold, fixed-space font.)
[Brackets enclose optional portions of acommand or directive line.
Ellipses indicate that a preceding element can be repeated.

ALL CAPS All capita letters denote environment variables, operator names,
directives, defined constants, and macrosin C programs.

0 Parenthesesthat follow function names surround function arguments
or are empty if the function has no arguments; parentheses that
follow commands surround man page section numbers.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this document, contact the
PCP maintainers using either the email address or the web site listed earlier.

We value your comments and will respond to them promptly.

Xii

Chapter 1. Programming Performance
Co-Pilot

PCP

Performance Co-Pilot (PCP) provides a systems-level suite of tools that cooperate to deliver distributed,
integrated performance management services. PCPis designed for the in-depth analysis and sophisticated
control that are needed to understand and manage the hardest performance problemsin the most complex
systems.

PCP provides unparalleled power to quickly isolate and understand performance behavior, resource
utilization, activity levels and performance bottlenecks.

Performance data may be collected and exported from multiple sources, most notably the hardware
platform, the operating system kernel, layered services, and end-user applications.

There are several waysto extend PCP by programming certain of its components:

» By writing a Performance Metrics Domain Agent (PMDA) to collect performance metrics from an
uncharted performance domain (Chapter 2, Writing a PMDA)

* By creating new analysis or visualization tools using documented functions from the Performance
Metrics Application Programming Interface (PMAPI) (Chapter 3, PMAPI--The Performance Metrics
API)

e By adding performance instrumentation to an application using facilities from PCP libraries, which
offer both sampling and event tracing models.

Finally, the topic of customizing an installation is covered in the chapter on customizing and extending
PCP service in the Performance Co-Pilot User's and Administrator's Guide.

Architecture

This section gives a brief overview of PCP architecture. For an explanation of terms and acronyms, refer
to Appendix A, Acronyms.

PCP consists of numerous monitoring and collecting tools. Moni t ori ng t ool s such as pmval and
pminfo report on metrics, but have minimal interaction with target systems. Col | ecti on tool s,
called PMDAS, extract performance values from target systems, but do not provide user interfaces.

Systems supporting PCP services are broadly classified into two categories:

Collector Hosts that have the PMCD and one or more PMDAS running to collect and export
performance metrics

Monitor Hosts that import performance metrics from one or more collector hosts to be
consumed by tools to monitor, manage, or record the performance of the collector
hosts

Each PCP enabled host can operate as a collector, or a monitor, or both.

Figure 1.1, “PCP Globa Process Architecture” shows the architecture of PCP. The monitoring tools
consume and process performance data using a public interface, the Performance Metrics Application
Programming Interface (PMAPI).

Programming Performance Co-Pilot

Below the PMAPI level isthe PMCD process, which actsin a coordinating role, accepting requests from
clients, routing regquests to one or more PMDAS, aggregating responses from the PMDAS, and responding
to the requesting client.

Each performance metric domain (such as the operating system kernel or a database management system)
has a well-defined name space for referring to the specific performance metrics it knows how to collect.

Figure 1.1. PCP Global Process Architecture

/ mM onitor mM onitor\

\-/PMAPI \-/PMAPI

End-user
Kernel Layered application
DERE service ABC

_ /

Distributed Collection

The performance metrics collection architectureis distributed, in the sense that any monitoring tool may
be executing remotely. However, a PMDA is expected to be running on the operating system for which it
is collecting performance measurements; there are some notable PMDAS such as Cisco and Cluster that
are exceptions, and collect performance data from remote systems.

As shown in Figure 1.2, “Process Structure for Distributed Operation”, monitoring tools communicate
only with PMCD. The PMDAs are controlled by PMCD and respond to requests from the monitoring tools
that are forwarded by PMCD to the relevant PMDAS on the collector host.

Programming Performance Co-Pilot

Figure 1.2. Process Structure for Distributed Operation

Remote Host Local Host

o~ N\ (v
4//&7\/
e
SO EE
. { u NG /

The host running the monitoring tools does not require any collection tools, including PMCD, since all
requests for metrics are sent to the PMCD process on the collector host.

\

The connections between monitoring tools and PMCD processes are managed in | i bpcp, below the
PMAPI level; see the PMAPI(3) man page. Connections between PMDASs and PMCD are managed by
the PMDA functions; see the PM DA (3) and pmcd(1) man pages. There can be multiple monitor clients
and multiple PMDASs on the one host, but there may be only one PMCD process.

Name Space

Each PMDA provides adomain of metrics, whether they befor the operating system, adatabase manager,
alayered service, or an application module. These metrics arereferred to by nameinside the user interface,
and with a numeric Performance Metric Identifier (PMID) within the underlying PMAPI.

The PMID consists of threefields: the domain, the cluster, and the item number of the metric. The domain
isaunique number assigned to each PMDA. For example, two metrics with the same domain number must
be from the same PMDA. The cluster and item numbers allow metrics to be easily organized into groups
within the PMDA, and provide a hierarchical taxonomy to guarantee uniqueness within each PMDA.

The Performance Metrics Name Space (PMNS) describes the exported performance metrics, in particular
the mapping from PMID to external name, and vice-versa

Distributed PMNS

Performance metric namespace (PMNS) operations are directed by default to the host or set of archives
that is the source of the desired performance metrics.

InFigure 1.2, “Process Structurefor Distributed Operation”, both Performance Metrics Collection Daemon
(PMCD) processes would respond to PMNS queries from monitoring tools by referring to their local
PMNS. If different PMDASs were installed on the two hosts, then the PMNS used by each PMCD would
be different, to reflect variations in avail able metrics on the two hosts.

Programming Performance Co-Pilot

Although extremely rarely used, the -n pnrmsf i | e command line option may be used with many PCP
monitoring toolsto force use of alocal PMNSfile in preference to the PMNS at the source of the metrics.

Retrospective Sources of Performance Metrics

The distributed collection architecture described in the previous section is used when PMAPI clients are
requesting performance metrics from areal-time or live source.

The PMAPI also supports delivery of performance metrics from a historical source in the form of a PCP

archive log. Archive logs are created using the pmlogger utility, and are replayed in an architecture as
shown in Figure 1.3, “ Architecture for Retrospective Analysis’.

Figure 1.3. Architecturefor Retrospective Analysis

/ Monitor \

PMAPI
PCP Archive Log PCP Archive Log

Overview of Component Software

Performance Co-Pilot (PCP) is composed of text-based tools, optional graphical tools, and related
commands. Each tool or command is fully documented by a man page. These man pages are named after
the tools or commands they describe, and are accessible through the man command. For example, to see
the pminfo(1) man page for the pminfo command, enter this command:
man pm nfo

A list of PCP devel oper toolsand commands, grouped by functionality, isprovidedin thefollowing section.

Application and Agent Development

The following PCP tools aid the development of new programs to consume performance data, and new
agents to export performance data within the PCP framework:

Programming Performance Co-Pilot

chkhelp Checks the consistency of performance metrics help database files.

dbpmda Allows PMDA behavior to be exercised and tested. It is an interactive debugger
for PMDAs.

mmv Isused to instrument applications using Memory Mapped Values (MMV). These

arevaluesthat are communicated with pmcd instantly, and very efficiently, using
a shared memory mapping. It is aprogram instrumentation library.

newhelp Generates the database files for one or more source files of PCP help text.

pmapi Defines a procedural interface for developing PCP client applications. It isthe
Performance Metrics Application Programming Interface (PMAP!).

prcl i ent Is a simple client that uses the PMAPI to report some high-level system
performance metrics. The source codefor pmclient isincluded inthedistribution.

pmda Isalibrary used by many shipped PMDASto communicate with apmcd process.
It can expedite the development of new and custom PMDAS.

pmgenmap Generates C declarations and cpp macrosto aid the development of customized
programs that use the facilities of PCP. It is a program development tool.

PMDA Development

A collection of Performance Metrics Domain Agents (PMDAS) are provided with PCP to extract
performance metrics. Each PMDA encapsulates domain-specific knowledge and methods about
performance metrics that implement the uniform access protocols and functional semantics of the PCP.
There is one PMDA for the operating system, another for process specific statistics, one each for
common DBMS products, and so on. Thus, the range of performance metrics can be easily extended by
implementing and integrating new PMDASs. Chapter 2, Writing a PMDA, is a step-by-step guideto writing
your own PMDA.

Overview

Onceyou arefamiliar with the PCPand PMDA frameworks, you can quickly implement anew PMDA with
only a few data structures and functions. This book contains detailed discussions of PMDA architecture
and the integration of PMDAs into the PCP framework. This includes integration with PMCD. However,
details of extracting performance metrics from the underlying instrumentation vary from one domain to
another and are not covered in this book.

A PMDA isresponsible for aset of performance metrics, in the sense that it must respond to requests from
PMCD for information about performance metrics, instance domains, and instantiated values. The PMCD
process generates requests on behalf of monitoring tools that make requests using PMAPI functions.

You can incorporate new performance metrics into the PCP framework by creating a PMDA, then
reconfiguring PMCD to communicate with the new PMDA.

Building a PMDA

A PMDA interacts with PMCD across one of severa well-defined interfaces and protocol mechanisms.
These implementation options are described in the Performance Co-Pilot User's and Administrator's
Guide.

Programming Performance Co-Pilot

Note

It is strongly recommended that code for a new PMDA be based on the source of one of the
existing PMDAs below the ${ PCP_PMDAS_DI R} directory.

In-Process (DSO) Method

This method of building a PMDA uses a Dynamic Shared Object (DSO) that is attached by PMCD,
using the platform-specific shared library manipulation interfaces such asdlopen(3), at initialization time.
Thisisthe highest performance option (there is no context switching and no interprocess communication
(IPC) between the PMCD and the PMDA), but is operationally intractablein some situations. For example,
difficulties arise where specia access permissions are required to read the instrumentation behind the
performance metrics (pmced does not run as root), or where the performance metrics are provided by an
existing processwith adifferent protocol interface. The DSO PM DA effectively executesaspart of PMCD;
so great care isrequired when crafting a PMDA in this manner. Callsto exit(1) inthe PMDA, or alibrary
it uses, would cause PMCD to exit and end monitoring of that host. Other implications are discussed in
the section called “Daemon PMDA”.

Daemon Process Method

Functionally, this method may be thought of as a DSO implementation with a standard main routine
conversion wrapper so that communication with PMCD uses message passing rather than direct procedure
cals. For some very basic examples, see the ${ PCP_PMDAS DIR}/trivial/trivial.c and
${ PCP_PNDAS DI R}/ si npl e/ si npl e. ¢ sourcefiles.

The daemon PMDA is actually the most common, because it allows multiple threads of control, greater
(different user) privileges when executing, and provides more resilient error encapsulation than the DSO
method.

Note

Of particular interest for daemon PMDA writers, the ${ PCP_PNMDAS_DI R}/ si npl e PMDA
has implementations in C, Perl and Python.

Client Development and PMAPI

Application developers are encouraged to create new PCP client applications to monitor, display, and
analyze performance data in a manner suited to their particular site, application suite, or information
processing environment.

PCP client applications are programmed using the Performance Metrics Application Programming
Interface (PMAPI), documented in Chapter 3, PMAPI--The Performance Metrics API. The PMAPI, which
provides performance tool devel opers with access to all of the historical and live distributed services of
PCP, isthe interface used by the standard PCP utilities.

Library Reentrancy and Threaded Applications

Whilethe core PCP library (libpcp) isthread safe, the layered PMDA library (libpcp_pmda) isnot. This
isadeliberate design decision to trade-off commonly required performance and efficiency against the less
common reguirement for multiple threads of control to call the PCP libraries.

The simplest and safest programming model is to designate at most one thread to make callsinto the PCP
PMDA library.

Chapter 2. Writing a PMDA

This chapter constitutes a programmer's guide to writing a Performance Metrics Domain Agent (PMDA)
for Performance Co-Pilot (PCP).

The presentation assumesthe devel oper isusing the standard PCP I i bpcp_pnda library, asdocumented
in the PM DA (3) and associated man pages.

Implementing a PMDA

Thejob of aPMDA isto gather performance data and report them to the Performance Metrics Collection
Daemon (PMCD) in response to requests from PCP monitoring tools routed to the PMDA viaPMCD.

An important requirement for any PMDA is that it have low latency response to requests from PMCD.
Either the PMDA must use a quick access method and a single thread of control, or it must have
asynchronous refresh and two threads of control: one for communicating with PMCD, the other for
updating the performance data.

The PMDA is typically acting as a gateway between the target domain (that is, the performance
instrumentation in an application program or service) and the PCP framework. The PMDA may extract
theinformation using one of anumber of possible export options that include a shared memory segment or
mmap file; asequentia log file (wherethe PMDA parsesthetail of thelog fileto extract the information);
a snapshot file (the PMDA rereads the file as required); or application-specific communication services
(IPC).

Note

The choice of export methodology is typically determined by the source of the instrumentation
(the target domain) rather than by the PMDA.

Procedure 2.1, “Creating a PMDA” describes the suggested steps for designing and implementing a
PMDA:

Procedure 2.1. Creatinga PMDA

1. Determine how to extract the metrics from the target domain.

2. Select an appropriate architecturefor the PMDA (daemon or DSO, I PC, pthreadsor singlethreaded).
3. Define the metrics and instances that the PMDA will support.

4. Implement the functionality to extract the metric values.

5. Assign Performance Metric Identifiers (PMIDs) for the metrics, along with names for the metrics
in the Performance Metrics Name Space (PMNS). These concepts will be further expanded in the
section called “Domains, Metrics, and Instances’

6. Specify the help file and control data structures for metrics and instances that are required by the
standard PMDA implementation library functions.

7. Write code to supply the metrics and associated information to PMCD.

8. Implement any PMDA-specific callbacks, and PMDA initialization functions.

Writing a PMDA

9. Exerciseand test the PMDA with the purpose-built PMDA debugger; see the dbpmda(1) man page.

10. Install and connect the PM DA to arunning PMCD process; see the pmed(1) man page.

11. Configure or develop tools to use the new metrics. For examples of visualization tools, see the
pmchart(1) and pmgadgets(1) man pages. For examples of text-based tools, see the pminfo(1) and
pmval(1) man pages.

12. Where appropriate, define pmieruletemplates suitablefor aerting or notification systems. For more
information, see the pmie(1) and pmieconf(1) man pages.

13. Where appropriate, define pmlogger configuration templates suitable for creating PCP archives
contai ning the new metrics. For moreinformation, seethe pmlogconf(1) and pmlogger (1) man pages.

PMDA Architecture

This section discusses the two methods of connecting aPMDA to a PMCD process:
» Asaseparate process using some interprocess communication (1PC) protocol.

» Asadynamically attached library (that is, a dynamic shared object or DSO).

Overview

All PMDAs are launched and controlled by the PMCD process on the local host. PMCD receives requests
from the monitoring tools and forwards them to the PMDAS. Responses, when required, are returned
through PMCD to the clients. The requests fall into a small number of categories, and the PMDA must
handle each request type. For aDSO PMDA, each request type corresponds to a method in the agent. For
a daemon PMDA, each request translates to a message or protocol data unit (PDU) that may be sent to
aPMDA from PMCD.

For a daemon PMDA, the following request PDUs must be supported:

PDU_FETCH Request for metric values (see the pmFetch(3) man page.)

PDU_PROFI LE A list of instances required for the corresponding metrics in
subsequent fetches (see the pmAddPr ofile(3) man page).

PDU_| NSTANCE_REQ Request for aparticular instance domain for instance descriptions
(see the pmGetI nDom(3) man page).

PDU DESC REQ Request for metadata describing metrics (see the
pmL ookupDesc(3) man page).

PDU_TEXT_REQ Request for metric help text (see the pmLookupText(3) man
page).

PDU _RESULT Valuesto store into metrics (see the pmStor e(3) man page).

The following request PDUs may optionally be supported:

PDU_PWNS_NAMES Request for metric names, given one or more identifiers (see
the pmL ookupName(3) man page.)

Writing a PMDA

PDU PWNS CHI LD A list of immediate descendent nodes of a given namespace
node (see the pmGetChildren(3) man page).

PDU_PWNS_TRAVERSE Request for a particular sub-tree of a given namespace node
(see the pmTraver sePM NS(3) man page).

PDU_PWNS | DS Perform areverse name lookup, mapping a metric identifier to
aname (see the pmNamel D(3) man page).

PDU_AUTH Handle connection attributes (key/value pairs), such as client
credentials and other authentication information (see the
__pmParseHostAttr sSpec(3) man page).

Each PMDA is associated with a unique domain number that is encoded in the domain field of metric
and instance identifiers, and PMCD uses the domain number to determine which PMDA can handle the
components of any given client request.

DSO PMDA

Each PMDA isrequired to implement afunction that handles each of the request types. By implementing
these functions as library functions, a PMDA can be implemented as a dynamically shared object (DSO)
and attached by PMCD at run time with a platform-specific call, such as dlopen; see the dlopen(3) man
page. Thiseliminatesthe need for an IPC layer (typically apipe) between each PMDA and PMCD, because
each request becomes a function call rather than a message exchange. The required library functions are
detailed in the section called “PMDA Interface”.

A PMDA that interacts with PMCD in this fashion must abide by aformal initialization protocol so that
PMCD can discover thelocation of thelibrary functionsthat are subsequently called with function pointers.
When aDSO PMDA isinstalled, the PMCD configuration file, ${ PCP_PMCDCONF_PATH} , is updated
to reflect the domain and name of the PMDA, the location of the shared object, and the name of the
initialization function. Theinitialization sequenceisdiscussed inthe section called “InitializingaPMDA”.

As superuser, install the smple PMDA as a DSO, as shown in Example 2.1, “Simple PMDA asaDSO",
and observe the changes in the PMCD configuration file. The output may differ slightly depending on
the operating system you are using, any other PMDASs you have installed or any PMCD access controls
you havein place.

Example 2.1. Smple PMDA asa DSO

cat ${PCP_PMCDCONF_PATH}
Performance Metrics Donain Specifications

#

This file is automatically generated during the build

Nanme |Id | PC | PC Par ans Fi |l e/ Cd

prcd 2 dso prcd_init ${ PCP_PNDAS DI R}/ pntd/ pnda_pntd. so

i nux 60 dso [inux_init ${PCP_PNDAS DI R}/ i nux/ pnda_l i nux. so
proc 3 pi pe bi nary ${PCP_PNDAS DI R}/l i nux/ pnda_proc.so -d 3
sinmple 254 dso sinmple_init ${PCP_PNMDAS DI R}/ si npl e/ pnda_si npl e. so

Ascan be seen from the contents of ${ PCP_PMCDCONF_PATH} , the DSO version of thesimple PMDA is
inalibrary named pnda_si npl e. so and hasan initialization function called simple _init. Thedomain
of the simple PMDA is 254, as shown in the column headed | d.

Writing a PMDA

Note

For some platforms the DSO file name will not be pnda_si npl e. so. On Mac OS X it is
prda_si npl e. dyl i b and on Windowsitispnda_si npl e. dl | .

Daemon PMDA

A DSO PMDA providesthe most efficient communication between the PMDA and PMCD. Thisapproach
has some disadvantages resulting from the DSO PMDA being the same process as PMCD:

» Anerror or bug that causes aDSO PMDA to exit a so causes PMCD to exit, which affectsall connected
client tools.

» Thereisonly onethread of control in PMCD; asaresult, acomputationally expensive PMDA, or worse,
aPMDA that blocksfor 1/0O, adversely affects the performance of PMCD.

* PMCD runsasthe"pcp" user; so all DSO PMDAs must also run as this user.
* A memory leak in aDSO PMDA also causes amemory leak for PMCD.
Consequently, many PMDAS are implemented as a daemon process.

Thel i bpcp_pnda library isdesigned to allow simpleimplementation of aPMDA that runs as aseparate
process. The library functions provide a message passing layer acting as a generic wrapper that accepts
PDUs, makes library calls using the standard DSO PMDA interface, and sends PDUs. Therefore, you can
implement aPMDA as aDSO and then install it as either a daemon or a DSO, depending on the presence
or absence of the generic wrapper.

The PMCD process launches a daemon PM DA with fork and execv (or CreateProcess on Windows).
Y ou can easily connect a pipe to the PMDA using standard input and output. The PMCD process may also
connect to adaemon PMDA using |Pv4 or IPv6 TCP/IP, or UNIX domain socketsif the platform supports
that; seethetep(7), ip(7), ipv6(7) or unix(7) man pages.

As superuser, install the simple PMDA as a daemon process as shown in Example 2.2, “ Simple PMDA
as a Daemon”. Again, the output may differ due to operating system differences, other PMDAS already
installed, or access control sectionsin the PMCD configuration file.

Example 2.2. Simple PM DA as a Daemon

The specification for thesimple PMDA now statesthe connection type of pipeto PMCD and the executable
image for the PMDA is${ PCP_PNMDAS_DI R}/ si npl e/ pndasi npl e, using domain number 253.

cd ${PCP_PMDAS DI R}/ sinple
./lnstall

Install sinple as a daenon or dso agent? [daenbn] daenobn
PMCD shoul d communicate with the daenon via pipe or socket? [pipe] pipe

cat ${ PCP_PMCDCONF_PATH}
Performance Metrics Domain Specifications

#

This file is automatically generated during the build

Name 1d | PC | PC Par ans Fi |l e/ Crd

pntd 2 dso precd_init ${ PCP_PNMDAS_DI R}/ pred/ pnda_pntd. so

10

Writing a PMDA

I i nux 60 dso linux_init ${PCP_PNDAS DI R}/ | i nux/ pnda_l i nux. so
pr oc 3 pi pe bi nary ${ PCP_PMDAS_DI R}/ | i nux/ pnda_proc.so -d 3
simple 253 pi pe bi nary ${ PCP_PNMDAS_DI R}/ si npl e/ pndasi npl e -d 253

Caching PMDA

When either the cost or latency associated with collecting performance metrics is high, the PMDA
implementer may choose to trade off the currency of the performance data to reduce the PMDA resource
demands or the fetch latency time.

One scheme for doing this is called a caching PMDA, which periodicaly instantiates values for the
performance metrics and responds to each request from PMCD with the most recently instantiated (or
cached) values, as opposed to instantiating current values on demand when the PMCD asks for them.

The Cisco PMDA is an example of acaching PMDA. For additional information, see the contents of the
${ PCP_PNMDAS_DI R}/ ci sco directory and the pmdacisco(1) man page.

Domains, Metrics, and Instances

This section defines metrics and instances, discusses how they should be designed for a particular target
domain, and shows how to implement support for them.

The examples in this section are drawn from the trivial and simple PMDAs. Refer to the
${PCP_PMDAS DIR}/trivial and ${PCP_PVMDAS DI R}/ si npl e directories, respectively,
where both binaries and source code are available.

Overview

Domains are autonomous performance areas, such as the operating system or a layered service or a
particular application. Metrics are raw performance data for a domain, and typically quantify activity
levels, resource utilization or quality of service. Instances are sets of related metrics, as for multiple
processors, or multiple service classes, or multiple transaction types.

PCP employs the following simple and uniform data model to accommodate the demands of performance
metrics drawn from multiple domains:

» Each metric has an identifier that is unique across all metricsfor all PMDASs on a particular host.

o Externally, metrics are assigned names for user convenience--typically there is a 1:1 relationship
between a metric name and ametric identifier.

» The PMDA implementation determines if a particular metric has a singular value or a set of (zero or
more) values. For instance, themetrichi nv. ndi sk countsthe number of disksand hasonly onevaue
on a host, whereas the metric di sk. dev. t ot al counts disk 1/O operations and has one value for
each disk on the host.

« If ametric hasaset of values, then members of the set are differentiated by instances. The set of instances
associated with ametric is an instance domain. For example, the set of metricsdi sk. dev. t ot al is
defined over an instance domain that has one member per disk spindle.

The selection of metrics and instances is an important design decision for a PMDA implementer. The
metrics and instances for atarget domain should have the following qualities:

» Obviousto auser

11

Writing a PMDA

» Consistent across the domain
» Accurately representative of the operational and functional aspects of the domain
For each metric, you should also consider these questions:

* How useful isthisvaue?

What units give a good sense of scale?
» What name gives a good description of the metric's meaning?
 Can this metric be combined with another to convey the same useful information?

Aswith all programming tasks, expect to refine the choice of metrics and instances several times during
the development of the PMDA.

Domains

Each PMDA must be uniquely identified by PMCD so that requests from clients can be efficiently routed
to the appropriate PMDA. The unique identifier, the PMDA's domain, is encoded within the metrics and
instance domain identifiers so that they are associated with the correct PMDA, and so that they are unique,
regardless of the number of PMDAS that are connected to the PMCD process.

The default domain number for each PMDA is defined in ${ PCP_VAR DI R}/ prms/ st dpmi d. This
fileisasimple table of PMDA names and their corresponding domain number. However, a PMDA does
not have to use this domain number--the file is only a guide to help avoid domain number clashes when
PMDAs are installed and activated.

The domain number a PMDA uses is passed to the PMDA by PMCD when the PMDA is launched.
Therefore, any data structures that require the PMDA's domain humber must be set up when the PMDA is
initialized, rather than declared statically. The protocol for PMDA initialization provides a standard way
for aPMDA to implement this run-time initialization.

Tip

Although unigueness of the domain number in the ${ PCP_PMCDCONF_PATH} control file used
by PMCD isall that is required for successful starting of PMCD and the associated PMDAS, the
developer of anew PMDA isencouraged to add the default domain number for each new PMDA
tothe${ PCP_VAR DI R}/ prms/ st dpmi d. | ocal fileandthentoruntheMake. st dpmi d
script in ${ PCP_VAR_DI R}/ prms to recreate ${ PCP_VAR_DI R}/ prms/ st dpni d; this
file acts as arepository for documenting the known default domain numbers.

Metrics

A PMDA provides support for a collection of metrics. In addition to the obvious performance
metrics, and the measures of time, activity and resource utilization, the metrics should also describe
how the target domain has been configured, as this can greatly affect the correct interpretation of
the observed performance. For example, metrics that describe network transfer rates should also
describe the number and type of network interfaces connected to the host (hi nv. ni nterface,
networ k. i nterface. speed, network. i nterface. dupl ex, and soon)

In addition, the metrics should describe how the PMDA has been configured. For example, if the PMDA
was periodically probing a system to measure quality of service, there should be metrics for the delay

12

Writing a PMDA

between probes, the number of probes attempted, plus probe success and failure counters. It may also be
appropriate to alow values to be stored (see the pmstor (1) man page) into the delay metric, so that the
delay used by the PMDA can be altered dynamically.

Data Structures

Each metric must be described in apnDesc structure; see the pmL ookupDesc(3) man page:

typedef struct {

pm D pm d; /* unique identifier */

i nt type; /* base data type */

pm nDom i ndom /* instance dommin */

i nt sem /* semantics of value */

prnits units; /* dinmension and units */
} pnDesc;

This structure contains the following fields:

pmd A uniqueidentifier, Performance Metric Identifier (PMID), that differentiatesthis metric
from other metrics across the union of all PMDAs

type A data type indicator showing whether the format is an integer (32 or 64 hit, signed or
unsigned); float; double; string; or arbitrary aggregate of binary data

i ndom An instance domain identifier that links this metric to an instance domain

sem An encoding of the value's semantics (counter, instantaneous, or discrete)

units A description of the value's units based on dimension and scale in the three orthogonal

dimensions of space, time, and count (or events)
Note

This information can be observed for metrics from any active PMDA using pminfo command
line options, for example:

$ pminfo -d -mnetwork.interface. out.drops

networ k. i nterface.out.drops PMD: 60.3.11
Data Type: 64-bit unsigned int |nDom 60.3 0xf000003
Semantics: counter Units: count

Symbolic constants of the form PM TYPE *, PM SEM *, PM SPACE *, PM TI ME_*, and
PM_COUNT_* are defined in the <pcp/ pmapi . h> header file. You may use them to initialize the
elements of a pnDesc structure. The pm D type is an unsigned integer that can be safely cast to a
__pm D_i nt structure, which contains fields defining the metric's (PMDA's) domain, cluster, and item
number as shown in Example 2.3,“ __pm D_i nt Structure”:

Example2.3. __pm D_i nt Structure

typedef struct {

i nt flag: 1;
unsi gned i nt domai n: 9;
unsi gned i nt cluster: 12;
unsi gned i nt item 10;

13

Writing a PMDA

} __pmD.int;
For additional information, seethe<pcp/ i npl . h> file.

Thef | ag field should be ignored. The domai n number should be set a run time when the PMDA is
initialized. The PMDA_PM D macro defined in <pcp/ prmapi . h> can be used to set the cl ust er and
i t emfields at compiletime, as these should always be known and fixed for a particular metric.

Note

The three components of the PMID should correspond exactly to the three-part definition of the
PMID for the corresponding metric in the PMNS described in the section called “Name Space”.

A table of pndaMet r i ¢ structures should be defined within the PMDA, with one structure per metric as
shown in Example 2.4, “ pndaMet r i ¢ Structure”.

Example 2.4. pndaMet ri ¢ Structure

t ypedef struct {

voi d *m user; /* for users external use */
prmDesc m desc; /* metric description */
} pndaMetric;

This structure contains a pnDesc structure and a handle that allows PMDA-specific structures to be
associated with each metric. For example, m_user could be a pointer to aglobal variable containing the
metric value, or a pointer to afunction that may be called to instantiate the metric's value.

Thetrivia PMDA, shownin Example 2.5, “Trivial PMDA”, hasonly asingular metric (that is, no instance
domain):

Example 2.5. Trivial PMDA

static pndaMetric nmetrictab[] = {
[* time */
{ NULL,
{ PMDA_PM D(0, 1), PM TYPE U32, PM_|NDOM NULL, PM SEM | NSTANT,
PMDA_PMUNI TS(O, 1, 0, 0, PMTIME_SEC, 0) }, 1},
b

Thissinglemetric (t ri vi al . t i me) hasthe following:

* A PMID with a cluster of 0 and an item of 1. Note that this is not yet a complete PMID, the domain
number which identifies the PMDA will be combined with it at runtime.

» Anunsigned 32-bit integer (PM_TYPE_U32)

A singular value and hence no instance domain (PM_| NDOM_NULL)
* An instantaneous semantic value (PM_SEM | NSTANT)
» Dimension “time” and the units “ seconds’

Semantics

The metric's semantics describe how PCP tools should interpret the metric's value. The following are the
possible semantic types:

14

Writing a PMDA

+ Counter (PM_SEM COUNTER)
» Instantaneous value (PM_SEM | NSTANT)
* Discrete value (PM_SEM DI SCRETE)

A counter should be avalue that monotonically increases (or monotonically decreases, whichislesslikely)
with respect to time, so that the rate of change should be used in preference to the actual value. Rate
conversion is not appropriate for metrics with instantaneous values, as the value is a snapshot and there
isno basis for assuming any values that might have been observed between snapshots. Discreteis similar
to instantaneous; however, once observed it is presumed the value will persist for an extended period (for
example, system configuration, static tuning parameters and most metrics with non-numeric values).

For agiventimeinterval covering six consecutive timestamps, each spanning two units of time, the metric

valuesin Example 2.6, “Effect of Semantics on aMetric” are exported from aPMDA (“N/A” implies no
valueisavailable):

Example 2.6. Effect of Semanticson a Metric

Ti mest anps: 1 3 5 7 9 11
Val ue: 10 30 60 80 90 NA

The default display of the values would be as follows:

Ti mest anps: 1 3 5 7 9 11
Semanti cs:

Count er NA 10 15 10 5 NA
| nst ant aneous 10 30 60 80 90 NA
Di screte 10 30 60 80 90 90

Notethat these interpretations of metric semantics are performed by the monitor tool, automatically, before
displaying a value and they are not transformations that the PMDA performs.

Instances

Singular metrics have only one value and no associated instance domain. Some metrics contain a set of
values that share a common set of semantics for a specific instance, such as one value per processor, or
one value per disk spindle, and so on.

Note

The PMDA implementation is solely responsible for choosing the instance identifiers that
differentiate instances within the instance domain. The PMDA is also responsible for ensuring
the uniqueness of instance identifiers in any instance domain, as described in the section called
“Instance ldentification”.

Instance Identification

Consistent interpretation of instances and instance domains require a few simple rules to be followed by
PMDA authors. The PMDA library provides a series of pmdaCache routines to assist.

» Eachinternal instance identifier (numeric) must be a unique 31-bit number.

e The external instance name (string) must be unique.

15

Writing a PMDA

» When the instance name contains a space, the name to the left of the first space (the short name) must
also be unique.

» Where an external instance name corresponds to some object or entity, there is an expectation that the
association between the name and the object is fixed.

« Itispreferable, athough not mandatory, for the association between and external instance name (string)
and internal instance identifier (numeric) to be persistent.

N Dimensional Data

Where the performance data can be represented as scalar values (singular metrics) or one-dimensional
arrays or lists (metrics with an instance domain), the PCP framework is more than adequate. In the case
of metrics with an instance domain, each array or list element is associated with an instance from the
instance domain.

To represent two or more dimensional arrays, the coordinates must be one of the following:

» Mapped onto one dimensional coordinates.

e Enumerated into the Performance Metrics Name Space (PMNS).

For example, this 2 x 3 array of values called M can be represented as instances 1,..., 6 for ametric M;

M1] M2 M3]
M4] M5 Mé6]

Or they can be represented as instances 1, 2, 3 for metric M1 and instances 1, 2, 3 for metric M2:

ML[1] M[2] M][3]
M[1] Me[2] M[3]

The PMDA implementer must decide and consistently export this encoding from the N-dimensional
instrumentation to the 1-dimensional data model of the PCP.

In certain specia cases (for example, such as for a histogram), it may be appropriate to export an array
of values asraw binary data (the type encoding in the descriptor is PM_ TYPE _AGGREGATE). However,
this requires the development of special PMAPI client tools, because the standard PCP tools have no
knowledge of the structure and interpretation of the binary data. The usual issues of platform-depdendence
must also be kept in mind for this case - endianness, word-size, alignment and so on - the (possibly remote)
special PMAPI client tools may need this information in order to decode the data successfully.

Data Structures
If the PMDA isrequired to support instance domains, then for each instance domain the unique internal

instance identifier and external instance identifier should be defined using a pndal nsti d structure as
shown in Example 2.7, “ pndal nsti d Structure”:

Example 2.7. pndal nsti d Structure

typedef struct {

i nt i _inst; /* internal instance identifier */
char *| _narme; /* external instance identifier */
} pndal nstid;

Thei _i nst instance identifier must be a unique integer within a particular instance domain.

16

Writing a PMDA

The complete instance domain description is specified in a pndal ndom structure as shown in
Example 2.8, “ pndal ndomStructure’:

Example 2.8. pndal ndomStructure

t ypedef struct {

pm nDom it_indom /* indom filled in */

i nt it _num nst; /* nunber of instances */

prdalnstid *it_set; /* instance identifiers */
} pndal ndom

Thei t _i ndomelement containsapm nDomthat must be unique across every PMDA. The other fields
of the prdal ndomstructure are the number of instancesin the instance domain and a pointer to an array
of instance descriptions.

Example 2.9, * _ pm nDom i nt Structure” shows that the pm nDom can be safely cast to
__pm nDom_i nt , which specifiesthe PMDA's domain and the instance number within the PMDA:

Example29. _ pm nDom i nt Structure

typedef struct {

i nt flag: 1;
unsi gned int domai n: 9; /* the admi nistrative PMD */
unsi gned int serial:22; [/* unique within PVD */

} __pmnDom.i nt;

Aswith metrics, the PMDA domain humber is not necessarily known until run time; sothedonai n field
must be set up when the PMDA isinitiaized.

For information about how an instance domain may also be associated with more than one metric, see the
pmdal nit(3) man page.

The simple PMDA, shown in Example 2.10, “ Simple PMDA”, has five metrics and two instance domains
of three instances.

Example 2.10. Smple PMDA

/*
* [ist of instances
*/
static pndalnstid color[] = {
{ 0, “red” }, { 1, “green” }, { 2, “blue” }

b
static pndalnstid *timenow = NULL;
static unsigned int ti mesize = 0;
/*
* [ist of instance domains
*/
static pndal ndom i ndonmt ab[] = {
#defi ne COLOR_| NDOM 0
{ COLOR_INDOM 3, color },
#defi ne NOW._| NDOM 1
{ NOW.INDOM 0, NULL },
b

17

Writing a PMDA

/*
* all netrics supported in this PVMDA - one table entry for each
*/
static pndaMetric nmetrictab[] = {
[* nunfetch */
{ NULL,
{ PMDA_PM D(0, 0), PM TYPE U32, PM.|NDOM NULL, PM SEM | NSTANT,
PVMDA_PMUNI TS(O, O, 0, O, O, 0) }, },
[* color */
{ NULL,
{ PMDA_PM D(0O, 1), PM TYPE 32, COLOR_|INDOM PM SEM | NSTANT,
PMDA_PMUNI TS(O, O, 0, O, O, 0) }, },
[* tinme.user */
{ NULL,
{ PMDA_PM D(1, 2), PM TYPE_DOUBLE, PM_|NDOM NULL, PM SEM COUNTER,
PVMDA_PMUNI TS(O, 1, 0, O, PM.TIME_SEC, 0) }, 1},
/[* time.sys */
{ NULL,
{ PMDA_PM D(1,3), PM TYPE DOUBLE, PM |NDOM NULL, PM SEM COUNTER,
PVMDA_PMUNI TS(O, 1, 0, O, PM TIME_SEC, 0) }, 1},
/[* now */
{ NULL,
{ PMDA_PM D(2,4), PM TYPE U332, NOW.I|NDOM PM SEM | NSTANT,
PVMDA_PMUNI TS(O, O, 0, O, O, 0) }, },
b

The metric si npl e. col or isassociated, via COLOR_| NDOM with the first instance domain listed in
i ndomt ab. PMDA initialization assigns the correct domain portion of the instance domain identifier in
i ndomt ab[0].it_indomandnetrictab[1].mdesc.i ndom Thisinstance domain has three
instances: red, green, and blue.

The metric si npl e. now is associated, via NOW | NDOM with the second instance domain listed in
i ndont ab. PMDA initialization assigns the correct domain portion of the instance domain identifier
in indontab[1].it_indomand metrictab[4].mdesc.indom This instance domain is
dynamic and initially has no instances.

All other metrics are singular, as specified by PM | NDOM_NULL.

In some cases an instance domain may vary dynamicaly after PMDA initiaization (for example,
si mpl e. now), and this requires some refinement of the default functions and data structures of
the | i bpcp_pnda library. Briefly, this involves providing new functions that act as wrappers for
pmdal nstance and pmdaFetch while understanding the dynamics of the instance domain, and then
overriding the instance and fetch methodsinthe pndal nt er f ace structure during PMDA initialization.

For the simple PMDA, the wrapper functions are simple_fetch and simple_instance, and defaults are
over-ridden by the following assignments in the simple_init function:

dp->version. any.fetch = sinple_fetch;
dp- >versi on. any. i nstance = sinpl e_i nstance;

Other Issues

Other issues include extracting the information, latency and threads of control, Name Space, PMDA help
text, and management of evolution within aPMDA.

18

Writing a PMDA

Extracting the Information

A suggested approach to writing a PMDA is to write a standalone program to extract the values from
the target domain and then incorporate this program into the PMDA framework. This approach avoids
concurrent debugging of two distinct problems:;

» Extraction of the data

» Communication with PMCD

These are some possible ways of exporting the data from the target domain:

» Accumulate the performance datain a public shared memory segment.

» Write the performance data to the end of alog file.

* Periodically rewrite afile with the most recent values for the performance data.

» Implement a protocol that allows a third party to connect to the target application, send a request, and
receive new performance data.

 If the data is in the operating system kernel, provide a kernel interface (preferred) to export the
performance data.

Most of these approaches require some further data processing by the PMDA.

Latency and Threads of Control

The PCP protocols expect PMDAS to return the current values for performance metrics when requested,
and with short delay (low latency). For some target domains, access to the underlying instrumentation
may be costly or involve unpredictable delays (for example, if the real performance data is stored on
some remote host or network device). In these cases, it may be necessary to separate probing for new
performance data from servicing PMCD requests.

An architecture that has been used successfully for several PMDASisto create one or more child processes
to obtain information while the main process communicates with PMCD.

At the simplest deployment of this arrangement, the two processes may execute without synchronization.
Threads have al so been used as amore portable multithreading mechanism; seethe pthreads(7) man page.

By contrast, a complex deployment would be one in which the refreshing of the metric values must be
atomic, and this may require double buffering of the data structures. It also requires coordination between
parent and child processes.

Warning

Since certain data structures used by the PMDA library are not thread-aware, only one PMDA
thread of control should call PM DA library functions- thiswould typically bethethread servicing
requests from PMCD.

One caveat about thisstyle of caching PMDA--inthis(special) caseitisbetter if the PMDA convertscounts
to rates based upon consecutive periodic sampling from the underlying instrumentation. By exporting
precomputed rate metrics with instantaneous semantics, the PMDA prevents the PCP monitor tools from

19

Writing a PMDA

computing their own rates upon consecutive PM CD fetches (which arelikely toreturnidentical valuesfrom
acaching PMDA). The finer points of metric semantics are discussed in the section called “ Semantics’

Name Space

The PMNSfile defines the name space of the PMDA. It isasimpletext filethat is used during installation
to expand the Name Space of the PMCD process. The format of thisfileis described by the pmns(5) man
page and its hierarchical nature, syntax, and helper tools are further described in the Performance Co-Pilot
User's and Administrator's Guide.

Client processes will not be able to access the PMDA metrics if the PMNS file is not installed as part
of the PMDA installation procedure on the collector host. The installed list of metric names and their
corresponding PMIDs can be found in ${ PCP_VAR_DI R}/ prms/ r oot .

Example 2.11, “ pmms File for the Simple PMDA” shows the simple PMDA, which has five metrics:
e Three metrics immediately under the si npl e node

» Two metrics under another non-terminal node called si npl e. ti me

Example2.11. pmms Filefor the Simple PMDA

simpl e {
nunf et ch SI MPLE: 0: 0
col or SI MPLE: 0: 1
time
now SIMPLE: 2: 4
}
simple.tine {
user SI MPLE: 1: 2
Sys SI MPLE: 1: 3
}

Metrics that have different clusters do not have to be specified in different subtrees of the PMNS.
Example 2.12, “Alternate pmrms File for the Simple PMDA” shows an alternative PMNS for the simple
PMDA:

Example 2.12. Alternate pmms Filefor the Simple PM DA

simpl e {
nunf et ch SIMPLE: 0: 0
col or SI MPLE: 0: 1
usertine SI MPLE: 1: 2
systime SIMPLE: 1: 3
}

In this example, the SI MPLE macro is replaced by the domain number listed in ${ PCP_VAR DI R}/
pms/ st dpmi d for the corresponding PMDA during installation (for the simple PMDA, this would
normally be the value 253).

If the PMDA implementer so chooses, all or a subset of the metric names and identifiers can be specified
programatically. In this situation, a special asterisk syntax is used to denote those subtrees which are to be
handlesthisway. Example 2.13, “Dynamic metricspmms Filefor the Simple PMDA” showsthisdynamic
namespace syntax, for all metricsin the simple PMDA:

20

Writing a PMDA

Example 2.13. Dynamic metricspms File for the Simple PM DA
sinmpl e SI MPLE: *: *

In this example, like the one before, the SI MPLE macro is replaced by the domain number, and all
(simple.*) metric namespace operations must be handled by the PMDA. Thisis in contrast to the static
metric name model earlier, where the host-wide PMNS file is updated and used by PMCD, acting on
behalf of the agent.

PMDA Help Text

For each metric defined withinaPM DA, the PMDA devel oper isstrongly encouraged to provide both terse
and extended help text to describe the metric, and perhaps provide hints about the expected value ranges.

The help text is used to describe each metric in the visualization tools and pminfo with the -T option.
The help text, such as the help text for the simple PMDA in Example 2.14, “Help Text for the Simple
PMDA", is specified in a specialy formatted file, normally called hel p. This file is converted to the
expected run-time format using the newhelp command; see the newhelp(1) man page. Converted help
text files are usually placed in the PMDA's directory below ${ PCP_PVDAS_DI R} as part of the PMDA
installation procedure.

Example 2.14. Help Text for the Simple PMDA

Thetwo instance domains and five metrics have ashort and averbose description. Each entry beginswith a
linethat startswith the character “ @” and isfollowed by either the metric name(si npl e. nunf et ch) or
asymbolic reference to the instance domain number (SI MPLE. 1), followed by the short description. The
verbose description is on the following lines, terminated by the next line starting with “@” or end of file:

@ SI MPLE. 0 I nstance domain “col our” for sinple PVDA
Universally 3 instances, “red” (0), “green” (1) and “blue” (3).

@ SI MPLE. 1 Dynam c i nstance domain “time” for sinple PVDA
An instance domain is conputed on-the-fly for exporting current tine
information. Refer to the help text for sinple.now for nore details.

@ si mpl e. nunfetch Nunber of pnfFetch operations.
The cunul ati ve nunber of pnfFetch operations directed to “sinple” PNDA

This counter may be nodified with pnstore(1l).

@sinmple.color Metrics which increment with each fetch
This nmetric has 3 instances, designated “red”, “green” and “blue”.

The value of the netric is nonotonic increasing in the range 0 to
255, then back to 0. The different instances have different starting
val ues, nanely 0 (red), 100 (green) and 200 (bl ue).

The metric values ny be altered using pnstore(l).

@sinmple.time.user Tinme agent has spent executing user code
The tine in seconds that the CPU has spent executing agent user code.

@sinmple.time.sys Tine agent has spent executing system code
The tine in seconds that the CPU has spent executing agent system code.

21

Writing a PMDA

@sinmple.now Tine of day with a configurable instance domain

The value reflects the current time of day through a dynamically
reconfigurabl e instance domain. On each netric value fetch request,

t he agent checks to see whether the configuration file in

${ PCP_PNMDAS_DI R}/ si npl e/ si npl e. conf has been nodified - if it has then
the file is re-parsed and the instance domain for this netric is again
constructed according to its contents.

This configuration file contains a single |line of comua-separated tine
tokens fromthis set:

“sec” (seconds after the mnute),

“mn” (mnutes after the hour),

“hour” (hour since mdnight).

An exanpl e configuration file could be: sec,n n, hour

and in this case the sinple.now nmetric would export values for the
three instances “sec”, “mn” and “hour” corresponding respectively to
t he conponents seconds, m nutes and hours of the current time of day.

The instance domain reflects each token present in the file, and the
val ues reflect the tine at which the PMDA processes the fetch.

Management of Evolution within a PMDA

Evolution of a PMDA, or more particularly the underlying instrumentation to which it provides access,
over time naturally results in the appearance of new metrics and the disappearance of old metrics. This
creates potential problems for PMAPI clients and PCP tools that may be required to interact with both
new and former versions of the PMDA.

The following guidelines are intended to help reduce the complexity of implementing a PMDA in the
face of evolutionary change, while maintaining predictability and semantic coherence for tools using the
PMAPI, and for end users of those tools.

e Try to support as full a range of metrics as possible in every version of the PMDA. In this context,
support means responding sensibly to requests, even if the underlying instrumentation is not available.

» If ametric is not supported in a given version of the underlying instrumentation, the PMDA should
respond to pmLookupDesc requests with a pnDesc structure whose t ype field has the special

value PM TYPE_NOSUPPORT. Values of fields other than pni d and t ype are immaterial, but
Example 2.15, “ Setting Values® istypically benign:

Example 2.15. Setting Values

pmDesc dumry = {

.pmid = PMDA PMD(3,0), /[* pmd, fill this in */

.type = PM TYPE_ NCSUPPORT, /[* this is the inportant part */
.indom = PM | NDOM NULL, /* singul ar, causes no problens */
.sem = 0, /* no semantics */

.units = PMDA PMUNI TS(0,0,0,0,0,0) /* no units */

b

» If ametric lacks support in a particular version of the underlying instrumentation, the PMDA should
respond to pmFetch requests with a pmResult in which no values are returned for the unsupported

22

Writing a PMDA

metric. Thisismarginally friendlier than the other semantically acceptable option of returning anillegal
PMID error or PM_ERR_PM D.

Help text should be updated with annotations to describe different versions of the underlying product,
or product configuration options, for which a specific metric is available. Thisis so pmLookupText
can aways respond correctly.

ThepmStor e operation should fail with return statusof PM_ERR_PERM SSI ONif auser or application
tries to amend the value of an unsupported metric.

The value extraction, conversion, and printing functions (pmExtractValue, pmConvScale,
pmAtomStr, pmTypeStr, and pmPrintValue) return the PM_ERR_CONV error or an appropriate
diagnostic string, if an attempt is made to operate on a value for which type is
PM_TYPE_NOSUPPORT.

If performance tools take note of thet ype field in the pnDesc structure, they should not manipulate
values for unsupported metrics. Even if toolsignore t ype in the metric's description, following these
development guidelines ensures that no misleading value is ever returned; so there is no reason to call
the extraction, conversion, and printing functions.

PMDA Interface

This section describes an interface for the request handling callbacks in a PMDA. This interface is used
by PMCD for communicating with DSO PMDAs and is a so used by daemon PMDAs with pmdaMain.

Overview

Both daemon and DSO PMDASs must handle multiple request types from PMCD. A daemon PMDA
communi cateswith PMCD using the PDU protocol, whileaDSO PMDA definescallbacksfor each request
type. To avoid duplicating this PDU processing (in the case of a PMDA that can be installed either as a
daemon or as aDS0), and to allow a consistent framework, pmdaM ain can be used by adaemon PMDA
asawrapper to handle the communication protocol using the same callbacksasaDSO PMDA. Thisallows
aPMDA to be built as both a daemon and a DSO, and then to be installed as either.

To further simplify matters, default callbacks are declared in <pcp/ pnda. h>:

pmdaFetch
pmdaProfile
pmdal nstance
pmdaDesc
pmdaT ext
pmdaStore
pmdaPMID
pmdaName
pmdaChildren

pmdaAttribute

23

Writing a PMDA

Each callback takesapndaExt structure asitslast argument. This structure contains all the information
that is required by the default callbacks in most cases. The one exception is pmdaFetch, which needs
an additional callback to instantiate the current value for each supported combination of a performance
metric and an instance.

Therefore, for most PMDAs all the communication with PMCD is automatically handled by functionsin
i bpcp.soandl i bpcp _pnda. so.

Trivial PMDA

Thetrivial PMDA usesall of thedefault callbacksas shownin Example 2.16, “ Request Handling Callbacks
inthe Trivial PMDA". The additional callback for pmdaFetch is defined astrivial_fetchCallBack:

Example 2.16. Request Handling Callbacksin the Trivial PMDA

static int
trivial _fetchCall Back(pndaMetric *ndesc, unsigned int inst, pnAtonval ue *atom
{

__pmD_int *idp = (_pmD.int *)& ndesc->m desc. pmi d);

if (idp->cluster !'= 0 || idp->item!= 0)

return PM_ERR _PM D;
if (inst !'= PM.IN_NULL)

return PM_ERR_| NST;
atom >l = tine(NULL);
return O;

}

Thisfunction checksthat the PMID and instance are valid, and then places the metric value for the current
time into the pmAt onVal ue structure.

The callback is set up by a cal to pmdaSetFetchCallBack in trivial_init. As a rule of thumb, the
API routines with named ending with CallBack are helpers for the higher PDU handling routines like
pmdaFetch. The latter are set directly using the PMDA Interface Structures, as described in the section
caled “PMDA Structures’.

Simple PMDA

The simple PMDA callback for pmdaFetch is more complicated because it supports more metrics, some
metrics are instantiated with each fetch, and one instance domain is dynamic. The default pmdaFetch
callback, shown in Example 2.17, “Request Handling Callbacks in the Simple PMDA”, is replaced by
simple_fetch in simple_init, which increments the number of fetches and updates the instance domain
for | NDOM_NOWbefore calling pmdaFetch:

Example 2.17. Request Handling Callbacksin the Smple PMDA

static int
simple_fetch(int nunpmid, pmiD pmdlist[], pnResult **resp, pndaExt *pnda)
{

nunf et ch++;

si mpl e_ti menow_check();

simpl e_ti menow_refresh();

return pndaFet ch(nunmpm d, pmidlist, resp, pnda);

24

Writing a PMDA

The callback for pmdaFetch is defined as simple fetchCallBack. The PMID is extracted from the
pndaMet ri ¢ structure, and if valid, the appropriate field in the pmAt onVal ue structure is set. The
available types and associated fields are described further in the section called “Performance Metric
Descriptions’ and Example 3.16, “ pmAt onVal ue Structure”.

Note

Note that PMID validity checking need only check the cluster and item numbers, the domain
number is guaranteed to be valid and the PMDA should make no assumptions about the actual
domain number being used at this point.

The si npl e. nunf et ch metric has no instance domain and is easily handled first as shown in
Example 2.18, “ si npl e. nunf et ch Metric”:

Example 2.18. si npl e. nunf et ch Metric

static int

si nmpl e_fetchCal | Back(pndaMetri c *ndesc,

{

i nt

static int
static double
__pmD.int

if (inst
I'(idp->cl
I'(idp->cl

i;

ol df et ch;

usr, sys;

*idp = (__pmD_int

= PM I N _NULL &&

ust er
ust er

0 & idp->item
2 && idp->item == 4))

return PM_ERR | NST;

if (idp->cluster == 0) {
if (idp->item==0) {
atom >l = nunfetch;

}

unsi gned int

i nst, pmAtonlval ue *atom

*) & ndesc->m desc. pm d);

1) &&

/* sinple.nunfetch */

In Example 2.19, “ si npl e. col or Metric’, thei nst parameter is used to specify which instance is
required for the si npl e. col or metric:

Example 2.19. si npl e. col or Metric

else if (idp->item==1) {

switch (inst) {

case O:
red = (red + 1) % 256;
atom >l = red,
br eak;

case 1:
green = (green + 1) % 256;
atom >l = green;
br eak;

case 2:
blue = (blue + 1) % 256;
atom >l = bl ue;
br eak;

defaul t:

return PM _ERR | NST;

/* sinple.color */

/*

red */

/* green */

[* blue */

25

Writing a PMDA

}

el se
return PM ERR PM D;

In Example 2.20, “ si npl e. ti me Metric”, thesi npl e. ti me metricisin asecond cluster and has a
simple optimization to reduce the overhead of calling times twice on the same fetch and return consistent
values from a single call to times when both metricssi npl e. ti me. user andsi npl e. ti ne. sys
are requested in a single pmFetch. The previous fetch count is used to determine if the usr and sys

values should be updated:

Example 2.20. si npl e. ti ne Metric

else if (idp->cluster == 1) { /[* sinple.time */
if (oldfetch < nunfetch) {
__pmnProcessRunTi mes(&usr, &sys);
ol df etch = nunfetch;

}

if (idp->item== 2) [* sinple.tine.user */
atom >d = usr;

else if (idp->item== 3) /* sinple.time.sys */
atom >d = sys;

el se

return PM_ERR PM D
}

In Example 2.21, “ si npl e. nowMetric”, thesi npl e. nowmetricisin athird cluster and usesi nst
again to select a specific instance from the | NDOM_NOWinstance domain. The values associated with
instances in this instance domain are managed using the pmdaCache(3) helper routines, which provide
efficient interfaces for managing more complex instance domains:

Example 2.21. si npl e. nowMetric

else if (idp->cluster == 2) {
if (idp->item==4) { /* sinple.now */
struct tineslice *tsp;
sts = pndaCacheLookup(*now_ i ndom inst, NULL, (void *)&sp);
if (sts != PVDA_CACHE_ACTI VE) {
if (sts <0)
__pmNoti fyErr (LOG ERR, "pndaCachelLookup failed: inst=%l:
inst, pnErrStr(sts));
return PM _ERR_| NST;
}
atom>l = tsp->tmfield,
}
el se
return PM ERR _PM D;

}
si npl e_store in the Simple PMDA

The ssmple PMDA permits some of the metrics it supports to be modified by pmStore as shown in
Example2.22,“ si npl e_st or e inthe Simple PMDA". For additional information, see the pmstor e(1)

and pmStor e(3) man pages.

26

9%s"

Writing a PMDA

Example 2.22. si npl e_st or e inthe Simple PMDA

The pmdaStor e callback (which returns PM_ERR_PERM SSI ON to indicate no metrics can be altered)
isreplaced by simple_store in simple_init. This replacement function must take the same arguments so
that it can be assigned to the function pointer in the prrdal nt er f ace structure.

The function traverses the pnResul t and checks the cluster and unit of each PMID to ensure that it
correspondsto ametric that can be changed. Checks are made on the valuesto ensure they are within range
before being assigned to variables in the PMDA that hold the current values for exported metrics:

static int
simpl e_store(pnResult *result, pndaExt *pnda)
{

i nt i, j, val, sts = 0;

pmAt onVal ue av;
pnval ueSet *vsp = NULL;
_pmD.int *pmidp = NULL;

/* a store request may affect multiple netrics at once */
for (i = 0; i < result->nunpmid; i++) {
vsp = result->vset[i];
pridp = (__pm D_int *)&vsp->pnid;
if (pmdp->cluster == 0) { /* storable netrics are cluster 0 */
switch (pmidp->iten) {
case O: [* sinple. nunfetch */
val = vsp->vlist[0].value.lval;
if (val < 0) {
sts PM ERR_SI GN;

val 0; B

}
nunfetch = val;
br eak;
case 1: /* sinple.color */
/* a store request may affect multiple instances at once */
for (j = 0; j < vsp->nunmval && sts == 0; j++) {
val = vsp->vlist[j].value.lval;
if (val <0) {
sts PM ERR _SI GN;
val 0;
} if (val > 255) {
sts PM ERR_CONV;
val 255;

}

The si npl e. col or metric has an instance domain that must be searched because any or all instances
may be specified. Any instancesthat are not supported in thisinstance domain should cause an error value
of PM_ERR | NST to be returned as shown in Example 2.23, “ si npl e. col or and PM_ERR | NST
Errors’:

Example 2.23. si npl e. col or and PM ERR | NST Errors

switch (vsp->vlist[j].inst) {

case O: /* red */
red = val;
br eak;

27

Writing a PMDA

case 1: /* green */
green = val;
br eak;

case 2: /* blue */
bl ue = val;
br eak;

defaul t:

sts = PM_ERR_| NST;
}

Any other PMIDs in cluster O that are not supported by the simple PMDA should result in an error value
of PM_ERR _PM Dasshownin Example 2.24, “ PM_ERR_PM D Errors’:

Example 2.24. PM ERR PM DErrors

defaul t:
sts = PM ERR PM D
br eak;

}

Any metricsthat cannot be altered should generate an error value of PM_ERR_PERM SSI ON, and metrics
not supported by the PMDA should result in an error value of PM_ERR_PM D as shown in Example 2.25,
“ PM_ERR _PERM SSI ONand PM_ERR_PM D Errors’:

Example 2.25. PM ERR_PERM SSI ONand PM ERR_PM DErrors

else if ((pmdp->cluster == 1 &&
(pmidp->item== 2 || pmidp->item==3)) ||
(pm dp->cluster == 2 & pmdp->item== 4)) {
sts = PM_ERR_PERM SSI ON;
br eak;
}
el se {
sts = PM_ERR_PM D
br eak;
}
}
return sts;
}
The structure prdaExt pnda argument is not used by the simple_stor e function above.

Note

When using storable metrics, it isimportant to consider theimplications. It is possible pmlogger
isactively sampling the metric being modified, for example, which may cause unexpected results
to be persisted in an archive. Consider also the use of client credentials, availableviatheattribute

callback of the prdal nt er f ace structure, to appropriately limit access to any modifications
that might be made via your storable metrics.

Return Codes for pmdaFetch Callbacks

In PMDA | NTERFACE 1 and PMDA | NTERFACE 2, the return codes for the pmdaFetch callback
function are defined:

28

Writing a PMDA

Vaue Meaning
<0 Error code (for example, PM_ERR_PM D, PM ERR | NST or PM_ERR_AGAI N)
0 Success

In PMDA | NTERFACE_3 and al later versions, the return codes for the pmdaFetch callback function
are defined:

Value Meaning

<0 Error code (for example, PM_ERR_PM D, PM ERR | NST)
0 Metric value not currently available
>0 Success

PMDA Structures

PMDA structures used with the pcp_pnda library are defined in <pcp/ prnda. h>. Example 2.26,
“ pndal nterface Structure Header” and Example 2.28, “ pndaExt Stucture” describe the
prdal nt er f ace and pnrdaExt structures.

Example 2.26. pndal nt er f ace Structure Header
The callbacks must be specified in apndal nt er f ace structure:

typedef struct {

i nt domai n; /* set/return performance netrics domain id here */
struct {

unsigned int pnda_interface : 8; /* PMDA DSO version */

unsi gned i nt prmapi _version : 8; /* PMAPI version */

unsigned int flags : 16; /* optional feature flags */
} comm /* set/return comunication and version info */
int status; /* return initialization status here */
uni on {

This structure is passed by PMCD to a DSO PMDA as an argument to the initialization function. This
structure supports multiple (binary-compatibl €) versions--the second and subsequent versions have support
for the pndaExt structure. Protocol version one is for backwards compatibility only, and should not be
used in any new PMDA.

To date there have been six revisions of the interface structure:
» Version two added the pndaExt structure, as mentioned above.

» Version three changed the fetch callback return code semantics, as mentioned in the section called
“Return Codes for pmdaFetch Callbacks’.

» Version four added support for dynamic metric names, where the PMDA is able to create and remove
metric names on-the-fly in response to changesin the performance domain (omdaPM | D, pmdaName,
pmdaChildren interfaces)

» Version five added support for per-client contexts, where the PMDA is able to track arrival and
disconnection of PMAPI client tools via PMCD (pmdaGetContext helper routine). At the same

29

Writing a PMDA

time, support for PM_TYPE_EVENT metrics was implemented, which relies on the per-client context
concepts (omdaEvent* helper routines).

» Version six added support for authenticated client contexts, where the PMDA is informed of user
credentials and other PMCD attributes of the connection between individual PMAPI clientsand PMCD
(pmdaAttribute interface)

Example 2.27. pndal nt er f ace Structure, Latest Version

uni on {
I
* PMDA_| NTERFACEG
*/
struct {
prdaExt *ext;
i nt (*profile)(pndalnProfile *, pnmdaExt *);
i nt (*fetch)(int, pmiD *, pnResult **, pndaBExt *);
i nt (*desc) (pm D, pnDesc *, pndaExt *);
i nt (*instance) (pm nDom int, char *, pndalnResult **, pndaBExt *);
i nt (*text)(int, int, char **, pndaExt *);
i nt (*store)(pnResult *, pndaExt *);
i nt (*pm d)(const char *, pmiD *, pndaBExt *);
i nt (*name) (pm D, char ***, pndaExt *);
i nt (*children)(const char *, int, char *** int ** pndaExt *);
i nt (*attribute)(int, int, const char *, int, prmdaExt *);
} six;
} version;

} pndal nterface;

Note

Each new interface version is always defined as a superset of those that preceded it, only adds
fields at the end of the new structure in the union, and is always binary backwards-compatible.
And thus it shall renmi n. Forbrevity, wehave shown only the latest interface version
(six) above, but all prior versions still exist, build, and function. In other words, PMDAS built
against earlier versions of this header structure (and PM DA library) function correctly with the
latest version of the PMDA library.

Example 2.28. pndaExt Stucture
Additional PMDA information must be specified in apndaExt structure:

typedef struct {

unsi gned int e_fl ags; /* PVDA EXT _FLAG * bit field */

voi d *e_ext; /* used internally within |ibpcp_pnda */
char *e_socknane; /* socket name to pnctd */

char *e_nane; /* nane of this pnda */

char *e | ogfile; /* path to log file */

char *e_hel pt ext; /* path to help text */

i nt e_stat us; /[* =0 is OK */

i nt e_infd; /* input file descriptor from pncd */

i nt e _outfd; /* output file descriptor to pncd */

30

Writing a PMDA

i nt e_port; /[* port to pncd */

i nt e_singul ar; /* =0 for singular values */

i nt e_ordinal ; /* >=0 for non-singular values */
i nt e _direct; /[* =1 if pmid map to neta table */
i nt e_domai n; /* metrics domain */

i nt e _nnetrics; /* nunmber of nmetrics */

i nt e_ni ndons; /* nunber of instance domains */

i nt e_hel p; /* help text comes via this handle */
__pmrProfile *e_prof; /* last received profile */

prdal oType e_io; /* connection type to pntd */
prdal ndom *e_i ndons; /* instance domain table */

prdal ndom *e_i dp; /* instance domai n expansion */
prdaMetric *e_netrics; /* metric description table */

pndaResul t Cal | Back e_resultCall Back; /* to clean up pnmResult after fetch */
pndaFet chCal | Back e _fetchCall Back; /* to assign nmetric values in fetch */
prdaCheckCal | Back e_checkCal | Back; /* call back on receipt of a PDU */
prdaDoneCal | Back e_doneCal | Back; /* call back after PDU is processed */

/* added for PMDA_I NTERFACE 5 */
i nt e_cont ext ; /* client context id frompncd */

pndaEndCont ext Cal | Back e_endCal | Back; /* callback after client context closed

} pndaExt;

The pndaExt structure contains filenames, pointers to tables, and some variables shared by
several functions in the pcp_pnda library. All fields of the pndal nt er f ace and pndaExt
structures can be correctly set by PMDA initialization functions; see the pmdaDaemon(3), pmdaDSO(3),
pmdaGetOptions(3), pmdal nit(3), and pmdaConnect(3) man pagesfor afull description of how various
fieldsin these structures may be set or used by pcp_pnda library functions.

Initializing a PMDA

Severa functions are provided to simplify theinitialization of aPMDA. These functions, if used, must be
called in astrict order so that the PMDA can operate correctly.

Overview

The initiaization process for a PMDA involves opening help text files, assigning callback function
pointers, adjusting the metric and instance identifiers to the correct domains, and much more.
The initidlization of a daemon PMDA aso differs significantly from a DSO PMDA, since the
prdal nt er f ace structureisinitialized by main or the PMCD process, respectively.

Common Initialization

As described in the section called “DSO PMDA”, aninitiaization function is provided by a DSO PMDA
and called by PMCD. Using the standard PMDA wrappers, the same function can also be used as part of
the daemon PM DA initialization. This PMDA initialization function performs the following tasks:

 Assigning callback functions to the function pointer interface of pndal nt er f ace
 Assigning pointers to the metric and instance tables from pndaExt
» Opening the help text files

 Assigning the domain number to the instance domains

31

Writing a PMDA

 Correlating metrics with their instance domains

If the PMDA uses the common data structures defined for the pcp_pnda library, most of these
requirements can be handled by the default pmdal nit function; see the pmdal nit(3) man page.

Because the initialization function is the only initialization opportunity for a DSO PMDA, the common
initialization function should aso perform any DSO-specific functions that are required. A default
implementation of this functionality is provided by the pmdaDSO function; see the pmdaDSO(3) man

page.
Trivial PMDA
Example2.29, “Initiadizationinthe Trivial PMDA” showsthetrivial PMDA, which has no instances (that

is, al metrics have singular values) and a single callback. This callback is for the pmdaFetch function
caledtrivial_fetchCallBack; see the pmdaFetch(3) man page:

Example 2.29. Initialization in the Trivial PM DA

static char *user narme;
static int i sDSO = 1; /* ==0 if | am a daenmon */

void trivial _init(pndalnterface *dp)

{
if (isDSO
pndaDSQ(dp, PMDA_| NTERFACE 2, “trivial DSO,
“${PCP_PMDAS_DI R}/ trivial/help”);
el se
__pmnBet Processl dentity(usernamne);
if (dp->status I= 0)
return;
prndaSet Fet chCal | Back(dp, trivial_fetchCall Back);
prdal ni t (dp, NULL, O,
metrictab, sizeof(netrictab)/sizeof(netrictab[0]));
}

The trivial PMDA can execute as either a DSO or daemon PMDA. A default installation installs it as a
daemon, however, and the main routine clearsi sDSOand setsuser namne accordingly.

Thetrivial_init routine provides the opportunity to do any extra DSO or daemon setup before calling the
library pmdal nit. In the example, the help text is setup for DSO mode and the daemon is switched to run
as an unprivileged user (default isr oot , but it is generally good form for PMDAS to run with the least
privileges possible). If dp- >st at us is non-zero after the pmdabDSO call, the PMDA will be removed
by PMCD and cannot safely continue to use the pmdal nter face structure.

Simple PMDA
In Example2.30, “Initializationinthe Simple PMDA”, the ssimple PMDA usesitsown callbacksto handle

PDU_FETCH and PDU_RESULT request PDUs (for pmFetch and pmStor e operations respectively), as
well as providing pmdaFetch with the callback simple_fetchCallBack.

Example 2.30. Initialization in the Simple PM DA

static int i sDSO = 1; /* =0 | am a daenpn */

32

Writing a PMDA

static char *user narme;

void sinple_init(pndal nterface *dp)
{
if (isDSO
pndaDSQ(dp, PMDA_| NTERFACE_2, “sinple DSO',
“${ PCP_PNMVDAS_DI R}/ si npl e/ hel p”);
el se
__pnBet Processl dentity(usernane);

if (dp->status != 0)
return;

dp- >version. any. fetch si npl e_fetch;

dp- >versi on. any. store si npl e_store;

dp- >versi on. any. i nstance = sinpl e_i nst ance;

pndaSet Fet chCal | Back(dp, sinple_fetchCall Back);

prndal ni t (dp, indontab, sizeof(indontab)/sizeof(indontab[0]),
metrictab, sizeof(netrictab)/sizeof(netrictab[0]));

}

Once again, the simple PMDA may be installed either as a daemon PMDA or a DSO PMDA. The static
variable i sDSO indicates whether the PMDA is running as a DSO or as a daemon. A daemon PMDA
always changes the value of thisvariable to 0 in mai n, for PMDASs that can operate in both modes.

Remember also, as described earlier, simple fetch is dealing with a single request for (possibly many)
values for metrics from the PMDA, and simple_fetchCallBack is its little helper, dealing with just one

metric and one instance (optionally, if the metric happens to have an instance domain) within that larger
request.

Daemon Initialization

In addition to the initialization function that can be shared by a DSO and a daemon PMDA, a daemon
PMDA must also meet the following requirements:

e Createthepndal nt er f ace structure that is passed to theinitialization function
* Parse any command-line arguments
* Openalog file (aDSO PMDA uses PMCD'slog file)
 Set up the IPC connection between the PMDA and the PMCD process
» Handle incoming PDUs
All these requirements can be handled by default initialization functionsin the pcp_pnda library; see

the pmdaDaemon(3), pmdaGetOptions(3), pmdaOpenL og(3), pmdaConnect(3), and pmdaM ain(3)
man pages.

Note

Optionaly, a daemon PMDA may wish to reduce or change its privilege level, as seen in
Example 2.29, “Initialization in the Trivial PMDA” and Example 2.30, “Initiaization in the
SimplePMDA”. Some performancedomainsr equi r e the extraction processto run asaspecific

33

Writing a PMDA

user in order to access the instrumentation. Many domains require the default r oot level of
access for adaemon PMDA.

The simple PMDA specifies the command-line arguments it accepts using pmdaGetOptions, as shown
in Example 2.31, “ mai n inthe Simple PMDA". For additional information, see the pmdaGetOptions(3)
man page.

Example 2.31. mai n in the Simple PM DA

static pmlongOptions |ongopts[] = {
PVDA_OPTI ONS_HEADER(“ Opti ons”),
PMOPT_DEBUG,
PVDAOPT_DOMAI N,
PVDAOPT_LOGHI LE,
PVDAOPT_USERNANME,
PMOPT_HELP,
PMDA OPTI ONS_TEXT(“\ nExactly one of the follow ng options nmay appear:”),
PVDAOPT_| NET,
PMVDAOPT_PI PE,
PMVDAOPT_UNI X,
PMVDAOPT_I| PV6,
PVDA_COPTI ONS_END
b
static pndaQptions opts = {
.short _options = “D:d:i:|:pu:U6:?",
.l ong_options = | ongopts,

b

i nt
mai n(int argc, char **argv)
{
prndal nt erf ace di spat ch;

i sDSO = 0;

__pnBet Progname(argv[0]);

__pmCet User nane(&user nane) ;

prdaDaenon(&i spat ch, PNMDA | NTERFACE_2, pnPrognane, S| MPLE,
“simple.log”, “${PCP_PMDAS DI R}/ sinple/help”);

prmdaCet Opti ons(argc, argv, &opts, &dispatch);
if (opts.errors) {
prmdaUsageMessage(&opt s) ;
exit(1l);
}
if (opts.usernane)
username = opts.usernane;

prmdaOpenLog(&di spat ch);
simpl e_i nit (&di spatch);
si mpl e_ti menow_check();
prmdaConnect (&di spat ch);
prdaMai n(&di spat ch) ;

exit(0);

Writing a PMDA

}

The conditions under which pmdaMain will return are either unexpected error conditions (often from
failed initialisation, which would already have been logged), or when PMCD closes the connection to the
PMDA. In al cases the correct action to take is simply to exit cleanly, possibly after any final cleanup
the PMDA may need to perform.

Testing and Debugging a PMDA

Ensuring the correct operation of aPMDA can be difficult, because the responsibility of providing metrics
to the requesting PMCD process and simultaneously retrieving values from the target domain requires
nearly real-time communication with two modules beyond the PMDA's control. Some tools are available
to assist in thisimportant task.

Overview

Thoroughly testing a PMDA with PMCD is difficult, although testing a daemon PMDA is marginally
simpler than testing a DSO PMDA. If aDSO PMDA exits, PMCD also exits because they share asingle
address space and control thread.

The difficulty in using PMCD to test a daemon PMDA results from PMCD requiring timely
replies from the PMDA in response to request PDUs. Although a timeout period can be set in
${ PCP_PMCDOPTI ONS_PATH} , attaching a debugger (such as gdb) to the PMDA process might cause
an aready running PMCD to close its connection with the PMDA. If timeouts are disabled, PMCD could
wait forever to connect with the PMDA.

If you suspect a PMDA has been terminated due to a timeout failure, check the PMCD log file, usually
${ PCP_LOG DI R}/ pntd/ pntd. | og.

A more robust way of testing a PMDA isto use the dbpmda tool, which is similar to PMCD except that
dbpmda provides complete control over the PDUsthat are sent tothe PMDA, and thereareno timelimits--
it isessentially an interactive debugger for exercising aPMDA. See the dbpmda(3) man page for details.

In addition, careful use of PCP debugging flags can produce useful information concerning a PMDA's
behavior; seethe PM API (3) and pmdbg(1) man pages for a discussion of the PCP debugging and tracing
framework.

Debugging Information

Y ou can activate debugging flagsin PMCD and most other PCP tools with the - D command-line option.
Supported flags can be listed with the pmdbg command; see the pmdbg(1) man page. Setting the debug
flag for PMCD in ${ PCP_PMCDOPTI ONS_PATH} might generate too much information to be useful,
especialy if there are other clients and PMDASs connected to the PMCD process.

The PMCD debugging flag can aso be changed dynamically by storing a new value into the metric
prncd. control . debug:

pnstore pncd. control . debug 5

Most of the pcp_pntda library functions log additional information if the DBG_TRACE LI BPVDA flag
is set within the PMDA; see the PMDA(3) man page. The command-line argument -D is trapped by
pmdaGetOptionsto set the global debugging control variable prDebug. Adding tests within the PMDA
for the DBG_TRACE_APPLO, DBG TRACE APPL1, and DBG TRACE APPL2 trace flags permits
different levels of information to be logged to the PMDA'slog file.

35

Writing a PMDA

All diagnostic, debugging, and tracing output from aPM DA should be written to the standard error stream.
By convention, all debugging information isenclosed by preprocessor #i f def PCP_DEBUG statements
so that they can be compiled out of the program at a later stage, if required, although thisis rarely done
in practice.

Adding this segment of code to the simple_stor e metric causes a timestamped log message to be sent to
the current log file whenever pmstor e attempts to change si npl e. nunf et ch and pmDebug has the
DBG_TRACE_APPLO flag set asshown in Example 2.32,“ si nmpl e. nunf et ch inthe Simple PMDA”:

Example 2.32. si npl e. nunf et ch in the Simple PM DA

case 0: /* sinple.nunfetch */

X
val = vsp->vlist[O0].value.lval;
if (val < 0) {
sts = PM ERR_SI GN,
val = 0;
}

#i f def PCP_DEBUG
i f (prDebug & DBG TRACE_APPLO) {
__pmNoti fyErr (LOG_DEBUG,
"sinmple: % stored into nunfetch", val);

}
#endi f

nunfetch = val;
br eak;

For a description of pmstor e, see the pmstor e(1) man page.

dbpmda Debug Utility

The dbpmda utility provides a simple interface to the PDU communication protocol. It allows daemon
and DSO PMDAsto be tested with most request types, whilethe PMDA process may be monitored with a
debugger, tracing utilities, and other diagnostic tools. The dbpmda(1) man page contains a sample session
with thesi npl e PMDA.

Integration of a PMDA

Severa steps are required to install (or remove) aPMDA from a production PMCD environment without
affecting the operation of other PMDAS or related visualization and logging tools.

The PMDA typically would have its own directory below ${ PCP_PMDAS_DI R} into which several
files would be installed. In the description in the section called “Installing a PMDA”, the PMDA
of interest is assumed to be known by the name newbi e, hence the PMDA directory would be
${ PCP_PNDAS_ DI R}/ newbi e.

Note

Any installation or removal of aPMDA involves updating files and directories that are typically
well protected. Hence the procedures described in this section must be executed as the superuser.

Installing a PMDA

A PMDA isfully installed when these tasks are compl eted:

36

Writing a PMDA

Help text has been installed in a place where the PMDA can find it, usualy in the PMDA directory
${ PCP_PNDAS DI R}/ newbi e.

» The name space has been updated in the ${ PCP_VAR DI R}/ pmms directory.

The PMDA binary has been installed, usually in the directory ${ PCP_PNMDAS_DI R} / newbi e.

The ${ PCP_PMCDCONF_PATH} file has been updated.

The PMCD process has been restarted or notified (with a SI GHUP signal) that the new PMDA exists.

TheMakef i | e shouldincludeani nst al | target to compileandlink the PMDA (asaDSO, or adaemon
or both) in the PMDA directory. The cl obber target should remove any files created as a by-product
of thei nstal | target.

Y oumay wishtouse ${ PCP_PMDAS_DI R}/ si npl e/ Makef i | e asatemplatefor constructing anew
PMDA Makef i | e; changing the assignment of I AMfrom si npl e to newbi e would account for most
of the required changes.

The Install script should make use of the generic procedures defined in the script
${PCP_SHARE DI R}/ | i b/ pndapr oc. sh, and may be as straightforward as the one used for the
trivial PMDA, shown in Example 2.33,“ | nst al | Script for the Trivial PMDA”:

Example2.33. I nstal | Script for the Trivial PMDA

${PCP_DI R}/ et c/ pcp. env
${ PCP_SHARE DI R}/ | i b/ pndapr oc. sh

iamrtrivial
pnda_i nterface=2

pndaSet up
pndai nst al |
exit

The variables, shown in Table 2.1, “Variables to Control Behavior of Generic prdapr oc. sh

Procedures’, may be assigned values to modify the behavior of the pndaSet up and pndai nst al |
procedures from ${ PCP_SHARE_DI R}/ | i b/ pndapr oc. sh.

Table2.1. Variablesto Control Behavior of Generic pndapr oc. sh Procedures

Shell Variable Use Default
$i am Name of the PMDA; assignment to thisvariableis
mandatory.

Example: i anFnewbi e

$dso_opt Can thisPMDA beinstalled asaDSO? fal se

$daenon_opt Can this PMDA be installed as a daemon? true

$perl _opt Isthis PMDA aperl script? fal se

$pyt hon_opt Isthis PMDA a python script? fal se

$pi pe_opt If installed as a daemon PMDA, isthe default IPC via true
pipes?

37

Writing a PMDA

Shell Variable Use Default
$socket _opt If installed as adaemon PMDA, isthedefault IPCvia f al se
an Internet socket?
$socket _i net _def If installed as a daemon PM DA, and the |PC method
uses an Internet socket, the default port number.
$i pc_prot IPC style for PDU exchanges involving a daemon bi nary
PMDA; bi nary ort ext.
$check_del ay Delay in seconds between installing PMDA and 3
checking if metrics are available.
$ar gs Additional command-line arguments passed to a
daemon PMDA.
$pnda_i nterface Version of thel i bpcp_pnda library required, used 1
to determine the version for generating help text files.
$pms_sour ce The name of the PMNSfile (by default relativetothe pnms
PMDA directory).
$pmms_nane First-level name for this PMDA's metricsin the PMNS. $i am
$hel p_source The name of the help file (by default relative to the hel p
PMDA directory).
$pnda_name The name of the executable for adaemon PMDA. pnda$i am
$dso_nane The name of the shared library for aDSO PMDA. prda$i am
$dso_suffix
$dso_entry The name of theinitialization function for aDSO ${ian} _init
PMDA.
$domai n The numerical PMDA domain number (from
domai n. h).
$SYMDOM The symbolic name of the PMDA domain number
(fromdonai n. h).
$st at us Exit status for the shell script 0

In addition, thevariablesdo_pnda anddo_check will be set toreflect theintentiontoinstall the PMDA
(as opposed to install just the PMNS) and to check the availability of the metrics once the PMDA is
installed. By default, each variableist r ue; however, the command-line options- Nand - Qto | nst al |
may be used to set the variablesto f al se, asfollows: do_pnda (-N) and do_check (- Nor - Q).

The variables may also have their assignments changed by the user's response to the common prompt as
shown in Example 2.34, “Changing Variable Assignments”:

Example 2.34. Changing Variable Assignments

You will need to choose an appropriate configuration for installation
of the ... Performance Metrics Domai n Agent (PNDA).
col l ector col l ect performance statistics on this system
noni t or allow this systemto nmonitor |ocal and/or renpte systens
bot h coll ector and nonitor configuration for this system

Obvioudly, for anything but the most trivial PMDA, after calling the pndaSet up procedure, the
I nst al | script should also prompt for any PMDA-specific parameters, which are typically accumulated
inthe ar gs variable and used by the pndai nst al | procedure.

The detailed operation of the prrdai nst al | procedure involves the following tasks:

38

Writing a PMDA

 Using default assignments, and interaction where ambiguity exists, determine the PMDA type (DSO or
daemon) and the IPC parameters, if any.

» Copy the $pmms_sour ce file, replacing symbolic references to SYMDOM by the desired numeric
domain number from domai n.

* Merge the PMDA's name space into the PCP name space at the non-leaf node identified by
$pms_nane.

« If any pmchart views can be found (files with names ending in “.pmchart”), copy these to the standard
directory (${ PCP_VAR DI R}/ confi g/ pnthart) with the“.pmchart” suffix removed.

 Create new help files from $hel p_sour ce after replacing symbalic references to SYMDOMby the
desired numeric domain number from domai n.

» Terminate the old daemon PMDA, if any.
e Usethe Makef i | e to build the appropriate executables.
« Add the PMDA specification to PMCD's configuration file (${ PCP_PMCDCONF_PATH}).

* Notify PMCD. To minimize the impact on the services PMCD provides, sending a SI GHUP to PMCD
forces it to reread the configuration file and start, restart, or remove any PMDAS that have changed
since thefile was last read. However, if the newly installed PMDA must run using a different privilege
level to PMCD then PMCD must be restarted. Thisis because PMCD runs unprivileged after initially
starting the PMDAs.

» Check that the metrics from the new PMDA are available.

Thereare some PMDA changesthat may trick PM CD into thinking nothing has changed, and not restarting
the PMDA. Most notable are changes to the PMDA executable. In these cases, you may need to explicitly
remove the PMDA as described in the section called “Removing a PMDA”, or more drastically, restart
PMCD asfollows:

${PCP_RC DI R}/ pcp start

The files ${ PCP_PVDAS_DI R}/ */ I nstal | provide a wedth of examples that may be used to
construct anew PMDA | nst al | script.

Upgrading a PMNS to Include Metrics from a New PMDA

When invoked with a- N command-line option, the PMDA | nst al | script may be used to update the
PMNS without installing the PMDA. Thisfunctionality israrely, if ever, used in modern versions of PCP,
but allows one to populate the local PMNS with the names of the performance metrics from a PMDA
installed on aremote host. The - N option can also install pmchart views useful on a monitoring system,
although this also israrely used now with each platforms package management tools handling this task.

Removing a PMDA

The simplest way to stop a PMDA from running, apart from killing the process, is to remove the entry
from ${ PCP_PMCDCONF_PATH} and signal PMCD (with SI GHUP) to reread its configuration file. To
completely remove a PMDA requires the reverse process of the installation, including an update of the
Performance Metrics Name Space (PMNS).

This typically involves a Renove script in the PMDA directory that uses the same common procedures
asthel nst al | script described the section called “Installing a PMDA”.

39

Writing a PMDA

The${ PCP_PMDAS DI R}/ */ Renpve files provide awealth of examplesthat may be used to construct
anew PMDA Renpve script.

Configuring PCP Tools

Most PCP tools have their own configuration file format for specifying which metricsto view or to log.
By using canned configuration files that monitor key metrics of the new PMDA, users can quickly seethe
performance of the target system, as characterized by key metricsin the new PMDA.

Any configuration files that are created should be kept with the PMDA and installed into the appropriate
directories when the PMDA isinstalled.

Aswith al PCP customization, some of the most valuable tools can be created by defining views, scenes,
and control-panel layouts that combine related performance metrics from multiple PMDAS or multiple
hosts.

Metrics suitable for on-going logging can be specified in templated pmlogger configuration files for
pmlogconf to automatically add to the pmlogger _daily recorded set; see the pmlogger (1), pmlogconf(1)
and pmlogger _daily(1) man pages.

Parameterized alarm configurations can be created using the pmieconf facilities; see the pmieconf(1)
and pmig(1) man pages.

40

Chapter 3. PMAPI--The Performance
Metrics API

This chapter describes the Performance Metrics Application Programming Interface (PMAPI) provided

with Performance Co-Pilot (PCP).

The PMAPI is a set of functions and data structure definitions that allow client applications to access
performance data from one or more Performance Metrics Collection Daemons (PMCDs) or from PCP

archive logs. The PCP utilities are all written using the PMAPI.

The most common use of PCP includes running performance monitoring utilities on a workstation (the
monitoring system) while performance data is retrieved from one or more remote collector systems by
a number of PCP processes. These processes execute on both the monitoring system and the collector
systems. The collector systems are typically servers, and are thetargetsfor the performanceinvestigations.

In the development of the PMAPI the most important question has been, “How easily and quickly will
this APl enable the user to build new performance tools, or exploit existing tools for newly available
performance metrics?” The PMAPI and the standard tools that use the PMAPI have enjoyed a symbiotic

evolution throughout the development of PCP.

It will be convenient to differentiate between code that uses the PMAPI and code that implements the
services of the PMAPI. The former will be termed “above the PMAPI” and the latter “below the PMAPI.”

Naming and Identifying Performance Metrics

Acrossall of the supported performance metric domains, there are alarge number of performance metrics.
Each metric has its own description, format, and semantics. PCP presents a uniform interface to these
metrics above the PMAPI, independent of the source of the underlying metric data. For example, the
performance metric hi nv. physnemhas asingle 32-bit unsigned integer value, representing the number
of megabytes of physical memory in the system, while the performance metric di sk. dev. t ot al has
one 32-bit unsigned integer value per disk spindle, representing the cumulative count of 1/0O operations
involving each associated disk spindle. These concepts are described in greater detail in the section called

“Domains, Metrics, and Instances”.

For brevity and efficiency, internally PCP avoids using namesfor performance metrics, and instead usesan
identification schemethat unambiguously associates asingleinteger with each known performance metric.
This integer is known as a Performance Metric Identifier, or PMID. For functions using the PMAPI, a

PMID is defined and manipulated with the typedef pni D.

Below the PMAPI, the integer value of the PMID has an internal structure that reflects the details of the

PMCD and PMDA architecture, as described in the section called “Metrics”.

Above the PMAPI, a Performance Metrics Name Space (PMNS) is used to provide a hierarchic
classification of external metric names, and a one-to-one mapping of external names to internal PMIDs.
A more detailed description of the PMNS can be found in the Performance Co-Pilot User's and

Administrator's Guide.

The default PMNS comes from the performance metrics source, either aPMCD process or a PCP archive.

This PMNS aways reflects the available metrics from the performance metrics source

41

PMAPI--The
Performance Metrics APl

Performance Metric Instances

When performance metric values are returned across the PMAPI to a requesting application, there may
be more than one value for a particular metric; for example, independent counts for each CPU, or each
process, or each disk, or each system call type, and so on. This multiplicity of valuesis not enumerated in
the Name Space, but rather when performance metrics are delivered across the PMAPI.

Thenctionof met ri ¢ i nst ances isrealy anumber of related concepts, as follows:
* A particular performance metric may have a set of associated values or instances.
e Theinstances are differentiated by an instance identifier.

» An instance identifier has an internal encoding (an integer value) and an external encoding (a
corresponding external name or label).

» The set of al possible instance identifiers associated with a performance metric on a particular host
constitutes an instance domain.

 Several performance metrics may share the same instance domain.

Consider Example 3.1, “Metrics Sharing the Same Instance Domain”:

Example 3.1. Metrics Sharing the Same Instance Domain

$ pminfo -f filesys.free

filesys.free
inst [1 or “/dev/disk0”] value 1803
inst [2 or “/dev/diskl"] value 22140
inst [3 or “/dev/disk2"] value 157938

The metric fi | esys. free has three vaues, currently 1803, 22140, and 157938. These values are
respectively associated with the instances identified by the internal identifiers 1, 2 and 3, and the externa
identifiers/ dev/ di sk0, / dev/ di sk1, and/ dev/ di sk2. These instances form an instance domain
that is shared by the performance metricsf i | esys. capacity,fil esys. used,fil esys. free,
fil esys. mountdir, andsoon.

Each performance metric is associated with an instance domain, while each instance domain may be
associated with many performance metrics. Each instance domain is identified by a unique value, as
defined by the following t ypedef declaration:

t ypedef unsigned | ong pm nDom

The special instance domain PM_| NDOM_NULL isreserved to indicate that the metric hasasingle value (a
singular instance domain). For example, the performance metric mem f r eenemalways has exactly one
value. Note that thisis semantically different to a performance metric likeker nel . per cpu. cpu. sys

that has a hon-singular instance domain, but may have only one value available; for example, on asystem
with a single processor.

In the results returned above the PMAPI, each individual instance within an instance domain isidentified
by aninternal integer instance identifier. The special instance identifier PM | N_NULL isreserved for the
single value in asingular instance domain. Performance metric values are delivered across the PMAPI as
aset of instance identifier and value pairs.

42

PMAPI--The
Performance Metrics APl

The instance domain of a metric may change with time. For example, a machine may be shut down, have
several disks added, and be rebooted. All performance metrics associated with the instance domain of
disk devices would contain additional values after the reboot. The difficult issue of transient performance
metrics means that repeated requests for the same PMID may return different numbers of values, or some
changesin the particular instance identifiersreturned. This means applications need to be aware that metric
instantiation is guaranteed to be valid only at the time of collection.

Note

Some instance domains are more dynamic than others. For example, consider the instance
domains behind the performance metrics pr oc. nenory. rss (one instance per process),
swap. free (one instance per swap partition) and ker nel . per cpu. cpu.intr (one
instance per CPU).

Current PMAPI Context

When performance metrics are retrieved acrossthe PMAPI, they are delivered in the context of aparticular
source of metrics, apoint intime, and aprofile of desired instances. Thismeansthat the application making
the request has already negotiated across the PMAPI to establish the context in which the request should
be executed.

A metric's source may be the current performance data from a particular host (alive or real-time source),
or a set of archive logs of performance data collected by pmlogger at some remote host or earlier time
(aretrospective or archive source). The metric's source is specified when the PMAPI context is created
by calling the pmNewContext function. This function returns an opaque handle which can be used to
identify the context.

The collection time for a performance metric is aways the current time of day for a real-time source, or
current position for an archive source. For archives, the collection time may be set to an arbitrary time
within the bounds of the set of archive logs by calling the pmSetM ode function.

Thelast component of aPMAPI context is an instance profile that may be used to control which particular
instances from an instance domain should be retrieved. When anew PMAPI context is created, the initial
State expresses an interest in all possible instances, to be collected at the current time. Theinstance profile
can be manipulated using the pmAddPr ofile and pmDel Pr ofile functions.

The current context can be changed by passing a context handle to pmUseContext. If a live context
connection fails, the pmReconnectContext function can be used to attempt to reconnect it.

Performance Metric Descriptions

For each defined performance metric, there is associated metadata encoded in a performance metric
description (pmDesc structure) that describes the format and semantics of the performance metric. The
pmDesc structure, in Example 3.2, “ pmDesc Structure”, provides all of the information required to
interpret and manipulate a performance metric through the PMAPI. It has the following declaration:

Example 3.2. pmDesc Structure

/* Performance Metric Descriptor */
typedef struct {
pm D pm d; /* unique identifier */

i nt type; /* base data type (see bel ow) */
pm nDom i ndom /* instance domain */
i nt sem /* semantics of value (see below */

43

PMAPI--The
Performance Metrics APl

prmunits units; [/* dinmension and units (see bel ow) */
} pnDesc;

Thet ype field in the pnDesc structure describes various encodings of a metric's value. Its value will
be one of the following constants:

/* pmDesc.type - data type of netric values */

#def i ne PM TYPE_NOSUPPORT -1 /* not in this version */

#defi ne PM TYPE 32 /* 32-bit signed integer */

#defi ne PM TYPE U32 /* 32-bit unsigned integer */

#defi ne PM TYPE 64 /* 64-bit signed integer */

#defi ne PM TYPE U64 /* 64-bit unsigned integer */

#defi ne PM TYPE FLOAT /* 32-bit floating point */

#defi ne PM TYPE DOUBLE /* 64-bit floating point */

#defi ne PM TYPE_STRI NG /* array of char */

#defi ne PM TYPE _AGGREGATE 7 /* arbitrary binary data */

#defi ne PM TYPE AGGREGATE STATIC 8 /* static pointer to aggregate */
#defi ne PM TYPE_EVENT 9 /* packed pnEvent Array */

#defi ne PM. TYPE UNKNOAWN 255 /* used in pnial ueBl ock not pnDesc */

O WNEO

By convention PM_TYPE_STRI NGisinterpreted as a classic C-style null byte terminated string.

Event records are encoded as a packed array of strongly-typed, well-defined records within apmResul t
structure, using a container metric with avalue of type PM_TYPE_EVENT.

If the value of a performance metric is of type PM TYPE STRI NG, PM TYPE AGGREGATE,
PM TYPE_AGGREGATE_STATI C, or PM TYPE_EVENT, the interpretation of that value is unknown
to many PCP components. In the case of the aggregate types, the application using the value and the
Performance Metrics Domain Agent (PMDA) providing the value must have some common understanding
about how the valueisstructured and interpreted. Strings can be manipul ated using the standard C libraries.
Event records contain timestamps, event flags and event parameters, and the PMAPI provides support for
unpacking an event record - see the pmUnpack EventRecor ds(3) man page for details. Further discussion
on event metrics and event records can be found in the section called “ Performance Event Metrics’.

PM _TYPE_NGOSUPPORT indicates that the PCP collection framework knows about the metric, but the
corresponding service or application is either not configured or is at arevision level that does not provide
support for this performance metric.

The semantics of the performance metric is described by the semfield of apnDesc structure and uses
the following constants:

/* pnDesc.sem - semantics of netric values */

#define PM SEM COUNTER 1 /* cumrul ative count, nobnotonic increasing */
#define PM SEM I NSTANT 3 /* instantaneous val ue conti nuous donain */
#define PM SEM DI SCRETE 4 /* instantaneous val ue discrete donmain */

Each value for a performance metric is assumed to be drawn from a set of values that can be described in
terms of their dimensionality and scale by a compact encoding, as follows:

» The dimensionality is defined by a power, or index, in each of three orthogonal dimensions: Space,
Time, and Count (dimensionless). For example, 1/0 throughput is Space. Time', while the running
total of system calls is Count?, memory allocation is Spacel, and average service time per event is
Time!.Count™.

* In each dimension, a number of common scale values are defined that may be used to better encode
rangesthat might otherwise exhaust the precision of a32-hit value. For example, ametricwithdimension
Space’. Time* may have values encoded using the scale megabytes per second.

44

PMAPI--The
Performance Metrics APl

This information is encoded in the pmni t s data structure, shown in Example 3.3, “ pnlni ts and
pnDesc Structures’. It isembedded in the pnDesc structure ;

The structures are as follows:

Example 3.3. pnni t s and pnDesc Structures

~

* 0% %k X %k F X X X F

Encodi ng for the units (di nensi ons and
scal e) for Perfornmance Metric Val ues

For exanple, a pnmnits struct of
{ 1, -1, 0, PM_SPACE MBYTE, PM TIME_SEC, O }
represents Miytes/sec, while
{0 1, -1, 0, PMTIME_HOUR, 6 }
represents hours/mllion-events
/
typedef struct {
i nt pad: 8;
i nt scal eCount:4; /* one of PM COUNT_* bel ow */
int scaleTine:4; [/* one of PMTIME * bel ow */
i nt scal eSpace: 4; /* one of PM SPACE * bel ow */
[
[

nt di mCount : 4; /* event dinmension */
nt di niri ne: 4; /* time dimension */
i nt di nSpace: 4; /* space di nensi on
} pnlnits; /* dinensional units and scal e of value */

/* pnnits. scal eSpace */

#defi ne PM SPACE BYTE O /* bytes */

#defi ne PM SPACE KBYTE 1 /* Kil obytes (1024) */
#defi ne PM SPACE MBYTE 2 /* Megabytes (102472) */
#defi ne PM SPACE GBYTE 3 /* G gabytes (102473) */
#defi ne PM SPACE TBYTE 4 /* Terabytes (102474) */
/* pnmnits.scal eTine */

#define PMTIME NSEC O /* nanoseconds */

#defi ne PM TI ME_USEC 1 /* mcroseconds */

#defi ne PM Tl ME_MSEC 2 /* mlliseconds */

#defi ne PM TI ME_SEC 3 /* seconds */

#define PMTIME M N 4 /* mnutes */

#defi ne PM TI ME_ HOUR 5 /* hours */

/*
* pnnits.scal eCount (e.g. count events, syscalls,
* interrupts, etc.) -- these are sinply powers of 10,

* and not enumnerated here.

* e.g. 6 for 1076, or -3 for 107-3
*/

#define PM COUNT_ONE O /* 1 */

Performance Metrics Values

An application may fetch (or store) values for a set of performance metrics, each with a set of associated
instances, using asingle pmFetch (or pmStor e) function call. To accommodate this, values are delivered
across the PMAPI in the form of a tree data structure, rooted at a pResul t structure. This encoding
isillustrated in Figure 3.1, “A Structured Result for Performance Metrics from pmFetch”, and uses the
component data structuresin Example 3.4, “ pmValueBlock and pmValue Structures”’:

45

PMAPI--The
Performance Metrics APl

Example 3.4. pmValueBlock and pmValue Structures

typedef struct {

int inst; /* instance identifier */
uni on {
pmval ueBl ock *pval ; /* pointer to val ue-block */
i nt I val ; /* integer value insitu */
} val ue;
} pnval ue;

Figure 3.1. A Structured Result for Performance Metricsfrom pmFetch

pmVaueSet
pmResult pmid
timest numval (1)
m an_]p " pmV alueBlock
numpmid (N) valtmt ype | length
inst
value
pmV alueSet
pmid
numval (M)
pmV/ alueSat[N] int (in-situ)
valfmt
inst value
pmVa.\I"ue[M]
inst

The internal instance identifier is stored in thei nst element. If avalue for a particular metric-instance
pair is a 32-hit integer (signed or unsigned), then it will be stored inthe | val element. If not, the value
will beinapnVal ueBl ock structure, as shown in Example 3.5, “pnial ueBl ock Structure’, and will
be located viapval :

The pnVal ueBl ock structureisasfollows:
Example 3.5. pmval ueBIl ock Structure

typedef struct {

unsi gned i nt vlen : 24; /* bytes for vtype/vlen + vbuf */
unsi gned i nt vtype : 8; /* value type */
char vbuf[1]; /* the value */

} pnval ueBl ock;

The length of the pnival ueBl ock (including the vt ype and vl en fields) is stored in vl en. Despite
the prototype declaration of vbuf , thisarray really accommodates vl en minus sizeof(vl en) bytes. The
vt ype field encodes the type of the valuein thevbuf [] array, and isone of the PM_TYPE_* macros
defined in <pcp/ pmapi . h>.

A pnVal ueSet structure, as shown in Example 3.6, “ pmVal ueSet Structure”, contains all of the
values to be returned from pmFetch for a single performance metric identified by the pmi d field.

46

PMAPI--The
Performance Metrics APl

Example 3.6. pnval ueSet Structure

typedef struct {

pm D pmi d; /[* metric identifier */

i nt nunval ; /* nunber of values */

i nt val fnt; /* value style, insitu or ptr */
pnval ue vlist[1]; /* set of instances/values */

} pnVal ueSet ;

If positive, the numval field identifies the number of value-instance pairsinthe vl i st array (despite
the prototype declaration of size 1). If nunval is zero, there are no values available for the associated
performance metric and vl i st [0] is undefined. A negative value for nunval indicates an error
condition (see the pmErr Str(3) man page) and vl i st [0] isundefined. Theval f nt field has the value
PM VAL _| NSI TU to indicate that the values for the performance metrics should be located directly via
thel val member of theval ue union embedded intheelementsof vl i st ; otherwise, metric values are
located indirectly viathe pval member of theelementsof vl i st .

ThepnResul t structure, as shown in Example 3.7, “ pnResul t Structure”, contains atime stamp and
an array of nunpm d pointersto pnival ueSet .

Example3.7. pnResul t Structure

/* Result returned by pnFetch() */
typedef struct {

struct tineval tinestanp; /* stanped by collector */
i nt nunpm d; /* nunber of PMDs */
pmval ueSet *vset[1]; /* set of value sets */

} pnResult

Thereisone pnVal ueSet pointer per PMID, with a one-to-one correspondence to the set of requested
PMIDs passed to pmFetch.

Along with the metric values, the PMAPI returnsatime stamp with each pnResul t that servestoidentify
when the performance metric values were collected. The time isin the format returned by gettimeofday
andistypically very closeto thetime when the metric valueswere extracted from their respective domains.

Note

There is a question of exactly when individual metrics may have been collected, especially
given their origin in potentialy different performance metric domains, and variability in metric
updating frequency by individual PMDAs. PCP uses a pragmatic approach, in which the
PMAPI implementation returns all metrics with values accurate as of the time stamp, to the
maximum degree possible, and PMCD demands that all PMDAS deliver values within a small
realtime window. The resulting inaccuracy is small, and the additional burden of accurate
individual timestamping for each returned metric value is neither warranted nor practical (from
an implementation viewpoint).

The PMAPI provides functions to extract, rescale, and print values from the above structures; refer to the
section called “PMAPI Ancillary Support Services’.

Performance Event Metrics

In addition to performance metric values which are sasmpled by monitor tools, PCP supports the notion
of performance event metrics which occur independently to any sampling frequency. These event metrics

47

PMAPI--The
Performance Metrics APl

(PM_TYPE_EVENT) are delivered using a novel approach which allows both sampled and event trace
data to be delivered via the same live wire protocol, the same on-disk archive format, and fundamentally
using the same PMAPI services. In other words, a monitor tool may be sample and trace, simultaneously,
using the PMAPI services discussed here.

Event metrics are characterised by certain key properties, distinguishing them from the other metric types
(counters, instantaneous, and discrete):

» Occur at times outside of any monitor tools control, and often have a fine-grained timestamp associated
with each event.

» Often have parameters associated with the event, which further describe each individual event, asshown
in Figure 3.2, “Sample write(2) syscall entry point encoding”.

» May occur in very rapid succession, at rates such that both the collector and monitor sides may not be
able to track al events. This property requires the PCP protocol to support the notion of "dropped” or
"missed" events.

» There may be inherent relationships between events, for example the start and commit (or rollback)
of a database transaction could be separate events, linked by a common transaction identifier (which
would likely also be one of the parameters to each event). Begin-end and parent-child relationships are
relatively common, and these properties require the PCP protocol to support the notion of "flags' that
can be associated with events.

These differences aside, the representation of event metrics within PCP shares many aspects of the other
metric types - event metrics appear in the Name Space (as do each of the event parameters), each has an
associated Performance Metric Identifier and Descriptor, may have an instance domain associated with
them, and may be recorded by pmlogger for subsequent replay.

Figure 3.2. Samplewrite(2) syscall entry point encoding

write (7, "It was the best of times, ...", 4096);

PCP Metrics:
event.syscall.write_entry (PM_TYPE_EVENT)
event.syscall.params.fd (PM_TYPE_32)
event.syscall.params.user_buffer (PM_TYPE_AGGREGATE)
event.syscall.params.buffer_size (PM_TYPE_64, PM_SPACE_BYTE)
event.syscall.params.pid (PM_TYPE_32)

Event metrics and their associated information (parameters, timestamps, flags, and so on) are delivered
to monitoring tools alongside sampled metrics as part of the pmResult structure seen previously in
Example 3.7, “ pnResul t Structure”.

The semantics of pmFetch(3) specifying an event metric PMID are such that all events observed on the
collector since the previous fetch (by this specific monitor client) are to transfered to the monitor. Each
event will have the metadata described earlier encoded with it (timestamps, flags, and so on) for each
event. The encoding of the series of events involves a compound data structure within the pmValueSet

48

PMAPI--The
Performance Metrics APl

associated with the event metric PMID, asillustrated in Figure 3.3, “ Result Format for Event Performance
Metrics from pmFetch”.

Figure 3.3. Result Format for Event Performance Metrics from pmFetch

pmEventRecord

pmvalueSet pmEventArray
pmResult LT
- numval (1) type | Iength
numpmid (N) = valf‘ml nrecords (X)
pmV alueSet
pmid
pmValu;Sa[N] Ve) ()
valfmt e
inst | pmEventRecord[X] pm EventRecord
pmVa-il-Qe[M] -
inst ‘

At the highest level, the "series of events' is encapsulated within a pmEventArray structure, as in
Example 3.8, “ pmEventArray and pmEventRecord Structures’:

Example 3.8. pmEventArray and pmEventRecord Structures

typedef struct {

___pnili nmeval er _ timestanp; /* 2 x 32-bit tinmestanp format */
unsi gned int er _flags; /* event record characteristics */
i nt er _npar ans; /* nunber of ea parani] entries */

prnEvent Par anet er er_parani 1] ;
} pnEvent Recor d;

typedef struct {

unsi gned int ea len : 24; [|* bytes for type/len + records */
unsi gned int ea_type : 8; /* value type */

i nt ea_nrecords; /* nunber of ea record entries */
prEvent Recor d ea_record[1];

} pnEvent Array;

Note that in the case of dropped events, the pmEventRecord structure is used to convey the number of
events dropped - er _f | ags is used to indicate the presence of dropped events, and er _npar ans is
used to hold a count. Unsurprisingly, the parameters (er _par am will be empty in this situation.

The pnEvent Par anet er structureisasfollows:

Example 3.9. pnEvent Par anet er Structure

typedef struct {

pm D ep_pm d; [* paraneter identifier */
unsi gned i nt ep_type; /* val ue type */
i nt ep_l en; /* bytes for type/len + vbuf */

49

PMAPI--The
Performance Metrics APl

/* actual value (vbuf) here */
} pnEvent Par anet er;

Event Monitor Considerations

In order to simplify the decoding of event record arrays, the PMAPI provides the
pmUnpack EventRecor ds function for monitor tools. This function is passed a pointer to a pmValueSet
associated with an event metric (within apmResult) from apmFetch(3). For agiven instance of that event
metric, it returns an array of "unpacked" pmResult structures for each event.

The control information (flags and optionally dropped events) is included as derived metrics within
each result structure. As such, these values can be queried similarly to other metrics, using their names
- event.fl ags and event. m ssed. Note that these metrics will only exist after the first call to
pmUnpack EventRecor ds.

An example of decoding event metrics in this way is presented in Example 3.10, “Unpacking Event
Records from an Event Metric pnval ueSet ”:

Example 3.10. Unpacking Event Recordsfrom an Event Metric pnial ueSet
enum { event_flags = 0, event_m ssed =1 };

static char *metadata[] = { "event.flags", "event.m ssed" };
static pm D nmetapm d[2];

voi d dunp_event (pnval ueSet *vsp, int idx)

{
prnResul t **res;
i nt r, sts, nrecords;
nrecords = pmnpackEvent Records(vsp, idx, &es);
if (nrecords < 0)
fprintf(stderr, " pnlnpackEvent Records: %s\n", pnErrStr(nrecords));
el se
printf(" % event records\n", nrecords);
if ((sts = pniookupNane(2, &netadata, &metapmid)) < 0) {
fprintf(stderr, "Event metadata error: %\n", pnErrStr(sts));
exit(1l);
}
for (r = 0; r < nrecords; r++)
dunp_event _record(res, r);
if (nrecords >= 0)
pnFreeEvent Resul t (res);
}
voi d dunp_event _record(pnResult *res, int r)
{

i nt p;

__pnPrint Stanp(stdout, &res[r]->tinestanp);
if (res[r]->nunmpmd == 0)
printf(" ==> No paraneters\n");

50

PMAPI--The
Performance Metrics APl

for (p =0; p < res[r]->numpmd; p++) {
pI’TV8.| ueSet *vsp = res[r] ->vset[p];

if (vsp->numval < 0) {
int error = vsp->nunval ;
printf("%: %\n", pm DStr(vsp->pmd), pnErrStr(error));
} else if (vsp->pnmid == netapm d[event _flags]) {
int flags = vsp->vlist[0].value.lval;
printf(" flags Ox%& (%)\n", flags, pnEventFl agsStr(flags));

} else if (vsp->pnmid == netapm d[event _m ssed]) {
int count = vsp->vlist[0].value.lval;
printf(" ==> %l m ssed event records\n", count);

} else {
dunp_event _record_par anet ers(vsp);

}

}
}
voi d dunp_event _record_par anet er s(pnmval ueSet *vsp)
{
prmDesc desc;
char *name;
i nt sts, j;
if ((sts = pniookupDesc(vsp->pmd, &desc)) < 0) {
fprintf(stderr, "pnLookupDesc: %\n", pnErrStr(sts));
} else
if ((sts = pnmNanel D(vsp->pm d, &nane)) < 0) {
fprintf(stderr, "pmNanelD: %\n", pnErrStr(sts));
} else {

printf("paranmeter 9", nane);

for (j = 0; j < vsp->numval; j++) {
pnval ue *vp = &vsp->vlist[j];
if (vsp->numval > 1) {

printf("[%l]", vp->inst);
pnPrint Val ue(stdout, vsp->valfnt, desc.type, vp, 1);
putchar('\n");
}
}
free(name);
}
}

Event Collector Considerations

There is a feedback mechanism that is inherent in the design of the PCP monitor-collector event metric
value exchange, which protects both monitor and collector components from becoming overrun by high
frequency event arrivals. It isimportant that PMDA developers are aware of this mechanism and all of

itsimplications.

Monitor tools can query new event arrival on whatever schedule they choose. There are no guarantees that
thisisafixed interval, and no way for the PMDA to attempt to dictate thisinterval (nor should there be).

Asaresult, aPMDA that provides event metrics must;

51

PMAPI--The
Performance Metrics APl

e Track individual client connections using the per-client PMDA extensions (PMDA_INTERFACE 5or
|ater).

* Queue events, preferably in a memory-efficient manner, such that each interested monitor tool (there
may be more than one) isinformed of those events that arrived since their last request.

» Control the memory allocated to in-memory event storage. If monitors are requesting new events too
slowly, compared to event arrival on the collector, the "missed events' feedback mechanism must be
used to inform the monitor. This mechanism is also part of the model by which a PMDA can fix the
amount of memory it uses. Once a fixed space is consumed, events can be dropped from the tail of the
queue for each client, provided a counter isincremented and the client is subsequently informed.

Note

It isimportant that PMDASs are part of the performance solution, and not part of the performance
problem! With event metrics, this is much more difficult to achieve than with counters or other
sampled values.

Thereiscertainly eleganceto thisapproach for event metrics, and theway they dovetail with other, sasmpled
performance metricsis uniqueto PCP. Notice also how the scheme naturally allows multiple monitor tools
to consume the same events, no matter what the source of events is. The downside to this flexibility is
increased complexity in the PMDA when event metrics are used.

This complexity comesin the form of event queueing and memory management, aswell as per-client state
tracking. Routines are available as part of the pcp_pmda library to assist, however - refer to the man page
entries for pmdaEventNewQueue(3) and pmdaEventNewClient(3) for further details.

One final set of helper APIs is available to PMDA developers who incorporate event metrics.
There is a need to build the pmEventArray structure, introduced in Example 3.8, “ pmEventArray
and pmEventRecord Structures’. This can be done directly, or using the helper routine
pmdaEventNewArray(3). If the latter, simpler model is chosen, the closely related routines
pmdaEventAddRecord, pmdaEventAddParam and pmdaEventAddMissedRecord would also
usualy be used.

Depending on the nature of the events being exported by aPMDA, it can be desirable to perform filtering
of events on the collector system. This reduces the amount of event traffic between monitor and collector
systems (which may be filtered further on the monitor system, before presenting results). Some PMDASs
have had success using the pmStor e(3) mechanism to allow monitor tools to send afilter to the PMDA -
using either a specia control metric for the store operation, or the event metric itself. The filter sent will
depend on the event metric, but it might be aregular expression, or atracing script, or something else.

This technique has also been used to enable and disable event tracing entirely. It is often appropriate to
make use of authentication and user credentials when providing such afacility (PMDA_INTERFACE_6
or later).

PMAPI Programming Style and Interaction

The following sections describe the PMAPI programming style:
» Variable length argument and resultslists
» Python specific issues

e PMAPI error handling

52

PMAPI--The
Performance Metrics APl

Variable Length Argument and Results Lists

All arguments and results involving a “list of something” are encoded as an array with an associated
argument or function value to identify the number of elementsin the array. This encoding scheme avoids
both thevar ar gs approach and sentinel-terminated lists. Where the size of aresult is known at thetime
of acall, it isthe caller's responsibility to alocate (and possibly free) the storage, and the called function
assumes that the resulting argument is of an appropriate size.

Where a result is of variable size and that size cannot be known in advance (for example,
pmGetChildren, pmGetlnDom, pmNamelnDom, pmNamel D, pmL ookupText, and pmFetch), the
underlying implementation uses dynamic allocation through malloc in the called function, with the caller
responsible for subsequently calling fr ee to release the storage when no longer required. In the case of the
result from pmFetch, thereisafunction (pmFreeResult) to release the storage, due to the complexity of
the data structure and the need to make multiple calls to free in the correct sequence. As a general rule,
if the called function returns an error status, then no allocation is done, the pointer to the variable sized
result is undefined, and free or pmFreeResult should not be called.

Python Specific Issues

A pcp client may be written in the python language by making use of the python bindingsfor PMAPI. The
bindings use the python ctypes module to provide an interface to the PMAPI C language data structures.
The primary imports that are needed by aclient are:

 cpmapi which provides access to PMAPI constants
i mport cprmapi as c_api

» pmapi which provides accessto PMAPI functions and data structures
frompcp i nport pmapi

» pmErr which provides access to the python bindings exception handler
from pcp. pmapi inport pnErr

» pmgui which provides access to PMAPI record mode functions
from pcp inport ppngui

Creating and destroying a PMAPI context in the python environment is done by creating and destroying
an object of the pmapi class. Thisisdonein one of two ways, either directly:

context = prmapi . pnCont ext ()

or by automated processing of the command line arguments (refer to the pmGetOptions man page for

grester detail).
options = pmapi.pnmOptions(...)
context = pnapi.pnContext.fronmOpti ons(options, sys.argv)

Most PMAPI C functions have python equivalents with similar, although not identical, call signatures.
Some of the python functions do not return native python types, but instead return native C types wrapped
by the ctypes library. In most cases these types are opague, or nearly so; for example pni d:

pmd
desc

cont ext . pnLookupName(" nmem freenem')
cont ext . pnLookupDescs(pm d)

53

PMAPI--The
Performance Metrics APl

result = context. pnfFetch(pm d)

See the comparison of a standalone C and python client application in Example 3.23, “PMAPI Error
Handling”.

PMAPI Error Handling

Where error conditions may arise, the functionsthat compose the PMAPI conform to asingle, smpleerror
notification scheme, as follows:

» Thefunction returnsani nt . Values greater than or equal to zero indicate no error, and perhaps some
positive status: for example, the number of items processed.

» Valueslessthan zero indicate an error, as determined by aglobal table of error conditions and messages.

A PMAPI library function along the lines of strerror is provided to trandate error conditions into error
messages; see the pmErrStr(3) and pmErr Str_r(3) man pages. The error condition is returned as the
function value from a previous PMAPI call; thereisno global error indicator (unlike er r no). Thisisto
accommodate multi-threaded performance tools.

The available error codes may be displayed with the following command:

prerr -1

Where possible, PMAPI routines are made as tolerant to failure as possible. In particular, routines which
deal with compound data structures - results structures, multiple name lookups in one call and so on, will
attempt to return all data that can be returned successfully, and errors embedded in the result where there
were (partial) failures. In such cases a negative failure return code from the routine indicates catastrophic
failure, otherwise success is returned and indicators for the partial failures are returned embedded in the
results.

PMAPI Procedural Interface

The following sections describe all of the PMAPI functions that provide access to the PCP infrastructure
on behalf of aclient application:

* PMAPI Name Space services

* PMAPI metric description services
* PMAPI instance domain services
* PMAPI context services

* PMAPI timezone services

* PMAPI metrics services

* PMAPI fetchgroup services

* PMAPI record-mode services

* PMAPI archive-specific services

PMAPI--The
Performance Metrics APl

* PMAPI time control services

* PMAPI ancillary support services

PMAPI Name Space Services

The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) Name Space services.

pmGetChildren Function

i nt pntet Chil dren(const char*nane, char***of f spring)
Pyt hon:
[namel, nane2...] = pntet Chil dren(nane)

Given afull pathnameto anodein the current PMNS, asidentified by nan®e, return through of f spri ng
alist of the relative names of all the immediate descendents of nane in the current PMNS. As a special
case, if nane isan empty string, (that is, " " but not NULL or (char *) 0), the immediate descendents
of theroot node in the PMNS are returned.

For the python bindings a tuple containing the relative names of all the immediate descendents of nane
in the current PMNS s returned.

Normally, pmGetChildren returns the number of descendent names discovered, or avalue lessthan zero
for an error. The value zero indicates that the nane isvalid, and associated with aleaf nodein the PMNS.

The resulting list of pointers (of f spri ng) and the values (relative metric names) that the pointers
reference are allocated by pmGetChildren with asingle call to malloc, and it is the responsibility of the
calertoissueafree(of f spri ng) system call to release the space when it is no longer required. When
the result of pmGetChildren isless than one, of f spri ng is undefined (no space is allocated, and so
calling freeis counterproductive).

The python bindingsreturn atuple containing therel ative names of all theimmediate descendentsof nane,
where nane isafull pathname to anode in the current PMNS.

pmGetChildrenStatus Function

i nt pntet Chil drenStatus(const char *name, char ***offspring, int **status)
Pyt hon:
([namel, name2...],[statusl, status2...]) = pnCet Chil drenStatus(namne)

The pmGetChildrenStatus function is an extension of pmGetChildren that optionally returns status
information about each of the descendent names.

Given a fully qualified pathname to a node in the current PMNS, as identified by nane,
pmGetChildrenStatus returns by means of of f spri ng alist of the relative names of al of the
immediate descendent nodes of nare in the current PMNS. If name isthe empty string (*”), it returns
the immediate descendents of the root node in the PMNS.

If st at us isnot NULL, then pmGetChildrenStatus also returns the status of each child by means of
st at us. Thisrefersto either aleaf node (with value PMNS_LEAF_STATUS) or a hon-leaf node (with
value PMNS_NONLEAF_STATUS).

Normally, pmGetChildrenStatusreturnsthe number of descendent names discovered, or elseavalueless
than zero to indicate an error. The value zero indicates that name is avalid metric name, being associated
with aleaf nodein the PMNS.

55

PMAPI--The
Performance Metrics APl

The resulting list of pointers (of f spri ng) and the values (relative metric names) that the pointers
reference are allocated by pmGetChildrenStatus with asingle call to malloc, and it is the responsibility
of the caller to free(of f spri ng) to release the space when it is no longer required. The same holds true
for the st at us array.

The python bindings return a tuple containing the relative names and statuses of all the immediate
descendents of nane, where nane isafull pathname to anodein the current PMNS.

pmGetPMNSLocation Function

i nt pnet PMNSLocat i on(voi d)
Pyt hon:
int loc = pmGet PMNSLocat i on()

If an application needsto know wheretheorigin of aPMNSis, pmGetPM NSL ocation returnswhether itis
anarchive (PMNS_ARCHI VE), alocal PMNSfile (PMNS_LOCAL), or aremote PMCD (PMNS_REMOTE).
Thisinformation may be useful in determining an appropriate error message depending on PMNS location.

The python bindings return whether a PMNS is an archive cpmapi . PMNS_ARCHI VE, alocal PMNS
filecpmapi . PMNS_LOCAL, or aremote PMCD cpmapi . PMNS_REMOTE. The constants are available
by importing cpmapi.

pmLoadNameSpace Function

i nt pnLoadNameSpace(const char *fil enane)
Pyt hon:
i nt status = prmLoadNanmeSpace(fil enane)

In the highly unusual situation that an application wantsto force using alocal Performance Metrics Name
Space (PMNS), the application can load the PMNS using pmL cadNameSpace.

Thef i | enane argument designates the PMNS of interest. For applications that do not require atailored
Name Space, the special value PM_NS_DEFAULT may be used for f i | enane, to force a default local
PMNS to be established. Externally, aPMNS is stored in an ASCII format.

The python bindings load alocal tailored Name Space fromf i | enane.

Note

Do not use this routine in monitor tools. The distributed PMNS services avoid the need for a
local PMNS; so applications should not use pmL cadNameSpace. Without this call, the default
PMNS isthe one at the source of the performance metrics (PMCD or an archive).

pmLookupName Function

i nt pnLookupNane(int nunpmid, char *nanelist[], pmiD pmdlist[])
Pyt hon:

c uint pmd []
c uint pmd []

= pnlLookupName(" Metri cNanme")

= prLookupNane((" Metri cNanel", "MetricNanme2", ...))
Givenalistinnanel i st containingnunpm d full pathnamesfor performance metrics from the current
PMNS, pmL ookupNamereturnsthelist of associated PMIDsthroughthepnmi dl i st parameter. Invalid
metrics names are trandated to the error PMID value of PM | D_NULL.

56

PMAPI--The
Performance Metrics APl

The result from pmLookupName is the number of names translated in the absence of errors, or an
error indication. Note that argument definition and the error protocol guarantee a one-to-one relationship
between the elements of nanel i st and pmi dl i st ; both lists contain exactly nunpmi d elements.

The python bindings return an array of associated PMIDs corresponding to a tuple of Met ri cNanes.
Thereturned pmi d tupleis passed to pmL ookupDescs and pmFetch.

pmNameAll Function

i nt pnNanmeAl | (pm D pmid, char ***naneset)
Pyt hon:
[namel, nane2...] = pnNanmeAll (pm d)

Given a performance metric ID in pni d, pmNameAll determines all the corresponding metric names, if
any, inthe PMNS, and returns these through naneset .

The resulting list of pointers nameset and the values (relative names) that the pointers reference are
allocated by pmNameAll with asingle call to malloc. Itisthe caller'sresponsibility to call freeand release
the space when it is no longer required.

In the absence of errors, pmNameAll returns the number of namesin nameset.

For many PMNS instances, there is a 1:1 mapping between a name and a PMID, and under these
circumstances, pmNamel D provides asimpler interfacein the absence of duplicate namesfor a particular
PMID.

The python bindings return a tuple of all metric names having thisidentical pmi d.

pmNamelD Function

i nt pmNanel D(pm D pmid, char **name)
Pyt hon:
"metric nanme" = pnNanel D{ pmi d)

Given a performance metric ID in pri d, pmNamel D determines the corresponding metric name, if any,
in the current PMNS, and returns this through nane.

In the absence of errors, pmNamel D returns zero. The nane argument is a null byte terminated string,
allocated by pmNamel D using malloc. It is the caller's responsibility to call free and release the space
when it isno longer required.

The python bindings return a metric name corresponding to apmi d.

pmTraversePMNS Function

i nt pnilraver sePMNS(const char *nanme, void (*donetric)(const char *))
Pyt hon:
int status = pniraver sePMNS(nanme, traverse_cal |l back)

The function pmTraversePMNS may be used to perform a depth-first traversal of the PMNS. The
traversal starts at the node identified by narre --if nane isan empty string, the traversal starts at the root
of the PMNS. Usually, nane would be the pathname of a non-leaf node in the PMNS.

For each leaf node (actual performance metrics) found in the traversal, the user-supplied function
dometric is caled with the full pathname of that metric in the PMNS as the single argument; this
argument is a null byte-terminated string, and is constructed from a buffer that is managed internally to

57

PMAPI--The
Performance Metrics APl

pmTraver sePMNS. Consequently, the value is valid only during the call to dometric--if the pathname
needs to be retained, it should be copied using strdup before returning from dometric; see the strdup(3)
man page.

The python bindings perform a depth first traversal of the PMNS by scanning nanmespace, depth first,
and call apython functiont r aver se_cal | back for each node.

pmUnloadNameSpace Function

i nt pnlnl oadNaneSpace(voi d)
Pyt hon:
prmnLoadNaneSpace(" NanmeSpace")

If alocal PMNS was loaded with pmL oadNameSpace, calling pmUnloadNameSpace frees up the
memory associated with the PMNS and force all subsequent Name Space functions to use the distributed
PMNS. If pmUnloadNameSpaceis called before calling pmL oadNameSpace, it has no effect.

Asdiscussed in the section called “ pmL oadNameSpace Function” there are few if any situations where
clients need to call this routine in modern versions of PCP.

PMAPI Metrics Description Services

The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) metric description services.

pmLookupDesc Function

i nt pniLookupDesc(pm D pm d, pnDesc *desc)
Pyt hon:

pmDesc* pndesc = p
(pnDesc* pndesc)|[]
(pnDesc* pndesc)|[]

nmLookupDesc(c_uint pm d)
= pnLookupDescs(c_uint pmds[N])
= pnLookupDescs(c_ui nt pmid)
GivenaPerformance Metric Identifier (PMID) aspm d, pmL ookupDesc returnstheassociated pnDesc
structure through the parameter desc from the current PMAPI context. For more information about
prmDesc, seethe section called “Performance Metric Descriptions’.

The python bindings return the metric description structure pnDes ¢ correspondingto pmi d. Thereturned
prdesc is passed to pmExtractValue and pmL ookuplnDom. The python bindings provide an entry
pmL ookupDescsthat is similar to pmLookupDesc but does a metric description lookup for each element
inaPMID array pmi ds.

pmLookuplnDomText Function

i nt pnLookupl nDonrext (pm nDom i ndom int |evel, char **buffer)
Pyt hon:
"metric description" = pmGetlnDonText (pnmDesc pndesc)

Provided the source of metrics from the current PMAPI context is a host, retrieve descriptive text about
the performance metrics instance domain identified by i ndom

Thel evel argument should be PM TEXT ONELI NE for a one-line summary, or PM TEXT HELP for
a more verbose description suited to a help dialogue. The space pointed to by buf f er is alocated in
pmLookuplnDomText with malloc, and it is the responsibility of the caller to free unneeded space; see
the malloc(3) and free(3) man pages.

58

PMAPI--The
Performance Metrics APl

The help text files used to implement prLookupl nDonText are often created using newhelp and
accessed by the appropriate PMDA responseto requestsforwarded to the PMDA by PMCD. Further details
may be found in the section called “PMDA Help Text”.

The python bindings lookup the description text about the performance metrics pmDesc pndesc.
The default is a one line summary; for a more verbose description add an optional second parameter
cpmapi . PM_TEXT_HELP. The constant is available by importing cpmapi.

pmLookupText Function

i nt pniLookupText(pm D pmd, int |evel, char **buffer)
Pyt hon:
"metric description" = prmLookupText(c_uint pmd)

Provided the source of metrics from the current PMAPI context is a host, retrieve descriptive text about
the performance metric identified by pm d. Theargument | evel should be PM TEXT _ONELI NE for a
one-line summary, or PM_TEXT_HELP for amore verbose description, suited to a help dialogue.

The space pointed to by buf f er isallocated in pmLookupText with malloc, and it is the responsibility
of the caller to free the space when it is no longer required; see the malloc(3) and fr ee(3) man pages.

The help text files used to implement pmL ookupText are created using newhelp and accessed by the
appropriate PMDA in response to requests forwarded to the PMDA by PMCD. Further details may be
found in the section called “PMDA Help Text".

The python bindings lookup the description text about the performance metrics pmiD pm d. The
default is a one line summary; for a more verbose description add an optional second parameter
cpmapi . PM_TEXT_HELP. The constant is available by importing cpmapi.

PMAPI Instance Domain Services

The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) instance domain services.

pmGetiInDom Function

i nt pntet | nDon(pm nDom i ndom int **instlist, char ***namelist)
Pyt hon:
([instancel, instance2...] [namel, nanme2...]) pnet|nDom pmDesc pndesc)

In the current PMAPI context, locate the description of the instance domain i ndom and return through
i nstlist theinterna instance identifiers for all instances, and through nanel i st the full externa
identifiers for all instances. The number of instances found is returned as the function value (or less than
zero to indicate an error).

Theresulting lists of instanceidentifiers(i nst | i st andnanel i st), and the namesthat the elements of
namel i st point to, are allocated by pmGetlnDom with two calls to malloc, and it is the responsibility
of thecaller tousefree(i nstli st) andfreg(nanel i st) toreleasethe space when it isno longer
required. When the result of pmGetlnDom is less than one, both i nstli st and nanel i st are
undefined (no space is allocated, and so calling free is a bad idea); see the malloc(3) and free(3) man
pages.

The python bindings return a tuple of the instance identifiers and instance names for an instance domain
pndesc.

59

PMAPI--The
Performance Metrics APl

pmLookuplnDom Function

i nt pnLookupl nDon{ pm nDom i ndom const char *nane)
Pyt hon:
int instid = prLookupl nDom(pnDesc pndesc, "Ilnstance")

For the instance domain i ndom in the current PMAPI context, locate the instance with the externa
identification given by nane, and return the internal instance identifier.

The python bindings return the instance id corresponding to " | nst ance" in the instance domain
pndesc.

pmNamelnDom Function

i nt pmNanel nDonm(pm nDom i ndom int inst, char **nane)
Pyt hon:
"instance id" = pnNanel nDom pmDesc pndesc, c_uint instid)

For the instance domain i ndom in the current PMAPI context, locate the instance with the internal
instance identifier given by i nst , and return the full external identification through nane. The space for
the value of nane isallocated in pmNamel nDom with malloc, and it is the responsibility of the caller to
free the space when it is no longer required; see the malloc(3) and free(3) man pages.

The python bindings return the text name of an instance corresponding to an instance domain prndesc
with instance identifier i nsti d.

PMAPI Context Services

Table 3.1, “Context Components of PMAPI Functions ” shows which of the three components of a
PMAPI context (metrics source, instance profile, and collection time) are relevant for various PMAPI
functions. Those PMAPI functions not shown in this table either manipulate the PMAPI context directly,
or are executed independently of the current PMAPI context.

Table 3.1. Context Components of PMAPI Functions

Function Name MetricsSource InstanceProfile Collection Time Notes
pmAddProfile Yes Yes

pmDelProfile Yes Yes

pmDupContext Yes Yes Yes

pmFetch Yes Yes Yes

pmFetchArchive Yes Yes (0]
pmGetArchiveEnd Yes D
pmGetArchivel abel Yes (1)
pmGetChildren Yes

pmGetChildrenStatus Yes

pmGetContextHostName Yes

pmGetPMNSL ocation Yes

pmGetinDom Yes Yes ()]
pmGetlnDomAr chive Yes (1)

60

PMAPI--The
Performance Metrics APl

Function Name MetricsSource InstanceProfile Collection Time Notes
pmL ookupDesc Yes (©)]
pmL ookuplnDom Yes Yes ()]
pmL ookuplnDomAr chive Yes (1,2)
pmL ookuplnDomT ext Yes 4
pmL ookupName Yes

pmL ookupText Yes (@]
pmNameAll Yes

pmNamel D Yes

pmNamelnDom Yes Yes 2
pmNamel nDomAr chive Yes 1,2
pmSetM ode Yes Yes

pmsStore Yes 5)
pmTraversePMNS Yes

Notes:

1. Operation supported only for PMAPI contexts where the source of metricsis an archive.

2. A specificinstance domain isincluded in the argumentsto these functions, and the result isindependent
of the instance profile for any PMAPI context.

3. The metadata that describes a performance metric is sensitive to the source of the metrics, but
independent of any instance profile and of the collection time.

4. Operation is supported only for PMAPI contexts where the source of metrics is a host. The text
associated with ametric is assumed to be invariant with time and is definitely insensitive to the current
members of the instance domain. In all casesthisinformation is unavailable from an archive context (it
isnotincluded inthearchivelogs), andisdirectly availablefrom aPMDA viaPMCD in the other cases.

5. This operation is supported only for contexts where the source of the metrics is a host. Further, the
instance identifiers are included in the argument to the function, and the effects upon the current values
of the metrics are immediate (retrospective changes are not allowed). Consequently, from the current
PMAPI context, neither the instance profile nor the collection time influence the result of thisfunction.

pmNewContext Function
i nt pnNewCont ext (i nt type, const char *nane)

The pmNewContext function may be used to establish a new PMAPI context. The source of metrics
is identified by name, and may be a host specification (t ype is PM_CONTEXT_HOST) or a comma
separated list of names referring to a set of archive logs (t ype is PM_CONTEXT _ARCHI VE). Each
element of the list may either be the base name common to all of the physical files of an archive log or
the name of a directory containing archive logs.

A host specification usually contains a simple hostname, an internet address (IPv4 or IPv6), or the path
to the PMCD Unix domain socket. It can also specify properties of the connection to PMCD, such
as the protocol to use (secure and encrypted, or native) and whether PMCD should be reached via
a pmproxy host. Various other connection attributes, such as authentication information (user name,
password, authentication method, and so on) can also be specified. Further details can be found in the
PCPI ntro(3) man page, and the companion Performance Co-Pilot Tutorials and Case Studies document.

61

PMAPI--The
Performance Metrics APl

In the case where t ype is PM_CONTEXT _ARCHI VE, there are some restrictions on the archives within
the specified set:

e Thearchives must all have been generated on the same host.
» The archives must not overlap in time.
» Thearchives must all have been created using the same time zone.

» ThepmlD of each metric should bethesamein all of thearchives. Multiplepml Dsare currently tolerated
by using the first pmID defined for each metric and ignoring subsequent pmiDs.

» Thetype of each metric must be the samein al of the archives.

» The semantics of each metric must be the samein al of the archives.

* The units of each metric must be the samein all of the archives.

» Theinstance domain of each metric must be the samein al of the archives.

In the case wheret ype is PM_CONTEXT_LOCAL, nare isignored, and the context uses a stand-alone
connection to the PMDA methods used by PMCD. When this type of context is in effect, the range
of accessible performance metrics is constrained to DSO PMDASs listed in the pmced configuration file
${ PCP_PMCDCONF_PATH;} . Thereason thisis done, as opposed to all of the DSO PMDAs found below
${ PCP_PNDAS DI R} for example, isthat DSO PMDAs listed there are very likely to have their metric
names reflected in the local Name Space file, which will be loaded for this class of context.

Theinitia instance profileis set up to select all instancesin all instance domains, and the initial collection
time is the current time at the time of each request for a host, or the time at the start of the first log for a
set of archives. In the case of archives, theinitial collection time resultsin the earliest set of metrics being
returned from the set of archives at the first pmFetch.

Once established, the association between a PMAPI context and a source of metrics is fixed for the life
of the context; however, functions are provided to independently manipulate both the instance profile and
the collection time components of a context.

The function returns a “handle” that may be used in subsequent calls to pmUseContext. This new
PMAPI context stays in effect for al subsequent context sensitive calls across the PMAPI until another
call to pmNewContext is made, or the context is explicitly changed with a call to pmDupContext or
pmUseContext.

For the python bindings creating and destroying a PMAPI context is done by creating and destroying an
object of the pmapi class.

pmDestroyContext Function
i nt pnDestroyContext (int handl e)

The PMAPI context identified by handl e is destroyed. Typically, thisimplies terminating a connection
to PMCD or closing an archivefile, and orderly clean-up. The PMAPI context must have been previously
created using pmNewContext or pmDupContext.

On success, pmDestroyContext returnszero. If handl e wasthe current PMAPI context, then the current
context becomes undefined. This meansthe application must explicitly re-establish avalid PMAPI context
with pmUseContext, or create a new context with pmNewContext or pmDupContext, before the next
PMAPI operation requiring a PMAPI context.

62

PMAPI--The
Performance Metrics APl

For the python bindings creating and destroying a PMAPI context is done by creating and destroying an
object of the pmapi class.

pmDupContext Function

i nt pnDupCont ext (voi d)

Replicate the current PMAPI context (source, instance profile, and collection time). This function returns
a handle for the new context, which may be used with subsequent calls to pmUseContext. The newly
replicated PMAPI context becomes the current context.

pmUseContext Function

i nt pnlseCont ext (i nt handl e)

Calling pmUseContext causes the current PMAPI context to be set to the context identified by handl e.
Thevalue of handl e must be one returned from an earlier call to pmNewContext or pmDupContext.

Below the PMAPI, all contexts used by an application are saved in their most recently modified state, so
pmUseContext restores the context to the state it was in the last time the context was used, not the state
of the context when it was established.

pmWhichContext Function

i nt pmAhi chCont ext (voi d)
Pyt hon:
int ctx_idx = pmhi chCont ext ()

Returns the handle for the current PMAPI context (source, instance profile, and collection time).

The python bindings return the handle of the current PMAPI context.

pmAddProfile Function

i nt pmAddProfile(pm nDomindom int numinst, int instlist[])
Pyt hon:
int status = pmAddProfil e(pnmDesc pndesc, [c_uint instid])

Add new instance specifications to the instance profile of the current PMAPI context. At its simplest,
instancesidentified by thei nst | i st argument for thei ndominstance domain are added to the instance
profile. Thelist of instance identifiers contains numni nst values.

If i ndomequals PM | NDOM NULL, or numi nst is zero, then al instance domains are selected. If
i nstlist isNULL, thenall instances are selected. To enable all available instancesin all domains, use
this syntax:

pmAddPr of i | e(PM_| NDOM NULL, 0, NULL).

The python bindings add the list of instancesi nst i d to the instance profile of the instance pndesc.
pmDelProfile Function

int pnDel Profile(pm nDomindom int numinst, int instlist[])

Pyt hon:
int status = pmDel Profil e(pmDesc pndesc, c_uint instid)

63

PMAPI--The
Performance Metrics APl

int status = pnDel Profil e(pnmDesc pndesc, [c_uint instid])

Delete instance specifications from the instance profile of the current PMAPI context. In the simplest
variant, the list of instances identified by thei nst|i st argument for the i ndominstance domain is
removed from the instance profile. The list of instance identifiers containsnum nst values.

If i ndomequals PM | NDOM _NULL, then all instance domains are selected for deletion. If i nst | i st
isNULL, then all instancesin the selected domains are removed from the profile. To disable all available
instancesin all domains, use this syntax:

prDel Profi | e(PM | NDOM NULL, 0, NULL)

The python bindings delete the list of instancesi nst i d from the instance profile of the instance domain
prdesc.

pmSetMode Function

i nt pnBet Mode(int node, const struct tineval *when, int delta)
Pyt hon:
int status = pntSet Mode(node, tinmeVal timeval, int delta)

This function defines the collection time and mode for accessing performance metrics and metadata
in the current PMAPI context. This mode affects the semantics of subsequent calls to the following
PMAPI functions: pmFetch, pmFetchArchive, pmL ookupDesc, pmGetlnDom, pmLookuplnDom ,
and pmNamelnDom.

The pmSetM ode function requires the current PMAPI context to be of type PM_CONTEXT _ARCHI VE.

Thewhen parameter definesatime origin, and all requests for metadata (metrics descriptions and instance
identifiers from the instance domains) are processed to reflect the state of the metadata as of the time
origin. For example, use the last state of thisinformation at, or before, the time origin.

If thenpde isPM_MODE_| NTERP then, inthe case of pmFetch, the underlying code usesan interpolation
scheme to compute the values of the metrics from the values recorded for times in the proximity of the
time origin.

If the node is PM_MODE_FORW then, in the case of pmFetch, the collection of recorded metric values
is scanned forward, until values for at least one of the requested metrics is located after the time origin.
Then all requested metrics stored in the PCP archive at that time are returned with a corresponding time
stamp. Thisis the default mode when an archive context is first established with pmNewContext.

If thenpde isPM_MODE_BACK, then thesituation isthe sameasfor PM_MODE _FORW except apmFetch
is serviced by scanning the collection of recorded metrics backward for metrics before the time origin.

After each successful pmFetch, thetime origin isreset to thetime stamp returned through thepnResul t .

ThepmSetM ode parameter del t a defines an additional number of time unit that should be used to adjust
thetime origin (forward or backward) after the new time origin from theprmResul t has been determined.
Thisis useful when moving through archives with amode of PM_MODE_| NTERP. The high-order bits of
thenode parameter field isalso used to optionally set the units of timefor thedel t a field. To specify the
units of time, use the PM_XTB_SET macro with one of the values PM_TI ME_NSEC, PM TI ME_MSEC,
PM Tl ME_SEC, or so on asfollows:

PM_MODE_| NTERP | PM _XTB_SET(PM_TI ME_XXXX)

If no units are specified, the default isto interpret del t a as milliseconds.

64

PMAPI--The
Performance Metrics APl

Using these mode options, an application can implement replay, playback, fast forward, or reverse for
performance metric values held in a set of PCP archive logs by alternating calls to pmSetM ode and
pmFetch.

In Example 3.11, “Dumping Vaues in Tempora Sequence’, the code fragment may be used to
dump only those values stored in correct tempora sequence, for the specified performance metric
my. metric. name:

Example 3.11. Dumping Valuesin Temporal Sequence

i nt sts;
pm D pm d;
char *nanme = “ny.nmetric. nane”;
sts = pmNewCont ext (PM CONTEXT_ARCHI VE, “nyarchive”);
sts = pnLookupNane(1l, &nane, &pmd);
for (; ;) {
sts = pnFetch(1l, &md, &esult);
if (sts <0)
br eak;
/* dunp value(s) fromresult->vset[0]->vlist[] */
pnFreeResul t(result);
}

Alternatively, the code fragment in Example 3.12, “ Replaying I nterpolated Metrics’” may be used to replay
interpolated metrics from an archive in reverse chronological order, at ten-second intervals (of recorded
time):

Example 3.12. Replaying I nterpolated Metrics

i nt sts;
pm D pm d;
char *nanme = “ny.nmetric. nane”;

struct tinmeval endtine;

sts = pmNewCont ext (PM CONTEXT_ARCHI VE, “nyarchive”);
sts = pnLookupNane(1l, &nane, &pmd);
sts = pnet Ar chi veEnd(&endti ne) ;
sts = pnBet Mode(PM MODE | NTERP, &endtime, -10000);
whil e (pnfFetch(1, &pmid, &esult) !'= PMERR EQL) {
/*
* process interpolated netric values as of result->tinestanp
*/
pnFreeResul t(result);
}

The python bindings define the collectiont i e and nmode for reading archivefiles. node can be one of:
c api.PM_MODE_LIVE, c_api.PM_MODE_INTERP, ¢_api.FORW, c_api.BACK. wjocj are available
by importing cpmapi.

pmReconnectContext Function

i nt pnReconnect Cont ext (i nt handl e)
Pyt hon:
int status = pnmReconnect Cont ext ()

65

PMAPI--The
Performance Metrics APl

Asaresult of network, host, or PMCD (Performance Metrics Collection Daemon) failure, an application's
connection to PMCD may be established and then lost.

The function pmReconnectContext allows an application to request that the PMAPI context identified
by handl e be re-established, provided the associated PMCD is accessible.

Note

handl e may or may not be the current context.

To avoid flooding the system with reconnect requests, pmReconnectContext attempts a reconnection
only after a suitable delay from the previous attempt. This imposed restriction on the reconnect re-
try time interval uses a default exponential back-off so that the initial delay is 5 seconds after the
first unsuccessful attempt, then 10 seconds, then 20 seconds, then 40 seconds, and then 80 seconds
thereafter. The intervals between reconnection attempts may be modified using the environment variable
PMCD_RECONNECT Tl MEQUT and the time to wait before an attempted connection is deemed to have
failed is controlled by the PMCD _CONNECT _TI MEQUT environment variable; see the PCPIntro(1) man

page.

If the reconnection succeeds, pmReconnectContext returns handl e. Note that even in the case of a
successful reconnection, pmReconnectContext does not change the current PMAPI context.

The python bindings reestablish the connection for the context.

pmGetContextHostName Function

const char *pnGet Cont ext Host Nane(int id)

char *pntet Cont ext Host Name_r(int id, char *buf, int buflen)
Pyt hon:

"host nane" = pnGet Cont ext Host Name()

Given a valid PCP context identifier previously created with pmNewContext or pmDupContext, the
pmGetContextHostNamefunction providesapossibility to retrieve ahost name associ ated with acontext
regardless of the context type.

Thisfunction will usethe pntd. host name metricif it isavailable, and so is ableto provide an accurate
hostname in the presence of connection tunnelling and port forwarding.

Ifi disnotavalid PCP contextidentifier, thisfunction returnsazero length string and therefore never fails.

In the case of pmGetContextHostName, the string value is held in a single static buffer, so concurrent
calls may not produce the desired results. The pmGetContextHostName r function allows a buffer and
length to be passed in, into which the message is stored; this variant uses no shared storage and can be
used in athread-safe manner.

The python bindings query the current context hostname.

PMAPI Timezone Services

The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) timezone services.

pmNewContextZone Function

i nt pnNewCont ext Zone(voi d)
Pyt hon:

66

PMAPI--The
Performance Metrics APl

pmewCont ext Zone()

If the current PMAPI context is an archive, the pmNewContextZone function uses the timezone from
the archive label record in the first archive of the set to set the current reporting timezone. The current
reporting timezone affects the timezone used by pmCtime and pmL ocaltime.

If the current PMAPI context corresponds to a host source of metrics, pmNewContextZone executes a
pmFetch to retrieve the value for the metric pntd. t i mezone and uses that to set the current reporting
timezone.

In both cases, the function returns a value to identify the current reporting timezone that may be used in
a subsequent call to pmUseZone to restore this reporting timezone.

PM _ERR _NOCONTEXT indicates the current PMAPI context is not valid. A return value less than zero
indicates afatal error from a system call, most likely malloc.

pmNewZone Function

i nt pnNewZone(const char *tz)

Pyt hon:
int tz_handl e = pmNewZone(int tz)

The pmNewZone function sets the current reporting timezone, and returns a value that may be used in a
subsequent call to pmUseZone to restore this reporting timezone. The current reporting timezone affects
the timezone used by pmCtime and pmL ocaltime.

Thet z argument defines atimezone string, in the format described for the TZ environment variable. See
the environ(7) man page.

A return value less than zero indicates afatal error from a system call, most likely malloc.

The python bindings create anew zone handle and set reporting timezone for the timezone defined by t z.

pmUseZone Function

i nt pnlseZone(const int tz_handl e)
Pyt hon:
int status = pnmseZone(int tz_handl e)

In the pmUseZone function, t z_handl e identifies a reporting timezone as previously established by
a call to pmNewZone or pmNewContextZone, and this becomes the current reporting timezone. The
current reporting timezone effects the timezone used by pmCtime and pmL ocaltime).

A return value less than zero indicatesthe value of t z_handl e isnot legal.

The python bindings set the current reporting timezone defined by timezonet z_handl e.

pmWhichZone Function

i nt pmAi chZone(char **tz)
Pyt hon:
"zone string"” = pmhhi chZone()

The pmWhichZonefunction returnsthe handle of the current timezone, as previously established by acall
to pmNewZone or pmNewContextZone. If the call is successful (that is, there exists a current reporting
timezone), anon-negativeinteger isreturned andt z isset to point to astatic buffer containing thetimezone
string itself. The current reporting timezone effects the timezone used by pmCtime and pmL ocaltime.

67

PMAPI--The
Performance Metrics APl

A return value less than zero indicates there is no current reporting timezone.

The python bindings return the current reporting timezone.

PMAPI Metrics Services

The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) metrics services.

pmFetch Function

int pnFetch(int nunpmid, pm D pnmidlist[], prmResult **result)
Pyt hon:
prmResul t* pnresult = pnFetch(c_uint pmd[])

The most common PMAPI operation is likely to be calls to pmFetch, specifying alist of PMIDs (for
example, as constructed by pmL ookupName) through pm dl i st andnunpm d. Thecall topmFetchis
executed in the context of a source of metrics, instance profile, and collection time, previously established
by calls to the functions described in the section called “PMAPI Context Services'.

The principal result from pmFetch is returned as atree structured r esul t , described in the the section
called “ Performance Metrics Values'.

If onevalue (for example, associated with a particular instance) for arequested metric is unavailable at the
requested time, then there is no associated pmValue structurein the result. If there are no available values
for ametric, then nunmval iszero and the associated pmValu€|] instanceisempty; val f nt isundefined
in these circumstances, but pni d is correctly set to the PMID of the metric with no values.

If the source of the performance metrics is able to provide a reason why no values are available for a
particular metric, this reason is encoded as a standard error code in the corresponding numval ; see the
pmerr(1) and pmErrStr(3) man pages. Since al error codes are negative, values for a requested metric
are unavailableif numval islessthan or equal to zero.

The argument definition and the result specifications have been constructed to ensure that for each PMID
in the requested pmi dl i st thereis exactly one pmValueSet in the result, and that the PMIDs appear in
exactly the same sequencein both pm dl i st andr esul t . This makesthe number and order of entries
inresul t completely deterministic, and greatly simplifies the application programming logic after the
call to pmFetch.

The result structure returned by pmFetch is dynamically allocated using one or more calls to malloc and
specialized allocation strategies, and should be rel eased when no longer required by calling pmFr eeResult.
Under no circumstances should free be called directly to release this space.

As common error conditions are encoded in the result data structure, only serious events (such as loss of
connection to PMCD, malloc failure, and so on) would cause an error value to be returned by pmFetch.
Otherwise, the value returned by the pmFetch function is zero.

In Example 3.13, “PMAPI Metrics Services’, the code fragment dumps the values (assumed to be stored
inthel val element of the pnVal ue structure) of selected performance metrics once every 10 seconds:

Example 3.13. PMAPI Metrics Services

i nt i, j, sts;
pm D pmdlist[10];
pnmResult *result;
tinme_t now,

68

PMAPI--The
Performance Metrics APl

/* set up PMAPI context, nunpmd and pmdlist[] ... */

while ((sts = pnfFetch(10, pmdlist, &esult)) >= 0) {
now = (time_t)result->ti nestanp.tv_sec;
printf("\n@%", ctinme(&ow));

for (i =0; i < result->nunmpmd; i++) {
printf("PMD: %", pmDStr(result->vset[i]->pmid));
for (j =0; J <result->vset[i]->nunval; j++) {

printf(" Ox%", result->vset[i]->vlist[j].value.lval);
putchar('\n");

}
}
pnFreeResul t(result);
sl eep(10);
}
Note

If aresponse is not received back from PMCD within 10 seconds, the pmFetch times out and
returns PM_ERR Tl MEQUT. Thisismost likely to occur when the PMAPI client and PMCD are
communicating over a slow network connection, but may also occur when one of the hosts is
extremely busy. The time out period may be modified using the PMCD_REQUEST Tl MEQOUT
environment variable; see the PCPIntro(1) man page.

The python bindings fetch a pmResult corresponding to a pmi d list, which is returned from
pmL ookupName. The returned pnr esul t ispassed to pmExtractValue.

pmFreeResult Function

voi d pnFreeResul t (pnResult *result)
Pyt hon:
pnFreeResul t (pnmResul t* pnresult)

Release the storage previously allocated for aresult by pmFetch.

THe python bindings freeapnr esul t previously alocated by pmFetch.

pmStore Function

int pnBStore(const pnmResult *request)
Pyt hon:
prmResul t* pnresult = pnttore(pnmResult* pnresult)

In some special cases it may be helpful to modify the current values of performance metrics in one or
more underlying domains, for example to reset a counter to zero, or to modify ametric, whichisa control
variable within a Performance Metric Domain.

The pmStore function is a lightweight inverse of pmFetch. The caller must build the pnResul t data
structure (which could have been returned from an earlier pmFetch call) and then call pmStore. It isan
error to passar equest topmsStoreinwhichthenumval fieldwithin any of the pmValueSet structure
has avalue less than one.

The current PMAPI context must be one with a host as the source of metrics, and the current value of the
nominated metrics is changed. For example, pmStor e cannot be used to make retrospective changes to
information in a PCP archive log.

69

PMAPI--The
Performance Metrics APl

PMAPI Fetchgroup Services

The fetchgroup functions implement a registration-based mechanism to fetch groups of performance
metrics, including automation for general unit, rate, type conversions and convenient instance and
value encodings. They constitute a powerful and compact alternative to the classic Performance Metrics
Application Programming Interface (PMAPI) sequence of separate lookup, check, fetch, iterate, extract,
and convert functions.

A fetchgroup consists of aPMAPI context and alist of metricsthat the application isinterested in fetching.
For each metric of interest, a conversion specification and a destination pmAtomValue pointer is given.
Then, at each subsequent fetchgroup-fetch operation, all metrics are fetched, decoded/converted, and
deposited in the desired field of the destination pmAtomValues. See Example 3.16, “ pmAt onVal ue
Structure” for more on that data type. Similarly, a per-metric-instance status value is optionally available
for detailed diagnostics reflecting fetch/conversion.

The pmfetchgroup(3) man pages give detailed information on the C API; we only list some common
cases here. The simplified Python binding to the same API is summarized below. One difference is that
runtime errors in C are represented by status integers, but in Python are mapped to pmErr exceptions.
Another is that supplying metric type codes are mandatory in the C API but optional in Python, since the
latter language supports dynamic typing. Another difference is Python's wrapping of output metric values
in callable "holder" objects. We demonstrate all of these below.

Fetchgroup setup

To create a fetchgroup and its private PMAPI context, the pmCreateFetchGroup function is used, with
parameters similar to pmNewContext (see the section called “ pmNewContext Function™).

int sts;

pnFG fg;

sts = pnCreat eFetchG oup(& fg, PM CONTEXT _ARCH VE, "./foo.neta");
assert(sts == 0);

Pyt hon

fg = pmapi.fetchgroup(c_api. PM CONTEXT_ARCH VE, './foo.neta')
If special PMAPI query, PMNS enumeration, or configuration upon the context is needed, the private
context may be carefully accessed.

int ctx = pnmCet Fet chG oupCont ext (fQ);
sts = pmJseCont ext (ctx);

assert(sts == 0);
sts = pnBet Mode(...);
Pyt hon

ctx = fg.get_context()
ct x. pnSet Mode(...)

A fetchgroup is born empty. It needs to be extended with metricsto read. Scalars are easy. We specify the
metric name, an instance-domain instance if necessary, a unit-scaling and/or rate-conversion directive if
desired, and atype code (see Example 3.2, “ pmDesc Structure”). In C, the value destination is specified
by pointer. In Python, avalue-holder is returned.

static pmAtonVal ue ncpu, | oadavg, idle;
sts = pnExt endFet chG oup_item(fg, "hinv.ncpu", NULL, NULL,

70

PMAPI--The
Performance Metrics APl

& ncpu, PM TYPE 32, NULL);

assert (sts == 0);

sts = pnkExtendFetchG oup_item(fg, "kernel.all.load", "5 mnute", NULL,
& | oadavg, PM TYPE_DOUBLE, NULL);

assert (sts == 0);

sts = pnkExtendFetchG oup_itemfg, "kernel.all.cpu.idle", NULL, "s/100s",
& idle, PM TYPE_STRI NG NULL);

assert (sts == 0);

Pyt hon

ncpu = fg.extend_iten(' hinv.cpu')

| oadavg = fg.extend_ iten(' kernel.all.load", instance='5 mnute')

idle = fg.extend_iten(' kernel.all.cpu.idle, scale="s/100s")

Registering metrics with whole instance domains are also possible; these result in a vector of
pmAtomValue instances, instance names and codes, and status codes, so the fetchgroup functions take
more optional parameters. In Python, a value-holder-iterator object is returned.

enum { max_di sks = 100 };

static unsigned num di sks;

static pmAt onVal ue di sk_reads[max_di sks];

static int disk_read_stss[nmax_di sks];

static char *di sk_names[max_di sks];

sts = pnExt endFet chG oup_i ndom(fg, "disk.dmread", NULL
NULL, disk_nanes, disk reads, PM TYPE 32,
di sk_read_stss, max_disks, & numdi sks,
NULL) ;

Pyt hon

val ues = fg.extend_i ndom(' di sk.dmread')

Registering interest in the future fetch-operation timestamp is also possible. In python, a datetime-holder
object is returned.

struct tineval tv;

sts = pnExtendFetchG oup_tinestanp(fg, & tv);
Pyt hon

tv = fg.extend tinmestanp()

Fetchgroup operation
Now it's time for the program to process the metrics. In the C API, each metric value is put into status

integers (if requested), and one field of the pmAtomValue union - whichever was requested with the
PM_TYPE_* code. In the Python API, each metric value is accessed by calling the value-holder objects.

sts = pnfFetchG oup(fg);

assert (sts == 0);
printf("%", ctime(& tv.tv_sec));
printf("#cpus: %, |oadavg: %@, idle: %\n", ncpu.l, |oadavg.d, idle.cp);

for (i=0; i<numdisks; i++)
if (disk_read_stss[i] == 0)
printf("disk % reads %\ n", disk_nanes[i], disk reads[i].l);
Pyt hon
fg.fetch()

71

PMAPI--The
Performance Metrics APl

print(tv())
print("#cpus: %, |oadavg: %, idle: %\n" % (ncpu(), |oadavg(), idle()))
for icode, inane, value in values():

print('disk % reads %' % (inane, value()))

The program may fetch and process the values only once, or in aloop. The program need not - must not -
modify or free any of the output values/pointers supplied by the fetchgroup functions.

Fetchgroup shutdown

Should the program wish to shut down afetchgroup explicitly, thereby closing the private PMAPI context,
thereisafunction for that.

sts = pnDestroyFet chG oup(fg);
Pyt hon
del fg # or nothing

PMAPI Record-Mode Services

The functions described in this section provide Performance Metrics Application Programming Interface
(PMAPI) record-mode services. These services allow amonitor tool to establish connectionsto pmlogger
co-processes, which they create and control for the purposes of recording live performance data from
(possibly) multiple hosts. Since pmlogger records for one host only, these services can administer agroup
of loggers, and set up archive foliosto track the logs. Toolslike pmafm can subsequently use those folios
to replay recorded data with the initiating tool. pmchart uses these concepts when providing its Record
mode functionality.

pmRecordAddHost Function

i nt pnRecor dAddHost (const char *host, int isdefault, pnRecordHost **rhp)
Pyt hon:
(int status, pnRecordHost* rhp) = pnRecordAddHost ("host string", 1, "configure str

The pmRecordAddHost function adds hosts once pmRecor dSetup has established a new recording
session. The pmRecordAddHost function along with the pmRecordSetup and pmRecordControl
functions are used to create a PCP archive.

pmRecordAddHost is called for each host that is to be included in the recording session. A new
prmRecor dHost structureisreturned viar hp. It isassumed that PMCD isrunning on the host asthisis
how pmlogger retrieves the required performance metrics.

If this host is the default host for the recording session, i sdef aul t is nonzero. This ensures that the
corresponding archive appearsfirst inthe PCP archivef ol i 0. Hence the tools used to replay the archive
f ol i 0 make the correct determination of the archive associated with the default host. At most one host
per recording session may be nominated as the default host.

The calling application writes the desired pmlogger configuration onto the stdio stream returned via the
f _confi g fidddinthepnRecor dHost structure.

pmRecordAddHost returns 0 on success and avalue less than 0 suitable for decoding with pmErr Str on
failure. The value EI NVAL has the same interpretation aser r no being set to EI NVAL.

pmRecordControl Function

i nt pnRecordControl (pnmRecordHost *rhp, int request, const char *options)

72

PMAPI--The
Performance Metrics APl

Pyt hon:
int status = pnRecordControl ("host string”, 1, "configure string")

Arguments may be optionally added to the command line that is used to launch pmlogger by calling the
pmRecordControl function with arequest of PM_REC SETARG. The pmRecor dContr ol along with the
pmRecor dSetup and pmRecor dAddHost functions are used to create a PCP archive.

The argument is passed via opt i ons and one call to pmRecordControl is required for each distinct
argument. An argument may be added for a particular pmlogger instance identified by r hp. If ther hp
argument is NULL, the argument is added for all pmlogger instances that are launched in the current
recording session.

Independent of any calls to pmRecordControl with a request of PM REC SETARG, each pmlogger
instance is automatically launched with the following arguments: - ¢, - h, - | , - X, and the basename for
the PCP archive log.

To commence the recording session, call pmRecordControl with a request of PM_REC _ON, and r hp
must be NULL. Thislaunches one pmlogger process for each host in the recording session and initializes
thefd_i pc,l ogfil e, pi d,andst at us fieldsin the associated pnRecor dHost structure(s).

To terminate a pmlogger instance identified by r hp, cal pmRecordControl with a regquest of
PM_REC_COFF. If ther hp argument to pmRecordControl isNULL, the termination request is broadcast
to all pmlogger processesin the current recording session. An informative dialogue is generated directly
by each pmlogger process.

To display the current status of the pmlogger instance identified by r hp, call pmRecordControl with
arequest of PM_REC _STATUS. If the r hp argument to pmRecordControl is NULL, the status request
is broadcast to all pmlogger processesin the current recording session. The display is generated directly
by each pmlogger process.

To detach apmlogger instance identified by r hp, alow it to continue independent of the application that
launched the recording session and call pmRecor dControl with arequest of PM_REC DETACH. If the
r hp argument to pmRecordControl isNULL, the detach request is broadcast to all pmlogger processes
in the current recording session.

pmRecordControl returns 0 on success and a value less than 0 suitable for decoding with pmErr Str on
failure. The value EI NVAL has the same interpretation aser r no being set to EI NVAL.

pmRecordControl returns PM_ERR | PCif the associated pmlogger process has aready exited.

pmRecordSetup Function

FI LE *pnRecordSet up(const char *folio, const char *creator, int replay)

Pyt hon:

int status = pnRecordSetup("folio string", "creator string", int replay)

The pmRecor dSetup function along with the pmRecor dAddH ost and pmRecor dContr ol functions may
be used to create a PCP archive on the fly to support record-mode services for PMAPI client applications.

Each record mode session involves one or more PCP archive logs; each is created using a dedicated
pmlogger process, with an overall Archive Folio format as understood by the pmafm command, to name
and collect all of the archive logs associated with a single recording session.

The pnRecor dHost structure is used to maintain state information between the creator of the
recording session and the associated pmlogger process(es). The structure, shown in Example 3.14, “
prmRecor dHost Structure”, isdefined as:

73

PMAPI--The
Performance Metrics APl

Example 3.14. pnRecor dHost Structure

typedef struct {

FILE *f_config; /* caller wites pm ogger configuration here */
i nt fd_ipc; /* 1 PC channel to pm ogger */

char *logfile; [* full pathname for pm ogger error logfile */
pidt pid; /* process id for pm ogger */

i nt st at us; [* exit status, -1 if unknown */

} pnRecor dHost ;

In Procedure 3.1, “Creating a Recording Session”, the functions are used in combination to create a
recording session.

Procedure 3.1. Creating a Recor ding Session

1. Cal pmRecordSetup to establish a new recording session. A new Archive Folio is created using
thename f ol i o. If the f ol i o file or directory aready exists, or if it cannot be created, this is
an error. The application that is creating the session is identified by creator (most often this would
be the same as the global PMAPI application name, prPr ognane). If the application knows how
to create its own configuration file to replay the recorded session, replay should be nonzero. The
pmRecordSetup function returns a stdio stream onto which the application writes the text of any
required replay configuration file.

2. For each host that is to be included in the recording session, call pmRecordAddHost. A new
prmRecor dHost structure is returned via r hp. It is assumed that PMCD is running on the host
as this is how pmlogger retrieves the required performance metrics. See the section called “
pmRecordAddHost Function” for more information.

3. Optionaly, add arguments to the command line that is used to launch pmlogger by caling
pmRecordControl with a request of PM_ REC SETARG. The argument is passed via options and
one call to pmRecordControl is required for each distinct argument. See the section called “
pmRecordControl Function” for more information.

4. To commence the recording session, call pmRecordControl with a request of PM_REC_ON, and
r hp must be NULL.

5. To terminate a pmlogger instance identified by r hp, call pmRecordControl with a request of
PM REC_OFF.

6. To display the current status of the pmlogger instance identified by r hp, call pmRecordControl
with arequest of PM_REC STATUS.

7. Todetach apmlogger instanceidentified by r hp, allow it to continue independent of the application
that launched the recording session, call pmRecordControl with areguest of PM_REC_DETACH.

The calling application should not close any of the returned stdio streams, pmRecordControl performs
this task when recording is commenced.

Oncepmlogger hasbeen started for arecording session, pmlogger assumesresponsibility for any dialogue
with the user in the event that the application that launched the recording session should exit, particularly
without terminating the recording session.

By default, information and dial ogues from pmlogger isdisplayed using pmconfirm. Thisdefault isbased
on the assumption that most applications launching a recording session are GUI-based. In the event that
pmconfirm fails to display the information (for example, because the DI SPLAY environment variable
is not set), pmlogger writes on its own stderr stream (not the stderr stream of the launching process).

74

PMAPI--The
Performance Metrics APl

The output is assigned to the xxxxxx. host . | og file. For convenience, the full pathnameto thisfileis
provided viathel ogfi | e fieldinthepnRecor dHost structure.

If theopt i ons argument to pmRecordControl isnot NULL, this string may be used to pass additional
arguments to pmconfirm in those cases where adialogue is to be displayed. One use of this capability is
to provide a-geometry string to control the placement of the dialogue.

Premature termination of alaunched pmlogger process may be determined using the pnRecor dHost
structure, by calling select on the fd_i pc field or polling the st at us field that will contain the
termination status from waitpid if known, or -1.

These functions create a number of files in the same directory as the f ol i o file named in the cal to
pmRecordSetup. In all cases, the xxxxxx component is the result of calling mkstemp.

« If replay isnonzero, xxxxxx isthe creator's replay configuration file, else an empty control file, used
to guarantee uniqueness.

» Thefol i o fileisthe PCP Archive Falio, suitable for use with the pmafm command.

* Thexxxxxx. host . confi gfileisthepmlogger configuration for each host. If the same host is used
in different callsto pmRecor dAddH ost within the same recording session, one of the letters'a through
'Z' is appended to the xxxxxx part of all associated file names to ensure uniqueness.

e XXXXXX. host . | og isstdout and stderr for the pmlogger instance for each host.
» Thexxxxxx. host. {0, neta, i ndex} filescomprise asingle PCP archive for each host.

pmRecor dSetup may return NULL in the event of an error. Check er r no for the real cause. The value
El NVAL typically meansthat the order of callsto these functionsis not correct; that is, thereisan obvious
state associated with the current recording session that is maintained across calls to the functions.

For example, calling pmRecordControl before calling pmRecordAddHost at least once, or calling
pmRecordAddHost before calling pmRecor dSetup would produce an EI NVAL error.

PMAPI Archive-Specific Services

The functions described in this section provide archive-specific services.

pmGetArchiveLabel Function

i nt pnCet Archi veLabel (pniLogLabel *Ip)
Pyt hon:
prLogLabel | ogl abel = pnGet Archi velLabel ()

Provided the current PMAPI context is associated with a set of PCP archive logs, the
pmGetArchivel abel function may be used to fetch the label record from the first archive in the set of
archives. The structure returned through | p is as shown in Example 3.15, “ prmLogLabel Structure”:

Example 3.15. pnmLogLabel Structure

/*

* Label Record at the start of every log file - as exported above the PNVAPI
*/

#define PM TZ_MAXLEN 40

#define PM LOG MAXHOSTLEN 64

#define PM LOG MAG C 0x50052600

#define PM LOG VERSO1 Ox1

75

PMAPI--The
Performance Metrics APl

#defi ne PM_LOG_VERS02 0x2

#define PM LOG VOL_TI -2 /* tenporal index */

#define PM LOG VOL_META -1 /* meta data */

typedef struct {
i nt [l _magic; /* PMLOG MAGC | log format version no. */
pid_t [l _pid; /* PID of |ogger */
struct tinmeval |l _start; /* start of this log */
char 1 _host name[PM_LOG_MAXHOSTLEN]; /* name of collection host */
char [l _tz[PM.TZ_NMAXLEN] ; /* $TZ at collection host */

} pnioglLabel ;

The python bindings get the label record from the archive.

pmGetArchiveEnd Function

i nt pntet Archi veEnd(struct tinmeval *tvp)
Pyt hon:
timeval tv = status = pnCet Archi veEnd()

Provided the current PMAPI context is associated with a set of PCP archive logs, pmGetAr chiveEnd
finds the logical end of the last archive file in the set (after the last complete record in the archive), and
returns the last recorded time stamp with t vp. Thistimestamp may be passed to pmSetM ode to reliably
position the context at the last valid log record, for example, in preparation for subsequent reading in
reverse chronological order.

For archive logs that are not concurrently being written, the physical end of file and the logical end of
file are co-incident. However, if an archive log is being written by pmlogger at the same time that an
application istrying to read the archive, the logical end of file may be before the physical end of file due
to write buffering that is not aligned with the logical record boundaries.

The python bindings get the last recorded timestamp from the archive.

pmGetinDomArchive Function

i nt pntet | nDomAr chi ve(pm nDom i ndom int **instlist, char ***namelist)
Pyt hon:
((instancel, instance2...) (namel, name2...)) pnet|nDom pmDesc pndesc)

Provided the current PMAPI context is associated with aset of PCP archivelogs, pmGetl nDomAr chive
scans the metadata to generate the union of all instancesfor the instance domain i ndomthat can be found
in the set of archive logs, and returns through i nst | i st the internal instance identifiers, and through
namnel i st thefull external identifiers.

Thisfunction is a specialized version of the more general PMAPI function pmGetinDom.
The function returns the number of instances found (a value less than zero indicates an error).

The resulting lists of instance identifiers (i nst | i st and nanel i st), and the names that the elements
of nanel i st point to, are allocated by pmGetlnDomAr chive with two calls to malloc, and it is the
responsibility of the caller tousefree(i nstli st) andfreg(nanel i st) to release the space when it
isno longer required; see the malloc(3) and free(3) man pages.

Whentheresult of pmGetlnDomAr chiveislessthanone, bothi nst | i st andnanel i st areundefined
(no space is alocated; so calling freeisasingularly bad idea).

The python bindings return a tuple of the instance 1Ds and names for the union of all instances for the
instance domain pndesc that can be found in the archive log.

76

PMAPI--The
Performance Metrics APl

pmLookuplnDomArchive Function

i nt prLookupl nDonAr chi ve(pm nDom i ndom const char *nane)
Pyt hon:
c_uint instid = pnlLookupl nDonArchi ve(pnDesc pndesc, "I nstance")

Provided the current PMAPI context is associated with a set of PCP archive logs,
pmL ookupl nDomAr chive scans the metadata for the instance domain i ndom locates the first instance
with the external identification given by nane, and returns the internal instance identifier.

Thisfunction is a specialized version of the more general PMAPI function pmL ookupl nDom.
The pmL ookuplnDomAr chive function returns a positive instance identifier on success.

The python bindings return the instance id in pndesc corresponding to | nst ance.

pmNamelnDomArchive Function

i nt pnNanmel nDomAr chi ve(pm nDom i ndom int inst, char **nane)
Pyt hon:
"instance id" = pnNanel nDomAr chi ve(pnDesc pndesc, c_uint instid)

Provided the current PMAPI context isassociated with aset of PCP archivelogs, pmNamel nDomAr chive
scans the metadata for the instance domain i ndom locates the first instance with the interna instance
identifier given by inst, and returns the full external instance identification through nane. This function
isaspecialized version of the more general PMAPI function pmNamel nDom.

The space for the value of namne is alocated in pmNamel nDomAr chive with malloc, and it is the
responsibility of the caller to free the space when it is no longer required; see the malloc(3) andfree(3)
man pages.

The python bindings return the text name of an instance corresponding to an instance domain prndesc
with instance identifier i nsti d.

pmFetchArchive Function

i nt pnFet chArchi ve(pnResult **result)
Pyt hon:
prmResul t* pnresult = pnfetchArchive()

Thisisavariant of pmFetch that may be used only when the current PMAPI context is associated with

a set of PCP archive logs. Ther esul t isinstantiated with all of the metrics (and instances) from the
next archive record; consequently, there is no notion of alist of desired metrics, and the instance profile
isignored.

It is expected that pmFetchAr chive would be used to create utilities that scan archive logs (for example,
pmdumplog and pmlogsummary), and the more common access to the archives would be through the
pmFetch interface.

PMAPI Time Control Services

The PMAPI provides acommon framework for client applicationsto control time and to synchronizetime
with other applications. The user interface component of this serviceis fully described in the companion
Performance Co-Pilot User's and Administrator's Guide. See also the pmtime(1) man page.

77

PMAPI--The
Performance Metrics APl

This service is most useful when processing sets of PCP archive logs, to control parameters such as the
current archive position, update interval, replay rate, and timezone, but it can also be used in live mode
to control a subset of these parameters. Applications such as pmchart, pmgadgets, pmstat, and pmval
use the time control services to connect to an instance of the time control server process, pmtime, which
provides a uniform graphical user interface to the time control services.

A full description of the PMAPI time control functions along with code examples can be found in man
pages as listed in Table 3.2, “Time Control Functionsin PMAPI”:

Table 3.2. Time Control Functionsin PMAPI

Man Page Synopsis of Time Control Function

pmCtime(3) Formats the date and time for areporting timezone.

pmL ocaltime(3) Converts the date and time for a reporting timezone.

pmPar seTimeWindow(3) Parses time window command line arguments.
pmTimeConnect(3) Connects to atime control server viaa command socket.
pmTimeDisconnect(3) Closes the command socket to the time control server.
pmTimeGetPort(3) Obtains the port name of the current time control server.
pmTimeRecv(3) Blocks until the time control server sends a command message.
pmTimeSendAck(3) Acknowledges completion of the step command.
pmTimeSendBounds(3) Specifies beginning and end of archive time period.
pmTimeSendM ode(3) Reguests time control server to change to anew VCR mode.
pmTimeSendPosition(3) Requests time control server to change position or update intervals.
pmTimeSendTimezone(3) Reguests time control server to change timezones.
pmTimeShowDialog(3) Changes the visibility of the time control dialogue.
pmTimeGetStatePixmap(3) Returns array of pixmaps representing supplied time control state.

PMAPI Ancillary Support Services

The functions described in this section provide services that are complementary to, but not necessarily a
part of, the distributed manipulation of performance metrics delivered by the PCP components.

pmGetConfig Function

char *pntGet Config(const char *vari abl e)
Pyt hon:
"env variabl e value = pntet Config("env variable")

The pmGetConfig function searches for a variable first in the environment and then, if one is not found,
in the PCP configuration file and returns the string result. If avariable is not already in the environment,
it is added with a call to the putenv function before returning.

The default location of the PCP configuration fileis/ et ¢/ pcp. conf , but thislocation may be changed
by setting PCP_ CONF in the environment to a new location, as described in the pcp.conf(5) man page.

If thevariableisnot found in either the environment or the PCP configuration file (or the PCP configuration
fileis not found and PCP_CONF is not set in the environment), then afatal error message is printed and
the process will exit. Although this sounds drastic, it is the only course of action available because the
PCP configuration or installation is fatally flawed.

78

PMAPI--The
Performance Metrics APl

If thisfunction returns, thereturned val ue pointsto astring in the environment; and so although the function
returns the same type as the getenv function (which should probably be aconst char *), changing
the content of the string is not recommended.

The python bindings return a value for environment variable " env vari abl e" from environment or
pcp config file.

pmErrStr Function

const char *pnErrStr(int code)

char *pnErrStr_r(int code, char *buf, int buflen);
Pyt hon:

"error string text" = pnErrStr(int error_code)

This function translates an error code into a text string, suitable for generating a diagnostic message. By
convention within PCP, al error codes are negative. The small values are assumed to be negated versions
of the platform error codes as defined in er r no. h, and the strings returned are according to strerror.
Thelarge, negative error codes are PMAPI error conditions, and pmErr Str returns an appropriate PMAPI
error string, as determined by code.

In the case of pmErr Str, the string value is held in a single static buffer, so concurrent calls may not
produce the desired results. The pmErrStr_r function allows a buffer and length to be passed in, into
which the message is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings return the error string corresponding totheer r or code.

pmExtractValue Function

int pnExtractValue(int valfnt, const pmvalue *ival, int itype,

pmAt onVal ue *oval, int otype)

Pyt hon:

pmAt onVal ue at onval = pnExtractValue(int valfnt, const pnWValue * ival,
int itype,
pmAt onval ue *oval ,
int otype)

The pmValue structureis embedded withinthe pnResul t structure, which is used to return one or more
performance metrics; see the pmFetch man page.

All performance metric values may be encoded in a pmAt onVal ue union, defined in Example 3.16, “
pmAt onVal ue Structure’:

Example 3.16. pmAt onVal ue Structure

/* Generic Union for Val ue-Type conversions */
t ypedef union {

_int32_t |I; /[* 32-bit signed */
_uint32_t ul; /* 32-bit unsigned */
_inte4_t II; /* 64-bit signed */
_uint64_t ull; /* 64-bit unsigned */

fl oat f; /[* 32-bit floating point */
doubl e d; /* 64-bit floating point */
char *cp; /* char ptr */

voi d *vp; /[* void ptr */

} pmAt onVal ue;

79

PMAPI--The
Performance Metrics APl

The pmExtractValue function provides a convenient mechanism for extracting valuesfrom the pmValue
part of apnResul t structure, optionally converting the data type, and making the result available to the
application programmer.

Thei t ype argument definesthe datatype of theinput valueheldini val according to the storage format
defined by val f nt (seethe pmFetch man page). Theot y pe argument definesthe datatype of the result
tobe placed inoval . Thevaluefori t ype istypically extracted from apnDesc structure, following a
call to pmL ookupDesc for a particular performance metric.

Table 3.3, “PMAPI Type Conversion” defines the various possihilities for the type conversion. Theinput
type (i t ype) is shown verticaly, and the output type (ot ype) horizontally. The following rules apply:

* Y means the conversion is aways acceptable.
* N means conversion can never be performed (function returns PM_ERR_CONV).
» P means the conversion may lose accuracy (but no error status is returned).

* T means the result may be subject to high-order truncation (if this occurs the function returns
PM_ERR_TRUNC).

» Smeansthe conversion may beimpossible dueto the sign of the input value (if this occurs the function
returns PM_ERR_SI GN).

If an error occurs, oval issetto zero (or NULL).

Note

Note that some of the conversions involving the PM TYPE STRING and
PM TYPE_AGGREGATE types are indeed possible, but are marked N; the rationale is that
pmExtractValue should not attempt to duplicate functionality already available in the C library
through sscanf and sprintf. No conversion involving the type PM_TYPE_EVENT is supported.

Table 3.3. PMAPI Type Conversion

TYPE 32 u32 64 u64 FLOAT DBLE STRING AGGR EVENT
32 Y S Y S P N N N
u32 T Y Y Y P P N N N
64 T T,S Y S P P N N N
u64 T T T Y P P N N N
FLOAT P, T PT.S PT PT,S Y Y N N N
DBLE PT PT,S BT PT,S P Y N N N
STRING N N N N N N Y N N
AGGR N N N N N N N Y N
EVENT N N N N N N N N N

In the cases where multiple conversion errors could occur, the first encountered error is returned, and the
order of checking is not defined.

If the output conversion is to one of the pointer types, such as ot ype PM TYPE _STRI NG or
PM TYPE_AGCGREGATE, then the value buffer is allocated by pmExtractValue using malloc, and it is
the caller's responsibility to free the space when it is no longer required; see the malloc(3) and free(3)
man pages.

80

PMAPI--The
Performance Metrics APl

Although this function appears rather complex, it has been constructed to assist the development of
performance tools that convert values, whose type is known only through the t ype field in a pmDesc
structure, into a canonical type for local processing.

Thepython bindingsextract avaluefromapmValuestructi val storedinformatval f nt (seepmFetch),
and convert itstype fromi t ype to ot ype.

pmConvScale Function

i nt

pnConvScal e(i nt type, const pmAtonVal ue *ival, const prmnits *iunit,

pmAt onVal ue *oval, pnmnits *ounit)

Pyt hon:

pmAt onVal ue at onval = pntConvScal e(int itype, pmAtonVal ue val ue,
pmDesc* pndesc , int descidx, int otype)

Given a performance metric value pointed to by i val , multiply it by a scale factor and return the value
inoval . The scaling takes place from the unitsdefined by i uni t into the unitsdefined by ouni t . Both
input and output units must have the same dimensionality.

The performance metric type for both input and output values is determined by t ype, the value for
whichistypically extracted fromapnDesc structure, following acall to pmL ookupDesc for a particular
performance metric.

pmConvScale is most useful when values returned through pmFetch (and possibly extracted using
pmExtractValue) need to be normalized into some canonical scale and units for the purposes of
computation.

The python bindings convert aval ue pointedtoby pndesc entry desci dx to adifferent scaleot ype.

pmuUnitsStr Function

const char *pmnitsStr(const pnlnits *pu)

char *pnlnitsStr_r(const pmnits *pu, char *buf, int buflen)
Pyt hon:

"units string" = prnitsStr(pnmnits prunits)

As an aid to labeling graphs and tables, or for error messages, pmuUnitsStr takes a dimension and scale
specification as per pu, and returns the corresponding text string.

pu istypicaly from apnDesc structure, for example, as returned by pmL ookupDesc.

If*puwere{1, -2, 0, PM SPACE MBYTE, PM TI ME_MSEC, 0}, thentheresult stringwould
be Moyt e/ sec”2.

In the case of pmUnitsStr, the string value is held in a single static buffer; so concurrent calls may not
produce the desired results. The pmUnitsStr_r function alows a buffer and length to be passed in, into
which the units are stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings translate a pmUnits struct pnuni t s to areadable string.

pmIDStr Function

const char *pm DStr (pm D pm d)

char *pm DStr_r(pm D pmid, char *buf, int buflen)
Pyt hon:

"ID string”™ = pm DStr(int pm D)

81

PMAPI--The
Performance Metrics APl

For use in error and diagnostic messages, return a human readable version of the specified PMID, with
each of the internal domai n, cl ust er, and i t emsubfields appearing as decimal numbers, separated
by periods.

Inthecase of pmIDStr, thestring valueisheld in asingle static buffer; so concurrent calls may not produce
the desired results. The pmIDStr_r function allows a buffer and length to be passed in, into which the
identifier is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings translate a pmID pmi d to areadable string.

pminDomStr Function

const char *pml nDonSt r (pm nDom i ndom

char *pm nDonStr_r(pm nDom i ndom char *buf, int buflen)
Pyt hon:

"i ndom = pmGet | nDom(pnDesc pndesc)

For use in error and diagnostic messages, return a human readable version of the specified instance
domainidentifier, with each of theinternal dormai nandser i al subfieldsappearing asdecimal numbers,
separated by periods.

In the case of pmInDomStrr, the string value is held in asingle static buffer; so concurrent calls may not
produce the desired results. The pmlnDomStr_r function allows a buffer and length to be passed in, into
which theidentifier is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindingstranslate an instance domain | D pointed to by apmDesc prrdesc to areadable string.

pmTypeStr Function

const char *pnifypeStr(int type)

char *pniTypeStr _r(int type, char *buf, int buflen)
Pyt hon:

"type" = pnilypeStr(int type)

Given a performance metric type, produce a terse ASCII equivalent, appropriate for use in error and
diagnostic messages.

Examples are “32" (for PM_TYPE_32), “U64" (for PM TYPE _U64), “AGGREGATE" (for
PM TYPE_AGGREGATE), and so on.

In the case of pmTypeStr, the string value is held in a single static buffer; so concurrent calls may not
produce the desired results. The pmTypeStr_r function allows a buffer and length to be passed in, into
which theidentifier is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings tranglate a performance metric type to a readable string. Constants are available for
the types, e.qg. c_api.PM_TYPE_FLOAT, by importing cpmapi.

pmAtomStr Function

const char *pmAt onfstr (const pmAt onVal ue *avp, int type)

char *pmAtonttr_r(const pmAtonval ue *avp, int typechar *buf, int buflen)
Pyt hon:

"val ue" = pmAtonttr(atom type)

GiventhepmAtomValueidentified by avp, and aperformance metrict ype, generate the corresponding
metric value as a string, suitable for diagnostic or report output.

82

PMAPI--The
Performance Metrics APl

In the case of pmAtomStr, the string value is held in a single static buffer; so concurrent calls may not
produce the desired results. The pmAtomStr_r function allows a buffer and length to be passed in, into
which theidentifier is stored; this variant uses no shared storage and can be used in a thread-safe manner.

The python bindings trandate a pmAtomValue at om having performance metric t ype to a readable
string. Constants are available for the types, e.g. ¢ api.PM_TYPE_U32, by importing cpmapi.

pmNumberStr Function

const char *pmNunber Str(doubl e val ue)
char *pmNunber Str_r (doubl e val ue, char *buf, int buflen)

The pmNumber Str function returns the address of a static 8-byte buffer that holds a null-byte terminated
representation of value suitable for output with fixed-width fields.

The value is scaled using multipliers in powers of one thousand (the decimal kilo) and has a bias that
provides greater precision for positive numbers as opposed to negative numbers. The format depends on
the sign and magnitude of val ue.

pmPrintValue Function

void pnPrintValue(FILE *f, int valfnt, int type, const pnWVal ue *val,

int mnwidth)

Pyt hon:

prPrintVal ue(FILE* file, pnResult pnresult, pndesc, vset _index, vlist_index, mn_w

The value of a single performance metric (as identified by val) is printed on the standard 1/0 stream
identified by f . The value of the performance metric is interpreted according to the format of val as
defined by val f nt (fromapmValueSet withinaprmResul t) and the generic description of the metric's
type from apmbDesc structure, passed in through.

If the converted valueislessthanmi nwi dt h characterswide, it will haveleading spacesto pad the output
to awidth of mi nwi dt h characters.

Example 3.17, “Using pmPrintValueto Print Values’ illustrates using pmPrintValueto print the values
fromapnResul t structure returned via pmFetch:

Example 3.17. Using pmPrintValueto Print Values

i nt nunpmd, i, j, sts;

pm D pmdlist[10];

prmDesc desc[10];

prnResul t *result;

/* set up PMAPI context, nunpmid and pmdlist[] ... */

/* get metric descriptors */
for (i =0; i < nunmpmd; i++) {
if ((sts = pniookupDesc(pmidlist[i], &dJesc[i])) < 0) {
printf("pnmlLookupDesc(pm d=%): %\n",
pm DStr(pmdlist[i]), pnErrStr(sts));
exit(1l);
}
}
if ((sts = pnFetch(numpmid, pmdlist, &esult)) >= 0) {
/* once per netric */

83

PMAPI--The
Performance Metrics APl

for (i =0; i < result->nunmpmd; i++) {
printf("PMD: %", pmDStr(result->vset[i]->pnmid));
/* once per instance for this metric */
for (j =0; J <result->vset[i]->nunmval; j++) {
printf(" [%]", result->vset[i]->vlist[j].inst);
pnPrint Val ue(stdout, result->vset[i]->valfnt,
desc[i].type,
& esult->vset[i]->vlist[j],

8);
}
put char ("\n");
}
pnFreeResul t(result);
}
el se

printf("pnfFetch: %\n", pnErrStr(sts));

Print thevalue of apnr esul t pointedtoby vset i ndex/vli st _i ndex and described by pndesc.
Theformat of apmResult is described in pmResult The python bindingscan use sys.stdout _asavalue
forfi |l e todisplay to stdout.

pmflush Function

int pnflush(void);
Pyt hon:
int status = pnflush()

The pmflush function causes the internal buffer which is shared with pmprintf to be either displayed in
awindow, printed on standard error, or flushed to afile and the internal buffer to be cleared.

The PCP_STDERR environment variable controls the output technique used by pmflush:
» If PCP_STDERRIisunset, the text is written onto the stderr stream of the caller.

» If PCP_STDERR is set to the literal reserved word DI SPLAY, then the text is displayed as a GUI
dialogue using pmconfirm.

The pmflush function returns avalue of zero on successful completion. A negative valueisreturned if an
error was encountered, and this can be passed to pmErr Str to obtain the associated error message.

pmprintf Function

int prmprintf(const char *fnt, ... /*args*/);
Pyt hon:
prprintf("fmt", ... [/*args*/);

The pmprintf function appends the formatted message string to an internal buffer shared by the pmprintf
and pmflush functions, without actually producing any output. Thef nt argument is used to control the
conversion, formatting, and printing of the variable length ar gs list.

The pmprintf function uses the mkstemp function to securely create a pcp-prefixed temporary file in
${ PCP_TMP_DI R} . Thistemporary fileis deleted when pmflush is called.

On successful completion, pmprintf returns the number of characters transmitted. A negative value is
returned if an error was encountered, and this can be passed to pmErr Str to obtain the associated error

message.

PMAPI--The
Performance Metrics APl

pmSortinstances Function

voi d pnBortlnstances(pnmResult *result)

Pyt hon:

pnSortl nstances (pnResult* pnresult)

The pmSortl nstances function may be used to guarantee that for each performance metric in the result

from pmFetch, the instances are in ascending internal instance identifier sequence. This is useful when
trying to compute rates from two consecutive pmFetch results, where the underlying instance domain or
metric availability is not static.

pmParselnterval Function

i nt pnParselnterval (const char *string, struct timeval *rslt, char **errnsg)

Pyt hon:

(struct tinmeval, "error nessage") = pnParselnterval ("tine string")

The pmPar sel nterval function parses the argument string specifying an interval of time and fills in the
tv_sec andtv_usec components of ther sl t structure to represent that interval. The input string is
most commonly the argument following a-t command line option to a PCP application, and the syntax
isfully described in the PCPIntro(1) man page.

pmPar sel nterval returns0 and er r ms g is undefined if the parsing is successful. If the given string does
not conform to the required syntax, the function returns -1 and a dynamically allocated error message
stringinerrmmsg.

The error message is terminated with a newline and includes the text of the input string along with an
indicator of the position at which the error was detected as shown in the following example:

4m nut es 30nunbl e
A - - unexpected val ue

In the case of an error, the caller isresponsible for calling free to release the space allocated for er r nsg.

pmParseMetricSpec Function

int pmParseMetricSpec(const char *string, int isarch, char *source,
pm\vetri cSpec **rsltp, char **errnsg)

Pyt hon:

(pm\etricSpec netricspec, "error nessage") =
prmPar seMetri cSpec("nmetric specification", isarch,

The pmPar seM etricSpec function acceptsast r i ng specifying the name of a PCP performance metric,
and optionally the source (either a hostname, a set of PCP archive logs, or alocal context) and instances
for that metric. The syntax is described in the PCPIntro(1) man page.

If neither host nor archive component of the metric specification is provided, thei sar ch and sour ce
argumentsare used tofill inthereturned prmiviet r i cSpec structure. In Example 3.18,“ pnivet ri cSpec
Structure”, the pmiviet r i cSpec structure, which isreturned viar sl t p, represents the parsed string.

Example 3.18. pm\et ri cSpec Structure

typedef struct {

sour ce)

i nt i sarch; /* source type: 0 -> host, 1 -> archive, 2 -> |local conte

char *sour ce; /* nanme of source host or archive */

85

PMAPI--The
Performance Metrics APl

char *metric; /* nanme of netric */
i nt ni nst ; /* nunber of instances, 0 -> all */
char *inst[1]; /* array of instance nanes */

} pmvetri cSpec;

The pmPar seM etricSpec function returns O if the given string was successfully parsed. In this case, all
the storage allocated by pmPar seM etricSpec can be released by asingle call to the free function by using
the address returned from pmMetricSpec viar sl t p. The convenience macro pmFreeMetricSpecisa
thinly disguised wrapper for free.

The pmParseMetricSpec function returns 0 if the given string was successfully parsed. It returns
PM_ERR_GENERI Cand adynamically allocated error message stringiner r ms g if the given string does
not parse. In this situation, the error message string can be released with the free function.

In the case of an error, r sl t p is undefined. In the case of success, er r msg is undefined. If r sl t p-
>ni nst isO, thenr sl t p->i nst [0] isundefined.

PMAPI Programming Issues and Examples

The following issues and examples are provided to enable you to create better custom performance
monitoring tools.

The source code for a sample client (pmclient) using the PMAPI is shipped as part of the PCP package.
See the pmclient(1) man page, and the source code, located in ${ PCP_DEMOS DI R}/ prel i ent .

Symbolic Association between a Metric's Name and
Value

A common problem in building specific performance tools is how to maintain the association between
a performance metric's name, its access (instantiation) method, and the application program variable that
contains the metric's value. Generally this results in code that is easily broken by bug fixes or changes
in the underlying data structures. The PMAPI provides a uniform method for instantiating and accessing
the values independent of the underlying implementation, although it does not solve the name-variable
association problem. However, it does provide a framework within which a manageabl e solution may be
developed.

Fundamentally, the goal is to be able to name a metric and reference the metric's value in a manner that
isindependent of the order of operations on other metrics; for example, to associate the LOADAV macro
with the name ker nel.all.load, and then be able to use LOADAYV to get at the value of the corresponding
metric.

The one-to-one associ ation between the ordinal position of the metric namesisinput to pmL ocokupName
and the PMIDs returned by this function, and the one-to-one association between the PMIDs input to
pmFetch and the values returned by this function provide the basis for an automated solution.

The tool pmgenmap takes the specification of alist of metric names and symbolic tags, in the order they
should be passed to pmL ookupName and pmFetch. For example, pmclient:

cat ${PCP_DEMOS DI R}/ pntlient/pmsnap. spec
prclient _init {
hi nv. ncpu NUMCPU
}

86

PMAPI--The
Performance Metrics APl

prclient _sample {
kernel .al |l .| oad LOADAV
ker nel . percpu. cpu. user CPU_USR
ker nel . percpu. cpu. sys CPU_SYS
mem freenem FREEMEM
disk.all.total DKIOPS

}

This pmgenmap input produces the C code in Example 3.19, “C Code Produced by pmgenmap Input”.
It issuitable for including with the #i ncl ude statement:

Example 3.19. C Code Produced by pmgenmap | nput

~
E I B T T

~

Performance Metrics Nanme Space Map
Built by runme.sh fromthe file
pmmsmap. spec

on Thu Jan 9 14:13:49 EST 2014

Do not edit this file!

char *pntlient_init[] = {
#defi ne NUMCPU 0
"hi nv. ncpu",

char *pntlient_sanple[] = {
#def i ne LOADAV 0

"kernel .all.|oad",
#define CPU_USR 1

"ker nel . percpu. cpu. user",
#define CPU_SYS 2

"ker nel . per cpu. cpu. sys",
#def i ne FREEMEM 3

"mem freenent,
#def i ne DKIOPS 4

"disk.all.total ",

1
Initializing New Metrics

Using the code generated by pmgenmap, you are now able to easily initialize the application's metric
specifications as shown in Example 3.20, “Initializing Metric Specifications’:

Example 3.20. Initializing M etric Specifications

/* C code fragment frompnctlient.c */
nunpm d = sizeof (pntlient_sanple) / sizeof(char *);
if ((pmdlist = (pm D *)mall oc(nunpmid * sizeof (pmdlist[0]))) == NULL) {...}

87

PMAPI--The
Performance Metrics APl

if ((sts = prmiookupNanme(nunpm d, pntlient_sanple, pmdlist)) <0) {...}

The equi val ent python code woul d be

prnclient _sample = ("kernel .all.load", "kernel.percpu.cpu.user”,
"kernel . percpu. cpu. sys”, "memfreement, "disk.all.total")

pm dlist = context.pnriookupNanme(pntlient_sanpl e)

At this stage, pmidlist contains the PMID for the five metrics of interest.
Iterative Processing of Values

Assuming the tool is required to report values every del t a seconds, use code similar to that in
Example 3.21, “Iterative Processing”:

Example 3.21. Iterative Processing

/* censored C code fragment frompntlient.c */

while (samples == -1 || sanples-- > 0) {
if ((sts = pnfFetch(nunmpm d, pmdlist, &rp)) <0) { ... }
for (i = 0; i < nunpmd; i++)
if ((sts = pmiookupDesc(pmidlist[i], &desclist[i])) <O0) { ... }

pnExt ract Val ue(cr p- >vset [FREEMEM - >val fnt, crp->vset[FREEMEM - >vl i st,
descl i st [FREEMEM . type, &t np, PM TYPE FLQAT);
pmConvScal e(PM_TYPE_FLOAT, &t np, &desclist[FREEVMEM . units,
&at om &mbyte_scal e);
i p->freemem = atomf;

_pm i meval Sl eep(delta);

}
The equi val ent python code woul d be
FREEMEM = 3

descli st = context.pnLookupDescs(netric_names)
while (samples > 0):
crp cont ext . pnfFet ch(netri c_nanes)
val cont ext . pnExt r act Val ue(cr p. contents. get _val f nt (FREEVEM) ,
crp.contents.get_vlist(FREEVMEM 0),
descli st [FREEMEM . content s. t ype,
c_api . PM_TYPE_FLQOAT)
atom = ct x. pnConvScal e(c_api . PM TYPE_FLQOAT, val, desclist, FREEMEM
c_api . PM_SPACE_MBYTE)
(tvdelta, errnmsg) = c_api.pnParselnterval (delta)
c_api.pntinmeval Sl eep(del ta)

Accommodating Program Evolution

The flexibility provided by the PMAPI and the pmgenmap utility is demonstrated by Example 3.22,
“Adding aMetric”. Consider the requirement for reporting a third metric mem physnmem This example
shows how to add the line to the specification file:

Example 3.22. Adding a Metric

mem f r eenem PHYSVEM

88

PMAPI--The
Performance Metrics APl

Then regenerate the #i ncl ude file, and augment pmclient.c:

pnExt ract Val ue(cr p->vset [PHYSMEM - >val fnt, crp->vset [PHYSVEM - >vl i st
descl i st [PHYSMEM . type, &t np, PM TYPE FLQAT);
pnConvScal e(PM TYPE_FLOAT, &t np, &desclist[PHYSVEM . units,
&at om &mbyte scal e);

The equi val ent python code woul d be:

val = context.pnExtractVal ue(crp.contents. get_ val f nt (PHYSVMEM ,
crp.contents.get_vlist(PHYSVMEM O0),
descli st [PHYSMEM . content s. t ype,
c_api . PM_TYPE_FLOAT);

Handling PMAPI Errors

In Example 3.23, “PMAPI Error Handling”, the simple but complete PMAPI application demonstrates
the recommended style for handling PMAPI error conditions. The python bindings use the exception
mechanism to raise an exception in error cases. The python client can handle this condition by catching
the pnEr r exception. For simplicity, no command line argument processing is shown here - in practice
most tools use the pmGetOptions helper interface to assist with initial context creation and setup.

Example 3.23. PMAPI Error Handling

#i ncl ude <pcp/ pmapi . h>

i nt
mai n(int argc, char* argv[])
{
i nt sts = 0;
char *host = "local:";
char *metric = "memfreenment;
pm D pm d;
prmDesc desc;
prmResul t *result;

sts = pmNewCont ext (PM_CONTEXT_HOST, host);
if (sts <0) {
fprintf(stderr, "Error connecting to pnctd on %: %\n",
host, pnErrStr(sts));
exit(1l);
}
sts = pnmLookupNane(1l, &mretric, &pmd);
if (sts < 0) {
fprintf(stderr, "Error |ooking up %: %\n", netric,
prErrStr(sts));
exit(1l);
}
sts = pmLookupDesc(pm d, &desc);
if (sts < 0) {
fprintf(stderr, "Error getting descriptor for %:9%: %\n",
host, metric, pnErrStr(sts));
exit(1l);
}
sts = pnFetch(1l, &md, &result);

89

PMAPI--The
Performance Metrics APl

if (sts < 0) {
fprintf(stderr, "Error fetching %:%: %\n", host, netric,
prErrStr(sts));
exit(1l);
}
sts = resul t->vset[0] ->nunval ;
if (sts < 0) {
fprintf(stderr, "Error fetching %:%: %\n", host, netric,
prErrStr(sts));

exit(1l);
}
fprintf(stdout, "%:% = ", host, netric);
if (sts == 0)
puts("(no value)");
el se {
pmval ueSet *vsp = result->vset[0];
pnPrint Val ue(stdout, vsp->val fnt, desc.type,
&sp->vlist[0], 5);
printf(" %\n", prmUnitsStr(&desc.units));
}
return O;
}
The equi val ent python code woul d be:
i mport sys

i mport traceback
from pcp inport pnapi
fromcpmapi inmport PM TYPE U32

try:

context = pmapi . pnCont ext ()

pmd = context. pnlookupName(" mem freenment)

desc = context. pnlLookupDescs(pm d)

result = context.pnfFetch(pm d)

freemem = context. pnExtract Val ue(result.contents.get _val fnt (0),
result.contents.get vlist(0, 0),
desc[0] . contents. type,
PM _TYPE_U32)

print "freememis " + str(int(freenemul))

except pnmapi.pnErr, error:
print "o%: %" % (sys.argv[0], error.nessage())
except Exception, error:
sys.stderr.wite(str(error) + "\n")
sys.stderr.wite(traceback. format _exc() + "\n")

Compiling and Linking PMAPI Applications

Typical PMAPI applicationsrequirethefollowing lineto include the function prototype and data structure
definitions used by the PMAPI.

#i ncl ude <pcp/ prmapi . h>

Some applications may also require these header files: <pcp/ i npl . h>and <pcp/ pnda. h>.

90

PMAPI--The
Performance Metrics APl

The run-time environment of the PMAPI is mostly found in the | i bpcp library; so to link a generic
PMAPI application requires something akin to the following command:

cc mycode.c -1pcp

91

Chapter 4. Instrumenting Applications

This chapter provides an introduction to ways of instrumenting applications using PCP.

Thefirst section coversthe use of the Memory Mapped Vaue (MMV) Performance MetricsDomain Agent
(PMDA) to generate customized metrics from an application. This provides a robust, extremely efficient
mechanism for transferring custom instrumentation into the PCP infrastructure. It has been successfully
deployed in production environments for many years, has proven immensely valuable in these situations,
and can be used to instrument applications written in a number of programming languages.

The Memory Mapped Value library and PMDA is supported on every PCP platform, and is enabled by
defaullt.

Note

A particularly expansive Java APl is available from the separate Parfait [http://code.google.com/
p/parfait/] project. It supports both the existing VM instrumentation, and custom application
metric extensions.

The chapter also includesinformation on how to usethe MMV library (1 i bpcp_nmv) for instrumenting
an application. The example programs are installed in ${ PCP_DEMOS DI R}/ nmrv.

The second section covers the design of the Trace PMDA, in an effort to explain how to configure the
agent optimally for a particular problem domain. This information supplements the functional coverage
which the man pages provide to both the agent and the library interfaces.

This part of the chapter also includes information on how to use the Trace PMDA and its associated
library (I'i bpcp_trace) for instrumenting applications. The example programs are instaled in
${ PCP_DEMOS_DI R}/ t r ace.

Warning

The current PCP trace library is arelatively heavy-weight solution, issuing multiple system calls
per trace point, runs over a TCP/IP socket even locally and performs no event batching. As such
it is not appropriate for production application instrumentation at this stage.

A revised application tracing library and PMDA are planned which will be light-weight, suitable for
production system tracing, and support event metrics and other advances in end-to-end distributed
application tracing.

The application instrumentation libraries are designed to encourage application developersto embed calls

in their code that enable application performance data to be exported. When combined with system-level
performance data, this feature allows total performance and resource demands of an application to be
correlated with application activity.

For example, developers can provide the following application performance metrics:

» Computation state (especially for codes with major shiftsin resource demands between phases of their
execution)

» Problem size and parameters, that is, degree of parallelism throughput in terms of sub-problems solved,
iteration count, transactions, data sets inspected, and so on

 Servicetime by operation type

92

http://code.google.com/p/parfait/
http://code.google.com/p/parfait/
http://code.google.com/p/parfait/

Instrumenting Applications

Application and Performance Co-Pilot
Relationship

The relationship between an application, the pcp_nmmv and pcp_t r ace instrumentation libraries, the
MMV and Trace PMDAS, and the rest of the PCP infrastructure is shown in Figure 4.1, “ Application and

PCP Relationship”:

Figure4.1. Application and PCP Relationship

/ mM onitor mM onitor

_/PMAPI _/PMAPI

/
©

Trace
PMDA

~

Kernel é End-user DBMS § End-user
o application o application
g XYZ g ABC

Once the application performance metrics are exported into the PCP framework, all of the PCP tools may
be leveraged to provide performance monitoring and management, including:

e Two- and three-dimensional visualization of resource demands and performance, showing concurrent
system activity and application activity.

» Transport of performance data over the network for distributed performance management.

» Archivelogging for historical records of performance, most useful for problem diagnosis, postmortem
analysis, performance regression testing, capacity planning, and benchmarking.

» Automated alarms when bad performance is observed. These apply both in real-time or when scanning
archives of historical application performance.

Performance Instrumentation and Sampling

The pcp_mmv library provides function calls to assist with extracing important performance metrics
from a program into a shared, in-memory location such that the MMV PMDA can examine and

93

Instrumenting Applications

serve that information on behalf of PCP client tool requests. The pcp_nmv library is described in
the mmv_stats init(3), mmv_lookup_value desc(3), mmv_inc_value(3) man pages. Additionally, the
format of the shared memory mappingsis described in detail in mmv(5).

MMV PMDA Design

An application instrumented with memory mapped values directly updates the memory that backs the
metric values it exports. The MMV PMDA reads those values directly, from the same memory that
the application is updating, when current values are sampled on behalf of PMAPI client tools. This
relationship, and asimplified MMV API, are shown in Figure 4.2, “Memory Mapped Page Sharing”.

Figure4.2. Memory Mapped Page Sharing

{usr/bin/facme

base = mmv_stats_init(Sharaj M emory
"widget.count", M in S M M V PM DA
"widget.bytes’, ...) app g
' mmv_disk_header pmLookupDesc ...
1ops = m”WJOOkUP,‘{ajue,d@C(v disk toc mmv.widget.count: base (+X)
base, "widget.count") - mmv.widget.bytes: base (+Y)
-nmv_l ookup_value_desc(mmv_disk_toc
base, "widget.bytes") pmFetch ...
mmv.widget.count: iops
mmv_disk_metric mmv.widget.bytes: _
mmv_disk_metric
\4‘ mmv_disk_value
f mmv_disk value
sz = acme_build_one widget() .
mmv_inc_value(base, thrup Sl mmv_disk_value
mmv_inc_value(base, iops, 1)
}

It is worth noting that once the metrics of an application have been registered viathe pcp_mv library
initialisation API, subsequent interactionswith thelibrary are not intrusiveto theinstrumented application.
At the points where values are updated, the only cost involved is the memory mapping update, which is
a single memory store operation. There is no need to explicitly transfer control to the MMV PMDA, nor
allocate memory, nor make system or library calls. The PMDA will only sample the values at times driven
by PMAPI client tools, and this places no overhead on the instrumented application.

Memory Mapped Values API

Thel i bpcp_mv Application Programming Interface (API) can becalled from C, C++, Perl and Python
(a separate project, Parfait, services the needs of Java applications). Each language has access to the
complete set of functionality offered by | i bpcp_nmv. In most cases, the calling conventions differ only
dightly between languages - in the case of Java and Parfait, they differ significantly however.

Starting and Stopping Instrumentation

Instrumentation is begun with an initial call to mmv_stats_init, and ended with a cal to
nmv_st at s_st op. These calls manipulate global state shared by the library and application. These are
the only callsrequiring synchonization and asingle call to each istypically performed early and latein the
life of the application (although they can be used to reset the library state aswell, at any time). Assuch, the
choice of synchonization primitiveisleft to the application, and noneis currently performed by thelibrary.

94

Instrumenting Applications

void *mmv_stats_init(const char *name, int cluster, mv_stats flags_t flags,
const mv_netric_t *stats, int nstats,
const mMmv_i ndomt *indonms, int nindons)

The namne should be a ssimple symbolic name identifying the application. It is usually used as the first
application-specific part of the exported metric names, as seen from the MMV PMDA. This behavior
can be overriden using the f | ags parameter, with the MMV_FLAG_NOPREFIX flag. In the example
below, full metric names such asmmv. acne. pr oduct s. count will be created by the MMV PMDA.
Withthe MMV_FLAG_NOPREFIX flag set, that would instead become rmv. pr oduct s. count . Itis
recommended to not disable the prefix - doing so requires the applications to ensure naming conflicts do
not arise in the MMV PMDA metric names.

The cl ust er identifier is used by the MMV PMDA to further distinguish different applications, and
is directly used for the MMV PMDA PMID cluster field described in Example 2.3, “ __ pm D_i nt
Structure”, for al MMV PMDA metrics.

All remaining parameters to nmv_st ats_i nit define the metrics and instance domains that exist
within the application. These are somewhat analagous to the final parameters of pndal ni t (3) , and
are best explained using Example 4.1, “Memory Mapped Vaue Instance Structures’ and Example 4.2,
“Memory Mapped Value Metrics Structures’. As mentioned earlier, the full source code for this example
instrumented application can be found in ${ PCP_DEMOS_DI R} / nmv.

Example 4.1. Memory Mapped Value | nstance Structures

#i ncl ude <pcp/ prmapi . h>
#i ncl ude <pcp/ mm/_stats. h>

static mm_instances_t products[] = {

{ .internal = 6 .external = "Anvils" },
{ .internal =1, .external = "Rockets" },
{ .internal = 2, .external = "G ant_Rubber_ Bands" },

b
#defi ne ACME_PRODUCTS | NDOM 61
#def i ne ACME_PRODUCTS_COUNT (si zeof (products)/si zeof (products[0]))

static mm_indomt indons[] = {
{ .serial = ACME_PRODUCTS | NDOV
.count = ACME_PRODUCTS_COUNT,
.instances = products,
. shorttext "Acme products”,
. hel ptext = "Mst popul ar products produced by the Acne Corporation”,

}
b

The above data structures initialize an instance domain of the set of products produced in afactory by the
fictional "Acme Corporation". These structures are directly comparable to several concepts we have seen
already (and for good reason - the MMV PMDA must interpret the applications intentions and properly
export instances on its behalf):

e mmv_instances t mapsto pmdalnstid, asin Example 2.7, “ prdal nst i d Structure”

* mmv_indom_t mapsto pmdalndom, asin Example 2.8, pnrdal ndomStructure” - themajor difference
istheaddition of oneline and long hel p text, the purpose of which should be self-explanatory at thisstage.

e serial numbers, asin Example2.9,“ _pm nDom i nt Structure”

95

Instrumenting Applications

Next, we shall create three metrics, al of which use this instance domain. These are the
nmv. acne. pr oduct s metrics, and they reflect the rates at which products are built by the machinesin
the factory, how long these builds take for each product, and how long each product type spends queued
(while waiting for factory capacity to become available).

Example 4.2. Memory Mapped Value Metrics Structures

static mmv_netric_ t metrics[] = {

{ .nane = "products.count",
item= 7,
.type = MW_TYPE_U64,
.senantics MW _SEM COUNTER,

. di nensi on MW_UNI TS(0, 0, 1, 0, 0, PM_COUNT_ONE) ,
. indom = ACVE_PRODUCTS_| NDOM

.shorttext = "Acne factory product throughput",
. hel ptext =

"Monot oni ¢ increasing counter of products produced in the Acne Corporation\n"
"factory since starting the Acne production application. Quality guaranteed.",
1
{ .nane = "products.time",
.item= 8§,
.type = MW_TYPE_U64,
.senmantics = MW_SEM COUNTER,

. di nensi on MW_UNI TS(0, 1, 0, 0, PM_TI ME_USEC, 0),

. indom = ACVE_PRODUCTS_| NDOM

.shorttext = "Machine tine spent producing Acne products”,
. hel ptext =

"Machi ne time spent produci ng Acre Corporation products. Does not include\n"
"time in queues waiting for production nmachinery.",

1
{ .nane = "products. queueti ne",
.item = 10,
.type = MW_TYPE_U64,
.senmantics = MW_SEM COUNTER,
.di nension = MW_UNI TS(O0, 1, 0, 0, PM_TI ME_USEC, 0),
. indom = ACVE_PRODUCTS_| NDOM
.shorttext = "Queued tinme while producing Acne products",
. hel ptext =

"Time spent in the queue waiting to build Acme Corporation products,\n"
"whil e sone other Acne product was being built instead of this one.",

1
}s

#def i ne | NDOM COUNT (si zeof (i ndons)/ si zeof (i ndons[0]))
#defi ne METRI C_COUNT (sizeof(netrics)/sizeof(nmetrics[0]))

As was the case with the "products’ instance domain before, these metric-defining data structures are
directly comparable to PMDA data structures described earlier:

e mmv_metric_t mapsto apmDesc structure, asin Example 3.2, “ pmDesc Structure”

e MMV_TYPE, MMV_SEM, and MMV_UNITS map to PMAPI constructs for type, semantics,
dimensionality and scale, asin Example 3.3, “ prni t s and pnDesc Structures’

e it emnumber, asin Example2.3,“ __pnl D_i nt Structure”

96

Instrumenting Applications

For the most part, al types and macros map directly to their core PCP counterparts, which the MMV
PMDA will use when exporting the metrics. Oneimportant exception isthe introduction of the metric type
MMV_TYPE_ELAPSED, which is discussed further in the section called “Elapsed Time Measures’.

The compound metric types - aggregate and event type metrics - are not supported by the MMV format.

Getting a Handle on Mapped Values

Once metrics (and the instance domains they use) have been registered, the memory mapped file has been
created and is ready for use. In order to be able to update the individual metric values, however, we must
find get a handle to the value. This is done using the mmv_lookup_value _desc function, as shown in
Example 4.3, “Memory Mapped Value Handles'.

Example 4.3. Memory Mapped Value Handles

#defi ne ACME_CLUSTER 321 /[* PMD cluster identifier */
i nt

mai n(int argc, char * argv[])

{

voi d *base;

pmAt onVal ue *count [ACME_PRODUCTS COUNT] ;
pmAt onVal ue *nachi ne[ACVE_PRODUCTS_ COUNT] ;
pmAt onVal ue *i nqueue[ACVE_PRODUCTS COUNT] ;
unsi gned i nt working;

unsi gned int product;

unsigned int i;

base = mv_stats_init("acne", ACME CLUSTER, O,
netrics, METRI C_COUNT, indons, | NDOM COUNT);
if (!base) {
perror("mm_stats init");
return 1;

}

for (i = 0; i < ACVE_PRODUCTS_COUNT; i++) {
count[i] = mv_Il ookup_val ue_desc(base,
"products.count", products[i].external);
nmv_| ookup_val ue_desc(base,
"products.tine", products[i].external);
i nqueue[i] = nmv_| ookup_val ue_desc(base,
"products. queuetine", products[i].external);

machi ne[i]

}

Spaceinthemapping filefor every valueisset aside at initialization time (by themmv_stats init function)
- that is, spacefor each and every metric, and each value (instance) of each metric when an instancedomain
isused. Tofind the handl e to the space set aside for oneindividual value requiresthe tuple of base memory
address of the mapping, metric name, and instance name. In the case of metrics with no instance domain,
the final instance name parameter should be either NULL or the empty string.

Updating Mapped Values

At this stage we have individual handles (pointers) to each instrumentation point, we can now start
modifying these values and observing changes through the PCP infrastructure. Notice that each handleis

97

Instrumenting Applications

simply the canonical pmAtomValue pointer, as defined in Example 3.16, “ pmAt omVal ue Structure”,
which isaunion providing sufficient space to hold any single value.

This pointer can be either manipulated directly, or using helper functions provided by the pcp_mmv API,
such asthe mmv_stats inc and mmv_stats set functions.

Example 4.4. Memory Mapped Value Updates

while (1) {
/* choose a random nunber between 0-N -> product */
product = rand() % ACME_PRODUCTS_ COUNT;

/* assign a time spent "working” on this product */
wor ki ng = rand() % 50000;

/* pretend to "work" so process doesn't burn CPU */
usl eep(wor ki ng) ;

/* update the menory napped values for this one: */
/* one nore product produced and work tinme spent */
mmv_i nc_val ue(base, machi ne[product], working); /* APl */
count [product]->ull += 1; /* or direct mmap update */

/* all other products are "queued" for this time */
for (i = 0; i < ACME_PRODUCTS_COUNT; i ++)
if (i !'= product)
mmv_i nc_val ue(base, inqueue[i], working);

}

At thisstage, it will beinformative to compile and run the compl ete exampl e program, which can be found
in ${ PCP_DEMOS_DI R}/ mmv/ acnre. c. There is an associated Makef i | e to build it, in the same
directory. Running theac e binary creates the instrumentation shown in Example 4.5, “Memory Mapped
Vaue Reports’, with live values letting us explore simple queueing effects in products being created on
the ACME factory floor.

Example 4.5. Memory Mapped Value Reports

pmnfo -m nv. acne
nmv. acme. product s. queuetime PM D: 70. 321. 10
nmv. acme. products.time PMD: 70.321.8
nmv. acme. products. count PM D. 70. 321.7

prmval -f2 -s3 mv. acne. products.tine

metric: nmv. acme. products. tine

host : | ocal host

semantics: cumul ative counter (converting to rate)

units: m crosec (converting to tine utilization)

sanpl es: 3

interval: 1.00 sec

Anvil s Rocket s G ant _Rubber Bands

0. 37 0.12 0.50
0. 35 0. 25 0. 38
0.57 0. 20 0.23

98

Instrumenting Applications

Experimentation with the algorithm from Example 4.4, “Memory Mapped Vaue Updates’ is encouraged.
In particular, observe the effects of rate conversion (counter metric type) of a metric with units of
"time" (PM_TIME_*). The reported values are calculated over a sampling interval, which also has units
of "time", forming a utilization. This is extremely valuable performance analysis currency - comparable
metrics would include processor utilization, disk spindle utilization, and so forth.

Elapsed Time Measures

One problem with the instrumentation model embodied by the pcp_mmv library is providing timing
information for long-running operations. For instrumenting long-running operations, like uploading
downloading afile, the overall operation may be broken into smaller, discrete units of work which can be
easily instrumented in terms of operations and througput measures. In other cases, there are no divisible
unitsfor long-running operations (for example ablack-box library call) and instrumenting these operations
presents a challenge. Sometimes the best that can be done is adding the instrumentation point at the
completion of the operation, and simply accept the "bursty" nature of this approach. In these problematic
cases, the work completed in one sampling-interval may have begun several intervals before, from the
point of view of the monitoring tool, which can lead to misleading resullts.

One technique that is available to combat this is through use of the MMV_TYPE_ELAPSED metric
type, which provides the concept of a "timed section" of code. This mechanism stores the start
time of an operation along with the mapped metric value (an "elapsed time" counter), via the
mmv_stats interval_start instrumentation function. Then, with help from the MMV PMDA which
recognizes this type, the act of sampling the metric value causes an interim timestamp to be taken (by
the MMV PMDA, not the application) and combined with the initial timestamp to form a more accurate
reflection of time spent within the timed section, which effectively smooths out the bursty nature of the
instrumentation.

The completion of each timed section of code is marked by a call to mmv_stats interval_end which
signifies to the MMV PMDA that the operation is not active, and no extra "in-progress' time should be
applied to the exported value. At that time, the elapsed time for the entire operation is calculated and
accounted toward metrics value.

Performance Instrumentation and Tracing

Thepcp_trace library provides function calls for identifying sections of a program as transactions or
events for examination by the trace PMDA, auser command called pmdatrace. Thepcp_t r ace library
is described in the pmdatrace(3) man page

The monitoring of transactions using the Performance Co-Pilot (PCP) infrastructure begins with a
pmtracebegin call. Time is recorded from there to the corresponding pmtraceend call (with matching
tag identifier). A transaction in progress can be cancelled by calling pmtraceabort.

A second form of program instrumentation is available with the pmtracepoint function. Thisisasimpler
form of monitoring that exports only the number of times a particular point in a program is passed.
The pmtraceobs and pmtracecount functions have similar semantics, but the former allows an arbitrary
numeric value to be passed to the trace PMDA.

The pmdatrace command is a PMDA that exports transaction performance metrics from application
processes using the pcp_t r ace library; see the pmdatrace(1) man page for details.

Trace PMDA Design

Trace PMDA design coversapplication interaction, sampling techniques, and configuring thetrace PM DA.

99

Instrumenting Applications

Application Interaction

Figure 4.3, “Trace PMDA Overview” describes the general state maintained within the trace PMDA.

Figure4.3. Trace PM DA Overview

Instrumented
. Trace PMDA
Applications
\ l trace.* .count metrics \
‘ Event
Q}ég’ AN Counters
&@& / (time averaging)
PDU
~HHHA
‘-..'.l 110
(59 trace.* .time metrics
&Q? : Response Time
¥

k(Statistics)

Applications that are linked with thel i bpcp_t r ace library make calls through the trace Application
Programming Interface (API). These calls result in interprocess communication of trace data between
the application and the trace PMDA. This data consists of an identification tag and the performance data
associated with that particular tag. Thetrace PMDA aggregates the incoming information and periodically
updates the exported summary information to describe activity in the recent past.

As each protocol dataunit (PDU) is received, its datais stored in the current working buffer. At the same

time, the global counter associated with the particular tag contained within the PDU isincremented. The
working buffer contains all performance data that has arrived since the previous time interval elapsed.
For additional information about the working buffer, see the section called “Rolling-Window Periodic
Sampling”.

Sampling Techniques

The trace PMDA employs arolling-window periodic sampling technique. The arrival time of the data at
the trace PMDA in conjunction with the length of the sampling period being maintained by the PMDA
determines the recency of the data exported by the PMDA. Through the use of rolling-window sampling,
the trace PM DA is able to present a more accurate representation of the available trace data at any given
time than it could through use of simple periodic sampling.

Therolling-window sampling technique affectsthe metricsin Example 4.6, “ Rolling-Window Sampling
Technique’:

Example 4.6. Rolling-Window Sampling Technique

trace. observe.rate
trace.counter.rate
trace.point.rate

100

Instrumenting Applications

trace.transact.ave_tine
trace.transact. max_time
trace.transact. mn_tinme
trace.transact.rate

The remaining metrics are either global counters, control metrics, or the last seen observation vaue. the
section called “Trace API”, documents in more detail all metrics exported by the trace PMDA.

Simple Periodic Sampling

The simple periodic sampling technique uses a single historical buffer to store the history of events that
have occurred over the sampling interval. As events occur, they are recorded in the working buffer. At
the end of each sampling interval, the working buffer (which at that time holds the historical datafor the
sampling interval just finished) is copied into the historical buffer, and the working buffer iscleared. It is
ready to hold new events from the sampling interval now starting.

Rolling-Window Periodic Sampling

In contrast to simple periodic sampling with its single historical buffer, the rolling-window periodic
sampling technique maintains a number of separate buffers. One buffer is marked as the current working
buffer, and the remainder of the buffers hold historical data. As each event occurs, the current working
buffer is updated to reflect it.

At a specified interval, the current working buffer and the accumulated data that it holds is moved into
the set of historical buffers, and a new working buffer is used. The specified interval is afunction of the
number of historical buffers maintained.

The primary advantage of therolling-window sampling techniqueis seen at the point where datais actually
exported. At this point, the data has a higher probability of reflecting a more recent sampling period than
the data exported using simple periodic sampling.

The data collected over each sample duration and exported using the rolling-window sampling technique
provides a more up-to-date representation of the activity during the most recently completed sample
duration than simple periodic sampling as shown in Figure 4.4, “ Sample Duration Comparison”.

101

Instrumenting Applications

Figure 4.4. Sample Duration Comparison

Simple periodic sampling
0 10 20 30

<
<
<
<€
<
<€

Sample duration extends back to previous sample time; and
sample durations do not overlap

Rolling window periodic sampling

0 10 20 30

<
<
<
<
<
<
<
<
<
<€

Sample duration extends over N previous sampling times;
and sample durations do overlap

The trace PMDA alows the length of the sample duration to be configured, as well as the number of
historical buffers that are maintained. The rolling-window approach is implemented in the trace PMDA
asaring buffer (see Figure 4.3, “Trace PMDA Overview”).

When the current working buffer is moved into the set of historical buffers, the least recent historical
buffer is cleared of data and becomes the new working buffer.

Rolling-Window Periodic Sampling Example

Consider the scenario where you want to know the rate of transactions over the last 10 seconds. Y ou set
the sampling rate for the trace PMDA to 10 seconds and fetch themetrict r ace. t r ansact . rat e. So
if in the last 10 seconds, 8 transactions took place, the transaction rate would be 8/10 or 0.8 transactions
per second.

The trace PMDA does not actually do this. It instead does its cal cul ations automatically at a subinterval
of the sampling interval. Reconsider the 10-second scenario. It has a calculation subinterval of 2 seconds
as shown in Figure 4.5, “Sampling Intervals’.

102

Instrumenting Applications

Figure 4.5. Sampling Intervals

6 — Interval used by agent N
5 B Requested interval N
2]
§ 4 —°
| o :
= 2 2
5 2= 1 1
&
£ 1
2
0 |
35 135
0 2 4 6 8 10 12 14
Time (seconds) Request rate
at thistime

If at 13.5 seconds, you request the transaction rate, you receive a value of 0.7 transactions per second. In
actual fact, the transaction rate was 0.8, but the trace PMDA did its calculations on the sampling interval
from 2 seconds to 12 seconds, and not from 3.5 seconds to 13.5 seconds. For efficiency, the trace PMDA
calculates the metrics on the last 10 seconds every 2 seconds. As aresult, the PMDA is not driven each
time afetch request is received to do a calculation.

Configuring the Trace PMDA

The trace PMDA is configurable primarily through command-line options. The list of command-line
optionsin Table 4.1, “ Selected Command-Line Options” is not exhaustive, but it identifies those options
which are particularly relevant to tuning the manner in which performance datais collected.

Table4.1. Selected Command-Line Options

Option

Description

Access controls

Sample duration

Number of historical buffers

Counter and observation metric units

Thetrace PMDA offers host-based access control. This
control allows and disallows connections from instrumented
applications running on specified hosts or groups of hosts.
Limits to the number of connections allowed from individual
hosts can also be mandated.

The interval over which metrics are to be maintained before
being discarded is called the sample duration.

The data maintained for the sample duration is held in a number
of internal buffers within the trace PMDA. These are referred

to as historical buffers. This number is configurable so that the
rolling window effect can be tuned within the sample duration.

Since the data being exported by the
trace. observe. val ue andtrace. count er. count
metrics are user-defined, the trace PMDA by default exports

103

Instrumenting Applications

Option Description
these metrics with atype of “none.” A framework is provided
that allows the user to make the type more specific (for
example, bytes per second) and allows the exported values to be
plotted along with other performance metrics of similar units by
toolslike pmchart.

Instance domain refresh The set of instances exported for each of the
t r ace metrics can be cleared through the storable
trace. control.reset metric.

Trace API

Thel i bpcp_t r ace Application Programming Interface (API) iscalled from C, C++, Fortran, and Java.
Each language has access to the complete set of functionality offered by | i bpcp_t r ace. In some cases,
the calling conventions differ dightly between languages. This section presents an overview of each of
the different tracing mechanisms offered by the API, as well as an explanation of their mappings to the
actual performance metrics exported by the trace PMDA.

Transactions

Paired callsto the pmtracebegin and pmtraceend APl functions result in transaction data being sent to
the trace PMDA with ameasure of the time interval between the two calls. Thisinterval is the transaction
service time. Using the pmtraceabort call causes data for that particular transaction to be discarded.
The trace PMDA exports transaction data through the following t r ace. t r ansact metrics listed in
Table4.2,“ trace. transact Metrics’:

Table4.2. trace. transact Metrics

Metric Description

trace.transact.ave_tine The average service time per transaction type. Thistime
is calculated over the last sample duration.

trace. transact. count The running count for each transaction type seen since
the trace PMDA started.

trace.transact. max_time The maximum service time per transaction type within
the last sample duration.

trace.transact.mn_tine The minimum service time per transaction type within
the last sample duration.

trace.transact.rate The average rate at which each transaction type is
completed. Therateis calculated over the last sample
duration.

trace.transact.total tine The cumulative time spent processing each transaction

since the trace PMDA started running.

Point Tracing

Point tracing allows the application programmer to export metrics related to salient events. The
pmtracepoint function is most useful when start and end points are not well defined. For example, this
function is useful when the code branches in such a way that a transaction cannot be clearly identified,
or when processing does not follow a transactional model, or when the desired instrumentation is akin

104

Instrumenting Applications

to event rates rather than event service times. This data is exported through the t r ace. poi nt metrics
listedin Table 4.3, “t r ace. poi nt Metrics’:

Table4.3.trace. poi nt Metrics

Metric

Description

trace. poi nt. count

trace.point.rate

Running count of point observations for each tag seen since the
trace PMDA started.

The average rate at which observation points occur for each tag
within the last sample duration.

Observations and Counters

The pmtraceobs and pmtracecount functions have similar semantics to pmtracepoint, but also allow
an arbitrary numeric value to be passed to the trace PMDA. The most recent value for each tag is then
immediately available from the PMDA. Observation data is exported through the t r ace. obser ve
metricslisted in Table4.4,“ t r ace. obser ve Metrics’:

Table4.4. trace. obser ve Metrics

Metric

Description

trace. observe. count

trace. observe.rate

trace. observe. val ue

trace. counter

Running count of observations seen since the trace PMDA
started.

The average rate at which observations for each tag occur. This
rateis calculated over the last sample duration.

The numeric value associated with the observation last seen by
the trace PMDA.

Counter datais exported through thet r ace. count er
metrics. The only difference betweent r ace. count er
andt race. obser ve metricsisthat the numeric value of
trace. count er must be amonotonic increasing count.

Configuring the Trace Library

The trace library is configurable through the use of environment variables listed in Table 4.5,
“Environment Variables’ aswell asthrough the state flagslisted in Table 4.6, “ State Flags’. Both provide
diagnostic output and enable or disable the configurable functionality within the library.

Table 4.5. Environment Variables

Name

Description

PCP_TRACE_HOST
PCP_TRACE_PORT

PCP_TRACE_TI MEQUT

PCP_TRACE_REQTI MEOUT

The name of the host where the trace PM DA is running.

TCP/IP port number on which the trace PMDA is accepting
client connections.

The number of secondsto wait until assuming that the initial
connection is not going to be made, and timeout will occur. The
default is three seconds.

The number of secondsto allow before timing out on awaiting
acknowledgment from the trace PMDA after trace data has been

105

Instrumenting Applications

Name Description

sent to it. This variable has no effect in the asynchronous trace
protocol (refer to Table 4.6, “ State Flags').

PCP_TRACE_RECONNECT A list of values which represents the backoff approach that
thel i bpcp_t r ace library routines take when attempting to
reconnect to the trace PMDA after a connection has been lost.
Thelist of values should be a positive number of seconds for
the application to delay before making the next reconnection
attempt. When the final valuein thelist isreached, that valueis
used for all subsequent reconnection attempts.

The Table 4.6, “ State Flags” are used to customize the operation of thel i bpcp_t r ace routines. These
are registered through the pmtracestate call, and they can be set either individually or together.

Table 4.6. State Flags

Flag Description

PMIRACE_STATE_NONE The default. No state flags have been set, the fault-
tolerant, synchronous protocol is used for communicating
with the trace PMDA, and no diagnostic messages are
displayed by thel i bpcp_t r ace routines.

PMIRACE_STATE_API High-level diagnostics. Thisflag simply displays entry
into each of the API routines.
PMIRACE_STATE_COMVB Diagnostic messages related to establishing and

maintaining the communication channel between
application and PMDA.

PMIRACE_STATE_PDU The low-level details of the trace protocol data units
(PDU) isdisplayed as each PDU is transmitted or
received.

PMIRACE_STATE_PDUBUF The full contents of the PDU buffers are dumped as PDUs
are transmitted and received.

PMIRACE_STATE_NOAGENT I nterprocess communication control. If thisflagis

set, it causes interprocess communication between the
instrumented application and the trace PMDA to be
skipped. Thisflag is adebugging aid for applications
usingl i bpcp_trace.

PMIRACE _STATE_ASYNC Asynchronous trace protocol. This flag enables the
asynchronous trace protocol so that the application does
not block awaiting acknowledgment PDUs from the trace
PMDA. In order for the flag to be effective, it must be set
before using the other | i bpcp_t r ace entry points.

106

Appendix A. Acronyms

Table A.1, “Performance Co-Pilot Acronyms and Their Meanings’ provides a glossary of the acronyms
used in the Performance Co-Pilot (PCP) documentation, help cards, man pages, and user interface.

Table A.1. Performance Co-Pilot Acronymsand Their Meanings

Acronym M eaning
API Application Programming Interface

DBMS Database Management System

DNS Domain Name Service

DSO Dynamic Shared Object

1/10 Input/Output
IPC Interprocess Communication

PCP Performance Co-Pilot

PDU Protocol data unit

PMAPI Performance Metrics Application Programming I nterface
PMCD Performance Metrics Collection Daemon
PMDA Performance Metrics Domain Agent

PMID Performance Metric Identifier

PMNS Performance Metrics Name Space

TCP/IP Transmission Control Protocol/Internet Protocol

107

Index

__pmiD_int structure Data Structures

__pminDom_int structure Data Structures

access controls Configuring the Trace PMDA

acronyms Acronyms

ancillary support services PMAPI Ancillary Support
Services

Application Programming Interface PMAPI--The
Performance Metrics APl Memory Mapped Values API
Trace API Application Interaction Trace AP

application devel opersinstrumenting Applications

application programs Application and Agent
Development
applications
compiling Compiling and Linking PMAPI
Applications

instrumentation Application and PCP Relationship
interaction Application Interaction
architecture PCP Architecture PMDA Architecture
archive logs
context services PMAPI Context Services
performance data PMAPI--The Performance Metrics
API Current PMAPI Context
performance management Application and PCP
Relationship
pmGetArchiveEnd
Function
pmGetinDomArchive
pmGetlnDomAr chive Function
retrospective sources Retrospective Sources of
Performance Metrics
time control services PMAPI Time Control Services
archive-specific services pmGetAr chivel abel Function
Cluster PMDA Distributed Collection
arrays
instance description Data Structures
N dimensional data N Dimensional Data
performance metrics Performance Metrics Vaues
Variable Length Argument and Results Lists
asynchronous trace protocol Configuring the Trace
Library Configuring the Trace Library
audience Programming Performance Co-Pilot
automated alarms Application and PCP Relationship
caching PMDA Caching PMDA Latency and Threads of
Control
chkhelp tool Application and Agent Development
Cisco PMDA Distributed Collection Caching PMDA
client development Client Development and PMAPI
clusters Name Space
collection time Current PMAPI Context pmNewContext
Function pmWhichContext Function
collection tools PCP Architecture

function pmGetArchiveEnd

function

collector hosts Distributed Collection
COLOR_INDOM Data Structures
compiling and linking Compiling and Linking PMAPI
Applications
component software Overview of Component Software
computation state Instrumenting Applications
configuration Configuring the Trace Library Configuring
PCP Tools
context services PMAPI Context Services
control threads Latency and Threads of Control
counter semantics Semantics
customization Programming Performance Co-Pilot
Instrumenting Applications
daemon process method Daemon Process Method
data export Application and PCP Relationship
data structures Data Structures Data Structures
dbpmda man page Implementing a PMDA Overview
dbpmda Debug Utility
dbx man page Overview
debugging and testing Testing and Debugging a PMDA
Configuring the Trace Library
debugging flags (see flags)
delays Latency and Threads of Control
design requirements Implementing a PMDA
diagnostic output Configuring the Trace Library
dimensionality and scale Performance
Descriptions
discrete semantics Semantics
distributed performance management
data transportation Application and PCP Relationship
metrics collection Distributed Collection
dlopen man page In-Process (DSO) Method DSO PMDA
DNS Acronyms
domains
definition Overview
fields Name Space
numbers Domains
dometric function pmTraver ssPMNS Function
DSO Acronyms
architecture PMDA Architecture
disadvantages Daemon PMDA
implementation DSO PMDA
interface PMDA Interface
PMDA building In-Process (DSO) Method
PMDA initialization Common Initialization
dynamic shared object (see DSO)
embedded calls Instrumenting Applications
environment variables Configuring the Trace Library
error handling Handling PMAPI Errors
examples
alarm tools Implementing a PMDA
Install script Installing a PMDA
MMV PMDA Instrumenting Applications

Metric

108

Index

programming issues PMAPI Programming |ssues and
Examples
Remove script Removing a PMDA
rolling-window sampling Rolling-Window Periodic
Sampling Example
simple and trivial PMDAs Domains, Metrics, and
Instances
time control functions PMAPI Time Control Services
trace PMDA Instrumenting Applications
visualization tools Implementing a PMDA
execv system call Daemon PMDA
exporting data Extracting the Information
flags
debugging Debugging Information
state Configuring the Trace Library
fork system call Daemon PMDA
glossary Acronyms
handle context pmReconnectContext Function
help text
creation Installing aPMDA
initialization Common Initialization
location Installing a PMDA
PDU_TEXT_REQ Overview
pmLookuplnDomText
pmL ookuplnDomText Function
pmLookupText function Management of Evolution
within aPMDA pmLookupText Function
structure specification Implementing a PMDA
terse and extended descriptions PMDA Help Text
historical buffers Simple Periodic Sampling Rolling-
Window Periodic Sampling Configuring the Trace
PMDA
identification tags Application Interaction
implementation Implementing a PMDA
indom instance domain pmL cokuplnDomT ext Function
pmAddProfile Function pmGetlnDomAr chive
Function
information extraction Extracting the Information
initialization Initializing New Metrics
instance domain refresh Configuring the Trace PMDA
instance domain services pmGetlnDom Function
instantaneous semantics Semantics
instlist argument pmGetl nDom Function pmAddPr ofile
Function
instrumentation Performance Instrumentation and
Sampling Performance Instrumentation and Tracing
Application and PCP Relationship
integrating a PMDA Integration of a PMDA
internal instance identifier Performance Metrics Values
interpolated metrics pmSetM ode Function
interprocess communication (see | PC)
PMTRACE_STATE_NOAGENT flag Configuring
the Trace Library
IPC

function

DSO In-Process (DSO) Method
PMDA Implementing a PMDA
trace APl Application Interaction
item numbers Name Space
iterative processing Iterative Processing of Values
latency Latency and Threads of Control
leaf node pmTraver sePM NS Function
libpcp_mmv library
Application Programming Interface Memory Mapped
Values API
instrumenting
Applications
libpcp_trace library
Application Programming Interface Trace API
entry points Configuring the Trace Library
functions Configuring the Trace Library

applications Instrumenting

instrumenting applications Instrumenting
Applications
library reentrancy Library Reentrancy and Threaded
Applications

metric description services pmL ookupDesc Function
metrics
APl Naming and Identifying Performance Metrics
definition Overview Metrics
name and value Symbolic Association between a
Metric's Name and Vaue
metrics and instances Overview
metrics description services pmL ookupDesc Function
metrics services pmFetch Function
mmv_lookup_value desc function Getting a Handle on
Mapped Values

mmv_stats init function Starting and Stopping
Instrumentation
mmv_stats stop function Starting and Stopping

Instrumentation
mmv_stats inc function Updating Mapped Values

mmv_stats interval_start function Elapsed Time
Measures
mmv_stats interval_end function Elapsed Time
Measures

monitoring tools PCP Architecture
multidimensional arrays N Dimensional Data
multiple threads Library Reentrancy and Threaded
Applications
MMV PMDA
description Instrumenting Applications
design MMV PMDA Design
name space Name Space Name Space
new metrics Management of Evolution within a PMDA
Initializing New Metrics
new PMDA Upgrading aPMNS to Include Metrics from
aNew PMDA
newhelp man page PMDA Help Text
newhelp tool Application and Agent Development

109

Index

NOW_INDOM Data Structures
observation metric units Configuring the Trace PMDA
parallelism Instrumenting Applications
PCP

acronym Acronyms

description Programming Performance Co-Pilot

tool summaries Application and Agent Development
PCP_TRACE_HOST variable Configuring the Trace
Library
PCP_TRACE_PORT variable Configuring the Trace
Library
PCP_TRACE_RECONNECT variable Configuring the
Trace Library
PCP_TRACE_REQTIMEOUT variable Configuring the
Trace Library
PCP_TRACE_TIMEOUT variable Configuring
Trace Library
PDU Overview Application Interaction Configuring the
Trace Library Acronyms
PDU_AUTH Overview
PDU_DESC_REQ Overview
PDU_FETCH Overview Simple PMDA
PDU_INSTANCE_REQ Overview
PDU_PMNS _CHILD Overview
PDU_PMNS _NAMES Overview
PDU_PMNS _TRAVERSE Overview
PDU_PMNS IDS Overview
PDU_PROFILE Overview
PDU_RESULT Overview Simple PMDA
PDU_TEXT_REQ Overview
performance instrumentation Programming Performance
Co-Pilot Performance Instrumentation and Sampling
Performance Instrumentation and Tracing
Performance Metric Identifier (see PMID)
performance metrics (see metrics)
Performance Metrics Application Programming I nterface
(see PMAPI)
Performance Metrics Collection Daemon (see PMCD)
Performance Metrics Domain Agent (see PMDA)
Performance Metrics Name Space (see PMNS)
periodic sampling Simple Periodic Sampling
pipe Daemon PMDA Daemon PMDA
PM_CONTEXT_ARCHIVE type
Function
PM_CONTEXT_HOST type pmNewContext Function
PM_ERR _CONV error code Management of Evolution
within aPMDA pmExtractValue Function
PM_ERR INST error code si npl e _store in the
Simple PMDA
PM_ERR PMID error code Management of Evolution
withinaPMDA si npl e_st or e inthe Simple PMDA
PM_ERR_SIGN error code pmEXxtractValue Function
PM_ERR_TIMEOUT error code pmFetch Function

the

pmNewContext

PM_ERR TRUNC error code pmExtractValue
Function
PM_IN_NULL instance identifier Performance Metric
Instances

PM_INDOM_NULL instance domain
data structures Data Structures Data Structures
description Performance Metric Instances
pmAddProfile function pmAddPr ofile Function
pmDelProfile function pmDelPr ofile Function
PM_SEM_COUNTER semantic type Semantics
PM_SEM_DISCRETE semantic type Semantics
PM_SEM_ INSTANT semantic type Data Structures
Semantics
PM_TYPE AGGREGATE type Performance Metric
Descriptions
PM_TYPE NOSUPPORT vaue Management of
Evolution within a PMDA Performance Metric
Descriptions

PM_TYPE STRING type Peformance Metric
Descriptions pmExtractValue Function
PM_TYPE EVENT type Peformance Maetric

Descriptions
PM_VAL_INSITU value Performance Metrics Values

pmAddProfile function Overview PMAPI Context
Services pmAddPr ofile Function
PMAPI Application and Agent Development

Performance Metric Instances
(see also metrics)
acronym Acronyms
ancillary support services PMAPI Ancillary Support
Services
application compiling Compiling and Linking PMAPI
Applications
archive-specific
Function
client development Client Development and PMAPI
context services PMAPI Context Services
current context Current PMAPI Context
description PMAPI--The Performance Metrics API
description services pmL ookupDesc Function
error handling PMAPI Error Handling Handling
PMAPI Errors
identifying metrics Naming and
Performance Metrics
initializing new metrics Initializing New Metrics
instance domain services pmGetlnDom Function
introduction Programming Performance Co-Pilot
iterative processing Iterative Processing of Values
man page Distributed Collection
metrics services pmFetch Function
Name Space services pmGetChildren Function
program evolution Accommodating Program
Evolution

services pmGetArchivel abel

Identifying

110

Index

programming issues PMAPI Programming |ssues and
Examples PMAPI Programming Issues and Examples
programming style PMAPI Programming Style and
Interaction
record-mode services pmRecordAddHost Function
time control services PMAPI Time Control Services
timezone services pmNewContextZone Function
variable length arguments Variable Length Argument
and Results Lists

pmAtomStr function Management of Evolution within a

PMDA pmAtomsStr Function

pmAtomV alue structure Simple PMDA

PMCD
acronym Acronyms
distributed collection Distributed Collection
overview PCP Architecture
pmReconnectContext function pmReconnectContext
Function

PMCD_RECONNECT_TIMEOUT variable
pmReconnectContext Function
PMCD_REQUEST TIMOUT variable pmFetch

Function
pmchart command PCP Architecture Implementing a
PMDA Configuring the Trace PMDA
pmclient tool Application and Agent Development
brief description Application and Agent Devel opment
pmConvScale function Management of Evolution within
aPMDA pmConvScale Function
PMDA
acronym Acronyms
architecture PMDA Architecture
checklist Implementing a PMDA
development PMDA Development
evolution Management of Evolution within a PMDA
help text PMDA Help Text
initialization Initializing aPMDA
Install script Installing a PMDA Upgrading a PMNS
to Include Metrics from a New PMDA
integration Integration of a PMDA
interface PMDA Interface
introduction Programming Performance Co-Pilot
man page Distributed Collection
removal Removing aPMDA
structures PMDA Structures
trace Instrumenting Applications
writing Writing aPMDA
pmda library Application and Agent Development (see
PMDA)
mmv library Application and Agent Development (see
MMV)
PMDA_PMID macro Data Structures
pmdaAttribute callback Overview
pmdaChildren callback Overview
pmdacisco man page Caching PMDA

pmdaConnect man page PMDA Structures Daemon
Initialization

pmdaDaemon man page PMDA Structures Daemon
Initialization

pmdaDesc callback Overview

pmdaDSO man page PMDA Structures

pmdaExt structure Overview PMDA Structures
pmdaFetch callback Overview Trivial PMDA
pmdaGetOptions man page PMDA Structures Daemon
Initialization Daemon Initialization

pmdal ndom structure Data Structures

pmdalnit man page Data Structures PMDA Structures
Common Initialization Common Initialization

pmdal nstance callback Overview

pmdalnstid structure Data Structures

pmdal nterface structure PMDA Structures Overview
pmdaMain man page Daemon Initialization

pmdaM etric structure Data Structures

pmdaName callback Overview

pmdaOpenL.og man page Daemon Initialization
pmdaPMID callback Overview

pmdaProfile callback Overview

pmdaStore callback Overview si npl e_st or e in the
Simple PMDA

pmdaText callback Overview

pmdatrace man page Performance Instrumentation and
Tracing Performance Instrumentation and Tracing
pmdbg man page Overview Debugging Information
pmDelProfile function PMAPI Context Services
pmDélProfile Function

pmDesc structure Data Structures Management of
Evolution within a PMDA Performance Metric
Descriptions Performance Metric Descriptions
pmDestroyContext function pmDestroyContext
Function

pmDupContext function PMAPI
pmDupContext Function
pmErrStr function pmErr Str Function

pmExtractValue function Management of Evolution
within a PMDA pmExtractValue Function
pmConvScale Function

pmFetch function Performance Metrics Values
Performance Metrics Values Variable Length
Argument and Results Lists PMAPI Context
Services pmNewContext Function pmSetMode
Function pmFetch Function pmFetch Function
pmFreeResult Function pmFetchArchive Function
pmPrintValue Function pmSortinstances Function
Symbolic Association between a Metric's Name and
Value

pmFetch man page Overview Management of Evolution
withinaPMDA

pmFetchArchive function PMAPI Context Services
pmSetM ode Function pmFetchAr chive Function

Context Services

111

Index

pmflush function pmflush Function
pmFreeResult function Variable Length Argument and
ResultsListspmFetch Function pmFreeResult Function
pmgadgets command Implementing a PMDA
pmgenmap tool Application and Agent Development
pmGetArchiveEnd function PMAPI Context Services
pmGetArchiveEnd Function
pmGetArchiveLabel function PMAPI Context Services
pmGetArchivel abel Function
pmGetChildren function Overview Variable Length
Argument and Results Lists pmGetChildren Function
pmGetChildrenStatus Function PMAPI Context
Services
pmGetChildrenStatus function PMAPI Context Services
pmGetContextHostName function PMAPI Context
Services
pmGetinDom function Overview Variable Length
Argument and Results Lists pmGetinDom Function
PMAPI Context Services pmSetMode Function
pmGetlnDomAr chive Function
pmGetinDomArchive function PMAPI Context Services
pmGetlnDomAr chive Function
pmGetPMNSL ocation function pmGetPM NSL ocation
Function PMAPI Context Services
PMID

acronym Acronyms

introduction Name Space
pmIDStr function pmI DStr Function
pmie command Implementing aPMDA Configuring PCP
Tools
pmieconf command Implementing a PMDA Configuring
PCP Tools
pminDomStr function pmlnDomStr Function
pmLoadNameSpace function pmLoadNameSpace
Function
pmlogconf command Configuring PCP Tools
pmlogger command Implementing aPMDA Configuring
PCP Tools
pmLookupDesc function Overview Data Structures
Management of Evolution within a PMDA
pmLookupDesc Function PMAPI Context Services
pmSetMode Function pmExtractValue Function
pmConvScale Function
pmLookuplnDom function pmL ookuplnDom Function
PMAPI Context Services pmSetM ode Function
pmLookuplnDomArchive function PMAPI
Services pmL ookupl nDomAr chive Function
pmLookuplnDomText function pmL ookuplnDomT ext
Function PMAPI Context Services
pmLookupName function Overview pmLookupName
Function PMAPI Context Services Symbolic Association
between aMetric's Name and Value
pmLookupText function Overview Management of
EvolutionwithinaPMDA Variable Length Argument and

Context

Results Lists pmLookupText Function PMAPI Context
Services
pmNameAll function pmNameAll Function
pmNamelD function Variable Length Argument and
Results Lists pmNamelD Function PMAPI Context
Services
pmNamelnDom function Variable Length Argument and
Results Lists pmNamel nDom Function PMAPI Context
Services pmSetM ode Function
pmNamelnDomArchive function PMAPI
Services pmNamel nDomAr chive Function
pmNewContext function pmNewContext Function
pmNewContextZone function pmNewContextZone
Function
pmNewZone function pmNewZone Function
PMNS

acronym Acronyms

distributed Distributed PMNS

upgrade Upgrading a PMNS to Include Metrics from

aNew PMDA
pmns man page Name Space
pmNumberStr function pmNumber Str Function
pmParselnterval function pmPar sel nterval Function
pmParseMetricSpec function pmParseM etricSpec
Function
pmprintf function pmprintf Function
pmPrintValue function Management of Evolution within
aPMDA pmPrintValue Function
pmReconnectContext function pmReconnectContext
Function
pmRecordAddHost
Function
pmRecordControl function pmRecor dControl Function
pmRecordSetup function pmRecor dSetup Function
pmSetMode function PMAPI Context Services
pmSetM ode Function pmGetAr chiveEnd Function
pmSortlnstances function pmSortl nstances Function
pmstore function Overview Metrics Management of
Evolution within a PMDA sinpl e_store in the
Simple PMDA Debugging Information Performance
Metrics Values PMAPI Context Services pmStore
Function pmStor e Function
PMTRACE_STATE_API flag Configuring the Trace

Context

function pmRecordAddHost

Library

PMTRACE_STATE _ASYNC flag Configuring the
Trace Library

PMTRACE_STATE _COMMS flag Configuring the
Trace Library

PMTRACE_STATE_NOAGENT flag Configuring the
Trace Library Configuring the Trace Library
PMTRACE_STATE_NONE flag Configuring the Trace
Library

PMTRACE_STATE_PDU flag Configuring the Trace
Library

112

Index

PMTRACE_STATE _PDUBUF flag Configuring the
Trace Library

pmtraceabort function Transactions

pmtracebegin function Transactions

pmtracend function Transactions

pmtraceobs function Observations and Counters
pmtracepoint function Point Tracing Observations and
Counters

pmtracestate call Configuring the Trace Library
pmTraversePMNS function Overview
pmTraver sePM NS Function PMAPI Context Services
__pmParseHostAttrsSpec function Overview

pmTypeStr function Management of Evolution within a
PMDA pmTypeStr Function

pmUnitsStr function pmUnitsStr Function
pmUnloadNameSpace function pmUnloadNameSpace
Function

pmUnpackEventRecords function Event Monitor
Considerations
pmUseContext function pmNewContext Function

pmUseContext Function
pmUseZone function pmUseZone Function
pmwWhichContext function pmWhichContext Function
pmwWhichZone function pmWhichZone Function
point tracing Point Tracing
program evolution Accommaodating Program Evolution
programming components Programming Performance
Co-Pilot
protocol data units (see PDU)
pthreads man page Latency and Threads of Control
record-mode services pmRecordAddHost Function
removal script Removing aPMDA
restarting pmced Installing a PMDA
retrospective analysis Retrospective Sources of
Performance Metrics
ring buffers Rolling-Window Periodic Sampling
rolling-window sampling Sampling Techniques Rolling-
Window Periodic Sampling
sample duration Rolling-Window Periodic Sampling
Configuring the Trace PMDA
sampling techniques Sampling Techniques
scale and dimensiondity Performance
Descriptions
semantic types Semantics
sequential log files Implementing aPMDA
service time Instrumenting Applications
simple periodic sampling Simple Periodic Sampling
simple PMDA

2 branches, 4 metrics Name Space

as daemon Daemon PMDA

DSO DSO PMDA

initialization Simple PMDA

pmdaFetch callback Simple PMDA

Metric

simple_init function DSO PMDA Simple PMDA Simple
PMDA
simple_store function Debugging Information
simple.color metric Simple PMDA
simple.now metric Simple PMDA
simple.store metric si npl e_store in the Simple
PMDA
simple.time metric Simple PMDA
snapshot files Implementing a PMDA
software Overview of Component Software
specific instance domain PMAPI Context Services
state flags Configuring the Trace Library Configuring the
Trace Library
storage of metrics Metrics
symbolic association Symbolic Association between a
Metric's Name and Vaue
synchronous protocol Configuring the Trace Library
target domain Implementing aPMDA Metrics Extracting
the Information
TCP/IP Configuring the Trace Library Acronyms
testing and debugging Testing and Debugging a PMDA
threaded applications Library Reentrancy and Threaded
Applications
time control services PMAPI Time Control Services
timezone services pmNewContextZone Function
tool configuration Configuring PCP Tools
trace facilities Programming Performance Co-Pilot
trace PMDA

command-line options Configuring the Trace PMDA

description Instrumenting Applications

design Trace PMDA Design
trace.control.reset metric Configuring the Trace PMDA
trace.observe metrics Observations and Counters
trace.observe.rate metric Sampling Techniques
trace.point.count metric Point Tracing
trace.point.rate metric Point Tracing
Techniques
trace.transact.ave time metric Sampling Techniques
Transactions
trace.transact.count metric Transactions
trace.transact.max_time metric Sampling Techniques
Transactions
trace.transact.min_time metric Sampling Techniques
Transactions
trace.transact.rate
Transactions
trace.transact.total_time metric Transactions
transactions Transactions
trivial PMDA

callbacks Trivial PMDA

initialization Trivial PMDA

singular metric Data Structures
trivial_init function Trivial PMDA Trivial PMDA
two or three dimensional arrays N Dimensional Data

Sampling

metric Sampling Techniques

113

Index

type field Management of Evolution within a PMDA
unavailable metrics support Management of Evolution
withinaPMDA

working buffers Application Interaction Rolling-Window
Periodic Sampling

114

	Performance Co-Pilot™ Programmer's Guide
	Table of Contents
	About This Guide
	What This Guide Contains
	Audience for This Guide
	Related Resources
	Man Pages
	Web Site
	Conventions
	Reader Comments

	Chapter 1. Programming Performance Co-Pilot
	PCP Architecture
	Distributed Collection
	Name Space
	Distributed PMNS
	Retrospective Sources of Performance Metrics

	Overview of Component Software
	Application and Agent Development

	PMDA Development
	Overview
	Building a PMDA
	In-Process (DSO) Method
	Daemon Process Method

	Client Development and PMAPI
	Library Reentrancy and Threaded Applications

	Chapter 2. Writing a PMDA
	Implementing a PMDA
	PMDA Architecture
	Overview
	DSO PMDA
	Daemon PMDA
	Caching PMDA

	Domains, Metrics, and Instances
	Overview
	Domains
	Metrics
	Data Structures
	Semantics

	Instances
	Instance Identification
	N Dimensional Data
	Data Structures

	Other Issues
	Extracting the Information
	Latency and Threads of Control
	Name Space
	PMDA Help Text
	Management of Evolution within a PMDA

	PMDA Interface
	Overview
	Trivial PMDA
	Simple PMDA
	simple_store in the Simple PMDA
	Return Codes for pmdaFetch Callbacks

	PMDA Structures

	Initializing a PMDA
	Overview
	Common Initialization
	Trivial PMDA
	Simple PMDA

	Daemon Initialization

	Testing and Debugging a PMDA
	Overview
	Debugging Information
	dbpmda Debug Utility

	Integration of a PMDA
	Installing a PMDA
	Upgrading a PMNS to Include Metrics from a New PMDA
	Removing a PMDA
	Configuring PCP Tools

	Chapter 3. PMAPI--The Performance Metrics API
	Naming and Identifying Performance Metrics
	Performance Metric Instances
	Current PMAPI Context
	Performance Metric Descriptions
	Performance Metrics Values
	Performance Event Metrics
	Event Monitor Considerations
	Event Collector Considerations

	PMAPI Programming Style and Interaction
	Variable Length Argument and Results Lists
	Python Specific Issues
	PMAPI Error Handling

	PMAPI Procedural Interface
	PMAPI Name Space Services
	pmGetChildren Function
	pmGetChildrenStatus Function
	pmGetPMNSLocation Function
	pmLoadNameSpace Function
	pmLookupName Function
	pmNameAll Function
	pmNameID Function
	pmTraversePMNS Function
	pmUnloadNameSpace Function

	PMAPI Metrics Description Services
	pmLookupDesc Function
	pmLookupInDomText Function
	pmLookupText Function

	PMAPI Instance Domain Services
	pmGetInDom Function
	pmLookupInDom Function
	pmNameInDom Function

	PMAPI Context Services
	pmNewContext Function
	pmDestroyContext Function
	pmDupContext Function
	pmUseContext Function
	pmWhichContext Function
	pmAddProfile Function
	pmDelProfile Function
	pmSetMode Function
	pmReconnectContext Function
	pmGetContextHostName Function

	PMAPI Timezone Services
	pmNewContextZone Function
	pmNewZone Function
	pmUseZone Function
	pmWhichZone Function

	PMAPI Metrics Services
	pmFetch Function
	pmFreeResult Function
	pmStore Function

	PMAPI Fetchgroup Services
	Fetchgroup setup
	Fetchgroup operation
	Fetchgroup shutdown

	PMAPI Record-Mode Services
	pmRecordAddHost Function
	pmRecordControl Function
	pmRecordSetup Function

	PMAPI Archive-Specific Services
	pmGetArchiveLabel Function
	pmGetArchiveEnd Function
	pmGetInDomArchive Function
	pmLookupInDomArchive Function
	pmNameInDomArchive Function
	pmFetchArchive Function

	PMAPI Time Control Services
	PMAPI Ancillary Support Services
	pmGetConfig Function
	pmErrStr Function
	pmExtractValue Function
	pmConvScale Function
	pmUnitsStr Function
	pmIDStr Function
	pmInDomStr Function
	pmTypeStr Function
	pmAtomStr Function
	pmNumberStr Function
	pmPrintValue Function
	pmflush Function
	pmprintf Function
	pmSortInstances Function
	pmParseInterval Function
	pmParseMetricSpec Function

	PMAPI Programming Issues and Examples
	Symbolic Association between a Metric's Name and Value
	Initializing New Metrics
	Iterative Processing of Values
	Accommodating Program Evolution
	Handling PMAPI Errors
	Compiling and Linking PMAPI Applications

	Chapter 4. Instrumenting Applications
	Application and Performance Co-Pilot Relationship
	Performance Instrumentation and Sampling
	MMV PMDA Design
	Memory Mapped Values API
	Starting and Stopping Instrumentation
	Getting a Handle on Mapped Values
	Updating Mapped Values
	Elapsed Time Measures

	Performance Instrumentation and Tracing
	Trace PMDA Design
	Application Interaction
	Sampling Techniques
	Simple Periodic Sampling
	Rolling-Window Periodic Sampling
	Rolling-Window Periodic Sampling Example

	Configuring the Trace PMDA

	Trace API
	Transactions
	Point Tracing
	Observations and Counters
	Configuring the Trace Library

	Appendix A. Acronyms
	Index

