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Chapter 1

Introduction

1.1 The package

This package provides functions for computation with matrix groups. LetG be a subgroup ofGL(d;R)
where the ring R is either equal to Q;Z or a �nite �eld Fq. Then:

� We can test whether G is solvable.

� We can test whether G is polycyclic.

� If G is polycyclic, then we can determine a polycyclic presentation for G.

A group G which is given by a polycyclic presentation can be largely investigated by algorithms

implemented in the GAP-package Polycyclic [EN00]. For example we can determine if G is torsion-

free and calculate the torsion subgroup. Further we can compute the derived series and the Hirsch

length of the group G. Also various methods for computations with subgroups, factor groups and

extensions are available.

As a by-product, the Polenta package provides some functionality to compute certain module

series for modules of solvable groups. For example, if G is a rational polycyclic matrix group, then

we can compute the radical series of the natural Q[G]-module Qd .

1.2 Polycyclic groups

A group G is called polycyclic if it has a �nite subnormal series with cyclic factors. It is a well-

known fact that every polycyclic group is �nitely presented by a so-called polycyclic presentation

(see for example Chapter 9 in [Sim94] or Chapter 2 in [EN00] ). In GAP, groups which are de�ned

by polycyclic presentations are called polycyclically presented groups, abbreviated PcpGroups.

The overall idea of the algorithm implemented in this package was �rst introduced by Ostheimer

in 1996 [Ost96]. In 2001 Eick presented a more detailed version [Eic01]. This package contains

an implementation of Eick's algorithm. A description of this implementation together with some

re�nements and extensions can be found in [AE05] and [Ass03].
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Chapter 2

Methods for matrix groups

2.1 Polycyclic presentations of matrix groups

Groups de�ned by polycyclic presentations are called PcpGroups in GAP. We refer to the Polycyclic

manual [EN00] for further background.

Suppose that a collection X of matrices of GL(d;R) is given, where the ring R is either Q;Z or

a �nite �eld. Let G = hXi. If the group G is polycyclic, then the following functions determine a

PcpGroup isomorphic to G.

2.1.1 PcpGroupByMatGroup

. PcpGroupByMatGroup(G) (operation)

G is a subgroup ofGL(d;R)where R=Q;Z or Fq. If G is polycyclic, then this function determines

a PcpGroup isomorphic to G . If G is not polycyclic, then this function returns fail.

2.1.2 IsomorphismPcpGroup

. IsomorphismPcpGroup(G) (method)

G is a subgroup ofGL(d;R)where R=Q;Z or Fq. If G is polycyclic, then this function determines

an isomorphism onto a PcpGroup. If G is not polycyclic, then this function returns fail.

Note that the method IsomorphismPcpGroup, installed in this package, cannot be

applied directly to a group given by the function AlmostCrystallographicGroup.

Please use POL_AlmostCrystallographicGroup (with the same parameters as

AlmostCrystallographicGroup) instead.

2.1.3 ImagesRepresentative

. ImagesRepresentative(map, elm) (method)

. ImageElm(map, elm) (method)

. ImagesSet(map, elms) (method)

Here map is an isomorphism from a polycyclic matrix group G onto a PcpGroup H calculated by

IsomorphismPcpGroup (2.1.2). These methods can be used to compute with such an isomorphism.
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If the input elm is an element of G , then the function ImageElm can be used to compute the image

of elm under map . If elm is not contained in G then the function ImageElm returns fail. The input

pcpelm is an element of H .

2.1.4 IsSolvableGroup

. IsSolvableGroup(G) (method)

G is a subgroup of GL(d;R) where R=Q;Z or Fq. This function tests if G is solvable and returns

true or false.

2.1.5 IsTriangularizableMatGroup

. IsTriangularizableMatGroup(G) (property)

G is a subgroup of GL(d;Q). This function tests if G is triangularizable (possibly over a �nite �eld

extension) and returns true or false.

2.1.6 IsPolycyclicGroup

. IsPolycyclicGroup(G) (method)

G is a subgroup of GL(d;R) where R = Q;Z or Fq. This function tests if G is polycyclic and

returns true or false.

2.2 Module series

Let G be a �nitely generated solvable subgroup of GL(d;Q). The vector space Qd is a module for

the algebraQ[G]. The following functions provide the possibility to compute certain module series of

Qd . Recall that the radical RadG(Q
d) is de�ned to be the intersection of maximal Q[G]-submodules

of Qd . Also recall that the radical series

0= Rn < Rn�1 < :: : < R1 < R0 =Qd

is de�ned by Ri+1 := RadG(Ri).

2.2.1 RadicalSeriesSolvableMatGroup

. RadicalSeriesSolvableMatGroup(G) (operation)

This function returns a radical series for the Q[G]-module Qd , where G is a solvable subgroup of

GL(d;Q).
A radical series of Qd can be re�ned to a homogeneous series.
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2.2.2 HomogeneousSeriesAbelianMatGroup

. HomogeneousSeriesAbelianMatGroup(G) (function)

A module is said to be homogeneous if it is the direct sum of pairwise irreducible isomorphic

submodules. A homogeneous series of a module is a submodule series such that the factors are

homogeneous. This function returns a homogeneous series for the Q[G]-module Qd , where G is an

abelian subgroup of GL(d;Q).

2.2.3 HomogeneousSeriesTriangularizableMatGroup

. HomogeneousSeriesTriangularizableMatGroup(G) (function)

A module is said to be homogeneous if it is the direct sum of pairwise irreducible isomorphic

submodules. A homogeneous series of a module is a submodule series such that the factors are

homogeneous. This function returns a homogeneous series for the Q[G]-module Qd , where G is a

triangularizable subgroup of GL(d;Q).
A homogeneous series can be re�ned to a composition series.

2.2.4 CompositionSeriesAbelianMatGroup

. CompositionSeriesAbelianMatGroup(G) (function)

A composition series of a module is a submodule series such that the factors are irreducible. This

function returns a composition series for the Q[G]-module Qd , where G is an abelian subgroup of

GL(d;Q).

2.2.5 CompositionSeriesTriangularizableMatGroup

. CompositionSeriesTriangularizableMatGroup(G) (function)

A composition series of a module is a submodule series such that the factors are irreducible. This

function returns a composition series for theQ[G]-moduleQd , where G is a triangularizable subgroup

of GL(d;Q).

2.3 Subgroups

2.3.1 SubgroupsUnipotentByAbelianByFinite

. SubgroupsUnipotentByAbelianByFinite(G) (operation)

G is a subgroup of GL(d;R) where R = Q or Z. If G is polycyclic, then this function returns a

record containing two normal subgroups T andU ofG. The group T is unipotent-by-abelian (and thus

triangularizable) and of �nite index in G . The groupU is unipotent and is such that T=U is abelian. If

G is not polycyclic, then the algorithm returns fail.
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2.4 Examples

2.4.1 PolExamples

. PolExamples(l) (function)

Returns some examples for polycyclic rational matrix groups, where l is an integer between 1 and

24. These can be used to test the functions in this package. Some of the properties of the examples

are summarised in the following table.

Example
PolExamples number generators subgroup of Hirsch length

1 3 GL(4,Z) 6

2 2 GL(5,Z) 6

3 2 GL(4,Q) 4

4 2 GL(5,Q) 6

5 9 GL(16,Z) 3

6 6 GL(4,Z) 3

7 6 GL(4,Z) 3

8 7 GL(4,Z) 3

9 5 GL(4,Q) 3

10 4 GL(4,Q) 3

11 5 GL(4,Q) 3

12 5 GL(4,Q) 3

13 5 GL(5,Q) 4

14 6 GL(5,Q) 4

15 6 GL(5,Q) 4

16 5 GL(5,Q) 4

17 5 GL(5,Q) 4

18 5 GL(5,Q) 4

19 5 GL(5,Q) 4

20 7 GL(16,Z) 3

21 5 GL(16,Q) 3

22 4 GL(16,Q) 3

23 5 GL(16,Q) 3

24 5 GL(16,Q) 3



Chapter 3

An example application

In this section we outline three example computations with functions from the previous chapter.

3.1 Presentation for rational matrix groups
Example

gap> mats :=

[ [ [ 1, 0, -1/2, 0 ], [ 0, 1, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 1/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 1 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 1 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -1/2, -3, 7/6 ], [ 0, 1, -1, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ] ],

[ [ -1, 3, 3, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ] ] ];

gap> G := Group( mats );

<matrix group with 5 generators>

# calculate an isomorphism from G to a pcp-group

gap> nat := IsomorphismPcpGroup( G );;

gap> H := Image( nat );

Pcp-group with orders [ 2, 2, 3, 5, 5, 5, 0, 0, 0 ]

gap> h := GeneratorsOfGroup( H );

[ g1, g2, g3, g4, g5, g6, g7, g8, g9]

gap> mats2 := List( h, x -> PreImage( nat, x ) );;

# take a random element of G

gap> exp := [ 1, 1, 1, 1, 0, 0, 0, 0, 1 ];;

gap> g := MappedVector( exp, mats2 );

[ [ -1, 17/2, -1, 233/6 ],

[ 0, 1, 0, -2 ],

[ 0, 1, -1, 2 ],

[ 0, 0, 0, 1 ] ]

# map g into the image of nat

gap> i := ImageElm( nat, g );

g1*g2*g3*g4*g9

9
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# exponent vector

gap> Exponents( i );

[ 1, 1, 1, 1, 0, 0, 0, 0, 1 ]

# compare the preimage with g

gap> PreImagesRepresentative( nat, i );

[ [ -1, 17/2, -1, 233/6 ],

[ 0, 1, 0, -2 ],

[ 0, 1, -1, 2 ],

[ 0, 0, 0, 1 ] ]

gap> last = g;

true

3.2 Modules series
Example

gap> gens :=

[ [ [ 1746/1405, 524/7025, 418/1405, -77/2810 ],

[ 815/843, 899/843, -1675/843, 415/281 ],

[ -3358/4215, -3512/21075, 4631/4215, -629/1405 ],

[ 258/1405, 792/7025, 1404/1405, 832/1405 ] ],

[ [ -2389/2810, 3664/21075, 8942/4215, -35851/16860 ],

[ 395/281, 2498/2529, -5105/5058, 3260/2529 ],

[ 3539/2810, -13832/63225, -12001/12645, 87053/50580 ],

[ 5359/1405, -3128/21075, -13984/4215, 40561/8430 ] ] ];

gap> H := Group( gens );

<matrix group with 2 generators>

gap> RadicalSeriesSolvableMatGroup( H );

[ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 79/138 ], [ 0, 1, 0, -275/828 ], [ 0, 0, 1, -197/414 ] ],

[ [ 1, 0, -3, 2 ], [ 0, 1, 55/4, -55/8 ] ],

[ [ 1, 4/15, 2/3, 1/6 ] ],

[ ] ]

3.3 Triangularizable subgroups
Example

gap> G := PolExamples(3);

<matrix group with 2 generators>

gap> GeneratorsOfGroup( G );

[ [ [ 73/10, -35/2, 42/5, 63/2 ],

[ 27/20, -11/4, 9/5, 27/4 ],

[ -3/5, 1, -4/5, -9 ],

[ -11/20, 7/4, -2/5, 1/4 ] ],

[ [ -42/5, 423/10, 27/5, 479/10 ],

[ -23/10, 227/20, 13/10, 231/20 ],
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[ 14/5, -63/5, -4/5, -79/5 ],

[ -1/10, 9/20, 1/10, 37/20 ] ] ]

gap> subgroups := SubgroupsUnipotentByAbelianByFinite( G );

rec( T := <matrix group with 2 generators>,

U := <matrix group with 4 generators> )

gap> GeneratorsOfGroup( subgroups.T );

[ [ [ 73/10, -35/2, 42/5, 63/2 ],

[ 27/20, -11/4, 9/5, 27/4 ],

[ -3/5, 1, -4/5, -9 ],

[ -11/20, 7/4, -2/5, 1/4 ] ],

[ [ -42/5, 423/10, 27/5, 479/10 ],

[ -23/10, 227/20, 13/10, 231/20 ],

[ 14/5, -63/5, -4/5, -79/5 ],

[ -1/10, 9/20, 1/10, 37/20 ] ] ]

# so G is triangularizable!



Chapter 4

Installation

4.1 Installing this package

The Polenta package is part of the standard distribution of GAP and so normally there should be no

need to install it separately. If by any chance it is not part of your GAP distribution, then the standard

method is to unpack the package into the pkg directory of your GAP distribution. This will create a

polenta subdirectory. For other non-standard options please see Chapter (Reference: Installing a

GAP Package) of the GAP Reference Manual.

Note that the GAP-Packages Alnuth and Polycyclic are needed for this package. Nor-

mally they should be contained in your distribution. If not, they can be obtained at

http://www.gap-system.org/Packages/packages.html.

4.2 Loading the Polenta package

If the Polenta package is not already loaded then you have to request it explicitly. This can be done

via the LoadPackage (Reference: LoadPackage) command.

4.3 Running the test suite

Once the package is installed, it is possible to check the correct installation by running the test suite

of the package.

Example
gap> ReadPackage( "Polenta", "tst/testall.g" );

For more details on Test Files see Section (Reference: Test Files) of the GAP Reference Manual.

If the test suite runs into an error, even though the packages Polycyclic and Al-

nuth and their depdendencies have been correctly installed, then please send a message to

max.horn@math.uni-giessen.de including the error message.

12
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Chapter 5

Information Messages

It is possible to get informations about the status of the computation of the functions of Chapter 2 of

this manual.

5.1 Info Class

5.1.1 InfoPolenta

. InfoPolenta (info class)

is the Info class of the Polenta package (for more details on the Info mechanism see Sec-

tion (Reference: Info Functions) of the GAP Reference Manual). With the help of the function

SetInfoLevel(InfoPolenta,level) you can change the info level of InfoPolenta.

� If InfoLevel( InfoPolenta ) is equal to 0 then no information messages are displayed.

� If InfoLevel( InfoPolenta ) is equal to 1 then basic informations about

the process are provided. For further background on the displayed in-

formations we refer to [Ass03] (publicly available via the Internet address

http://www.icm.tu-bs.de/ag_algebra/software/assmann/diploma.pdf).

� If InfoLevel( InfoPolenta ) is equal to 2 then, in addition to the basic information, the

generators of computed subgroups and module series are displayed.

5.2 Example
Example

gap> SetInfoLevel( InfoPolenta, 1 );

gap> PcpGroupByMatGroup( PolExamples(11) );

#I Determine a constructive polycyclic sequence

for the input group ...

#I

#I Chosen admissible prime: 3

#I

#I Determine a constructive polycyclic sequence

for the image under the p-congruence homomorphism ...

13
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#I finished.

#I Finite image has relative orders [ 3, 2, 3, 3, 3 ].

#I

#I Compute normal subgroup generators for the kernel

of the p-congruence homomorphism ...

#I finished.

#I

#I Compute the radical series ...

#I finished.

#I The radical series has length 4.

#I

#I Compute the composition series ...

#I finished.

#I The composition series has length 5.

#I

#I Compute a constructive polycyclic sequence

for the induced action of the kernel to the composition series ...

#I finished.

#I This polycyclic sequence has relative orders [ ].

#I

#I Calculate normal subgroup generators for the

unipotent part ...

#I finished.

#I

#I Determine a constructive polycyclic sequence

for the unipotent part ...

#I finished.

#I The unipotent part has relative orders

#I [ 0, 0, 0 ].

#I

#I ... computation of a constructive

polycyclic sequence for the whole group finished.

#I

#I Compute the relations of the polycyclic

presentation of the group ...

#I Compute power relations ...

#I ... finished.

#I Compute conjugation relations ...

#I ... finished.

#I Update polycyclic collector ...

#I ... finished.

#I finished.

#I

#I Construct the polycyclic presented group ...

#I finished.

#I

Pcp-group with orders [ 3, 2, 3, 3, 3, 0, 0, 0 ]

gap> SetInfoLevel( InfoPolenta, 2 );

gap> PcpGroupByMatGroup( PolExamples(11) );

#I Determine a constructive polycyclic sequence
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for the input group ...

#I

#I Chosen admissible prime: 3

#I

#I Determine a constructive polycyclic sequence

for the image under the p-congruence homomorphism ...

#I finished.

#I Finite image has relative orders [ 3, 2, 3, 3, 3 ].

#I

#I Compute normal subgroup generators for the kernel

of the p-congruence homomorphism ...

#I finished.

#I The normal subgroup generators are

#I [ [ [ 1, -3/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3, 3, 15 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3, 3, 9 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3/2, 3/2, 3/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3/2, 9/2, -69/2 ], [ 0, 1, 0, 9 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ]

, [ [ 1, 0, 0, -24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, -3, -15 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3/2, -3/2, -9/2 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ]

],

[ [ 1, -3, -3, -12 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3, -3/2, -21 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3/2, 3/2, 9/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ] ]

#I

#I Compute the radical series ...

#I finished.

#I The radical series has length 4.

#I The radical series is

#I [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 1 ] ],

[ ] ]

#I

#I Compute the composition series ...

#I finished.

#I The composition series has length 5.

#I The composition series is

#I [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 1 ] ], [ ] ]

#I

#I Compute a constructive polycyclic sequence

for the induced action of the kernel to the composition series ...

#I finished.

#I This polycyclic sequence has relative orders [ ].

#I

#I Calculate normal subgroup generators for the
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unipotent part ...

#I finished.

#I The normal subgroup generators for the unipotent part are

#I [ [ [ 1, -3/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3, 3, 15 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3, 3, 9 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3/2, 3/2, 3/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3/2, 9/2, -69/2 ], [ 0, 1, 0, 9 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ]

, [ [ 1, 0, 0, -24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, -3, -15 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, -3/2, -3/2, -9/2 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ]

],

[ [ 1, -3, -3, -12 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3, -3/2, -21 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],

[ [ 1, 3/2, 3/2, 9/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ] ]

#I

#I Determine a constructive polycyclic sequence

for the unipotent part ...

#I finished.

#I The unipotent part has relative orders

#I [ 0, 0, 0 ].

#I

#I ... computation of a constructive

polycyclic sequence for the whole group finished.

#I

#I Compute the relations of the polycyclic

presentation of the group ...

#I Compute power relations ...

.....

#I ... finished.

#I Compute conjugation relations ...

..............................................

#I ... finished.

#I Update polycyclic collector ...

#I ... finished.

#I finished.

#I

#I Construct the polycyclic presented group ...

#I finished.

#I

Pcp-group with orders [ 3, 2, 3, 3, 3, 0, 0, 0 ]
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