|
7.7.8.0. crystallographicGroupP2MM
Procedure from library fpalgebras.lib (see fpalgebras_lib).
- Usage:
- crystallographicGroupP2MM(d); d an integer
- Return:
- ring
- Note:
- - the ring contains the ideal I, which contains the required relations
- p2mm group with the following presentation
< x, y, p, q | [x, y] = [p, q] = p^2 = q^2 = 1, p^-1*x*p = x, q^-1*x*q = x^-1, p^-1*y*p = y^-1, q^-1*y*q = y >
- d gives the degreebound for the Letterplace ring
Example:
| LIB "fpalgebras.lib";
def R = crystallographicGroupP2MM(5); setring R;
I;
==> I[1]=x(1)*y(2)+y(1)*x(2)+1
==> I[2]=p(1)*q(2)+q(1)*p(2)+1
==> I[3]=p(1)*p(2)+1
==> I[4]=q(1)*q(2)+1
==> I[5]=p(1)*y(2)*p(3)+Y(1)
==> I[6]=p(1)*x(2)*p(3)+x(1)
==> I[7]=q(1)*y(2)*q(3)+y(1)
==> I[8]=q(1)*x(2)*q(3)+X(1)
==> I[9]=X(1)*x(2)+1
==> I[10]=x(1)*X(2)+1
==> I[11]=Y(1)*y(2)+1
==> I[12]=y(1)*Y(2)+1
==> I[13]=x(1)*y(2)+y(1)*x(2)+p(1)*p(2)
==> I[14]=x(1)*y(2)+y(1)*x(2)+q(1)*q(2)
==> I[15]=p(1)*p(2)+q(1)*q(2)
|
|