------------------------------------------------------------------------
-- The Agda standard library
--
-- An example of how Algebra.IdempotentCommutativeMonoidSolver can be
-- used
------------------------------------------------------------------------

module Algebra.IdempotentCommutativeMonoidSolver.Example where

open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂; isEquivalence)

open import Data.Bool.Base using (Bool; true; false; _∧_; _∨_)
open import Data.Bool.Properties

open import Data.Fin using (zero; suc)
open import Data.Vec using ([]; _∷_)

open import Algebra using (IdempotentCommutativeMonoid)

∨-icm : IdempotentCommutativeMonoid _ _
∨-icm = record
  { Carrier = Bool
  ; _≈_     = _≡_
  ; _∙_     = _∨_
  ; ε       = false
  ; isIdempotentCommutativeMonoid = record
    { isCommutativeMonoid = record
      { isSemigroup = ∨-isSemigroup
      ; identityˡ   = ∨-identityˡ
      ; comm       = ∨-comm
      }
   ; idem = ∨-idem
   }
 }

open import Algebra.IdempotentCommutativeMonoidSolver ∨-icm

test :  x y z  (x  y)  (x  z)  (z  y)  x
test a b c = let _∨_ = _⊕_ in
  prove 3 ((x  y)  (x  z)) ((z  y)  x) (a  b  c  [])
  where
  x = var zero
  y = var (suc zero)
  z = var (suc (suc zero))