
genss

Generic Schreier-Sims

1.6.5

21 November 2017

Max Neunhöffer

Felix Noeske

Max Horn

genss 2

Max Neunhöffer

Email: max@9hoeffer.de

Homepage: http://www-groups.mcs.st-and.ac.uk/~neunhoef

Address: Gustav-Freytag-Straße 40

50354 Hürth

Germany

Felix Noeske

Email: felix.noeske@math.rwth-aachen.de

Homepage: http://www.math.rwth-aachen.de/~Felix.Noeske

Address: Felix Noeske

Lehrstuhl D fuer Mathematik, RWTH Aachen

Templergraben 64

52056 Aachen

Germany

Max Horn

Email: max.horn@math.uni-giessen.de

Homepage: http://www.quendi.de/math

Address: AG Algebra

Mathematisches Institut

Justus-Liebig-Universität Gießen

Arndtstraße 2

35392 Gießen

Germany

mailto://max@9hoeffer.de
http://www-groups.mcs.st-and.ac.uk/~neunhoef
mailto://felix.noeske@math.rwth-aachen.de
http://www.math.rwth-aachen.de/~Felix.Noeske
mailto://max.horn@math.uni-giessen.de
http://www.quendi.de/math

genss 2

Copyright

© 2006-2014 by Max Neunhöffer and Felix Noeske

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or

higher.

Contents

1 Introduction 4

1.1 Philosophy . 4

1.2 Overview over this manual . 4

1.3 Feedback . 4

2 Installation of the genss-Package 5

3 Stabiliser Chains 6

3.1 Computing stabiliser chains . 6

3.2 Options for the computation of stabiliser chains . 6

3.3 How base points are chosen . 11

3.4 Using stabiliser chains . 12

4 Backtrack search methods 17

4.1 Setwise stabilisers . 17

4.2 Generic backtrack search . 18

5 Examples 20

References 21

Index 22

3

Chapter 1

Introduction

1.1 Philosophy

This package is about the Schreier-Sims algorithm and base and strong generating sets for arbitrary

�nite groups.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. Chapter 3 desribes the core functionality of the

package, namely the computation and usage of stabiliser chains. Chapter 4 describes some methods

using backtrack search. This part of the package is not yet fully developed and is subject to change

in later versions. Finally, Chapter 5 shows instructive examples for the usage of this package. As of

now, the number of shown examples is zero.

1.3 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

4

https://github.com/gap-packages/genss/issues

Chapter 2

Installation of the genss-Package

To install this package just extract the package's archive �le to the GAP pkg directory.

By default the genss package is not automatically loaded by GAP when it is installed. You must

load the package with LoadPackage("genss"); before its functions become available.

Please, send us an e-mail if you have any questions, remarks, suggestions, etc. concerning this

package. Also, I would like to hear about applications of this package.

Max Neunhöffer and Felix Noeske

5

Chapter 3

Stabiliser Chains

This chapter describes the core functionality of the package. It mainly covers how to use genss to

compute stabiliser chains for GAP groups and use them to do sifting.

3.1 Computing stabiliser chains

The main tool to compute a stabiliser chain is the following operation. It has many options and can be

customised in a very �exible way.

3.1.1 StabilizerChain

. StabilizerChain(G[, opt]) (operation)

Returns: a stabiliser chain object or fail

This operation computes a stabiliser chain for the group G using a randomised Schreier-Sims

algorithm. The second argument opt is an optional options record. See Section 3.2 below for an

explanation of the possible components.

Note that this is a Monte Carlo algorithm in most cases, so there is a small error probability.

However, the only error possible is that some of the subgroups in the stabiliser chain are proper

subgroups of the actual point stabilisers. So the resulting group order is always a divisor of the actual

group order and if the two are equal, then the stabiliser chain is proved to be correct. In particular, if

the group object G for some reason already knows the group order, then this procedure always returns

a correct and proven stabiliser chain for G .

3.2 Options for the computation of stabiliser chains

The options record for the StabilizerChain (3.1.1) can contain the following components, which

are used to control the behaviour of the computation of a stabiliser chain for the group G . Note that

for most of these components there are default values to be found in the global GENSS record. You can

change these defaults there if you want but you should know what you are doing. An explicitly given

value in the options record always takes precedence over the default value.

Base

This component can either be bound to an existing stabilizer chain object or to a list of points. In

both cases this indicates that the base of the stabilizer chain or the list of points respectively are

6

genss 7

known to be a base for the group G . In the �rst case the corresponding action functions are taken

from the stabiliser chain, in the second case one should usually bind the component BaseOps

to a list of equal length containing the action functions corresponding to the base points.

BaseOps

If the Base component is bound to a list of points the BaseOps component must be a list of equal

length containing the corresponding action functions. If the BaseOps component is unbound, a

list with identical entries OnLines is used in projective mode and OnPoints in non-projective

mode (see component Projective below).

Cand

The Cand component can be bound to a record rwhich contains candidates for base points in

the following way. The r.points component contains the list of points, the r.ops component

contains a list of equal length with the corresponding action functions. The points and actions

speci�ed in the Cand component are tried as possible base points for G (and its stabilisers) �rst

before other points are guessed (see FindBasePointCandidates (3.3.1)). If a point is �xed

under all generators it is not used, unless the component Reduced is explicitly set to false

(see below). If the component StrictlyUseCandidates is false (the default, see below),

the algorithm tries to use other points of an already found orbit before considering the next

candidate speci�ed by Cand. This is usually sensible because for an already enumerated orbit

we have a natural bound on the length of the suborbits for the point stabiliser in this orbit.

DeterministicVerification

Set this component to true to switch on a deterministic veri�cation routine after the randomised

Schreier-Sims procedure. This is not yet implemented.

ErrorBound

Set this component to a rational number between 0 and 1. It will be an upper bound for the error

probability. That is, the error probability of the Monte Carlo veri�cation at the end will be less

than this rational number. This component overrides everything you specify in the random or

VerifyElements components.

FailInsteadOfError

If no short enough orbit is found during the computation, the procedure stops with an error

message. If you would rather like it to return fail then set this component to true. This

option can be used to try an stabiliser chain computation automatically and give up before you

run out of memory.

ImmediateVerificationElements

Whenever the randomised Schreier-Sims procedure has �rst computed generators for a stabiliser

in the chain and has computed a stabiliser chain for that stabiliser recursively, an immediate

veri�cation is done. This is to spot early on that the group found is in fact a proper subgroup of

the stabiliser. This veri�cation is done by creating a few more random elements of that stabiliser

and sifting them through the newly created stabiliser chain. Each such element has a chance

of at least 1=2 to spot this. The number of random elements used is stored in the component

ImmediateVerificationElements.

InitialHashSize

Set this component to the initial tree hash size for orbit computations in the stabiliser chain.

genss 8

IsOne

The default for this computation is the IsOne (Reference: IsOne) operation in theGAP library.

Whenever in the stabiliser chain computation it has to be tested whether or not a group element

is equal to the identity, the function stored in the IsOne component is called. The rationale

behind this is that you can compute a stabiliser chain for a factor group of the group object G .

For example, if you set the IsOne component to GENSS_IsOneProjective (3.2.1) for a matrix

group G , scalar multiples of the identity are considered to be equal to the identity. You will have

to specify the base points explicitly using the Cand and StrictlyUseCandidates component

(see above and below) to only use actions having the normal subgroup in its kernel. A shortcut

for computing stabiliser chains of projective groups (matrix group modulo scalars) is to set the

Projective component (see below) and switch to projective mode.

LimitShortOrbCandidates

The integer value of this component limits the number of candidates considered for the �nding

of short orbits. See the TryShortOrbit and TryBirthdayParadox components.

NrRandElsBirthdayParadox

The method using the birthday paradox to �nd short orbits uses at most as many random group

elements to estimate the orbit size as this component says. See the TryBirthdayParadox

component.

NumberPrevOrbitPoints

After an orbit for the stabiliser chain has been enumerated, the randomised Schreier-Sims

method �rst tries NumberPrevOrbitPoints from this orbit as next base points. Note that

this is not done if the StrictlyUseCandidates component is set to true.

OrbitLengthLimit

This component is an absolute upper bound for the length of all orbits in the stabiliser chain. If

an orbit enumeration reaches this limit, the stabiliser chain computation is aborted.

OrbitLimitBirthdayParadox

During the method to �nd short orbits using the birthday paradox (see compo-

nent TryBirthdayParadox) only orbits whose �nal estimated length is less than

OrbitLimitBirthdayParadox are used.

OrbitLimitImmediatelyTake

During the method to �nd short orbits using the birthday paradox (see component

TryBirthdayParadox) an orbit is immediately used if its currently estimated length is less

than OrbitLimitImmediatelyTake, even if the estimate is not yet very reliable.

OrbitsWithLog

This component defaults to true in which case the orbit objects for the stabiliser chain have a

log to allow to make the Schreier trees shallow by adding generators. If you set this to false,

no logs are written and the Schreier trees could potentially be deep. This will make sifting

slower. Usually you should not touch this option. The only reason for setting it to false could

be if you need that the Schreier trees are not changed after their initial creation, even if new

generators are added to the stabiliser chain.

Projective

Set this component to true if you want to compute a stabiliser chain for a projective group

genss 9

given as a matrix group. Elements which are scalar multiples of each other will be considered

to be equal. This is achieved by only considering projective actions. Note that in this case a

known size of the group object cannot be used, since this size is the order of the matrix group!

random

The random component is there as a compatibility option. It behaves exactly as for the stabiliser

chain methods in the GAP library. It must be set to a number between 0 and 1000 indicating

a lower bound for the probability of a correct answer, where the value a means a=10%. Note

that currently 1000 is not yet implemented since there is no working deterministic veri�cation

routine.

RandomElmFunc

If this component is bound then it must be bound to a function taking no arguments and return-

ing uniformly distributed random elements in the group for which the stabiliser chain is to be

computed. All random elements used for the stabiliser chain will then be created by calling this

function.

RandomStabGens

This component contains the number of random stabiliser elements that are generated initially

to generate a new stabiliser in the chain.

Reduced

If this component is bound to true, then no orbits of length 1 are allowed in the stabiliser

chain. That is, no points are taken as base points that are �xed under all generators of the

current stabiliser. Set this component to false to allow for orbits of length 1, for example if

you want the stabiliser chain to run through a prescribed base.

Report

The number in the Report component is taken as the Report component in all orbit enumera-

tions. That is, every Report newly found elements in the orbit a message is printed saying how

far the computation has gone.

ShortOrbitsInitialLimit

See the TryShortOrbit component.

ShortOrbitsNrRandoms

See the TryShortOrbit component.

ShortOrbitsOrbLimit

See the TryShortOrbit component.

Size

If the Size component is set to a positive integer it is taken as the size of the group G . This

information allows to verify the stabiliser chain simply by looking at its size. If the group object

knows its size already (and the Projective component was not set to true), then the stored

size of the group is automatically taken into account, such that one does not have to use this

option.

StabGenAddSlots

The value of the StabGenAddSlots component is directly handed over to the product replacer

object which is used to generate random elements to �nd stabiliser generators.

genss 10

StabGenMaxDepth

The value of the StabGenMaxDepth component is directly handed over to the product replacer

object which is used to generate random elements to �nd stabiliser generators.

StabGenScrambleFactor

The value of the StabGenScrambleFactor component is directly handed over to the product

replacer object which is used to generate random elements to �nd stabiliser generators.

StabGenScramble

The value of the StabGenScramble component is directly handed over to the product replacer

object which is used to generate random elements to �nd stabiliser generators.

StrictlyUseCandidates

If this component is set to true (default is false) then only the given candidate points are

taken as possible base points. In particular, the procedure does not take additional points of the

previous orbit as candidates for base points (see component NumberPrevOrbitPoints). Use

this option in combination to Reduced set to false to enforce a certain known base.

TryBirthdayParadox

The method to try to �nd short orbits using the birthday paradox is used up to

TryBirthdayParadox times for each new base point. This method uses the Murray/O'Brien

heuristics to �nd candidates for short orbits and then uses statistics using the birthday paradox

to estimate the orbit lengths. As soon as a point is found whose orbit is either estimated to be

smaller than OrbitLimitBirthdayParadox with a solid statistical estimate or is estimated to

be smaller than OrbitLimitImmediatelyTake with a weak statistical estimate, this point is

taken as the next base point.

TryShortOrbit

The method to try to �nd short orbits using the standard Murray/O'Brien heuristics is used

up to TryShortOrbit times for each new base point. This method uses the heuristics to �nd

candicates for short orbits using ShortOrbitsNrRandoms random group elements. It then

enumerates all these orbits up to the limit ShortOrbitsInitialLimit. If any of them closes

the corresponding candidate is taken as the next base point. Otherwise half of the points are

thrown away and the limit is doubled. This goes on until either an orbit closes or the limit

grows over ShortOrbitsOrbLimit.

VerifyElements

This component can be used to set it to the number of random elements that are used in

the end to verify the stabiliser chain statistically. Usually the user speci�es the component

ErrorBound instead and VerifyElements is then computed automatically from that. How-

ever, if no ErrorBound is given, the VerifyElements component takes precedence over the

random component.

VeryShortOrbLimit

The very �rst method tried to �nd the next base point is to enumerate the orbit of the �rst and

the last basis vector and of one random vector up to the limit VeryShortOrbLimit. If the orbit

closes before this limit is reached, the corresponding vector is immediately taken.

genss 11

3.2.1 GENSS_IsOneProjective

. GENSS_IsOneProjective(x) (function)

Returns: true or false

This function tests whether or not the matrix x is a scalar multiple of the identity matrix. This

function is useful for projective action.

3.3 How base points are chosen

This section explains some internal details of how base points are chosen during a stabiliser chain

computations. As a user, you can probably safely skip this section and ignore it altogether. However,

in situations where thes stabiliser chain computation is more dif�cult (for example if it is dif�cult to

�nd short orbits), then it can be helpful to know about these details.

Whenever the stabiliser chain computation needs to set up a new layer in the stabiliser chain

it needs a new base point. The �rst method it tries is to take a point in the previous orbit one

layer up, since for these points we have a natural upper limit for the orbit length, namely the orbit

length in the layer above. If this does not work (either there is no higher layer or more than the �rst

NumberPrevOrbitPoints (see stabiliser chain options in Section 3.2) in that orbit are �xed by the

current group or StrictlyUseCandidates is true), it is checked whether or not there is another

known candidate for a base point.

Note that if the user supplies candidates for the base points and operations (see component Cand

in the stabiliser chain options in Section 3.2), then it is entirely possible that all base points come from

these candidates and the mechanisms described in this sections are not used at all.

However, if the procedure runs out of base points, it needs a way to �nd new candidates. This is

done using the following operation:

3.3.1 FindBasePointCandidates

. FindBasePointCandidates(g, opt, i, S) (operation)

Returns: a Cand record

This operation returns base point candidates in the form of a record as for the Cand option for

stabiliser chain computations (see Section 3.2).

There are various methods installed to this end which all might fail and call TryNextMethod();.

We do not document the details of these methods here but only give an overview. For permutation

groups the choice of candidates is very straightforward, one simply takes a few integers with the usual

action OnPoints. For matrix group �nding a reasonably short orbit is more dif�cult. The system �rst

handles the case of a scalar group which is easy. Then it hopes to �nd a �very short orbit� de�ned

by the component VeryShortOrbLimit in the stabiliser chain computation options. If this fails the

birthday paradoxon method is used to �nd an estimate for a reasonably short orbit amoung candidates

coming from the Murray and O'Brien heuristics. If this fails the same heuristics are used but various

orbits are enumerated up to a certain point decreasing the number of orbits as the limit goes up. If

all fails some of the candidates from the heuristics are simply tried with brute force. The whole

computation can fail if some upper orbit length limit is reached (see component OrbitLengthLimit

in the stabiliser chain computation options).

genss 12

3.4 Using stabiliser chains

The most important thing one can do with a stabiliser chain is sifting. This is done with one of the

next to operations:

3.4.1 SiftGroupElement

. SiftGroupElement(S, el) (operation)

Returns: a record

The �rst argument S must be a stabiliser chain object and the second argument el a group ele-

ment (not necessarily contained in the group described by S). The result is a record describing the

result of the sifting process. The component rem contains the remainder of the sifting process. If

el is contained in the group described by S , then the remainder is equal to the identity. Note that

if the IsOne-component of the options record for the stabiliser chain S is different from the IsOne

(Reference: IsOne) operation then the rem component is equal to the identity according to that test.

The result of this test (true or false) is stored in the component isone of the resulting record. This

means, that this component indicates whether or not the sifting was successful. The component S is

bound to the stabiliser chain object corresponding to the layer in which the sifting stopped. If it ran

through the whole chain this component is bound to false. The component preS is always bound to

the previous layer, which is the lowest layer if the sifting was successful.

3.4.2 SiftGroupElementSLP

. SiftGroupElementSLP(S, el) (operation)

Returns: a record

This operation behaves exactly as SiftGroupElement (3.4.1) except that in the successful

case the component slp of the resulting record is additionally bound to a straight line program

which expresses the element el in terms of the strong generators of the stabiliser chain (see

StrongGenerators (3.4.3)).

3.4.3 StrongGenerators

. StrongGenerators(S) (operation)

Returns: a list of group elements

This operation returns the strong generators of the stabiliser chain S . This means that each sta-

biliser in the stabiliser chain is generated by the subset of the set of strong generators which �x the

corresponding points. Note that each layer of the stabiliser chain uses some subset of these strong

generators as generators for the orbit object of that layer.

Note further that this operation called for the objects describing the lower layers of the stabiliser

chain always returns all strong generators for the whole stabiliser chain (top layer).

3.4.4 NrStrongGenerators

. NrStrongGenerators(S) (operation)

Returns: a positive integer

This operation returns the number of strong generators of the stabiliser chain S (see

StrongGenerators (3.4.3)).

genss 13

3.4.5 BaseStabilizerChain

. BaseStabilizerChain(S) (operation)

Returns: a record

This operation returns the base of the stabiliser chain S in form of a record, which can be used

as the Cand component for a stabiliser chain computation. That is, two components are bound, the

points component is a list of base points and the ops component is a corresponding list of action

functions.

3.4.6 Size

. Size(S) (operation)

Returns: a positive integer

This operation returns the size (i.e. order) of the group described by the stabiliser chain S . This is

simply the product of the lengths of the orbits in the chain.

3.4.7 Random

. Random(S) (operation)

Returns: a group element

This operation can be called with a stabiliser chain object S or with a group object, if this group

object has a stored stabiliser chain (see SetStabilizerChain (3.4.11)). The method will randomly

choose transversal elements and thus produce a uniformly distributed random element of the group.

3.4.8 \in

. \in(x, S) (operation)

Returns: true or false

This operation tests whether or not the group element x lies in the group described by the stabiliser

chain S by sifting (see SiftGroupElement (3.4.1)). The argument S can also be a group object with

a stored stabiliser chain (see SetStabilizerChain (3.4.11)). Note that this operation can be called

with the in keyword using in�x notation.

3.4.9 IsProved

. IsProved(S) (operation)

Returns: true or false

This operation returns whether or not the stabiliser chain S is proved to be correct. If it has only

been veri�ed by randomised methods, false is returned. At the time of this writing the only possible

deterministic veri�cation is if the size of the group is known before the stabiliser chain computation

begins.

3.4.10 GroupIteratorByStabilizerChain

. GroupIteratorByStabilizerChain(S) (operation)

Returns: an iterator

This operation returns an iterator object which runs through the elements of the group described

by the stabiliser chain object S . The usual operations NextIterator (Reference: NextIterator) and

genss 14

IsDoneIterator (Reference: IsDoneIterator) as well as the for loop construction can be used

with this object. The iterator is implemented using the stored transversals in the Schreier trees of the

stabiliser chain.

3.4.11 SetStabilizerChain

. SetStabilizerChain(g, S) (operation)

Returns: nothing

Once the user is convinced that the stabiliser chain S describes the group g correctly, he can call

this operation to store the stabiliser chain together with the group object. From then on, additional

methods using the stabiliser chain (for example Size (3.4.6), Random (3.4.7) and \in (3.4.8) above)

become applicable for the group object. Note that if a stabiliser chain is known to be correct (for

example if the group knew its size beforehand), then the stabiliser chain is stored with the group auto-

matically when it is constructed, which makes the explicit storing of the stabiliser chain unnecessary.

The stored stabiliser chain of a group object can be used using StoredStabilizerChain

(3.4.12).

3.4.12 StoredStabilizerChain

. StoredStabilizerChain(g) (attribute)

Returns: a stabiliser chain

This attribute for a group object g contains a stored stabiliser chain for the group. See

SetStabilizerChain (3.4.11) for details.

3.4.13 StabChainOp

. StabChainOp(p, S) (method)

Returns: a GAP stabiliser chain

This method computes a standard GAP library stabiliser chain for the permutation group p using

the fact that S is a known correct stabiliser chain for p . If all base points in S are positive integers and

all actions are equal to OnPoints, then the same base points are taken for the new stabiliser chain.

3.4.14 SiftBaseImage

. SiftBaseImage(S, l) (operation)

Returns: true or false

This operation sifts an image l of the base points of the stabiliser chain S . This means that the

elements of the list l must be images of the base points under the actions in the various layers of

the stabiliser chain. The sifting procedure using the orbits and Schreier trees in the stabiliser chain

decides if this base image is one for a group element of the group described by S and returns true or

false accordingly.

This operation is mostly used internally.

3.4.15 SLPChainStabilizerChain

. SLPChainStabilizerChain(S, gens) (operation)

Returns: a record

genss 15

This operation assumes that S is a stabiliser chain that correctly describes the group generated by

the generators gens . It returns a list of straight line programs expressing successively the stabilisers

in the chain, each in terms of the generators of the previous, the �rst in terms of gens . This list is

stored in the component slps of the resulting record. The sizes of the groups in the chain are stored

in the component sizes of the resulting record.

The operations, functions and methods described below use stabiliser chains internally:

3.4.16 GroupHomomorphismByImagesNCStabilizerChain

. GroupHomomorphismByImagesNCStabilizerChain(g, h, images, opt1, opt2) (function)

Returns: a group homomorphism

This function creates a group homomorphism object from the group g into the group object h ,

mapping the generators of the group g to the elements images which must lie in h . This mapping

must be a group homomorphism, note that this is not checked!

The homomorphism is computed by computing stabiliser chains on both sides such that elements

can be mapped in both directions simply be sifting and expressing them in terms of the strong gener-

ators. This is where the two arguments opts1 and opts2 come into play. The former is used as the

options record for the stabiliser computation in g and the latter for the one in the group generated by

images .

3.4.17 FindShortGeneratorsOfSubgroup

. FindShortGeneratorsOfSubgroup(g, u) (method)

Returns: a record

This is an additional method for matrix or permutation groups implementing the operation

FindShortGeneratorsOfSubgroup (orb: FindShortGeneratorsOfSubgroup) from the orb pack-

age using stabiliser chains. Both arguments must be groups and u must be a subgroup of g . The

resulting record contains two components gens and slp, where the �rst is a list of generators for the

group u and the second is a straight line program expressing gens in terms of the generators of g .

This operation aims to �nd short words in the generators of g to use as generators for u .

3.4.18 Stab

. Stab(g, x, op[, opt]) (operation)

Returns: a record or fail

This operation aims to compute the point stabiliser of the group g acting via the action function op

of the point x . The optional last argument is an options record. The general approach of this procedure

is to go back and forth between enumerating a part of the orbit and trying to produce random elements

in the stabiliser using the already enumerated part of the orbit. Random elements in the stabiliser are

produced by using product replacement in g to produce random elements of g and then using the

Schreier tree of the orbit to map them back into the stabiliser. If this works, the resulting random

elements are distributed uniformly in the point stabiliser.

This routine is a Monte Carlo procedure. If suf�ciently many random elements of the stabiliser

have been produced and did not increase its size, the program concludes that the whole stabiliser is

found and returns a record describing it. Otherwise it returns fail after some time.

The resulting record has the stabiliser in the component stab, its size estimate in the component

size, a stabiliser chain for stab in the component stabilizerchain and a boolean value in the

genss 16

component proof indicating whether or not the result is certain.

We do not document all possible options in the options record here, since we want to allow for the

possibility to change these in later versions. The most important component in the options record is

the component ErrorBound which must be bound to a rational number between 0 and 1 and which is

an upper bound for the error probability.

Please note again that two types of errors can occur in this program: The �rst is that the correct

point stabiliser is not found but only a proper subgroup of it. The second is that the stabiliser chain

computation to estimate its size went wrong and returns an incorrect stabiliser chain.

Chapter 4

Backtrack search methods

This chapter describes the methods for backtrack search in the genss package. Note that the code in

this area is not yet very stable and is almost certainly going to change in subsequent versions of this

package. This might also concern the interfaces and calling conventions.

4.1 Setwise stabilisers

4.1.1 SetwiseStabilizer

. SetwiseStabilizer(G, op, M) (operation)

Returns: a record

This operation computes the setwise stabiliser of the set M . So G must be a group acting on some

set W, this action is given by the action function op . The set M must consist of elements W. The

result is a record with the components setstab containing the setwise stabiliser and S containing a

stabiliser chain for it.

This operation uses backtrack search in a specially crafted stabiliser chain for G doing not much

intelligent pruning of the search tree, so expect possible long delays!

4.1.2 SetwiseStabilizerPartitionBacktrack

. SetwiseStabilizerPartitionBacktrack(G, op, M) (operation)

Returns: a record

This operation computes the setwise stabiliser of the set M . So G must be a group acting on some

set W, this action is given by the action function op . The set M must consist of elements W. The

result is a record with the components setstab containing the setwise stabiliser and S containing a

stabiliser chain for it.

This operation uses backtrack search in a specially crafted stabiliser chain for G . It does some ideas

coming from partition backtrack but does not (yet) implement a full featured partition backtrack, so

expect possible longish delays!

17

genss 18

4.2 Generic backtrack search

4.2.1 BacktrackSearchStabilizerChainElement

. BacktrackSearchStabilizerChainElement(S, P, g, pruner) (operation)

Returns: fail or a group element

LetG be the group described by the stabiliser chain S . The group element g must be some element

in an overgroup �Gof G such that the function P described below is de�ned on the whole of �G

This operation implements a generic backtrack search in the coset Gg looking for an element

x inG such that P(xg) is truewhere P is a function on �Gtaking values true and false. The operation

returns the group element x if one is found or fail if none was found.

The search tree is given by the stabiliser chain, each node corresponds to a right coset of one of

the stabilisers in the chain. The leaves correspond to right cosets of the identity group, i.e. to group

elements in Gg

To make this backtrack search ef�cient some pruning of the search tree has to be done. To this

end there is the fourth argument pruner which can either be false (in which case no pruning at

all happens) or a GAP function taking 5 arguments and returning either true or false. The func-

tion pruner is called for every node in the search tree before the backtrack search descents into the

subtrees. If the pruner function returns false, the complete subtree starting at the current node is

pruned and no further search is performed there. If the result is true (or pruner was equal to false

altogether) then the subtree starting at the current node is searched recursively. Obviously, the pruner

function needs to know the current position in the search tree, which it is told by its arguments.

Each node in the search tree corresponds to a coset of some stabiliser of the stabiliser chain in its

previous one. To set up some notation, let G= S0 > S1 > S2 > � � �> Sm > Sm+1 = f1g be the stabiliser
chain and let O1;O2; : : : ;Om be the basic orbits. Then for the node corresponding to the coset Sitg for

i� 1 and some transversal element t contained in Si�1 the arguments with which the pruner function

is called are the following: The �rst argument is the stabiliser chain object corresponding to Si�1. The

second argument is the index of the element inOi corresponding to the transversal element t. The third

argument is the group element tg and the fourth argument is equal to the actual transversal element t.

The �fth argument is a word in the generators used to enumerate Oi expressing t, the word comes as

a list of integers which are the generator numbers.

4.2.2 BacktrackSearchStabilizerChainSubgroup

. BacktrackSearchStabilizerChainSubgroup(S, P, pruner) (operation)

Returns: fail or a stabiliser chain

Let G be the group described by the stabiliser chain S . This operation implements a generic

backtrack search in the stabiliser chain S looking for the subgroup H of the group G described by S

of all elements x for which P(x) is true, where P is a function on G taking values true or false.

Note that of course P must be such that H is actually a subgroup! The operation returns a stabiliser

chain describing the group H.

The search tree is given by the stabiliser chain, each node corresponds to a right coset of one of

the stabilisers in the chain. The leaves correspond to right cosets of the identity group, i.e. to group

elements in G

To make this backtrack search ef�cient some pruning of the search tree has to be done. To this

end there is the fourth argument pruner which can either be false (in which case no pruning at

all happens) or a GAP function taking 5 arguments and returning either true or false. The func-

genss 19

tion pruner is called for every node in the search tree before the backtrack search descents into the

subtrees. If the pruner function returns false, the complete subtree starting at the current node is

pruned and no further search is performed there. If the result is true (or pruner was equal to false

altogether) then the subtree starting at the current node is searched recursively. Obviously, the pruner

function needs to know the current position in the search tree, which it is told by its arguments.

Each node in the search tree corresponds to a coset of some stabiliser of the stabiliser chain in its

previous one. To set up some notation, let G= S0 > S1 > S2 > � � �> Sm > Sm+1 = f1g be the stabiliser
chain and let O1;O2; : : : ;Om be the basic orbits. Then for the node corresponding to the coset Sitg for

i� 1 and some transversal element t contained in Si�1 the arguments with which the pruner function

is called are the following: The �rst argument is the stabiliser chain object corresponding to Si�1. The

second argument is the index of the element inOi corresponding to the transversal element t. The third

and fourth arguments are the transversal element t. The �fth argument is a word in the generators used

to enumerate Oi expressing t, the word comes as a list of integers which are the generator numbers.

Chapter 5

Examples

Here comes text.

20

References

21

Index

genss, 5

BacktrackSearchStabilizerChainElement,

18

BacktrackSearchStabilizerChain-

Subgroup, 18

BaseStabilizerChain, 13

FindBasePointCandidates, 11

FindShortGeneratorsOfSubgroup, 15

GENSS_IsOneProjective, 11

GroupHomomorphismByImagesNCStabilizer-

Chain, 15

GroupIteratorByStabilizerChain, 13

\in, 13

IsProved, 13

NrStrongGenerators, 12

Random, 13

SetStabilizerChain, 14

SetwiseStabilizer, 17

SetwiseStabilizerPartitionBacktrack, 17

SiftBaseImage, 14

SiftGroupElement, 12

SiftGroupElementSLP, 12

Size, 13

SLPChainStabilizerChain, 14

Stab, 15

StabChainOp, 14

StabilizerChain, 6

StoredStabilizerChain, 14

StrongGenerators, 12

22

	Introduction
	Philosophy
	Overview over this manual
	Feedback

	Installation of the genss-Package
	Stabiliser Chains
	Computing stabiliser chains
	Options for the computation of stabiliser chains
	How base points are chosen
	Using stabiliser chains

	Backtrack search methods
	Setwise stabilisers
	Generic backtrack search

	Examples
	References
	Index

