
Digraphs
Methods for digraphs

Version 0.11.0

Jan De Beule
Julius Jonu�as

James D. Mitchell
Michael Torpey
Wilf A. Wilson
Stuart Burrell
Luke Elliott

Christopher Jefferson
Markus Pfeiffer
Chris Russell
Finn Smith

Jan De Beule Email: jdebeule@cage.ugent.be

Homepage: http://homepages.vub.ac.be/~jdbeule

Julius Jonu�as Email: jj252@st-andrews.ac.uk

Homepage: http://www-circa.mcs.st-andrews.ac.uk/~julius

James D. Mitchell Email: jdm3@st-andrews.ac.uk

Homepage: http://goo.gl/ZtViV6

Michael Torpey Email: mct25@st-andrews.ac.uk

Homepage: http://www-circa.mcs.st-andrews.ac.uk/~mct25

Wilf A. Wilson Email: waw7@st-andrews.ac.uk

Homepage: http://www-circa.mcs.st-andrews.ac.uk/~waw7

mailto://jdebeule@cage.ugent.be
http://homepages.vub.ac.be/~jdbeule
mailto://jj252@st-andrews.ac.uk
http://www-circa.mcs.st-andrews.ac.uk/~julius
mailto://jdm3@st-andrews.ac.uk
http://goo.gl/ZtViV6
mailto://mct25@st-andrews.ac.uk
http://www-circa.mcs.st-andrews.ac.uk/~mct25
mailto://waw7@st-andrews.ac.uk
http://www-circa.mcs.st-andrews.ac.uk/~waw7

Digraphs 2

Abstract

The Digraphs package is a GAP package containing methods for graphs, digraphs, and multidigraphs.

Copyright

© 2014-17 by Jan De Beule, Julius Jonu�as, James D. Mitchell, Michael Torpey, Wilf A. Wilson et al.

Digraphs is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 3 of the License, or (at your

option) any later version.

Acknowledgements

We would like to thank Christopher Jefferson for his help in including the bliss tool in the package. This

package's methods for computing digraph homomorphisms are based on work by Max Neunhöffer, and

independently Artur Schäfer.

 http://www.fsf.org/licenses/gpl.html
 http://www.fsf.org/licenses/gpl.html
http://www.tcs.tkk.fi/Software/bliss/

Contents

1 The Digraphs package 5

1.1 Introduction . 5

2 Installing Digraphs 7

2.1 For those in a hurry . 7

2.2 Optional package dependencies . 8

2.3 Compiling the kernel module . 8

2.4 Rebuilding the documentation . 9

2.5 Testing your installation . 9

3 Creating digraphs 10

3.1 Creating digraphs . 10

3.2 Changing representations . 15

3.3 New digraphs from old . 17

3.4 Random digraphs . 33

3.5 Standard examples . 34

4 Operators 37

4.1 Operators for digraphs . 37

5 Attributes and operations 40

5.1 Vertices and edges . 40

5.2 Neighbours and degree . 46

5.3 Reachability and connectivity . 54

5.4 Cayley graphs of groups . 66

6 Properties of digraphs 68

6.1 Edge properties . 68

6.2 Regularity . 75

6.3 Connectivity and cycles . 76

7 Homomorphisms 82

7.1 Acting on digraphs . 82

7.2 Isomorphisms and canonical labellings . 83

7.3 Homomorphisms of digraphs . 98

3

Digraphs 4

8 Finding cliques and independent sets 105

8.1 Finding cliques . 106

8.2 Finding independent sets . 111

9 Visualising and IO 115

9.1 Visualising a digraph . 115

9.2 Reading and writing graphs to a �le . 117

A Grape to Digraphs Command Map 128

A.1 Functions to construct and modify graphs . 128

A.2 Functions to inspect graphs, vertices and edges . 128

A.3 Functions to determine regularity properties of graphs 129

A.4 Some special vertex subsets of a graph . 129

A.5 Functions to construct new graphs from old . 130

A.6 Vertex-Colouring and Complete Subgraphs . 130

A.7 Automorphism groups and isomorphism testing for graphs 130

References 131

Index 132

Chapter 1

The Digraphs package

1.1 Introduction

This is the manual for the Digraphs package version 0.11.0. This package was developed at the

University of St Andrews by:

� Jan De Beule,

� Julius Jonu�as,

� James D. Mitchell,

� Michael C. Torpey, and

� Wilf A. Wilson.

Additional contributions were made by:

� Stuart Burrell,

� Luke Elliott,

� Christopher Jefferson,

� Markus Pfeiffer,

� Chris Russell, and

� Finn Smith.

The Digraphs package contains a variety of methods for ef�ciently creating and storing digraphs and

computing information about them. Full explanations of all the functions contained in the package

are provided below.

If the Grape package is available, it will be loaded automatically. Digraphs created with the

Digraphs package can be converted to Grape graphs with Graph (3.2.3), and conversely Grape graphs

can be converted to Digraphs objects with Digraph (3.1.5). Grape is not required for Digraphs to

run.

The bliss tool [JK07] is included in this package. It is an open-source tool for computing automor-

phism groups and canonical forms of graphs, written by Tommi Junttila and Petteri Kaski. Several

5

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.tcs.tkk.fi/Software/bliss/

Digraphs 6

of the methods in the Digraphs package rely on bliss. If the NautyTracesInterface package for GAP

is available then it is also possible to use nauty [MP14] for computing automorphism groups and

canonical forms in Digraphs. See Section 7.2 for more details.

1.1.1 De�nitions

For the purposes of this package and its documentation, the following de�nitions apply:

A digraph E = (E0;E1;r;s), also known as a directed graph, consists of a set of vertices E0 and a

set of edges E1 together with functions s;r : E1 ! E0, called the source and range, respectively. The

source and range of an edge is respectively the values of s;r at that edge. An edge is called a loop if

its source and range are the same. A digraph is called a multidigraph if there exist two or more edges

with the same source and the same range.

A directed walk on a digraph is a sequence of alternating vertices and edges

(v1;e1;v2;e2; :::;en�1;vn) such that each edge ei has source vi and range vi+1. A directed path

is a directed walk where no vertex (and hence no edge) is repeated. A directed circuit is a directed

walk where v1 = vn, and a directed cycle is a directed circuit where where no vertex is repeated,

except for v1 = vn.

The length of a directed walk (v1;e1;v2;e2; :::;en�1;vn) is equal to n� 1, the number of edges it

contains. A directed walk (or path) (v1;e1;v2;e2; :::;en�1;vn) is sometimes called a directed walk (or

path) from vertex v1 to vertex vn. A directed walk of zero length, i.e. a sequence (v) for some vertex v,

is called trivial. A trivial directed walk is considered to be both a circuit and a cycle, as is the empty

directed walk (). A simple circuit is another name for a non-trivial and non-empty directed cycle.

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Chapter 2

Installing Digraphs

2.1 For those in a hurry

In this section we give a brief description of how to start using Digraphs.

It is assumed that you have a working copy of GAP with version number 4.8.2 or higher. The

most up-to-date version of GAP and instructions on how to install it can be obtained from the main

GAP webpage http://www.gap-system.org.

The following is a summary of the steps that should lead to a successful installation of Digraphs:

� ensure that the IO package version 4.4.6 or higher is available. IO must be compiled before

Digraphs can be loaded.

� ensure that the Orb package version 4.7.5 or higher is available. Orb has better performance

when compiled, but although compilation is recommended, it is not required to be compiled for

Digraphs to be loaded.

� THIS STEP IS OPTIONAL: certain functions in Digraphs require the Grape package to be avail-

able; see Section 2.2.1 for full details. To use these functions make sure that the Grape package

version 4.5 or higher is available. If Grape is not available, then Digraphs can be used as

normal with the exception that the functions listed in Subsection 2.2.1 will not work.

� download the package archive digraphs-0.11.0.tar.gz from the Digraph package webpage.

� unzip and untar the �le, this should create a directory called digraphs-0.11.0.

� locate the pkg directory of your GAP directory, which contains the directories lib, doc and so

on. Move the directory digraphs-0.11.0 into the pkg directory.

� it is necessary to compile the Digraphs package. Inside the pkg/digraphs-0.11.0 directory,

type

./configure

make

Further information about this step can be found in Section 2.3.

� start GAP in the usual way (i.e. type gap at the command line).

7

http://www.gap-system.org
 http://gap-packages.github.io/io/
 http://gap-packages.github.io/io/
 http://http://gap-packages.github.io/orb/
 http://http://gap-packages.github.io/orb/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://gap-packages.github.io/Digraphs/

Digraphs 8

� type LoadPackage("digraphs");

If you want to check that the package is working correctly, you should run some of the tests described

in Section 2.5.

2.2 Optional package dependencies

The Digraphs package is written in GAP and C code and requires the IO package. The IO package

is used to read and write transformations, partial permutations, and bipartitions to a �le.

2.2.1 The Grape package

The Grape package must be available for the following operations to be available:

� Graph (3.2.3) with a digraph argument

� AsGraph (3.2.4) with a digraph argument

� Digraph (3.1.5) with a Grape graph argument

If Grape is not available, then Digraphs can be used as normal with the exception that the functions

above will not work.

2.3 Compiling the kernel module

TheDigraphs package has aGAP kernel component in C which should be compiled. This component

contains certain low-level functions required by Digraphs.

It is not possible to use the Digraphs package without compiling it.

To compile the kernel component inside the pkg/digraphs-0.11.0 directory, type

./configure

make

If you installed the package in another 'pkg' directory than the standard 'pkg' directory in your

GAP installation, then you have to do two things. Firstly during compilation you have to use the

option '�with-gaproot=PATH' of the 'con�gure' script where 'PATH' is a path to the main GAP root

directory (if not given the default '../..' is assumed).

If you installed GAP on several architectures, you must execute the con�gure/make step for each

of the architectures. You can either do this immediately after con�guring and compiling GAP itself

on this architecture, or alternatively (when using version 4.5 of GAP or newer) set the environment

variable 'CONFIGNAME' to the name of the con�guration you used when compiling GAP before

running './con�gure'. Note however that your compiler choice and �ags (environment variables 'CC'

and 'CFLAGS') need to be chosen to match the setup of the original GAP compilation. For example

you have to specify 32-bit or 64-bit mode correctly!

 http://gap-packages.github.io/io/
 http://gap-packages.github.io/io/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 9

2.4 Rebuilding the documentation

The Digraphs package comes complete with pdf, html, and text versions of the documentation. How-

ever, you might �nd it necessary, at some point, to rebuild the documentation. To rebuild the docu-

mentation use the DigraphsMakeDoc (2.4.1).

2.4.1 DigraphsMakeDoc

. DigraphsMakeDoc() (function)

Returns: Nothing

This function should be called with no argument to compile the Digraphs documentation.

2.5 Testing your installation

In this section we describe how to test that Digraphs is working as intended. To test that Di-

graphs is installed correctly use DigraphsTestInstall (2.5.1) or for more extensive tests use

DigraphsTestStandard (2.5.2).

If something goes wrong, then please review the instructions in Section 2.1 and ensure that Di-

graphs has been properly installed. If you continue having problems, please use the issue tracker to

report the issues you are having.

2.5.1 DigraphsTestInstall

. DigraphsTestInstall() (function)

Returns: true or false.

This function should be called with no argument to test your installation of Digraphs is working

correctly. These tests should take no more than a fraction of a second to complete. To test more

comprehensively that Digraphs is working correctly, use DigraphsTestStandard (2.5.2).

2.5.2 DigraphsTestStandard

. DigraphsTestStandard() (function)

Returns: true or false.

This function should be called to test all the methods included in Digraphs. These tests should

take only a few seconds to complete.

To quickly test that Digraphs is installed correctly use DigraphsTestInstall (2.5.1). For a

more thorough test, use DigraphsTestStandard.

https://github.com/gap-packages/Digraphs/issues

Chapter 3

Creating digraphs

In this chapter we describe how to create digraphs.

3.1 Creating digraphs

3.1.1 IsDigraph

. IsDigraph (Category)

Every digraph in Digraphs belongs to the category IsDigraph. Basic attributes and opera-

tions for digraphs are: DigraphVertices (5.1.1), DigraphRange (5.2.4), DigraphSource (5.2.4),

OutNeighbours (5.2.5), and DigraphEdges (5.1.3).

3.1.2 IsCayleyDigraph

. IsCayleyDigraph (Category)

IsCayleyDigraph is a subcategory of IsDigraph. Digraphs that are Cayley digraphs of a group

and that are constructed by the operation CayleyDigraph (3.1.10) are constructed in this category.

3.1.3 IsDigraphWithAdjacencyFunction

. IsDigraphWithAdjacencyFunction (Category)

IsDigraphWithAdjacencyFunction is a subcategory of IsDigraph. Digraphs that are created

using an adjacency function are constructed in this category.

3.1.4 DigraphType

. DigraphType (global variable)

. DigraphFamily (family)

The type of all digraphs is DigraphType. The family of all digraphs is DigraphFamily.

10

Digraphs 11

3.1.5 Digraph

. Digraph(obj[, source, range]) (operation)

. Digraph(list, func) (operation)

. Digraph(G, list, act, adj) (operation)

Returns: A digraph.

for a list (i.e. an adjacency list)

if obj is a list of lists of positive integers in the range from 1 to Length(obj), then this function

returns the digraph with vertices E0 =[1 .. Length(obj)], and edges corresponding to the

entries of obj .

More precisely, there is an edge from vertex i to j if and only if j is in obj[i]; the source of

this edge is i and the range is j. If j occurs in obj[i] with multiplicity k, then there are k

edges from i to j.

for three lists

if obj is a duplicate-free list, and source and range are lists of equal length consisting

of positive integers in the list [1 .. Length(obj)], then this function returns a digraph

with vertices E0 =[1 .. Length(obj)], and Length(source) edges. For each i in [1

.. Length(source)] there exists an edge with source vertex source[i] and range vertex

range[i]. See DigraphSource (5.2.4) and DigraphRange (5.2.4).

The vertices of the digraph will be labelled by the elements of obj .

for an integer, and two lists

if obj is an integer, and source and range are lists of equal length consisting of positive

integers in the list [1 .. obj], then this function returns a digraph with vertices E0 =[1 ..

obj], and Length(source) edges. For each i in [1 .. Length(source)] there exists an

edge with source vertex source[i] and range vertex range[i]. See DigraphSource (5.2.4)

and DigraphRange (5.2.4).

for a list and a function

if list is a list and func is a function taking 2 arguments that are elements of list ,

and func returns true or false, then this operation creates a digraph with vertices [1

.. Length(list)] and an edge from vertex i to vertex j if and only if func(list[i],

list[j]) returns true.

for a group, a list, and two functions

The arguments will be G, list, act, adj .

Let G be a group acting on the objects in list via the action act , and let adj be a function

taking two objects from list as arguments and returning true or false. The function adj

will describe the adjacency between objects from list , which is invariant under the action

of G . This variant of the constructor returns a digraph with vertices the objects of list and

directed edges [x, y] when f(x, y) is true.

The action of the group G on the objects in list is stored in the attribute DigraphGroup (7.2.9),

and is used to speed up operations like DigraphDiameter (5.3.1).

for a Grape package graph

if obj is a Grape package graph (i.e. a record for which the function IsGraph returns true),

then this function returns a digraph isomorphic to obj .

http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 12

for a binary relation

if obj is a binary relation on the points [1 .. n] for some posititve integer n, then this

function returns the digraph de�ned by obj . Speci�cally, this function returns a digraph which

has n vertices, and which has an edge with source i and range j if and only if [i,j] is a pair

in the binary relation obj .

Example
gap> gr := Digraph([

> [2, 5, 8, 10], [2, 3, 4, 2, 5, 6, 8, 9, 10], [1],

> [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10], [1, 4],

> [1, 5, 9], [1, 2, 7, 8], [3, 5]]);

<multidigraph with 10 vertices, 38 edges>

gap> gr := Digraph(["a", "b", "c"], ["a"], ["b"]);

<digraph with 3 vertices, 1 edge>

gap> gr := Digraph(5, [1, 2, 2, 4, 1, 1], [2, 3, 5, 5, 1, 1]);

<multidigraph with 5 vertices, 6 edges>

gap> Petersen := Graph(SymmetricGroup(5), [[1, 2]], OnSets,

> function(x, y) return Intersection(x, y) = []; end);;

gap> Digraph(Petersen);

<digraph with 10 vertices, 30 edges>

gap> b := BinaryRelationOnPoints(

> [[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);

Binary Relation on 5 points

gap> gr := Digraph(b);

<digraph with 5 vertices, 11 edges>

gap> gr := Digraph([1 .. 10], ReturnTrue);

<digraph with 10 vertices, 100 edges>

The next example illustrates the uses of the fourth and �fth variants of this constructor. The resulting

digraph is a strongly regular graph, and it is actually the point graph of the van Lint-Schrijver partial

geometry, [vLS81]. The algebraic description is taken from the seminal paper of Calderbank and

Kantor [CK86].
Example

gap> f := GF(3 ^ 4);

GF(3^4)

gap> gamma := First(f, x -> Order(x) = 5);

Z(3^4)^64

gap> L := Union([Zero(f)], List(Group(gamma)));

[0*Z(3), Z(3)^0, Z(3^4)^16, Z(3^4)^32, Z(3^4)^48, Z(3^4)^64]

gap> omega := Union(List(L, x -> List(Difference(L, [x]), y -> x - y)));

[Z(3)^0, Z(3), Z(3^4)^5, Z(3^4)^7, Z(3^4)^8, Z(3^4)^13, Z(3^4)^15,

Z(3^4)^16, Z(3^4)^21, Z(3^4)^23, Z(3^4)^24, Z(3^4)^29, Z(3^4)^31,

Z(3^4)^32, Z(3^4)^37, Z(3^4)^39, Z(3^4)^45, Z(3^4)^47, Z(3^4)^48,

Z(3^4)^53, Z(3^4)^55, Z(3^4)^56, Z(3^4)^61, Z(3^4)^63, Z(3^4)^64,

Z(3^4)^69, Z(3^4)^71, Z(3^4)^72, Z(3^4)^77, Z(3^4)^79]

gap> adj := function(x, y)

> return x - y in omega;

> end;

function(x, y) ... end

gap> digraph := Digraph(AsList(f), adj);

<digraph with 81 vertices, 2430 edges>

gap> group := Group(Z(3));

Digraphs 13

<group with 1 generators>

gap> act := *;

<Operation "*">

gap> digraph := Digraph(group, List(f), act, adj);

<digraph with 81 vertices, 2430 edges>

3.1.6 DigraphByAdjacencyMatrix

. DigraphByAdjacencyMatrix(adj) (operation)

Returns: A digraph.

If adj is the adjacency matrix of a digraph in the sense of AdjacencyMatrix (5.2.1), then this

operation returns the digraph which is de�ned by adj .

Alternatively, if adj is a square boolean matrix, then this operation returns the digraph with

Length(adj) vertices which has the edge [i,j] if and only if adj[i][j] is true.

Example
gap> DigraphByAdjacencyMatrix([

> [0, 1, 0, 2, 0],

> [1, 1, 1, 0, 1],

> [0, 3, 2, 1, 1],

> [0, 0, 1, 0, 1],

> [2, 0, 0, 0, 0]]);

<multidigraph with 5 vertices, 18 edges>

gap> gr := DigraphByAdjacencyMatrix([

> [true, false, true],

> [false, false, true],

> [false, true, false]]);

<digraph with 3 vertices, 4 edges>

gap> OutNeighbours(gr);

[[1, 3], [3], [2]]

3.1.7 DigraphByEdges

. DigraphByEdges(edges[, n]) (operation)

Returns: A digraph.

If edges is list of pairs of positive integers, then this function returns the digraph with the mini-

mum number of vertices m such that its edges equal edges .

If the optional second argument n is a positive integer with n >= m (with m de�ned as above),

then this function returns the digraph with n vertices and edges edges .

See DigraphEdges (5.1.3).

Example
gap> DigraphByEdges(

> [[1, 3], [2, 1], [2, 3], [2, 5], [3, 6],

> [4, 6], [5, 2], [5, 4], [5, 6], [6, 6]]);

<digraph with 6 vertices, 10 edges>

gap> DigraphByEdges(

> [[1, 3], [2, 1], [2, 3], [2, 5], [3, 6],

> [4, 6], [5, 2], [5, 4], [5, 6], [6, 6]], 12);

<digraph with 12 vertices, 10 edges>

Digraphs 14

3.1.8 EdgeOrbitsDigraph

. EdgeOrbitsDigraph(G, edges[, n]) (operation)

Returns: A new digraph.

If G is a permutation group, edges is an edge or list of edges, and n is a non-negative integer

such that G �xes [1 .. n] setwise, then this operation returns a new digraph with n vertices and

the union of the orbits of the edges in edges under the action of the permutation group G . An edge

in this context is simply a pair of positive integers.

If the optional third argument n is not present, then the largest moved point of the permutation

group G is used by default.
Example

gap> digraph := EdgeOrbitsDigraph(Group((1, 3), (1, 2)(3, 4)),

> [[1, 2], [4, 5]], 5);

<digraph with 5 vertices, 12 edges>

gap> OutNeighbours(digraph);

[[2, 4, 5], [1, 3, 5], [2, 4, 5], [1, 3, 5], []]

gap> RepresentativeOutNeighbours(digraph);

[[2, 4, 5], []]

3.1.9 DigraphByInNeighbours

. DigraphByInNeighbours(in) (operation)

. DigraphByInNeighbors(in) (operation)

Returns: A digraph.

If in is a list of lists of positive integers in the range [1 .. Length(in)], then this function

returns the digraph with vertices E0 =[1 .. Length(in)], and edges corresponding to the entries

of in . More precisely, there is an edge with source vertex i and range vertex j if i is in in[j].

If i occurs in in[j] with multiplicity k, then there are k multiple edges from i to j.

See InNeighbours (5.2.6).
Example

gap> gr := DigraphByInNeighbours([

> [2, 5, 8, 10], [2, 3, 4, 5, 6, 8, 9, 10],

> [1], [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10], [1, 4],

> [1, 5, 9], [1, 2, 7, 8], [3, 5]]);

<digraph with 10 vertices, 37 edges>

gap> gr := DigraphByInNeighbours([[2, 3, 2], [1], [1, 2, 3]]);

<multidigraph with 3 vertices, 7 edges>

3.1.10 CayleyDigraph

. CayleyDigraph(G[, gens]) (operation)

Returns: A digraph.

Let G be any group and let gens be a list of elements of G . This function returns the Cayley graph

of the group with respect gens . The vertices are the elements of G . There exists an edge from the

vertex u to the vertex v if and only if there exists a generator g in gens such that x * g = y.

If the optional second argument gens is not present, then the generators of G are used by default.

The digraph created by this operation belongs to the category IsCayleyDigraph (3.1.2), the group G

can be recovered from the digraph using GroupOfCayleyDigraph (5.4.1), and the generators gens

can be obtained using GeneratorsOfCayleyDigraph (5.4.2).

Digraphs 15

Example
gap> G := DihedralGroup(8);

<pc group of size 8 with 3 generators>

gap> CayleyDigraph(G);

<digraph with 8 vertices, 24 edges>

gap> G := DihedralGroup(IsPermGroup, 8);

Group([(1,2,3,4), (2,4)])

gap> CayleyDigraph(G);

<digraph with 8 vertices, 16 edges>

gap> digraph := CayleyDigraph(G, [()]);

<digraph with 8 vertices, 8 edges>

gap> GroupOfCayleyDigraph(digraph) = G;

true

gap> GeneratorsOfCayleyDigraph(digraph);

[()]

3.2 Changing representations

3.2.1 AsBinaryRelation

. AsBinaryRelation(digraph) (operation)

Returns: A binary relation.

If digraph is a digraph with a positive number of vertices n, and no multiple edges, then this

operation returns a binary relation on the points [1..n]. The pair [i,j] is in the binary relation if

and only if [i,j] is an edge in digraph .

Example
gap> gr := Digraph([[3, 2], [1, 2], [2], [3, 4]]);

<digraph with 4 vertices, 7 edges>

gap> AsBinaryRelation(gr);

Binary Relation on 4 points

3.2.2 AsDigraph

. AsDigraph(trans[, n]) (operation)

Returns: A digraph, or fail.

If trans is a transformation, and n is a non-negative integer such that the restriction of trans to

[1 .. n] de�nes a transformation of [1 .. n], then AsDigraph returns the functional digraph

with n vertices de�ned by trans . See IsFunctionalDigraph (6.1.7).

Speci�cally, the digraph returned by AsDigraph has n edges: for each vertex x in [1 .. n],

there is a unique edge with source x; this edge has range x^trans .

If the optional second argument n is not supplied, then the degree of the transformation trans is

used by default. If the restriction of trans to [1 .. n] does not de�ne a transformation of [1 ..

n], then AsDigraph(trans, n) returns fail.
Example

gap> f := Transformation([4, 3, 3, 1, 7, 9, 10, 4, 2, 3]);

Transformation([4, 3, 3, 1, 7, 9, 10, 4, 2, 3])

gap> AsDigraph(f);

<digraph with 10 vertices, 10 edges>

gap> AsDigraph(f, 4);

Digraphs 16

<digraph with 4 vertices, 4 edges>

gap> AsDigraph(f, 5);

fail

3.2.3 Graph

. Graph(digraph) (operation)

Returns: A Grape package graph.

If digraph is a digraph without multiple edges, then this operation returns a Grape package graph

that is isomorphic to digraph .

If digraph is a multidigraph, then since Grape does not support multiple edges, the multiple

edges will be reduced to a single edge in the result. In order words, for a multidigraph this operation

will return the same as Graph(DigraphRemoveAllMultipleEdges(digraph)).
Example

gap> Petersen := Graph(SymmetricGroup(5), [[1, 2]], OnSets,

> function(x, y) return Intersection(x, y) = []; end);

rec(adjacencies := [[3, 5, 8]], group := Group([(1,2,3,5,7)

(4,6,8,9,10), (2,4)(6,9)(7,10)]), isGraph := true,

names := [[1, 2], [2, 3], [3, 4], [1, 3], [4, 5],

[2, 4], [1, 5], [3, 5], [1, 4], [2, 5]],

order := 10, representatives := [1],

schreierVector := [-1, 1, 1, 2, 1, 1, 1, 1, 2, 2])

gap> Digraph(Petersen);

<digraph with 10 vertices, 30 edges>

gap> Graph(last);

rec(adjacencies := [[3, 5, 8]], group := Group([(1,2,3,5,7)

(4,6,8,9,10), (2,4)(6,9)(7,10)]), isGraph := true,

names := [[1, 2], [2, 3], [3, 4], [1, 3], [4, 5],

[2, 4], [1, 5], [3, 5], [1, 4], [2, 5]],

order := 10, representatives := [1],

schreierVector := [-1, 1, 1, 2, 1, 1, 1, 1, 2, 2])

3.2.4 AsGraph

. AsGraph(digraph) (attribute)

Returns: A Grape package graph.

If digraph is a digraph, then this method returns the same as Graph (3.2.3), except that the result

will be stored as a mutable attribute of digraph .

If AsGraph(digraph) is called subsequently, then the same GAP object will be returned as

before.
Example

gap> d := Digraph([[1, 2], [3], []]);

<digraph with 3 vertices, 3 edges>

gap> g := AsGraph(d);

rec(adjacencies := [[1, 2], [3], []], group := Group(()),

isGraph := true, names := [1 .. 3], order := 3,

representatives := [1, 2, 3], schreierVector := [-1, -2, -3])

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 17

3.2.5 AsTransformation

. AsTransformation(digraph) (attribute)

Returns: A transformation, or fail

If digraph is a functional digraph, then AsTransformation returns the transforma-

tion which is de�ned by digraph . See IsFunctionalDigraph (6.1.7). Otherwise,

AsTransformation(digraph) returns fail.

If digraph is a functional digraph with n vertices, then AsTransformation(digraph) will

return the transformation f of degree at most n where for each 1� i� n, i ^ f is equal to the unique

out-neighbour of vertex i in digraph .
Example

gap> gr := Digraph([[1], [3], [2]]);

<digraph with 3 vertices, 3 edges>

gap> gr := CycleDigraph(3);

<digraph with 3 vertices, 3 edges>

gap> AsTransformation(gr);

Transformation([2, 3, 1])

gap> AsPermutation(last);

(1,2,3)

gap> gr := Digraph([[2, 3], [], []]);

<digraph with 3 vertices, 2 edges>

gap> AsTransformation(gr);

fail

3.3 New digraphs from old

3.3.1 DigraphCopy

. DigraphCopy(digraph) (operation)

Returns: A digraph.

This function returns a new copy of digraph , retaining none of the attributes or properties of

digraph .
Example

gap> gr := CycleDigraph(10);

<digraph with 10 vertices, 10 edges>

gap> DigraphCopy(gr) = gr;

true

3.3.2 InducedSubdigraph

. InducedSubdigraph(digraph, verts) (operation)

Returns: A digraph.

If digraph is a digraph, and verts is a subset of the vertices of digraph , then this operation

returns a digraph constructed from digraph by retaining precisely those vertices in verts , and those

edges whose source and range vertices are both contained in verts .

The vertices of the induced subdigraph are [1..Length(verts)] but the original vertex labels

can be accessed via DigraphVertexLabels (5.1.9).

Digraphs 18

Example
gap> gr := Digraph([[1, 1, 2, 3, 4, 4], [1, 3, 4], [3, 1], [1, 1]]);

<multidigraph with 4 vertices, 13 edges>

gap> InducedSubdigraph(gr, [1, 3, 4]);

<multidigraph with 3 vertices, 9 edges>

gap> DigraphVertices(last);

[1 .. 3]

3.3.3 ReducedDigraph

. ReducedDigraph(digraph) (attribute)

Returns: A digraph.

This function returns a digraph isomorphic to the subdigraph of digraph induced by the set of

non-isolated vertices, i.e. the set of those vertices of digraph which are the source or range of some

edge in digraph . See InducedSubdigraph (3.3.2).

The vertex and edge labels of the graph are preserved. A vertex in the new digraph can be matched

to the corresponding vertex in digraph by using the label.

The ordering of the vertices is preserved.
Example

gap> d := Digraph([[1, 2], [], [], [1, 4], []]);

<digraph with 5 vertices, 4 edges>

gap> r := ReducedDigraph(d);

<digraph with 3 vertices, 4 edges>

gap> OutNeighbours(r);

[[1, 2], [], [1, 3]]

gap> DigraphEdges(d);

[[1, 1], [1, 2], [4, 1], [4, 4]]

gap> DigraphEdges(r);

[[1, 1], [1, 2], [3, 1], [3, 3]]

gap> DigraphVertexLabel(r, 3);

4

gap> DigraphVertexLabel(r, 2);

2

3.3.4 MaximalSymmetricSubdigraph

. MaximalSymmetricSubdigraph(digraph) (attribute)

. MaximalSymmetricSubdigraphWithoutLoops(digraph) (attribute)

Returns: A digraph.

If digraph is a digraph, then MaximalSymmetricSubdigraph returns a symmetric digraph with-

out multiple edges which has the same vertex set as digraph , and whose edge list is formed from

digraph by ignoring the multiplicity of edges, and by ignoring edges [u,v] for which there does not

exist an edge [v,u].

The digraph returned by MaximalSymmetricSubdigraphWithoutLoops is the same, except that

loops are removed.

See IsSymmetricDigraph (6.1.10), IsMultiDigraph (6.1.8), and DigraphHasLoops (6.1.1)

for more information.
Example

gap> gr := Digraph([[2, 2], [1, 3], [4], [3, 1]]);

<multidigraph with 4 vertices, 7 edges>

Digraphs 19

gap> not IsSymmetricDigraph(gr) and IsMultiDigraph(gr);

true

gap> OutNeighbours(gr);

[[2, 2], [1, 3], [4], [3, 1]]

gap> sym := MaximalSymmetricSubdigraph(gr);

<digraph with 4 vertices, 4 edges>

gap> IsSymmetricDigraph(sym) and not IsMultiDigraph(sym);

true

gap> OutNeighbours(sym);

[[2], [1], [4], [3]]

3.3.5 UndirectedSpanningTree

. UndirectedSpanningTree(digraph) (attribute)

. UndirectedSpanningForest(digraph) (attribute)

Returns: A digraph, or fail.

If digraph is a digraph with at least one vertex, then UndirectedSpanningForest re-

turns an undirected spanning forest of digraph , otherwise this attribute returns fail. See

IsUndirectedSpanningForest (4.1.2) for the de�nition of an undirected spanning forest.

If digraph is a digraph with at least one vertex and whose MaximalSymmetricSubdigraph

(3.3.4) is connected (see IsConnectedDigraph (6.3.2)), then UndirectedSpanningTree re-

turns an undirected spanning tree of digraph , otherwise this attribute returns fail. See

IsUndirectedSpanningTree (4.1.2) for the de�nition of an undirected spanning tree.

Note that for a digraph that has an undirected spanning tree, the attribute

UndirectedSpanningTree returns the same digraph as the attribute UndirectedSpanningForest.
Example

gap> gr := Digraph([[1, 2, 1, 3], [1], [4], [3, 4, 3]]);

<multidigraph with 4 vertices, 9 edges>

gap> UndirectedSpanningTree(gr);

fail

gap> forest := UndirectedSpanningForest(gr);

<digraph with 4 vertices, 4 edges>

gap> OutNeighbours(forest);

[[2], [1], [4], [3]]

gap> IsUndirectedSpanningForest(gr, forest);

true

gap> DigraphConnectedComponents(forest).comps;

[[1, 2], [3, 4]]

gap> DigraphConnectedComponents(MaximalSymmetricSubdigraph(gr)).comps;

[[1, 2], [3, 4]]

gap> UndirectedSpanningForest(MaximalSymmetricSubdigraph(gr))

> = forest;

true

gap> gr := CompleteDigraph(4);

<digraph with 4 vertices, 12 edges>

gap> tree := UndirectedSpanningTree(gr);

<digraph with 4 vertices, 6 edges>

gap> IsUndirectedSpanningTree(gr, tree);

true

gap> tree = UndirectedSpanningForest(gr);

true

Digraphs 20

gap> UndirectedSpanningForest(EmptyDigraph(0));

fail

3.3.6 QuotientDigraph

. QuotientDigraph(digraph, p) (operation)

Returns: A digraph.

If digraph is a digraph, and p is a partition of the vertices of digraph , then this operation returns

a new digraph constructed by amalgamating all vertices of digraph which lie in the same part of p .

A partition of the vertices of digraph is a list of non-empty disjoint lists, such that the union of all

the sub-lists is equal to the vertex set of digraph . In particular, each vertex must appear in precisely

one sub-list.

The vertices of digraph in part i of p will become vertex i in the quotient, and every edge of

digraph with source in part i and range in part j becomes an edge from i to j in the quotient. In

particular, this means that the quotient of a digraph without multiple edges can have multiple edges.

Example
gap> gr := Digraph([[2, 1], [4], [1], [1, 3, 4]]);

<digraph with 4 vertices, 7 edges>

gap> DigraphVertices(gr);

[1 .. 4]

gap> DigraphEdges(gr);

[[1, 2], [1, 1], [2, 4], [3, 1], [4, 1], [4, 3],

[4, 4]]

gap> p := [[1], [2, 4], [3]];

[[1], [2, 4], [3]]

gap> qr := QuotientDigraph(gr, p);

<multidigraph with 3 vertices, 7 edges>

gap> DigraphVertices(qr);

[1 .. 3]

gap> DigraphEdges(qr);

[[1, 2], [1, 1], [2, 2], [2, 1], [2, 3], [2, 2],

[3, 1]]

gap> QuotientDigraph(EmptyDigraph(0), []);

<digraph with 0 vertices, 0 edges>

3.3.7 DigraphReverse

. DigraphReverse(digraph) (operation)

Returns: A digraph.

If digraph is a digraph, then this operation returns a digraph constructed from digraph by

reversing the orientation of every edge.
Example

gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);

<digraph with 5 vertices, 11 edges>

gap> DigraphReverse(gr);

<digraph with 5 vertices, 11 edges>

gap> OutNeighbours(last);

[[2, 3, 4], [4, 5], [1, 2, 5], [4], [2, 5]]

gap> gr := Digraph([[2, 4], [1], [4], [3, 4]]);

<digraph with 4 vertices, 6 edges>

Digraphs 21

gap> DigraphEdges(gr);

[[1, 2], [1, 4], [2, 1], [3, 4], [4, 3], [4, 4]]

gap> DigraphEdges(DigraphReverse(gr));

[[1, 2], [2, 1], [3, 4], [4, 1], [4, 3], [4, 4]]

3.3.8 DigraphDual

. DigraphDual(digraph) (attribute)

Returns: A digraph.

If digraph is a digraph without multiple edges, then this returns the dual of digraph . The dual

is sometimes called the complement.

The dual of digraph has the same vertices as digraph , and there is an edge in the dual from i

to j whenever there is no edge from i to j in digraph .
Example

gap> gr := Digraph([[2, 3], [], [4, 6], [5], [],

> [7, 8, 9], [], [], []]);

<digraph with 9 vertices, 8 edges>

gap> DigraphDual(gr);

<digraph with 9 vertices, 73 edges>

3.3.9 DigraphSymmetricClosure

. DigraphSymmetricClosure(digraph) (attribute)

Returns: A digraph.

If digraph is a digraph, then this attribute gives the minimal symmetric digraph which has the

same vertices and contains all the edges of digraph .

A digraph is symmetric if its adjacency matrix AdjacencyMatrix (5.2.1) is symmetric. For a

digraph with multiple edges this means that there are the same number of edges from a vertex u to a

vertex v as there are from v to u; see IsSymmetricDigraph (6.1.10).
Example

gap> gr := Digraph([[1, 2, 3], [2, 4], [1], [3, 4]]);

<digraph with 4 vertices, 8 edges>

gap> gr1 := DigraphSymmetricClosure(gr);

<digraph with 4 vertices, 11 edges>

gap> IsSymmetricDigraph(gr1);

true

gap> List(OutNeighbours(gr1), AsSet);

[[1, 2, 3], [1, 2, 4], [1, 4], [2, 3, 4]]

gap> gr := Digraph([[2, 2], [1]]);

<multidigraph with 2 vertices, 3 edges>

gap> gr1 := DigraphSymmetricClosure(gr);

<multidigraph with 2 vertices, 4 edges>

gap> OutNeighbours(gr1);

[[2, 2], [1, 1]]

3.3.10 DigraphRe�exiveTransitiveClosure

. DigraphReflexiveTransitiveClosure(digraph) (attribute)

. DigraphTransitiveClosure(digraph) (attribute)

Returns: A digraph.

Digraphs 22

If digraph is a digraph with no multiple edges, then these attributes return the (re�exive) transi-

tive closure of digraph .

A digraph is re�exive if it has a loop at every vertex, and it is transitive if whenever [i,j] and

[j,k] are edges of digraph , [i,k] is also an edge. The (re�exive) transitive closure of a digraph

digraph is the least (re�exive and) transitive digraph containing digraph .

Let n be the number of vertices of digraph , and let m be the number of edges. For an arbi-

trary digraph, these attributes will use a version of the Floyd-Warshall algorithm, with complexity

O(n3). However, for a topologically sortable digraph [see DigraphTopologicalSort (5.1.7)], these

attributes will use methods with complexity O(m+n+m �n) when this is faster.

Example
gap> gr := DigraphFromDiSparse6String(".H`eOWR`Ul^");

<digraph with 9 vertices, 8 edges>

gap> IsReflexiveDigraph(gr) or IsTransitiveDigraph(gr);

false

gap> OutNeighbours(gr);

[[4, 6], [1, 3], [], [5], [], [7, 8, 9], [], [],

[]]

gap> trans := DigraphTransitiveClosure(gr);

<digraph with 9 vertices, 18 edges>

gap> OutNeighbours(trans);

[[4, 5, 6, 7, 8, 9], [1, 3, 4, 5, 6, 7, 8, 9], [], [5],

[], [7, 8, 9], [], [], []]

gap> reflextrans := DigraphReflexiveTransitiveClosure(gr);

<digraph with 9 vertices, 27 edges>

gap> OutNeighbours(reflextrans);

[[1, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9], [3],

[4, 5], [5], [6, 7, 8, 9], [7], [8], [9]]

3.3.11 DigraphRe�exiveTransitiveReduction

. DigraphReflexiveTransitiveReduction(digraph) (operation)

. DigraphTransitiveReduction(digraph) (operation)

Returns: A digraph.

If digraph is a topologically sortable digraph [see DigraphTopologicalSort (5.1.7)] with no

multiple edges, then these operations return the (re�exive) transitive reduction of digraph .

The (re�exive) transitive reduction of such a digraph is the unique least subgraph such that the

(re�exive) transitive closure of the subgraph is equal to the (re�exive) transitive closure of digraph

[see DigraphReflexiveTransitiveClosure (3.3.10)]. In order words, it is the least subgraph of

digraph which retains the same reachability as digraph .

Let n be the number of vertices of an arbitrary digraph, and let m be the number of edges. Then

these operations use methods with complexity O(m+n+m �n).

Example
gap> gr := Digraph([[1, 2, 3], [3], [3]]);;

gap> DigraphHasLoops(gr);

true

gap> gr1 := DigraphReflexiveTransitiveReduction(gr);

<digraph with 3 vertices, 2 edges>

gap> DigraphHasLoops(gr1);

false

Digraphs 23

gap> OutNeighbours(gr1);

[[2], [3], []]

gap> gr2 := DigraphTransitiveReduction(gr);

<digraph with 3 vertices, 4 edges>

gap> DigraphHasLoops(gr2);

true

gap> OutNeighbours(gr2);

[[2, 1], [3], [3]]

gap> DigraphReflexiveTransitiveClosure(gr)

> = DigraphReflexiveTransitiveClosure(gr1);

true

gap> DigraphTransitiveClosure(gr)

> = DigraphTransitiveClosure(gr2);

true

3.3.12 DigraphAddVertex

. DigraphAddVertex(digraph[, label]) (operation)

Returns: A digraph.

The operation returns a new digraph constructed from digraph by adding a single new vertex.

If the optional second argument label is a GAP object, then the new vertex will be labelled

label .

Example
gap> gr := CompleteDigraph(3);

<digraph with 3 vertices, 6 edges>

gap> new := DigraphAddVertex(gr);

<digraph with 4 vertices, 6 edges>

gap> DigraphVertices(new);

[1 .. 4]

gap> new := DigraphAddVertex(gr, Group([(1, 2)]));

<digraph with 4 vertices, 6 edges>

gap> DigraphVertexLabels(new);

[1, 2, 3, Group([(1,2)])]

3.3.13 DigraphAddVertices

. DigraphAddVertices(digraph, m[, labels]) (operation)

Returns: A digraph.

For a non-negative integer m , this operation returns a new digraph constructed from digraph by

adding m new vertices.

If the optional third argument labels is a list of length m consisting of GAP objects, then the

new vertices will be labelled according to this list.

Example
gap> gr := CompleteDigraph(3);

<digraph with 3 vertices, 6 edges>

gap> new := DigraphAddVertices(gr, 3);

<digraph with 6 vertices, 6 edges>

gap> DigraphVertices(new);

[1 .. 6]

gap> new := DigraphAddVertices(gr, 2, [Group([(1, 2)]), "d"]);

Digraphs 24

<digraph with 5 vertices, 6 edges>

gap> DigraphVertexLabels(new);

[1, 2, 3, Group([(1,2)]), "d"]

gap> DigraphAddVertices(gr, 0) = gr;

true

3.3.14 DigraphAddEdge

. DigraphAddEdge(digraph, edge) (operation)

Returns: A digraph.

If edge is a pairs of vertices of digraph , then this operation returns a new digraph constructed

from digraph by adding a new edge with source edge[1] and range edge[2].

Example
gap> gr1 := Digraph([[2], [3], []]);

<digraph with 3 vertices, 2 edges>

gap> DigraphEdges(gr1);

[[1, 2], [2, 3]]

gap> gr2 := DigraphAddEdge(gr1, [3, 1]);

<digraph with 3 vertices, 3 edges>

gap> DigraphEdges(gr2);

[[1, 2], [2, 3], [3, 1]]

gap> gr3 := DigraphAddEdge(gr2, [2, 3]);

<multidigraph with 3 vertices, 4 edges>

gap> DigraphEdges(gr3);

[[1, 2], [2, 3], [2, 3], [3, 1]]

3.3.15 DigraphAddEdgeOrbit

. DigraphAddEdgeOrbit(digraph, edge) (operation)

Returns: A new digraph.

This operation returns a new digraph with the same vertices and edges as digraph and with

additional edges consisting of the orbit of the edge edge under the action of the DigraphGroup

(7.2.9) of digraph . If edge is already an edge in digraph , then digraph is returns unchanged.

An edge is simply a pair of vertices of digraph .
Example

gap> gr1 := CayleyDigraph(DihedralGroup(8));

<digraph with 8 vertices, 24 edges>

gap> gr2 := DigraphAddEdgeOrbit(gr1, [1, 8]);

<digraph with 8 vertices, 32 edges>

gap> DigraphEdges(gr1);

[[1, 2], [1, 3], [1, 4], [2, 1], [2, 8], [2, 6],

[3, 5], [3, 4], [3, 7], [4, 6], [4, 7], [4, 1],

[5, 3], [5, 2], [5, 8], [6, 4], [6, 5], [6, 2],

[7, 8], [7, 1], [7, 3], [8, 7], [8, 6], [8, 5]]

gap> DigraphEdges(gr2);

[[1, 2], [1, 3], [1, 4], [1, 8], [2, 1], [2, 8],

[2, 6], [2, 3], [3, 5], [3, 4], [3, 7], [3, 2],

[4, 6], [4, 7], [4, 1], [4, 5], [5, 3], [5, 2],

[5, 8], [5, 4], [6, 4], [6, 5], [6, 2], [6, 7],

[7, 8], [7, 1], [7, 3], [7, 6], [8, 7], [8, 6],

Digraphs 25

[8, 5], [8, 1]]

gap> gr3 := DigraphRemoveEdgeOrbit(gr2, [1, 8]);

<digraph with 8 vertices, 24 edges>

gap> gr3 = gr1;

true

3.3.16 DigraphAddEdges

. DigraphAddEdges(digraph, edges) (operation)

Returns: A digraph.

If edges is a (possibly empty) list of pairs of vertices of digraph , then this operation returns a

new digraph constructed from digraph by adding the edges speci�ed by edges . More precisely, for

every edge in edges , a new edge will be added with source edge[1] and range edges[2].

If an edge is included in edges with multiplicity k, then it will be added k times.

Example
gap> func := function(n)

> local source, range, i;

> source := [];

> range := [];

> for i in [1 .. n - 2] do

> Add(source, i);

> Add(range, i + 1);

> od;

> return Digraph(n, source, range);

> end;;

gap> gr := func(1024);

<digraph with 1024 vertices, 1022 edges>

gap> gr := DigraphAddEdges(gr,

> [[1023, 1024], [1, 1024], [1023, 1024], [1024, 1]]);

<multidigraph with 1024 vertices, 1026 edges>

3.3.17 DigraphRemoveVertex

. DigraphRemoveVertex(digraph, v) (operation)

Returns: A digraph.

If v is a vertex of digraph , then this operation returns a new digraph constructed from digraph

by removing vertex v , along with any edge whose source or range vertex is v .

If digraph has n vertices, then the vertices of the new digraph are [1..n-1], but the original

labels can be accessed via DigraphVertexLabels (5.1.9).

Example
gap> gr := Digraph(["a", "b", "c"],

> ["a", "a", "b", "c", "c"],

> ["b", "c", "a", "a", "c"]);

<digraph with 3 vertices, 5 edges>

gap> DigraphVertexLabels(gr);

["a", "b", "c"]

gap> DigraphEdges(gr);

[[1, 2], [1, 3], [2, 1], [3, 1], [3, 3]]

gap> new := DigraphRemoveVertex(gr, 2);

<digraph with 2 vertices, 3 edges>

Digraphs 26

gap> DigraphVertexLabels(new);

["a", "c"]

3.3.18 DigraphRemoveVertices

. DigraphRemoveVertices (digraph, verts) (operation)

Returns: A digraph.

If verts is a (possibly empty) duplicate-free list of vertices of digraph , then this operation

returns a new digraph constructed from digraph by removing every vertex in verts , along with any

edge whose source or range vertex is in verts .

If digraph has n vertices, then the vertices of the new digraph are [1 .. n-Length(verts)],

but the original labels can be accessed via DigraphVertexLabels (5.1.9).
Example

gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);

<digraph with 5 vertices, 11 edges>

gap> SetDigraphVertexLabels(gr, ["a", "b", "c", "d", "e"]);

gap> new := DigraphRemoveVertices(gr, [2, 4]);

<digraph with 3 vertices, 4 edges>

gap> DigraphVertexLabels(new);

["a", "c", "e"]

3.3.19 DigraphRemoveEdge

. DigraphRemoveEdge(digraph, edge) (operation)

Returns: A digraph.

If one of the following holds:

� digraph is a digraph with no multiple edges, and edge is a pair of vertices of digraph , or

� digraph is any digraph and edge is the index of an edge of digraph ,

then this operation returns a new digraph constructed from digraph by removing the edges speci�ed

by edges . If, in the �rst case, the pair of vertices edge does not specify an edge of digraph , then a

new copy of digraph will be returned.
Example

gap> gr := CycleDigraph(250000);

<digraph with 250000 vertices, 250000 edges>

gap> gr := DigraphRemoveEdge(gr, [250000, 1]);

<digraph with 250000 vertices, 249999 edges>

gap> gr := DigraphRemoveEdge(gr, 10);

<digraph with 250000 vertices, 249998 edges>

3.3.20 DigraphRemoveEdgeOrbit

. DigraphRemoveEdgeOrbit(digraph, edge) (operation)

Returns: A new digraph.

This operation returns a new digraph with the same vertices as digraph and with the orbit of the

edge edge (under the action of the DigraphGroup (7.2.9) of digraph) removed. If edge is not an

edge in digraph , then digraph is returned unchanged.

An edge is simply a pair of vertices of digraph .

Digraphs 27

Example
gap> gr1 := CayleyDigraph(DihedralGroup(8));

<digraph with 8 vertices, 24 edges>

gap> gr2 := DigraphAddEdgeOrbit(gr1, [1, 8]);

<digraph with 8 vertices, 32 edges>

gap> DigraphEdges(gr1);

[[1, 2], [1, 3], [1, 4], [2, 1], [2, 8], [2, 6],

[3, 5], [3, 4], [3, 7], [4, 6], [4, 7], [4, 1],

[5, 3], [5, 2], [5, 8], [6, 4], [6, 5], [6, 2],

[7, 8], [7, 1], [7, 3], [8, 7], [8, 6], [8, 5]]

gap> DigraphEdges(gr2);

[[1, 2], [1, 3], [1, 4], [1, 8], [2, 1], [2, 8],

[2, 6], [2, 3], [3, 5], [3, 4], [3, 7], [3, 2],

[4, 6], [4, 7], [4, 1], [4, 5], [5, 3], [5, 2],

[5, 8], [5, 4], [6, 4], [6, 5], [6, 2], [6, 7],

[7, 8], [7, 1], [7, 3], [7, 6], [8, 7], [8, 6],

[8, 5], [8, 1]]

gap> gr3 := DigraphRemoveEdgeOrbit(gr2, [1, 8]);

<digraph with 8 vertices, 24 edges>

gap> gr3 = gr1;

true

3.3.21 DigraphRemoveEdges

. DigraphRemoveEdges(digraph, edges) (operation)

Returns: A digraph.

If one of the following holds:

� digraph is a digraph with no multiple edges, and edges is a list of pairs of vertices of

digraph , or

� digraph is any digraph and edges is a list of indices of edges of digraph ,

then this operation returns a new digraph constructed from digraph by removing all of the edges

speci�ed by edges [see DigraphRemoveEdge (3.3.19)].

Example
gap> gr := CycleDigraph(250000);

<digraph with 250000 vertices, 250000 edges>

gap> gr := DigraphRemoveEdges(gr, [[250000, 1]]);

<digraph with 250000 vertices, 249999 edges>

gap> gr := DigraphRemoveEdges(gr, [10]);

<digraph with 250000 vertices, 249998 edges>

3.3.22 DigraphRemoveLoops

. DigraphRemoveLoops(digraph) (operation)

Returns: A digraph.

If digraph is a digraph, then this operation returns a new digraph constructed from digraph by

removing every loop. A loop is an edge with equal source and range.

Digraphs 28

Example
gap> gr := Digraph([[1, 2, 4], [1, 4], [3, 4], [1, 4, 5], [1, 5]]);

<digraph with 5 vertices, 12 edges>

gap> DigraphRemoveLoops(gr);

<digraph with 5 vertices, 8 edges>

3.3.23 DigraphRemoveAllMultipleEdges

. DigraphRemoveAllMultipleEdges(digraph) (operation)

Returns: A digraph.

If digraph is a digraph, then this operation returns a new digraph constructed from digraph by

removing all multiple edges. The result is the largest subdigraph of digraph which does not contain

multiple edges.

Example
gap> gr1 := Digraph([[1, 2, 3, 2], [1, 1, 3], [2, 2, 2]]);

<multidigraph with 3 vertices, 10 edges>

gap> gr2 := DigraphRemoveAllMultipleEdges(gr1);

<digraph with 3 vertices, 6 edges>

gap> OutNeighbours(gr2);

[[1, 2, 3], [1, 3], [2]]

3.3.24 DigraphReverseEdges

. DigraphReverseEdges(digraph, edges) (operation)

. DigraphReverseEdge(digraph, edge) (operation)

Returns: A digraph.

If digraph is a digraph without multiple edges, and edges is either:

� a list of pairs of vertices of digraph (the entries of each pair corresponding to the source and

the range of an edge, respectively),

� a list of positions of elements in the list DigraphEdges (5.1.3),

then DigraphReverseEdges returns a new digraph constructed from digraph by reversing

the orientation of every edge speci�ed by edges . If only one edge is to be reversed, then

DigraphReverseEdge can be used instead. In this case, the second argument should just be a single

vertex-pair or a single position.

Note that even though digraph cannot have multiple edges, the output may have multiple edges.

Example
gap> gr := DigraphFromDiSparse6String(".Tg?i@s?t_e?_qEsC");

<digraph with 21 vertices, 8 edges>

gap> DigraphEdges(gr);

[[1, 2], [1, 7], [1, 8], [5, 21], [7, 19], [9, 1],

[11, 2], [21, 1]]

gap> gr2 := DigraphReverseEdges(gr, [1, 2, 4]);

<digraph with 21 vertices, 8 edges>

gap> gr = DigraphReverseEdges(gr2, [[7, 1], [2, 1], [21, 5]]);

true

gap> gr2 := DigraphReverseEdge(gr, 5);

<digraph with 21 vertices, 8 edges>

Digraphs 29

gap> gr2 = DigraphReverseEdge(gr, [7, 19]);

true

3.3.25 DigraphDisjointUnion (for an arbitrary number of digraphs)

. DigraphDisjointUnion(gr1, gr2, ...) (function)

. DigraphDisjointUnion(list) (function)

Returns: A digraph.

In the �rst form, if gr1 , gr2 , etc. are digraphs, then DigraphDisjointUnion returns their dis-

joint union. In the second form, if list is a non-empty list of digraphs, then DigraphDisjointUnion

returns the disjoint union of the digraphs contained in the list.

For a disjoint union of digraphs, the vertex set is the disjoint union of the vertex sets, and the edge

list is the disjoint union of the edge lists.

More speci�cally, for a collection of digraphs gr1 , gr2 , ..., the disjoint union with have

DigraphNrVertices(gr1) + DigraphNrVertices(gr2) + ... vertices. The edges of gr1

will remain unchanged, whilst the edges of the ith digraph, gr[i], will be changed so that they

belong to the vertices of the disjoint union corresponding to gr[i]. In particular, the edges

of gr[i] will have their source and range increased by DigraphNrVertices(gr1) + ... +

DigraphNrVertices(gr[i-1]).

Note that previously set DigraphVertexLabels (5.1.9) will be lost.

Example
gap> gr1 := CycleDigraph(3);

<digraph with 3 vertices, 3 edges>

gap> OutNeighbours(gr1);

[[2], [3], [1]]

gap> gr2 := CompleteDigraph(3);

<digraph with 3 vertices, 6 edges>

gap> OutNeighbours(gr2);

[[2, 3], [1, 3], [1, 2]]

gap> union := DigraphDisjointUnion(gr1, gr2);

<digraph with 6 vertices, 9 edges>

gap> OutNeighbours(union);

[[2], [3], [1], [5, 6], [4, 6], [4, 5]]

3.3.26 DigraphEdgeUnion (for an arbitrary number of digraphs)

. DigraphEdgeUnion(gr1, gr2, ...) (function)

. DigraphEdgeUnion(list) (function)

Returns: A digraph.

In the �rst form, if gr1 , gr2 , etc. are digraphs, then DigraphEdgeUnion returns their edge union.

In the second form, if list is a non-empty list of digraphs, then DigraphEdgeUnion returns the edge

union of the digraphs contained in the list.

The vertex set of the edge union of a collection of digraphs is the union of the vertex sets, whilst

the edge list of the edge union is the concatenation of the edge lists. The number of vertices of the

edge union is equal to the maximum number of vertices of one of the digraphs, whilst the number of

edges of the edge union will equal the sum of the number of edges of each digraph.

Note that previously set DigraphVertexLabels (5.1.9) will be lost.

Digraphs 30

Example
gap> gr := CycleDigraph(10);

<digraph with 10 vertices, 10 edges>

gap> DigraphEdgeUnion(gr, gr);

<multidigraph with 10 vertices, 20 edges>

gap> gr1 := Digraph([[2], [1]]);

<digraph with 2 vertices, 2 edges>

gap> gr2 := Digraph([[2, 3], [2], [1]]);

<digraph with 3 vertices, 4 edges>

gap> union := DigraphEdgeUnion(gr1, gr2);

<multidigraph with 3 vertices, 6 edges>

gap> OutNeighbours(union);

[[2, 2, 3], [1, 2], [1]]

gap> union = DigraphByEdges(

> Concatenation(DigraphEdges(gr1), DigraphEdges(gr2)));

true

3.3.27 DigraphJoin (for an arbitrary number of digraphs)

. DigraphJoin(gr1, gr2, ...) (function)

. DigraphJoin(list) (function)

Returns: A digraph.

In the �rst form, if gr1 , gr2 , etc. are digraphs, then DigraphJoin returns their join. In the

second form, if list is a non-empty list of digraphs, then DigraphJoin returns the join of the

digraphs contained in the list.

The join of a collection of digraphs gr1 , gr2 , ... is formed by �rst taking the

DigraphDisjointUnion (3.3.25) of the collection. In the disjoint union, if i 6= j then there are

no edges between vertices corresponding to digraphs gr[i] and gr[j] in the collection; the join is

created by including all such edges.

For example, the join of two empty digraphs is a complete bipartite digraph.

Note that previously set DigraphVertexLabels (5.1.9) will be lost.

Example
gap> gr := CompleteDigraph(3);

<digraph with 3 vertices, 6 edges>

gap> IsCompleteDigraph(DigraphJoin(gr, gr));

true

gap> gr2 := CycleDigraph(3);

<digraph with 3 vertices, 3 edges>

gap> DigraphJoin(gr, gr2);

<digraph with 6 vertices, 27 edges>

3.3.28 LineDigraph

. LineDigraph(digraph) (operation)

. EdgeDigraph(digraph) (operation)

Returns: A digraph.

Given a digraph digraph , the operation returns the digraph obtained by associating a vertex with

each edge of digraph , and creating an edge from a vertex v to a vertex u if and only if the terminal

vertex of the edge associated with v is the start vertex of the edge associated with u.

Digraphs 31

Example
gap> LineDigraph(CompleteDigraph(3));

<digraph with 6 vertices, 12 edges>

gap> LineDigraph(ChainDigraph(3));

<digraph with 2 vertices, 1 edge>

3.3.29 LineUndirectedDigraph

. LineUndirectedDigraph(digraph) (operation)

. EdgeUndirectedDigraph(digraph) (operation)

Returns: A digraph.

Given a symmetric digraph digraph , the operation returns the symmetric digraph obtained by

associating a vertex with each edge of digraph , ignoring directions and multiplicites, and adding an

edge between two vertices if and only if the corresponding edges have a vertex in common.

Example
gap> LineUndirectedDigraph(CompleteDigraph(3));

<digraph with 3 vertices, 6 edges>

gap> LineUndirectedDigraph(DigraphSymmetricClosure(ChainDigraph(3)));

<digraph with 2 vertices, 2 edges>

3.3.30 DoubleDigraph

. DoubleDigraph(digraph) (operation)

Returns: A digraph.

Let digraph be a digraph with vertex set V. This function returns the double digraph of digraph .

The vertex set of the double digraph is the orginal vertex set together with a duplicate. The edges are

[u_1, v_2] and [u_2, v_1] if and only if [u, v] is an edge in digraph , together with the original

edges and their duplicates.

Example
gap> gamma := Digraph([[2], [3], [1]]);

<digraph with 3 vertices, 3 edges>

gap> DoubleDigraph(gamma);

<digraph with 6 vertices, 12 edges>

3.3.31 BipartiteDoubleDigraph

. BipartiteDoubleDigraph(digraph) (operation)

Returns: A digraph.

Let digraph be a digraph with vertex set V. This function returns the bipartite double digraph of

digraph . The vertex set of the double digraph is the orginal vertex set together with a duplicate. The

edges are [u_1, v_2] and [u_2, v_1] if and only if [u, v] is an edge in digraph . The resulting

graph is bipartite, since the orignal edges are not included in the resulting digraph.

Example
gap> gamma := Digraph([[2], [3], [1]]);

<digraph with 3 vertices, 3 edges>

gap> BipartiteDoubleDigraph(gamma);

<digraph with 6 vertices, 6 edges>

Digraphs 32

3.3.32 DigraphAddAllLoops

. DigraphAddAllLoops(digraph) (operation)

Returns: A digraph.

For a digraph digraph this operation return a copy of digraph such that a loop is added for

every vertex which did not have a loop in digraph .
Example

gap> gr := EmptyDigraph(13);

<digraph with 13 vertices, 0 edges>

gap> gr := DigraphAddAllLoops(gr);

<digraph with 13 vertices, 13 edges>

gap> OutNeighbours(gr);

[[1], [2], [3], [4], [5], [6], [7], [8], [9],

[10], [11], [12], [13]]

gap> gr := Digraph([[1, 2, 3], [1, 3], [1]]);

<digraph with 3 vertices, 6 edges>

gap> gr := DigraphAddAllLoops(gr);

<digraph with 3 vertices, 8 edges>

gap> OutNeighbours(gr);

[[1, 2, 3], [1, 3, 2], [1, 3]]

3.3.33 DistanceDigraph (for digraph and int)

. DistanceDigraph(digraph, i) (operation)

. DistanceDigraph(digraph, list) (operation)

Returns: A digraph.

The �rst argument is a digraph, the second argument is a non-negative integer or a list of positive

integers. This operation returns a digraph on the same set of vertices as digraph , with two vertices

being adjacent if and only if the distance between them in digraph equals i or is a number in list .

See DigraphShortestDistance (5.3.2).

Example
gap> digraph := DigraphFromSparse6String(

> ":]n?AL`BC_DEbEF`GIaGHdIJeGKcKL_@McDHfILaBJfHMjKM");

<digraph with 30 vertices, 90 edges>

gap> DistanceDigraph(digraph, 1);

<digraph with 30 vertices, 90 edges>

gap> DistanceDigraph(digraph, [1, 2]);

<digraph with 30 vertices, 270 edges>

3.3.34 DigraphClosure (for a digraph and positive integer)

. DigraphClosure(digraph, k) (operation)

Returns: A digraph

Given a symmetric loopless digraph with no multiple edges digraph , the k-closure of digraph is

de�ned to be the unique smallest symmetric loopless digraph C with no multiple edges on the vertices

of digraph that contains all the edges of digraph and satsi�es the property that the sum of the

degrees of every two non-adjacenct vertices in C is less than k . See IsSymmetricDigraph (6.1.10),

DigraphHasLoops (6.1.1), IsMultiDigraph (6.1.8), and OutDegreeOfVertex (5.2.9).

The operation DigraphClosure returns the k -closure of digraph .

Digraphs 33

Example
gap> gr := CompleteDigraph(6);;

gap> DigraphRemoveEdges(gr, [[1, 2], [2, 1]]);;

gap> closure := DigraphClosure(gr, 6);

<digraph with 6 vertices, 30 edges>

gap> IsCompleteDigraph(closure);

true

3.4 Random digraphs

3.4.1 RandomDigraph

. RandomDigraph(n[, p]) (operation)

Returns: A digraph.

If n is a positive integer, then this function returns a random digraph with n vertices and without

multiple edges. The result may or may not have loops.

If the optional second argument p is a �oat with value 0� p � 1, then an edge will exist between

each pair of vertices with probability approximately p . If p is not speci�ed, then a random probability

will be assumed (chosen with uniform probability).

Example
gap> RandomDigraph(1000);

<digraph with 1000 vertices, 364444 edges>

gap> RandomDigraph(10000, 0.023);

<digraph with 10000 vertices, 2300438 edges>

3.4.2 RandomMultiDigraph

. RandomMultiDigraph(n[, m]) (operation)

Returns: A digraph.

If n is a positive integer, then this function returns a random digraph with n vertices. If the optional

second argument m is a positive integer, then the digraph will have m edges. If m is not speci�ed, then

the number of edges will be chosen randomly (with uniform probability) from the range [1 ..
�
n

2

�
].

The method used by this function chooses each edge from the set of all possible edges with

uniform probability. No effort is made to avoid creating multiple edges, so it is possible (but not

guaranteed) that the result will have multiple edges. The result may or may not have loops.

Example
gap> RandomMultiDigraph(1000);

<multidigraph with 1000 vertices, 216659 edges>

gap> RandomMultiDigraph(1000, 950);

<multidigraph with 1000 vertices, 950 edges>

3.4.3 RandomTournament

. RandomTournament(n) (operation)

Returns: A digraph.

If n is a non-negative integer, this function returns a random tournament with n vertices. See

IsTournament (6.1.11).

Digraphs 34

Example
gap> RandomTournament(10);

<digraph with 10 vertices, 45 edges>

3.5 Standard examples

3.5.1 ChainDigraph

. ChainDigraph(n) (operation)

Returns: A digraph.

If n is a positive integer, this function returns a chain with n vertices and n - 1 edges. Speci�-

cally, for each vertex i (with i < n), there is a directed edge with source i and range i + 1.

The DigraphReflexiveTransitiveClosure (3.3.10) of a chain represents a total order.
Example

gap> ChainDigraph(42);

<digraph with 42 vertices, 41 edges>

3.5.2 CompleteDigraph

. CompleteDigraph(n) (operation)

Returns: A digraph.

If n is a non-negative integer, this function returns the complete digraph with n vertices. See

IsCompleteDigraph (6.1.5).
Example

gap> CompleteDigraph(20);

<digraph with 20 vertices, 380 edges>

3.5.3 CompleteBipartiteDigraph

. CompleteBipartiteDigraph(m, n) (operation)

Returns: A digraph.

A complete bipartite digraph is a digraph whose vertices can be partitioned into two non-empty

vertex sets, such there exists a unique edge with source i and range j if and only if i and j lie in

different vertex sets.

If m and n are positive integers, this function returns the complete bipartite digraph with vertex

sets of sizes m (containing the vertices [1 .. m]) and n (containing the vertices [m + 1 .. m +

n]).
Example

gap> CompleteBipartiteDigraph(2, 3);

<digraph with 5 vertices, 12 edges>

3.5.4 CompleteMultipartiteDigraph

. CompleteMultipartiteDigraph(orders) (operation)

Returns: A digraph.

For a list orders of n positive integers, this function returns the digraph containing n independent

sets of vertices of orders [l[1] .. l[n]]. Moreover, each vertex is adjacent to every other not

contained in the same independent set.

Digraphs 35

Example
gap> CompleteMultipartiteDigraph([5, 4, 2]);

<digraph with 11 vertices, 76 edges>

3.5.5 CycleDigraph

. CycleDigraph(n) (operation)

Returns: A digraph.

If n is a positive integer, this function returns a cycle digraph with n vertices and n edges. Specif-

ically, for each vertex i (with i < n), there is a directed edge with source i and range i + 1. In

addition, there is an edge with source n and range 1.

Example
gap> CycleDigraph(1);

<digraph with 1 vertex, 1 edge>

gap> CycleDigraph(123);

<digraph with 123 vertices, 123 edges>

3.5.6 EmptyDigraph

. EmptyDigraph(n) (operation)

. NullDigraph(n) (operation)

Returns: A digraph.

If n is a non-negative integer, this function returns the empty or null digraph with n vertices. An

empty digraph is one with no edges.

NullDigraph is a synonym for EmptyDigraph.
Example

gap> EmptyDigraph(20);

<digraph with 20 vertices, 0 edges>

gap> NullDigraph(10);

<digraph with 10 vertices, 0 edges>

3.5.7 JohnsonDigraph

. JohnsonDigraph(n, k) (operation)

Returns: A digraph.

If n and k are non-negative integers, then this operation returns a symmetric digraph which cor-

responds to the undirected Johnson graph J(n;k).
The Johnson graph J(n;k) has vertices given by all the k -subsets of the range [1 .. k], and

two vertices are connected by an edge iff their intersection has size k �1.
Example

gap> gr := JohnsonDigraph(3, 1);

<digraph with 3 vertices, 6 edges>

gap> OutNeighbours(gr);

[[2, 3], [1, 3], [1, 2]]

gap> gr := JohnsonDigraph(4, 2);

<digraph with 6 vertices, 24 edges>

gap> OutNeighbours(gr);

[[2, 3, 4, 5], [1, 3, 4, 6], [1, 2, 5, 6], [1, 2, 5, 6],

[1, 3, 4, 6], [2, 3, 4, 5]]

Digraphs 36

gap> JohnsonDigraph(1, 0);

<digraph with 1 vertex, 0 edges>

Chapter 4

Operators

4.1 Operators for digraphs

digraph1 = digraph2

returns true if digraph1 and digraph2 have the same vertices, and

DigraphEdges(digraph1) = DigraphEdges(digraph2), up to some re-ordering of

the edge lists.

Note that this operator does not compare the vertex labels of digraph1 and digraph2 .

digraph1 < digraph2

This operator returns true if one of the following holds:

� The number n1 of vertices in digraph1 is less than the number n2 of vertices in

digraph2 ;

� n1 = n2, and the number m1 of edges in digraph1 is less than the number m2 of edges in

digraph2 ;

� n1 = n2, m1 = m2, and DigraphEdges(digraph1) is less than

DigraphEdges(digraph2) after having both of these sets have been sorted with

respect to the lexicographical order.

4.1.1 IsSubdigraph

. IsSubdigraph(super, sub) (operation)

Returns: true or false.

If super and sub are digraphs, then this operation returns true if sub is a subdigraph of super ,

and false if it is not.

A digraph sub is a subdigraph of a digraph super if sub and super share the same number of

vertices, and the collection of edges of super (including repeats) contains the collection of edges of

sub (including repeats).

In other words, sub is a subdigraph of super if and only if DigraphNrVertices(sub) =

DigraphNrVertices(super), and for each pair of vertices i and j, there are at least as many edges

of the form [i, j] in super as there are in sub .

Example
gap> g := Digraph([[2, 3], [1], [2, 3]]);

<digraph with 3 vertices, 5 edges>

37

Digraphs 38

gap> h := Digraph([[2, 3], [], [2]]);

<digraph with 3 vertices, 3 edges>

gap> IsSubdigraph(g, h);

true

gap> IsSubdigraph(h, g);

false

gap> IsSubdigraph(CompleteDigraph(4), CycleDigraph(4));

true

gap> IsSubdigraph(CycleDigraph(4), ChainDigraph(4));

true

gap> g := Digraph([[2, 2], [1]]);

<multidigraph with 2 vertices, 3 edges>

gap> h := Digraph([[2], [1]]);

<digraph with 2 vertices, 2 edges>

gap> IsSubdigraph(g, h);

true

gap> IsSubdigraph(h, g);

false

4.1.2 IsUndirectedSpanningTree

. IsUndirectedSpanningTree(super, sub) (operation)

. IsUndirectedSpanningForest(super, sub) (operation)

Returns: true or false.

The operation IsUndirectedSpanningTree returns true if the digraph sub is an undirected

spanning tree of the digraph super , and the operation IsUndirectedSpanningForest returns true

if the digraph sub is an undirected spanning forest of the digraph super .

An undirected spanning tree of a digraph super is a subdigraph of super that is an undi-

rected tree (see IsSubdigraph (4.1.1) and IsUndirectedTree (6.3.7)). Note that a digraph whose

MaximalSymmetricSubdigraph (3.3.4) is not connected has no undirected spanning trees (see

IsConnectedDigraph (6.3.2)).

An undirected spanning forest of a digraph super is a subdigraph of super that is an undirected

forest (see IsSubdigraph (4.1.1) and IsUndirectedForest (6.3.7)), and is not contained in any

larger such subdigraph of super . Equivalently, an undirected spanning forest is a subdigraph of

super whose connected components coincide with those of the MaximalSymmetricSubdigraph

(3.3.4) of super (see DigraphConnectedComponents (5.3.8)).

Note that an undirected spanning tree is an undirected spanning forest that is connected.

Example
gap> gr := CompleteDigraph(4);

<digraph with 4 vertices, 12 edges>

gap> tree := Digraph([[3], [4], [1, 4], [2, 3]]);

<digraph with 4 vertices, 6 edges>

gap> IsSubdigraph(gr, tree) and IsUndirectedTree(tree);

true

gap> IsUndirectedSpanningTree(gr, tree);

true

gap> forest := EmptyDigraph(4);

<digraph with 4 vertices, 0 edges>

gap> IsSubdigraph(gr, forest) and IsUndirectedForest(forest);

true

Digraphs 39

gap> IsUndirectedSpanningForest(gr, forest);

false

gap> IsSubdigraph(tree, forest);

true

gap> gr := DigraphDisjointUnion(CycleDigraph(2), CycleDigraph(2));

<digraph with 4 vertices, 4 edges>

gap> IsUndirectedTree(gr);

false

gap> IsUndirectedForest(gr) and IsUndirectedSpanningForest(gr, gr);

true

Chapter 5

Attributes and operations

5.1 Vertices and edges

5.1.1 DigraphVertices

. DigraphVertices(digraph) (attribute)

Returns: A list of integers.

Returns the vertices of the digraph digraph .

Note that the vertices of a digraph are always a range of positive integers from 1 to the number of

vertices of the graph.

Example
gap> gr := Digraph(["a", "b", "c"],

> ["a", "b", "b"],

> ["b", "c", "a"]);

<digraph with 3 vertices, 3 edges>

gap> DigraphVertices(gr);

[1 .. 3]

gap> gr := Digraph([1, 2, 3, 4, 5, 7],

> [1, 2, 2, 4, 4],

> [2, 7, 5, 3, 7]);

<digraph with 6 vertices, 5 edges>

gap> DigraphVertices(gr);

[1 .. 6]

gap> DigraphVertices(RandomDigraph(100));

[1 .. 100]

5.1.2 DigraphNrVertices

. DigraphNrVertices(digraph) (attribute)

Returns: An integer.

Returns the number of vertices of the digraph digraph .

Example
gap> gr := Digraph(["a", "b", "c"],

> ["a", "b", "b"],

> ["b", "c", "a"]);

<digraph with 3 vertices, 3 edges>

gap> DigraphNrVertices(gr);

40

Digraphs 41

3

gap> gr := Digraph([1, 2, 3, 4, 5, 7],

> [1, 2, 2, 4, 4],

> [2, 7, 5, 3, 7]);

<digraph with 6 vertices, 5 edges>

gap> DigraphNrVertices(gr);

6

gap> DigraphNrVertices(RandomDigraph(100));

100

5.1.3 DigraphEdges

. DigraphEdges(digraph) (attribute)

Returns: A list of lists.

DigraphEdges returns a list of edges of the digraph digraph , where each edge is a pair of

elements of DigraphVertices (5.1.1) of the form [source,range].

The entries of DigraphEdges(digraph) are in one-to-one corresponence with the edges of

digraph . Hence DigraphEdges(digraph) is duplicate-free if and only if digraph contains no

multiple edges.

The entries of DigraphEdges are guaranteed to be sorted by their �rst component (i.e. by the

source of each edge), but they are not necessarily then sorted by the second component.

Example
gap> gr := DigraphFromDiSparse6String(".DaXbOe?EAM@G~");

<multidigraph with 5 vertices, 16 edges>

gap> edges := ShallowCopy(DigraphEdges(gr));; Sort(edges);

gap> edges;

[[1, 1], [1, 3], [1, 3], [1, 4], [1, 5], [2, 1],

[2, 2], [2, 3], [2, 5], [3, 2], [3, 4], [3, 5],

[4, 2], [4, 4], [4, 5], [5, 1]]

5.1.4 DigraphNrEdges

. DigraphNrEdges(digraph) (attribute)

Returns: An integer.

This function returns the number of edges of the digraph digraph .
Example

gap> gr := Digraph([

> [1, 3, 4, 5], [1, 2, 3, 5], [2, 4, 5], [2, 4, 5], [1]]);;

gap> DigraphNrEdges(gr);

15

gap> gr := Digraph(["a", "b", "c"],

> ["a", "b", "b"],

> ["b", "a", "a"]);

<multidigraph with 3 vertices, 3 edges>

gap> DigraphNrEdges(gr);

3

Digraphs 42

5.1.5 DigraphSinks

. DigraphSinks(digraph) (attribute)

Returns: A list of vertices.

This function returns a list of the sinks of the digraph digraph . A sink of a digraph is a vertex

with out-degree zero. See OutDegreeOfVertex (5.2.9).
Example

gap> gr := Digraph([[3, 5, 2, 2], [3], [], [5, 2, 5, 3], []]);

<multidigraph with 5 vertices, 9 edges>

gap> DigraphSinks(gr);

[3, 5]

5.1.6 DigraphSources

. DigraphSources(digraph) (attribute)

Returns: A list of vertices.

This function returns a list of the sources of the digraph digraph . A source of a digraph is a

vertex with in-degree zero. See InDegreeOfVertex (5.2.11).
Example

gap> gr := Digraph([[3, 5, 2, 2], [3], [], [5, 2, 5, 3], []]);

<multidigraph with 5 vertices, 9 edges>

gap> DigraphSources(gr);

[1, 4]

5.1.7 DigraphTopologicalSort

. DigraphTopologicalSort(digraph) (attribute)

Returns: A list of positive integers, or fail.

If digraph is a digraph whose only directed cycles are loops, then DigraphTopologicalSort

returns the vertices of digraph ordered so that every edge's source appears no earlier in the list than

its range. If the digraph digraph contains directed cycles of length greater than 1, then this operation

returns fail.

See section 1.1.1 for the de�nition of a directed cycle, and the de�nition of a loop.

The method used for this attribute has complexity O(m+ n) where m is the number of edges

(counting multiple edges as one) and n is the number of vertices in the digraph.

Example
gap> gr := Digraph([

> [2, 3], [], [4, 6], [5], [], [7, 8, 9], [], [], []]);

<digraph with 9 vertices, 8 edges>

gap> DigraphTopologicalSort(gr);

[2, 5, 4, 7, 8, 9, 6, 3, 1]

5.1.8 DigraphVertexLabel

. DigraphVertexLabel(digraph, i) (operation)

. SetDigraphVertexLabel(digraph, i, obj) (operation)

If digraph is a digraph, then the �rst operation returns the label of the vertex i . The second

operation can be used to set the label of the vertex i in digraph to the arbitrary GAP object obj .

Digraphs 43

The label of a vertex can be changed an arbitrary number of times. If no label has been set for the

vertex i , then the default value is i .

If digraph is a digraph created from a record with a component vertices, then the labels of the

vertices are set to the value of this component.

Induced subdigraphs, and other operations which create new digraphs from old ones, inherit their

labels from their parents.

Example
gap> gr := DigraphFromDigraph6String("+D[NGc_");

<digraph with 5 vertices, 11 edges>

gap> DigraphVertexLabel(gr, 3);

3

gap> gr := Digraph(["a", "b", "c"], [], []);

<digraph with 3 vertices, 0 edges>

gap> DigraphVertexLabel(gr, 2);

"b"

gap> SetDigraphVertexLabel(gr, 2, "d");

gap> DigraphVertexLabel(gr, 2);

"d"

gap> gr := InducedSubdigraph(gr, [1, 2]);

<digraph with 2 vertices, 0 edges>

gap> DigraphVertexLabel(gr, 2);

"d"

5.1.9 DigraphVertexLabels

. DigraphVertexLabels(digraph) (operation)

. SetDigraphVertexLabels(digraph, list) (operation)

If digraph is a digraph, then DigraphVertexLabels returns a copy of the labels of the vertices

in digraph . SetDigraphVertexLabels can be used to set the labels of the vertices in digraph to

the list of arbitrary GAP objects list .

The label of a vertex can be changed an arbitrary number of times. If no label has been set for the

vertex i , then the default value is i .

If digraph is a digraph created from a record with a component vertices, then the labels of the

vertices are set to the value of this component.

Induced subdigraphs, and other operations which create new digraphs from old ones, inherit their

labels from their parents.

Example
gap> gr := DigraphFromDigraph6String("+D[NGc_");

<digraph with 5 vertices, 11 edges>

gap> DigraphVertexLabels(gr);

[1 .. 5]

gap> gr := Digraph(["a", "b", "c"], [], []);

<digraph with 3 vertices, 0 edges>

gap> DigraphVertexLabels(gr);

["a", "b", "c"]

gap> SetDigraphVertexLabel(gr, 2, "d");

gap> DigraphVertexLabels(gr);

["a", "d", "c"]

gap> gr := InducedSubdigraph(gr, [1, 3]);

Digraphs 44

<digraph with 2 vertices, 0 edges>

gap> DigraphVertexLabels(gr);

["a", "c"]

5.1.10 DigraphEdgeLabel

. DigraphEdgeLabel(digraph, i, j) (operation)

. SetDigraphEdgeLabel(digraph, i, j, obj) (operation)

If digraph is a digraph without multiple edges, then the �rst operation returns the label of the

edge from vertex i to vertex j . The second operation can be used to set the label of the edge between

vertex i and vertex j to the arbitrary GAP object obj .

The label of an edge can be changed an arbitrary number of times. If no label has been set for the

edge, then the default value is 1 .

Induced subdigraphs, and some other operations which create new digraphs from old ones, inherit

their edge labels from their parents. See also DigraphEdgeLabels (5.1.11).

Example
gap> gr := DigraphFromDigraph6String("+D[NGc_");

<digraph with 5 vertices, 11 edges>

gap> DigraphEdgeLabel(gr, 3, 1);

1

gap> SetDigraphEdgeLabel(gr, 2, 5, [42]);

gap> DigraphEdgeLabel(gr, 2, 5);

[42]

gap> gr := InducedSubdigraph(gr, [2, 5]);

<digraph with 2 vertices, 3 edges>

gap> DigraphEdgeLabel(gr, 1, 2);

[42]

5.1.11 DigraphEdgeLabels

. DigraphEdgeLabels(digraph) (operation)

. SetDigraphEdgeLabels(digraph, labels) (operation)

. SetDigraphEdgeLabels(digraph, func) (operation)

If digraph is a digraph without multiple edges, then DigraphEdgeLabels returns a copy of

the labels of the edges in digraph as a list of lists labels such that labels[i][j] is the label

on the edge from vertex i to vertex OutNeighbours(digraph)[i][j]. SetDigraphEdgeLabels

can be used to set the labels of the edges in digraph without multiple edges to the list labels

of lists of arbitrary GAP objects such that list[i][j] is the label on the edge from vertex i to

the vertex OutNeighbours(digraph>[i][j]. Alternatively SetDigraphEdgeLabels can be called

with binary function func that as its second argument that when passed two vertices i and j returns

the label for the edge between vertex i and vertex j.

The label of an edge can be changed an arbitrary number of times. If no label has been set for an

edge, then the default value is 1.

Induced subdigraphs, and some other operations which create new digraphs from old ones, inherit

their labels from their parents.

Digraphs 45

Example
gap> gr := DigraphFromDigraph6String("+D[NGc_");

<digraph with 5 vertices, 11 edges>

gap> DigraphEdgeLabels(gr);

[[1], [1, 1, 1], [1], [1, 1, 1], [1, 1, 1]]

gap> SetDigraphEdgeLabel(gr, 2, 1, "d");

gap> DigraphEdgeLabels(gr);

[[1], ["d", 1, 1], [1], [1, 1, 1], [1, 1, 1]]

gap> gr := InducedSubdigraph(gr, [1, 2, 3]);

<digraph with 3 vertices, 4 edges>

gap> DigraphEdgeLabels(gr);

[[1], ["d", 1], [1]]

gap> OutNeighbours(gr);

[[3], [1, 3], [1]]

5.1.12 DigraphInEdges

. DigraphInEdges(digraph, vertex) (operation)

Returns: A list of edges.

DigraphInEdges returns the list of all edges of digraph which have vertex as their range.

Example
gap> gr := Digraph([[2, 2], [3, 3], [4, 4], [1, 1]]);

<multidigraph with 4 vertices, 8 edges>

gap> DigraphInEdges(gr, 2);

[[1, 2], [1, 2]]

5.1.13 DigraphOutEdges

. DigraphOutEdges(digraph, vertex) (operation)

Returns: A list of edges.

DigraphOutEdges returns the list of all edges of digraph which have vertex as their source.

Example
gap> gr := Digraph([[2, 2], [3, 3], [4, 4], [1, 1]]);

<multidigraph with 4 vertices, 8 edges>

gap> DigraphOutEdges(gr, 2);

[[2, 3], [2, 3]]

5.1.14 IsDigraphEdge (for digraph and list)

. IsDigraphEdge(digraph, list) (operation)

. IsDigraphEdge(digraph, u, v) (operation)

Returns: true or false.

In the �rst form, this function returns true if and only if the list list speci�es an edge in the

digraph digraph . Speci�cally, this operation returns true if list is a pair of positive integers where

list[1] is the source and list[2] is the range of an edge in digraph , and false otherwise.

The second form simply returns true if [u, v] is an edge in digraph , and false otherwise.

Example
gap> gr := Digraph([[2, 2], [6], [], [3], [], [1]]);

<multidigraph with 6 vertices, 5 edges>

Digraphs 46

gap> IsDigraphEdge(gr, [1, 1]);

false

gap> IsDigraphEdge(gr, [1, 2]);

true

gap> IsDigraphEdge(gr, [1, 8]);

false

5.1.15 IsMatching

. IsMatching(digraph, list) (operation)

. IsMaximalMatching(digraph, list) (operation)

. IsPerfectMatching(digraph, list) (operation)

Returns: true or false.

If digraph is a digraph and list is a list of pairs of vertices of digraph , then IsMatching

returns true if list is a matching of digraph . The operations IsMaximalMatching and

IsPerfectMatching return true if list is a maximal, or perfect, matching of digraph , respec-

tively. Otherwise, these operations return false.

A matching M of a digraph digraph is a subset of the edges of digraph , i.e.

DigraphEdges(digraph), such that no pair of distinct edges in M are incident to the same vertex

of digraph . Note that this de�nition allows a matching to contain loops. See DigraphHasLoops

(6.1.1). The matching M is maximal if it is contained in no larger matching of the digraph, and is

perfect if every vertex of the digraph is incident to an edge in the matching. Every perfect matching

is maximal.
Example

gap> gr := Digraph([[2], [1], [2, 3, 4], [3, 5], [1]]);

<digraph with 5 vertices, 8 edges>

gap> IsMatching(gr, [[2, 1], [3, 2]]);

false

gap> edges := [[3, 2]];;

gap> IsMatching(gr, edges);

true

gap> IsMaximalMatching(gr, edges);

false

gap> edges := [[5, 1], [3, 3]];;

gap> IsMaximalMatching(gr, edges);

true

gap> IsPerfectMatching(gr, edges);

false

gap> edges := [[1, 2], [3, 3], [4, 5]];;

gap> IsPerfectMatching(gr, edges);

true

5.2 Neighbours and degree

5.2.1 AdjacencyMatrix

. AdjacencyMatrix(digraph) (attribute)

. AdjacencyMatrixMutableCopy(digraph) (operation)

Returns: A square matrix of non-negative integers.

Digraphs 47

This function returns the adjacency matrix mat of the digraph digraph . The value of the matrix

entry mat[i][j] is the number of edges in digraph with source i and range j. If digraph has no

vertices, then the empty list is returned.

The function AdjacencyMatrix returns an immutable list of immutable lists, whereas the func-

tion AdjacencyMatrixMutableCopy returns a copy of AdjacencyMatrix that is a mutable list of

mutable lists.

Example
gap> gr := Digraph([

> [2, 2, 2], [1, 3, 6, 8, 9, 10], [4, 6, 8],

> [1, 2, 3, 9], [3, 3], [3, 5, 6, 10], [1, 2, 7],

> [1, 2, 3, 10, 5, 6, 10], [1, 3, 4, 5, 8, 10],

> [2, 3, 4, 6, 7, 10]]);

<multidigraph with 10 vertices, 44 edges>

gap> mat := AdjacencyMatrix(gr);;

gap> Display(mat);

[[0, 3, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 1, 0, 0, 1, 0, 1, 1, 1],

[0, 0, 0, 1, 0, 1, 0, 1, 0, 0],

[1, 1, 1, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 2, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 1, 1, 0, 0, 0, 1],

[1, 1, 0, 0, 0, 0, 1, 0, 0, 0],

[1, 1, 1, 0, 1, 1, 0, 0, 0, 2],

[1, 0, 1, 1, 1, 0, 0, 1, 0, 1],

[0, 1, 1, 1, 0, 1, 1, 0, 0, 1]]

5.2.2 BooleanAdjacencyMatrix

. BooleanAdjacencyMatrix(digraph) (attribute)

. BooleanAdjacencyMatrixMutableCopy(digraph) (operation)

Returns: A square matrix of booleans.

If digraph is a digraph with a positive number of vertices n, then

BooleanAdjacencyMatrix(digraph) returns the boolean adjacency matrix mat of digraph .

The value of the matrix entry mat[j][i] is true if and only if there exists an edge in digraph with

source j and range i. If digraph has no vertices, then the empty list is returned.

Note that the boolean adjacency matrix loses information about multiple edges.

The attribute BooleanAdjacencyMatrix returns an immutable list of immutable

lists, whereas the function BooleanAdjacencyMatrixMutableCopy returns a copy of the

BooleanAdjacencyMatrix that is a mutable list of mutable lists.

Example
gap> gr := Digraph([[3, 4], [2, 3], [1, 2, 4], [4]]);

<digraph with 4 vertices, 8 edges>

gap> PrintArray(BooleanAdjacencyMatrix(gr));

[[false, false, true, true],

[false, true, true, false],

[true, true, false, true],

[false, false, false, true]]

gap> gr := CycleDigraph(4);;

gap> PrintArray(BooleanAdjacencyMatrix(gr));

[[false, true, false, false],

Digraphs 48

[false, false, true, false],

[false, false, false, true],

[true, false, false, false]]

gap> BooleanAdjacencyMatrix(EmptyDigraph(0));

[]

5.2.3 DigraphAdjacencyFunction

. DigraphAdjacencyFunction(digraph) (attribute)

Returns: A function.

If digraph is a digraph, then DigraphAdjacencyFunction returns a function which takes two

integer parameters x, y and returns true if there exists an edge from vertex x to vertex y in digraph

and false if not.
Example

gap> digraph := Digraph([[1, 2], [3], []]);

<digraph with 3 vertices, 3 edges>

gap> foo := DigraphAdjacencyFunction(digraph);

function(u, v) ... end

gap> foo(1, 1);

true

gap> foo(1, 2);

true

gap> foo(1, 3);

false

gap> foo(3, 1);

false

gap> gr := Digraph(["a", "b", "c"],

> ["a", "b", "b"],

> ["b", "a", "a"]);

<multidigraph with 3 vertices, 3 edges>

gap> foo := DigraphAdjacencyFunction(gr);

function(u, v) ... end

gap> foo(1, 2);

true

gap> foo(3, 2);

false

gap> foo(3, 1);

false

5.2.4 DigraphRange

. DigraphRange(digraph) (attribute)

. DigraphSource(digraph) (attribute)

Returns: A list of positive integers.

DigraphRange and DigraphSource return the range and source of the digraph digraph . More

precisely, position i in DigraphRange(digraph) is the range of the ith edge of digraph .
Example

gap> gr := Digraph([

> [2, 1, 3, 5], [1, 3, 4], [2, 3], [2], [1, 2, 3, 4]]);

<digraph with 5 vertices, 14 edges>

gap> DigraphRange(gr);

Digraphs 49

[2, 1, 3, 5, 1, 3, 4, 2, 3, 2, 1, 2, 3, 4]

gap> DigraphSource(gr);

[1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 5, 5]

gap> DigraphEdges(gr);

[[1, 2], [1, 1], [1, 3], [1, 5], [2, 1], [2, 3],

[2, 4], [3, 2], [3, 3], [4, 2], [5, 1], [5, 2],

[5, 3], [5, 4]]

5.2.5 OutNeighbours

. OutNeighbours(digraph) (attribute)

. OutNeighbors(digraph) (attribute)

. OutNeighboursMutableCopy(digraph) (operation)

. OutNeighborsMutableCopy(digraph) (operation)

Returns: The adjacencies of a digraph.

This function returns the list out of out-neighbours of each vertex of the digraph digraph . More

speci�cally, a vertex j appears in out[i] each time there exists an edge with source i and range j in

digraph .

The function OutNeighbours returns an immutable list of immutable lists, whereas the function

OutNeighboursMutableCopy returns a copy of OutNeighbours which is a mutable list of mutable

lists.

Example
gap> gr := Digraph(["a", "b", "c"],

> ["a", "b", "b"],

> ["b", "a", "c"]);

<digraph with 3 vertices, 3 edges>

gap> OutNeighbours(gr);

[[2], [1, 3], []]

gap> gr := Digraph([[1, 2, 3], [2, 1], [3]]);

<digraph with 3 vertices, 6 edges>

gap> OutNeighbours(gr);

[[1, 2, 3], [2, 1], [3]]

gap> gr := DigraphByAdjacencyMatrix([

> [1, 2, 1],

> [1, 1, 0],

> [0, 0, 1]]);

<multidigraph with 3 vertices, 7 edges>

gap> OutNeighbours(gr);

[[1, 2, 2, 3], [1, 2], [3]]

gap> OutNeighboursMutableCopy(gr);

[[1, 2, 2, 3], [1, 2], [3]]

5.2.6 InNeighbours

. InNeighbours(digraph) (attribute)

. InNeighbors(digraph) (attribute)

. InNeighboursMutableCopy(digraph) (operation)

. InNeighborsMutableCopy(digraph) (operation)

Returns: A list of lists of vertices.

Digraphs 50

This function returns the list inn of in-neighbours of each vertex of the digraph digraph . More

speci�cally, a vertex j appears in inn[i] each time there exists an edge with source j and range i in

digraph .

The function InNeighbours returns an immutable list of immutable lists, whereas the function

InNeighboursMutableCopy returns a copy of InNeighbours which is a mutable list of mutable

lists.

Note that each entry of inn is sorted into ascending order.
Example

gap> gr := Digraph(["a", "b", "c"],

> ["a", "b", "b"],

> ["b", "a", "c"]);

<digraph with 3 vertices, 3 edges>

gap> InNeighbours(gr);

[[2], [1], [2]]

gap> gr := Digraph([[1, 2, 3], [2, 1], [3]]);

<digraph with 3 vertices, 6 edges>

gap> InNeighbours(gr);

[[1, 2], [1, 2], [1, 3]]

gap> gr := DigraphByAdjacencyMatrix([

> [1, 2, 1],

> [1, 1, 0],

> [0, 0, 1]]);

<multidigraph with 3 vertices, 7 edges>

gap> InNeighbours(gr);

[[1, 2], [1, 1, 2], [1, 3]]

gap> InNeighboursMutableCopy(gr);

[[1, 2], [1, 1, 2], [1, 3]]

5.2.7 OutDegrees

. OutDegrees(digraph) (attribute)

. OutDegreeSequence(digraph) (attribute)

. OutDegreeSet(digraph) (attribute)

Returns: A list of non-negative integers.

Given a digraph digraph with n vertices, the function OutDegrees returns a list out of length

n, such that for a vertex i in digraph , the value of out[i] is the out-degree of vertex i. See

OutDegreeOfVertex (5.2.9).

The function OutDegreeSequence returns the same list, after it has been sorted into non-

increasing order.

The function OutDegreeSet returns the same list, sorted into increasing order with duplicate

entries removed.
Example

gap> gr := Digraph([[1, 3, 2, 2], [], [2, 1], []]);

<multidigraph with 4 vertices, 6 edges>

gap> OutDegrees(gr);

[4, 0, 2, 0]

gap> OutDegreeSequence(gr);

[4, 2, 0, 0]

gap> OutDegreeSet(gr);

[0, 2, 4]

Digraphs 51

5.2.8 InDegrees

. InDegrees(digraph) (attribute)

. InDegreeSequence(digraph) (attribute)

. InDegreeSet(digraph) (attribute)

Returns: A list of non-negative integers.

Given a digraph digraph with n vertices, the function InDegrees returns a list inn of length

n, such that for a vertex i in digraph , the value of inn[i] is the in-degree of vertex i. See

InDegreeOfVertex (5.2.11).

The function InDegreeSequence returns the same list, after it has been sorted into non-increasing

order.

The function InDegreeSet returns the same list, sorted into increasing order with duplicate en-

tries removed.
Example

gap> gr := Digraph([[1, 3, 2, 2, 4], [], [2, 1, 4], []]);

<multidigraph with 4 vertices, 8 edges>

gap> InDegrees(gr);

[2, 3, 1, 2]

gap> InDegreeSequence(gr);

[3, 2, 2, 1]

gap> InDegreeSet(gr);

[1, 2, 3]

5.2.9 OutDegreeOfVertex

. OutDegreeOfVertex(digraph, vertex) (operation)

Returns: The non-negative integer.

This operation returns the out-degree of the vertex vertex in the digraph digraph . The out-

degree of vertex is the number of edges in digraph whose source is vertex .
Example

gap> gr := Digraph([

> [2, 2, 1], [1, 4], [2, 2, 4, 2], [1, 1, 2, 2, 1, 2, 2]]);

<multidigraph with 4 vertices, 16 edges>

gap> OutDegreeOfVertex(gr, 1);

3

gap> OutDegreeOfVertex(gr, 2);

2

gap> OutDegreeOfVertex(gr, 3);

4

gap> OutDegreeOfVertex(gr, 4);

7

5.2.10 OutNeighboursOfVertex

. OutNeighboursOfVertex(digraph, vertex) (operation)

. OutNeighborsOfVertex(digraph, vertex) (operation)

Returns: A list of vertices.

This operation returns the list out of vertices of the digraph digraph . A vertex i appears in the

list out each time there exists an edge with source vertex and range i in digraph ; in particular, this

means that out may contain duplicates.

Digraphs 52

Example
gap> gr := Digraph([

> [2, 2, 3], [1, 3, 4], [2, 2, 3], [1, 1, 2, 2, 1, 2, 2]]);

<multidigraph with 4 vertices, 16 edges>

gap> OutNeighboursOfVertex(gr, 1);

[2, 2, 3]

gap> OutNeighboursOfVertex(gr, 3);

[2, 2, 3]

5.2.11 InDegreeOfVertex

. InDegreeOfVertex(digraph, vertex) (operation)

Returns: A non-negative integer.

This operation returns the in-degree of the vertex vertex in the digraph digraph . The in-degree

of vertex is the number of edges in digraph whose range is vertex .
Example

gap> gr := Digraph([

> [2, 2, 1], [1, 4], [2, 2, 4, 2], [1, 1, 2, 2, 1, 2, 2]]);

<multidigraph with 4 vertices, 16 edges>

gap> InDegreeOfVertex(gr, 1);

5

gap> InDegreeOfVertex(gr, 2);

9

gap> InDegreeOfVertex(gr, 3);

0

gap> InDegreeOfVertex(gr, 4);

2

5.2.12 InNeighboursOfVertex

. InNeighboursOfVertex(digraph, vertex) (operation)

. InNeighborsOfVertex(digraph, vertex) (operation)

Returns: A list of postitive vertices.

This operation returns the list inn of vertices of the digraph digraph . A vertex i appears in the

list inn each time there exists an edge with source i and range vertex in digraph ; in particular, this

means that inn may contain duplicates.

Example
gap> gr := Digraph([

> [2, 2, 3], [1, 3, 4], [2, 2, 3], [1, 1, 2, 2, 1, 2, 2]]);

<multidigraph with 4 vertices, 16 edges>

gap> InNeighboursOfVertex(gr, 1);

[2, 4, 4, 4]

gap> InNeighboursOfVertex(gr, 2);

[1, 1, 3, 3, 4, 4, 4, 4]

5.2.13 DigraphLoops

. DigraphLoops(digraph) (attribute)

Returns: A list of vertices.

Digraphs 53

If digraph is a digraph, then DigraphLoops returns the list consisting of the DigraphVertices

(5.1.1) of digraph at which there is a loop. See DigraphHasLoops (6.1.1).

Example
gap> gr := Digraph([[2], [3], []]);

<digraph with 3 vertices, 2 edges>

gap> DigraphHasLoops(gr);

false

gap> DigraphLoops(gr);

[]

gap> gr := Digraph([[3, 5], [1], [2, 4, 3], [4], [2, 1]]);

<digraph with 5 vertices, 9 edges>

gap> DigraphLoops(gr);

[3, 4]

5.2.14 PartialOrderDigraphMeetOfVertices (for a digraph and two vertices)

. PartialOrderDigraphMeetOfVertices(digraph, u, v) (operation)

. PartialOrderDigraphJoinOfVertices(digraph, u, v) (operation)

Returns: A positive integer or fail

If the �rst argument is a partial order digraph IsPartialOrderDigraph (6.1.13) then these op-

erations return the meet, or the join, of the two input vertices. If the meet (or join) is does not exist

then fail is returned. The meet (or join) is guaranteed to exist when the �rst argument satis�es

IsMeetSemilatticeDigraph (6.1.14) (or IsJoinSemilatticeDigraph (6.1.14)) - see the docu-

mentation for these properties for the de�nition of the meet (or the join).

Example
gap> gr := Digraph([[1], [1, 2], [1, 3], [1, 2, 3, 4]]);

<digraph with 4 vertices, 9 edges>

gap> PartialOrderDigraphMeetOfVertices(gr, 2, 3);

4

gap> PartialOrderDigraphJoinOfVertices(gr, 2, 3);

1

gap> PartialOrderDigraphMeetOfVertices(gr, 1, 2);

2

gap> PartialOrderDigraphJoinOfVertices(gr, 3, 4);

3

gap> gr := Digraph([[1], [2], [1, 2, 3], [1, 2, 4]]);

<digraph with 4 vertices, 8 edges>

gap> PartialOrderDigraphMeetOfVertices(gr, 3, 4);

fail

gap> PartialOrderDigraphJoinOfVertices(gr, 3, 4);

fail

gap> PartialOrderDigraphMeetOfVertices(gr, 1, 2);

fail

gap> PartialOrderDigraphJoinOfVertices(gr, 1, 2);

fail

Digraphs 54

5.3 Reachability and connectivity

5.3.1 DigraphDiameter

. DigraphDiameter(digraph) (attribute)

Returns: An integer or fail.

This function returns the diameter of the digraph digraph .

If a digraph digraph is strongly connected and has at least 1 vertex, then the diameter is the

maximum shortest distance between any pair of distinct vertices. Otherwise then the diameter of

digraph is unde�ned, and this function returns the value fail.

See DigraphShortestDistances (5.3.3).

Example
gap> gr := Digraph([[2], [3], [4, 5], [5], [1, 2, 3, 4, 5]]);

<digraph with 5 vertices, 10 edges>

gap> DigraphDiameter(gr);

3

gap> gr := ChainDigraph(2);

<digraph with 2 vertices, 1 edge>

gap> DigraphDiameter(gr);

fail

gap> IsStronglyConnectedDigraph(gr);

false

5.3.2 DigraphShortestDistance (for a digraph and two vertices)

. DigraphShortestDistance(digraph, u, v) (operation)

. DigraphShortestDistance(digraph, list) (operation)

. DigraphShortestDistance(digraph, list1, list2) (operation)

Returns: An integer or fail

If there is a directed path in the digraph digraph between vertex u and vertex v , then this op-

eration returns the length of the shortest such directed path. If no such directed path exists, then this

operation returns fail. See section 1.1.1 for the de�nition of a directed path.

If the second form is used, then list should be a list of length two, containing two positive

integers which correspond to the vertices u and v .

Note that as usual, a vertex is considered to be at distance 0 from itself .

If the third form is used, then list1 and list2 are both lists of vertices. The shortest directed

path between list1 and list2 is then the length of the shortest directed path which starts with a

vertex in list1 and terminates at a vertex in list2 , if such directed path exists. If list1 and list2

have non-empty intersection, the operation returns 0.

Example
gap> gr := Digraph([[2], [3], [1, 4], [1, 3], [5]]);

<digraph with 5 vertices, 7 edges>

gap> DigraphShortestDistance(gr, 1, 3);

2

gap> DigraphShortestDistance(gr, [3, 3]);

0

gap> DigraphShortestDistance(gr, 5, 2);

fail

gap> DigraphShortestDistance(gr, [1, 2], [4, 5]);

Digraphs 55

2

gap> DigraphShortestDistance(gr, [1, 3], [3, 5]);

0

5.3.3 DigraphShortestDistances

. DigraphShortestDistances(digraph) (attribute)

Returns: A square matrix.

If digraph is a digraph with n vertices, then this function returns an n�nmatrix mat, where each

entry is either a non-negative integer, or fail. If n= 0, then an empty list is returned.

If there is a directed path from vertex i to vertex j, then the value of mat[i][j] is the length of

the shortest such directed path. If no such directed path exists, then the value of mat[i][j] is fail.

We use the convention that the distance from every vertex to itself is 0, i.e. mat[i][i] = 0 for all

vertices i.

The method used in this function is a version of the Floyd-Warshall algorithm, and has complexity

O(n3).
Example

gap> gr := Digraph([[1, 2], [3], [1, 2], [4]]);

<digraph with 4 vertices, 6 edges>

gap> mat := DigraphShortestDistances(gr);;

gap> PrintArray(mat);

[[0, 1, 2, fail],

[2, 0, 1, fail],

[1, 1, 0, fail],

[fail, fail, fail, 0]]

5.3.4 DigraphLongestDistanceFromVertex

. DigraphLongestDistanceFromVertex(digraph, v) (operation)

Returns: An integer, or infinity.

If digraph is a digraph and v is a vertex in digraph , then this operation returns the length of the

longest directed walk in digraph which begins at vertex v . See section 1.1.1 for the de�nitions of

directed walk, directed cycle, and loop.

� If there exists a directed walk starting at vertex v which traverses a loop or a directed cycle,

then we consider there to be a walk of in�nite length from v (realised by repeatedly traversing

the loop/directed cycle), and so the result is infinity. To disallow walks using loops, try using

DigraphRemoveLoops (3.3.22):

DigraphLongestDistanceFromVertex(DigraphRemoveLoops(digraph,v)).

� Otherwise, if all directed walks starting at vertex v have �nite length, then the length of the

longest such walk is returned.

Note that the result is 0 if and only if v is a sink of digraph . See DigraphSinks (5.1.5).
Example

gap> gr := Digraph([[2], [3, 4], [], [5], [], [6]]);

<digraph with 6 vertices, 5 edges>

gap> DigraphLongestDistanceFromVertex(gr, 1);

3

Digraphs 56

gap> DigraphLongestDistanceFromVertex(gr, 3);

0

gap> 3 in DigraphSinks(gr);

true

gap> DigraphLongestDistanceFromVertex(gr, 6);

infinity

5.3.5 DigraphDistanceSet (for a digraph, a pos int, and an int)

. DigraphDistanceSet(digraph, vertex, distance) (operation)

. DigraphDistanceSet(digraph, vertex, distances) (operation)

Returns: A list of vertices

This operation returns the list of all vertices in digraph digraph such that the shortest distance to

a vertex vertex is distance or is in the list distances .

digraph should be a digraph, vertex should be a positive integer, distance should be a non-

negative integer, and distances should be a list of non-negative integers.

Example
gap> gr := Digraph([[2], [3], [1, 4], [1, 3]]);

<digraph with 4 vertices, 6 edges>

gap> DigraphDistanceSet(gr, 2, [1, 2]);

[3, 1, 4]

gap> DigraphDistanceSet(gr, 3, 1);

[1, 4]

gap> DigraphDistanceSet(gr, 2, 0);

[2]

5.3.6 DigraphGirth

. DigraphGirth(digraph) (attribute)

Returns: An integer, or infinity.

This attribute returns the girth of the digraph digraph . The girth of a digraph is the length of its

shortest simple circuit. See section 1.1.1 for the de�nitions of simple circuit, directed cycle, and loop.

If digraph has no directed cycles, then this function will return infinity. If digraph contains

a loop, then this function will return 1.

In the worst case, the method used in this function is a version of the Floyd-Warshall algorithm,

and has complexity O(n ^ 3), where n is the number of vertices in digraph . If the digraph has

known automorphisms [see DigraphGroup (7.2.9)], then the performance is likely to be better.

For symmetric digraphs, see also DigraphUndirectedGirth (5.3.7).

Example
gap> gr := Digraph([[1], [1]]);

<digraph with 2 vertices, 2 edges>

gap> DigraphGirth(gr);

1

gap> gr := Digraph([[2, 3], [3], [4], []]);

<digraph with 4 vertices, 4 edges>

gap> DigraphGirth(gr);

infinity

gap> gr := Digraph([[2, 3], [3], [4], [1]]);

<digraph with 4 vertices, 5 edges>

Digraphs 57

gap> DigraphGirth(gr);

3

5.3.7 DigraphUndirectedGirth

. DigraphUndirectedGirth(digraph) (attribute)

Returns: An integer or infinity.

If digraph is a symmetric digraph, then this function returns the girth of digraph when treated

as an undirected graph (i.e. each pair of edges [i; j] and [j; i] is treated as a single edge between i and

j).

The girth of an undirected graph is the length of its shortest simple cycle, i.e. the shortest non-

trivial path starting and ending at the same vertex and passing through no vertex or edge more than

once.

If digraph has no cycles, then this function will return infinity.

Example
gap> gr := Digraph([[2, 4], [1, 3], [2, 4], [1, 3]]);

<digraph with 4 vertices, 8 edges>

gap> DigraphUndirectedGirth(gr);

4

gap> gr := Digraph([[2], [1, 3], [2]]);

<digraph with 3 vertices, 4 edges>

gap> DigraphUndirectedGirth(gr);

infinity

gap> gr := Digraph([[1], [], [4], [3]]);

<digraph with 4 vertices, 3 edges>

gap> DigraphUndirectedGirth(gr);

1

5.3.8 DigraphConnectedComponents

. DigraphConnectedComponents(digraph) (attribute)

Returns: A record.

This function returns the record wcc corresponding to the weakly connected components of the

digraph digraph . Two vertices of digraph are in the same weakly connected component whenever

they are equal, or there exists a directed path (ignoring the orientation of edges) between them. More

formally, two vertices are in the same weakly connected component of digraph if and only if they are

in the same strongly connected component (see DigraphStronglyConnectedComponents (5.3.10))

of the DigraphSymmetricClosure (3.3.9) of digraph .

The set of weakly connected components is a partition of the vertex set of digraph .

The record wcc has 2 components: comps and id. The component comps is a list of the weakly

connected components of digraph (each of which is a list of vertices). The component id is a list

such that the vertex i is an element of the weakly connected component comps[id[i]].

The method used in this function has complexity O(m+n), where m is the number of edges and

n is the number of vertices in the digraph.

Example
gap> gr := Digraph([[2], [3, 1], []]);

<digraph with 3 vertices, 3 edges>

gap> DigraphConnectedComponents(gr);

Digraphs 58

rec(comps := [[1, 2, 3]], id := [1, 1, 1])

gap> gr := Digraph([[1], [1, 2], []]);

<digraph with 3 vertices, 3 edges>

gap> DigraphConnectedComponents(gr);

rec(comps := [[1, 2], [3]], id := [1, 1, 2])

gap> gr := EmptyDigraph(0);

<digraph with 0 vertices, 0 edges>

gap> DigraphConnectedComponents(gr);

rec(comps := [], id := [])

5.3.9 DigraphConnectedComponent

. DigraphConnectedComponent(digraph, vertex) (operation)

Returns: A list of vertices.

If vertex is a vertex in the digraph digraph , then this operation returns the connected component

of vertex in digraph . See DigraphConnectedComponents (5.3.8) for more information.

Example
gap> gr := Digraph([[3], [2], [1, 2], [4]]);

<digraph with 4 vertices, 5 edges>

gap> DigraphConnectedComponent(gr, 3);

[1, 2, 3]

gap> DigraphConnectedComponent(gr, 2);

[1, 2, 3]

gap> DigraphConnectedComponent(gr, 4);

[4]

5.3.10 DigraphStronglyConnectedComponents

. DigraphStronglyConnectedComponents(digraph) (attribute)

Returns: A record.

This function returns the record scc corresponding to the strongly connected components of the

digraph digraph . Two vertices of digraph are in the same strongly connected component whenever

they are equal, or there is a directed path from each vertex to the other. The set of strongly connected

components is a partition of the vertex set of digraph .

The record scc has 2 components: comps and id. The component comps is a list of the strongly

connected components of digraph (each of which is a list of vertices). The component id is a list

such that the vertex i is an element of the strongly connected component comps[id[i]].

The method used in this function is a non-recursive version of Gabow's Algorithm [Gab00] and

has complexity O(m+ n) where m is the number of edges (counting multiple edges as one) and n is

the number of vertices in the digraph.

Example
gap> gr := Digraph([[2], [3, 1], []]);

<digraph with 3 vertices, 3 edges>

gap> DigraphStronglyConnectedComponents(gr);

rec(comps := [[3], [1, 2]], id := [2, 2, 1])

Digraphs 59

5.3.11 DigraphStronglyConnectedComponent

. DigraphStronglyConnectedComponent(digraph, vertex) (operation)

Returns: A list of vertices.

If vertex is a vertex in the digraph digraph , then this operation returns the strongly con-

nected component of vertex in digraph . See DigraphStronglyConnectedComponents (5.3.10)

for more information.
Example

gap> gr := Digraph([[3], [2], [1, 2], [3]]);

<digraph with 4 vertices, 5 edges>

gap> DigraphStronglyConnectedComponent(gr, 3);

[1, 3]

gap> DigraphStronglyConnectedComponent(gr, 2);

[2]

gap> DigraphStronglyConnectedComponent(gr, 4);

[4]

5.3.12 DigraphBicomponents

. DigraphBicomponents(digraph) (attribute)

Returns: A pair of lists of vertices, or fail.

If digraph is a bipartite digraph, i.e. if it satis�es IsBipartiteDigraph (6.1.3),

then DigraphBicomponents returns a pair of bicomponents of digraph . Otherwise,

DigraphBicomponents returns fail.

For a bipartite digraph, the vertices can be partitioned into two non-empty sets such that the

source and range of any edge are in distinct sets. The parts of this partition are called bicomponents

of digraph . Equivalently, a pair of bicomponents of digraph consists of the color-classes of a

2-coloring of digraph .

For a bipartite digraph with at least 3 vertices, there is a unique pair of bicomponents of bipartite

if and only if the digraph is connected. See IsConnectedDigraph (6.3.2) for more information.
Example

gap> gr := CycleDigraph(3);

<digraph with 3 vertices, 3 edges>

gap> DigraphBicomponents(gr);

fail

gap> gr := ChainDigraph(5);

<digraph with 5 vertices, 4 edges>

gap> DigraphBicomponents(gr);

[[1, 3, 5], [2, 4]]

gap> gr := Digraph([[5], [1, 4], [5], [5], []]);

<digraph with 5 vertices, 5 edges>

gap> DigraphBicomponents(gr);

[[1, 3, 4], [2, 5]]

5.3.13 ArticulationPoints

. ArticulationPoints(digraph) (attribute)

Returns: A list of vertices.

A connected digraph is biconnected if it is still connected (in the sense of IsConnectedDigraph

(6.3.2)) when any vertex is removed. If the digraph digraph is not biconnected but is connected,

Digraphs 60

then any vertex v of digraph whose removal makes the resulting digraph disconnected is called an

articulation point.

ArticulationPoints returns a list of the articulation points of digraph , if any, and, in particu-

lar, returns the empty list if digraph is not connected.

Multiple edges and loops are ignored by this method.

The method used in this operation has complexity O(m+ n) where m is the number of edges

(counting multiple edges as one, and not counting loops) and n is the number of vertices in the digraph.

See also IsBiconnectedDigraph (6.3.3).

Example
gap> ArticulationPoints(CycleDigraph(5));

[]

gap> digraph := Digraph([[2, 7], [3, 5], [4], [2], [6], [1], []]);;

gap> ArticulationPoints(digraph);

[2, 1]

gap> ArticulationPoints(ChainDigraph(5));

[4, 3, 2]

gap> ArticulationPoints(NullDigraph(5));

[]

5.3.14 DigraphPeriod

. DigraphPeriod(digraph) (attribute)

Returns: An integer.

This function returns the period of the digraph digraph .

If a digraph digraph has at least one directed cycle, then the period is the greatest positive integer

which divides the lengths of all directed cycles of digraph . If digraph has no directed cycles, then

this function returns 0. See section 1.1.1 for the de�nition of a directed cycle.

A digraph with a period of 1 is said to be aperiodic. See IsAperiodicDigraph (6.3.5).

Example
gap> gr := Digraph([[6], [1], [2], [3], [4, 4], [5]]);

<multidigraph with 6 vertices, 7 edges>

gap> DigraphPeriod(gr);

6

gap> gr := Digraph([[2], [3, 5], [4], [5], [1, 2]]);

<digraph with 5 vertices, 7 edges>

gap> DigraphPeriod(gr);

1

gap> gr := ChainDigraph(2);

<digraph with 2 vertices, 1 edge>

gap> DigraphPeriod(gr);

0

gap> IsAcyclicDigraph(gr);

true

5.3.15 DigraphFloydWarshall

. DigraphFloydWarshall(digraph, func, nopath, edge) (operation)

Returns: A matrix.

Digraphs 61

If digraph is a digraph with n vertices, then this operation returns an n�nmatrix mat containing

the output of a generalised version of the Floyd-Warshall algorithm, applied to digraph .

The operation DigraphFloydWarshall is customised by the arguments func , nopath , and

edge . The arguments nopath and edge can be arbitrary GAP objects. The argument func must

be a function which accepts 4 arguments: the matrix mat, followed by 3 postive integers. The func-

tion func is where the work to calculate the desired outcome must be performed.

This method initialises the matrix mat by setting entry mat[i][j] to equal edge if there is an

edge with source i and range j, and by setting entry mat[i][j] to equal nopath otherwise. The

�nal part of DigraphFloydWarshall then calls the function func inside three nested for loops, over

the vertices of digraph :

for i in DigraphsVertices(digraph) do

for j in DigraphsVertices(digraph) do

for k in DigraphsVertices(digraph) do

func(mat, i, j, k);

od;

od;

od;

The matrix mat is then returned as the result. An example of using DigraphFloydWarshall to

calculate the shortest (non-zero) distances between the vertices of a digraph is shown below:
Example

gap> gr := DigraphFromDigraph6String("+ECGOElR");

<digraph with 6 vertices, 12 edges>

gap> func := function(mat, i, j, k)

> if mat[i][k] <> -1 and mat[k][j] <> -1 then

> if (mat[i][j] = -1) or (mat[i][j] > mat[i][k] + mat[k][j]) then

> mat[i][j] := mat[i][k] + mat[k][j];

> fi;

> fi;

> end;

function(mat, i, j, k) ... end

gap> shortest_distances := DigraphFloydWarshall(gr, func, -1, 1);;

gap> Display(shortest_distances);

[[3, -1, -1, 2, 1, 2],

[4, 2, 1, 3, 2, 1],

[3, 1, 2, 2, 1, 2],

[1, -1, -1, 1, 1, 2],

[2, -1, -1, 1, 2, 1],

[3, -1, -1, 2, 1, 1]]

5.3.16 IsReachable

. IsReachable(digraph, u, v) (operation)

Returns: true or false.

This operation returns true if there exists a non-trivial directed walk from vertex u to vertex v in

the digraph digraph , and false if there does not exist such a directed walk. See section 1.1.1 for the

de�nition of a non-trivial directed walk.

The method for IsReachable has worst case complexity of O(m+n) where m is the number of

edges and n the number of vertices in digraph .

Digraphs 62

Example
gap> gr := Digraph([[2], [3], [2, 3]]);

<digraph with 3 vertices, 4 edges>

gap> IsReachable(gr, 1, 3);

true

gap> IsReachable(gr, 2, 1);

false

gap> IsReachable(gr, 3, 3);

true

gap> IsReachable(gr, 1, 1);

false

5.3.17 DigraphPath

. DigraphPath(digraph, u, v) (operation)

Returns: A pair of lists, or fail.

If there exists a non-trivial directed path (or a non-trivial cycle, in the case that u = v) from

vertex u to vertex v in the digraph digraph , then this operation returns such a directed path (or

directed cycle). Otherwise, this operation returns fail. See Section `De�nitions' for the de�nition of

a directed path and a directed cycle.

A directed path (or directed cycle) of non-zero length n-1, (v1;e1;v2;e2; :::;en�1;vn), is repre-
sented by a pair of lists [v,a] as follows:

� v is the list [v1;v2; :::;vn].

� a is the list of positive integers [a1;a2; :::;an�1] where for each each i < n, ai is the position of

vi+1 in OutNeighboursOfVertex(digraph,vi) corresponding to the edge ei. This is can be

useful if the position of a vertex in a list of out-neighours is signi�cant, for example in orbit

digraphs.

The method for DigraphPath has worst case complexity of O(m+n) where m is the number of edges

and n the number of vertices in digraph .
Example

gap> gr := Digraph([[2], [3], [2, 3]]);

<digraph with 3 vertices, 4 edges>

gap> DigraphPath(gr, 1, 3);

[[1, 2, 3], [1, 1]]

gap> DigraphPath(gr, 2, 1);

fail

gap> DigraphPath(gr, 3, 3);

[[3, 3], [2]]

gap> DigraphPath(gr, 1, 1);

fail

5.3.18 IteratorOfPaths

. IteratorOfPaths(digraph, u, v) (operation)

Returns: An iterator.

If digraph is a digraph or a list of adjacencies which de�nes a digraph - see OutNeighbours

(5.2.5) - then this operation returns an iterator of the non-trivial directed paths (or directed cycles, in

the case that u = v) in digraph from the vertex u to the vertex v .

Digraphs 63

See DigraphPath (5.3.17) for more information about the repesentation of a directed path or

directed cycle which is used, and see (Reference: Iterators) for more information about iterators.

See Section `De�nitions' for the de�nition of a directed path and a directed cycle.

Example
gap> gr := Digraph([[1, 4, 4, 2], [3, 5], [2, 3], [1, 2], [4]]);

<multidigraph with 5 vertices, 11 edges>

gap> iter := IteratorOfPaths(gr, 1, 4);

<iterator>

gap> NextIterator(iter);

[[1, 4], [2]]

gap> NextIterator(iter);

[[1, 4], [3]]

gap> NextIterator(iter);

[[1, 2, 5, 4], [4, 2, 1]]

gap> IsDoneIterator(iter);

true

gap> iter := IteratorOfPaths(gr, 4, 3);

<iterator>

gap> NextIterator(iter);

[[4, 1, 2, 3], [1, 4, 1]]

5.3.19 DigraphAllSimpleCircuits

. DigraphAllSimpleCircuits(digraph) (attribute)

Returns: A list of lists of vertices.

If digraph is a digraph, then DigraphAllSimpleCircuits returns a list of the simple circuits

in digraph .

See section 1.1.1 for the de�nition of a simple circuit, and related notions. Note that a loop is a

simple circuit.

For a digraph without multiple edges, a simple circuit is uniquely determined by its subsequence of

vertices. However this is not the case for a multidigraph. The attribute DigraphAllSimpleCircuits

ignores multiple edges, and identi�es a simple circuit using only its subsequence of vertices. For ex-

ample, although the simple circuits (v;e;v) and (v;e0;v) (for distinct edges e and e0) are mathematically

distinct, DigraphAllSimpleCircuits considers them to be the same.

With this approach, a directed circuit of length n can be determined by a list of its

�rst n vertices. Thus a simple circuit (v1;e1;v2;e2; :::;en�1;vn;en+1;v1) can be represented as

the list [v1; : : : ;vn], or any cyclic permutation thereof. For each simple circuit of digraph ,

DigraphAllSimpleCircuits(digraph) includes precisely one such list to represent the circuit.

Example
gap> gr := Digraph([[], [3], [2, 4], [5, 4], [4]]);

<digraph with 5 vertices, 6 edges>

gap> DigraphAllSimpleCircuits(gr);

[[4], [4, 5], [2, 3]]

gap> gr := ChainDigraph(10);;

gap> DigraphAllSimpleCircuits(gr);

[]

gap> gr := Digraph([[3], [1], [1]]);

<digraph with 3 vertices, 3 edges>

gap> DigraphAllSimpleCircuits(gr);

[[1, 3]]

Digraphs 64

gap> gr := Digraph([[1, 1]]);

<multidigraph with 1 vertex, 2 edges>

gap> DigraphAllSimpleCircuits(gr);

[[1]]

5.3.20 DigraphLongestSimpleCircuit

. DigraphLongestSimpleCircuit(digraph) (attribute)

Returns: A list of vertices, or fail.

If digraph is a digraph, then DigraphLongestSimpleCircuit returns the longest simple circuit

in digraph . See section 1.1.1 for the de�nition of simple circuit, and the de�nition of length for a

simple circuit.

This attribute computes DigraphAllSimpleCircuits(digraph) to �nd all the simple circuits

of digraph , and returns one of maximal length. A simple circuit is represented as a list of vertices,

in the same way as described in DigraphAllSimpleCircuits (5.3.19).

If digraph has no simple circuits, then this attribute returns fail. If digraph has multiple

simple circuits of maximal length, then this attribute returns one of them.
Example

gap> gr := Digraph([[], [3], [2, 4], [5, 4], [4]]);;

gap> DigraphLongestSimpleCircuit(gr);

[4, 5]

gap> gr := ChainDigraph(10);;

gap> DigraphLongestSimpleCircuit(gr);

fail

gap> gr := Digraph([[3], [1], [1, 4], [1, 1]]);;

gap> DigraphLongestSimpleCircuit(gr);

[1, 3, 4]

5.3.21 DigraphLayers

. DigraphLayers(digraph, vertex) (operation)

Returns: A list.

This operation returns a list list such that list[i] is the list of vertices whose minimum distance

from the vertex vertex in digraph is i - 1. Vertex vertex is assumed to be at distance 0 from

itself.
Example

gap> gr := CompleteDigraph(4);;

gap> DigraphLayers(gr, 1);

[[1], [2, 3, 4]]

5.3.22 DigraphDegeneracy

. DigraphDegeneracy(digraph) (attribute)

Returns: A non-negative integer, or fail.

If digraph is a symmetric digraph without multiple edges - see IsSymmetricDigraph (6.1.10)

and IsMultiDigraph (6.1.8) - then this attribute returns the degeneracy of digraph .

The degeneracy of a digraph is the least integer k such that every induced of digraph contains a

vertex whose number of neighbours (excluding itself) is at most k. Note that this means that loops are

ignored.

Digraphs 65

If digraph is not symmetric or has multiple edges then this attribute returns fail.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;

gap> DigraphDegeneracy(gr);

1

gap> gr := CompleteDigraph(5);;

gap> DigraphDegeneracy(gr);

4

gap> gr := Digraph([[1], [2, 4, 5], [3, 4], [2, 3, 4], [2], []]);

<digraph with 6 vertices, 10 edges>

gap> DigraphDegeneracy(gr);

1

5.3.23 DigraphDegeneracyOrdering

. DigraphDegeneracyOrdering(digraph) (attribute)

Returns: A list of integers, or fail.

If digraph is a digraph for which DigraphDegeneracy(digraph) is a non-negative integer k -

see DigraphDegeneracy (5.3.22) - then this attribute returns a degeneracy ordering of the vertices of

the vertices of digraph .

A degeneracy ordering of digraph is a list ordering of the vertices of digraph ordered such

that for any position i of the list, the vertex ordering[i] has at most k neighbours in later position

of the list.

If DigraphDegeneracy(digraph) returns fail, then this attribute returns fail.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;

gap> DigraphDegeneracyOrdering(gr);

[5, 4, 3, 2, 1]

gap> gr := CompleteDigraph(5);;

gap> DigraphDegeneracyOrdering(gr);

[5, 4, 3, 2, 1]

gap> gr := Digraph([[1], [2, 4, 5], [3, 4], [2, 3, 4], [2], []]);

<digraph with 6 vertices, 10 edges>

gap> DigraphDegeneracyOrdering(gr);

[1, 6, 5, 2, 4, 3]

5.3.24 HamiltonianPath

. HamiltonianPath(digraph) (attribute)

Returns: A list or fail.

Returns a Hamiltonian path if one exists, fail if not.

A Hamiltonian path of a digraph with n vertices is directed cycle of length n. If digraph is a

digraph that contains a Hamiltonian path, then this function returns one, described in the form used by

DigraphAllSimpleCircuits (5.3.19). Note if digraph has 0 or 1 vertices, then HamiltonianPath

returns [] or [1], respectively.

The method used in this attribute has the same worst case complexity as DigraphMonomorphism

(7.3.4).
Example

gap> g := Digraph([[]]);

<digraph with 1 vertex, 0 edges>

Digraphs 66

gap> HamiltonianPath(g);

[1]

gap> g := Digraph([[2], [1]]);

<digraph with 2 vertices, 2 edges>

gap> HamiltonianPath(g);

[1, 2]

gap> g := Digraph([[3], [], [2]]);

<digraph with 3 vertices, 2 edges>

gap> HamiltonianPath(g);

fail

gap> g := Digraph([[2], [3], [1]]);

<digraph with 3 vertices, 3 edges>

gap> HamiltonianPath(g);

[1, 2, 3]

5.4 Cayley graphs of groups

5.4.1 GroupOfCayleyDigraph

. GroupOfCayleyDigraph(digraph) (attribute)

. SemigroupOfCayleyDigraph(digraph) (attribute)

Returns: A group or semigroup.

If digraph is a Cayley graph of a group G and digraph belongs to the category

IsCayleyDigraph (3.1.2), then GroupOfCayleyDigraph returns G.

If digraph is a Cayley graph of a semigroup S and digraph belongs to the category

IsCayleyDigraph (3.1.2), then SemigroupOfCayleyDigraph returns S.

See also GeneratorsOfCayleyDigraph (5.4.2).

Example
gap> G := DihedralGroup(IsPermGroup, 8);

Group([(1,2,3,4), (2,4)])

gap> digraph := CayleyDigraph(G);

<digraph with 8 vertices, 16 edges>

gap> GroupOfCayleyDigraph(digraph) = G;

true

5.4.2 GeneratorsOfCayleyDigraph

. GeneratorsOfCayleyDigraph(digraph) (attribute)

Returns: A list of generators.

If digraph is a Cayley graph of a group or semigroup with respect to a set of generators gens and

digraph belongs to the category IsCayleyDigraph (3.1.2), then GeneratorsOfCayleyDigraph

return the list of generators gens over which digraph is de�ned.

See also GroupOfCayleyDigraph (5.4.1) or SemigroupOfCayleyDigraph (5.4.1).

Example
gap> G := DihedralGroup(IsPermGroup, 8);

Group([(1,2,3,4), (2,4)])

gap> digraph := CayleyDigraph(G);

<digraph with 8 vertices, 16 edges>

gap> GeneratorsOfCayleyDigraph(digraph) = GeneratorsOfGroup(G);

Digraphs 67

true

gap> digraph := CayleyDigraph(G, [()]);

<digraph with 8 vertices, 8 edges>

gap> GeneratorsOfCayleyDigraph(digraph) = [()];

true

Chapter 6

Properties of digraphs

6.1 Edge properties

6.1.1 DigraphHasLoops

. DigraphHasLoops(digraph) (property)

Returns: true or false.

Returns true if the digraph digraph has loops, and false if it does not. A loop is an edge with

equal source and range.

Example
gap> gr := Digraph([[1, 2], [2]]);

<digraph with 2 vertices, 3 edges>

gap> DigraphEdges(gr);

[[1, 1], [1, 2], [2, 2]]

gap> DigraphHasLoops(gr);

true

gap> gr := Digraph([[2, 3], [1], [2]]);

<digraph with 3 vertices, 4 edges>

gap> DigraphEdges(gr);

[[1, 2], [1, 3], [2, 1], [3, 2]]

gap> DigraphHasLoops(gr);

false

6.1.2 IsAntisymmetricDigraph

. IsAntisymmetricDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is antisymmetric, and false if it is not.

A digraph is antisymmetric if whenever there is an edge with source u and range v, and an edge

with source v and range u, then the vertices u and v are equal.

Example
gap> gr1 := Digraph([[2], [1, 3], [2, 3]]);

<digraph with 3 vertices, 5 edges>

gap> IsAntisymmetricDigraph(gr1);

false

gap> DigraphEdges(gr1){[1, 2]};

[[1, 2], [2, 1]]

68

Digraphs 69

gap> gr2 := Digraph([[1, 2], [3, 3], [1]]);

<multidigraph with 3 vertices, 5 edges>

gap> IsAntisymmetricDigraph(gr2);

true

gap> DigraphEdges(gr2);

[[1, 1], [1, 2], [2, 3], [2, 3], [3, 1]]

6.1.3 IsBipartiteDigraph

. IsBipartiteDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is bipartite, and false if it is not. A digraph is

bipartite if and only if the vertices of digraph can be partitioned into two non-empty sets such that

the source and range of any edge of digraph lie in distinct sets. Equivalently, a digraph is bipartite if

and only if it is 2-colorable; see DigraphColouring (7.3.9).

See also DigraphBicomponents (5.3.12).

Example
gap> gr := ChainDigraph(4);

<digraph with 4 vertices, 3 edges>

gap> IsBipartiteDigraph(gr);

true

gap> gr := CycleDigraph(3);

<digraph with 3 vertices, 3 edges>

gap> IsBipartiteDigraph(gr);

false

6.1.4 IsCompleteBipartiteDigraph

. IsCompleteBipartiteDigraph(digraph) (property)

Returns: true or false.

Returns true if the digraph digraph is a complete bipartite digraph, and false if it is not.

A digraph is a complete bipartite digraph if it is bipartite, see IsBipartiteDigraph (6.1.3), and

there exists a unique edge with source i and range j if and only if i and j lie in different bicomponents

of digraph , see DigraphBicomponents (5.3.12).

Equivalently, a bipartite digraph with bicomponents of size m and n is complete precisely when it

has 2mn edges, none of which are multiple edges.

See also CompleteBipartiteDigraph (3.5.3).

Example
gap> gr := CycleDigraph(2);

<digraph with 2 vertices, 2 edges>

gap> IsCompleteBipartiteDigraph(gr);

true

gap> gr := CycleDigraph(4);

<digraph with 4 vertices, 4 edges>

gap> IsBipartiteDigraph(gr);

true

gap> IsCompleteBipartiteDigraph(gr);

false

Digraphs 70

6.1.5 IsCompleteDigraph

. IsCompleteDigraph(digraph) (property)

Returns: true or false.

Returns true if the digraph digraph is complete, and false if it is not.

A digraph is complete if it has no loops, and for all distinct vertices i and j, there is exactly one

edge with source i and range j. Equivalently, a digraph with n vertices is complete precisely when it

has n(n�1) edges, no loops, and no multiple edges.

Example
gap> gr := Digraph([[2, 3], [1, 3], [1, 2]]);

<digraph with 3 vertices, 6 edges>

gap> IsCompleteDigraph(gr);

true

gap> gr := Digraph([[2, 2], [1]]);

<multidigraph with 2 vertices, 3 edges>

gap> IsCompleteDigraph(gr);

false

6.1.6 IsEmptyDigraph

. IsEmptyDigraph(digraph) (property)

. IsNullDigraph(digraph) (property)

Returns: true or false.

Returns true if the digraph digraph is empty, and false if it is not. A digraph is empty if it has

no edges.

IsNullDigraph is a synonym for IsEmptyDigraph.
Example

gap> gr := Digraph([[], []]);

<digraph with 2 vertices, 0 edges>

gap> IsEmptyDigraph(gr);

true

gap> IsNullDigraph(gr);

true

gap> gr := Digraph([[], [1]]);

<digraph with 2 vertices, 1 edge>

gap> IsEmptyDigraph(gr);

false

gap> IsNullDigraph(gr);

false

6.1.7 IsFunctionalDigraph

. IsFunctionalDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is functional.

A digraph is functional if every vertex is the source of a unique edge.

Example
gap> gr1 := Digraph([[3], [2], [2], [1], [6], [5]]);

<digraph with 6 vertices, 6 edges>

gap> IsFunctionalDigraph(gr1);

Digraphs 71

true

gap> gr2 := Digraph([[1, 2], [1]]);

<digraph with 2 vertices, 3 edges>

gap> IsFunctionalDigraph(gr2);

false

gap> gr3 := Digraph(3, [1, 2, 3], [2, 3, 1]);

<digraph with 3 vertices, 3 edges>

gap> IsFunctionalDigraph(gr3);

true

6.1.8 IsMultiDigraph

. IsMultiDigraph(digraph) (property)

Returns: true or false.

A multidigraph is one that has at least two edges with equal source and range.

Example
gap> gr := Digraph(["a", "b", "c"], ["a", "b", "b"], ["b", "c", "a"]);

<digraph with 3 vertices, 3 edges>

gap> IsMultiDigraph(gr);

false

gap> gr := DigraphFromDigraph6String("+Bug");

<digraph with 3 vertices, 6 edges>

gap> IsDuplicateFree(DigraphEdges(gr));

true

gap> IsMultiDigraph(gr);

false

gap> gr := Digraph([[1, 2, 3, 2], [2, 1], [3]]);

<multidigraph with 3 vertices, 7 edges>

gap> IsDuplicateFree(DigraphEdges(gr));

false

gap> IsMultiDigraph(gr);

true

6.1.9 IsRe�exiveDigraph

. IsReflexiveDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is re�exive, and false if it is not. A digraph is

re�exive if it has a loop at every vertex.

Example
gap> gr := Digraph([[1, 2], [2]]);

<digraph with 2 vertices, 3 edges>

gap> IsReflexiveDigraph(gr);

true

gap> gr := Digraph([[3, 1], [4, 2], [3], [2, 1]]);

<digraph with 4 vertices, 7 edges>

gap> IsReflexiveDigraph(gr);

false

Digraphs 72

6.1.10 IsSymmetricDigraph

. IsSymmetricDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is symmetric, and false if it is not.

A symmetric digraph is one where for each non-loop edge, having source u and range v, there is

a corresponding edge with source v and range u. If there are n edges with source u and range v, then

there must be precisely n edges with source v and range u. In other words, a symmetric digraph has a

symmetric adjacency matrix AdjacencyMatrix (5.2.1).

Example
gap> gr1 := Digraph([[2], [1, 3], [2, 3]]);

<digraph with 3 vertices, 5 edges>

gap> IsSymmetricDigraph(gr1);

true

gap> adj1 := AdjacencyMatrix(gr1);;

gap> Display(adj1);

[[0, 1, 0],

[1, 0, 1],

[0, 1, 1]]

gap> adj1 = TransposedMat(adj1);

true

gap> gr1 = DigraphReverse(gr1);

true

gap> gr2 := Digraph([[2, 3], [1, 3], [2, 3]]);

<digraph with 3 vertices, 6 edges>

gap> IsSymmetricDigraph(gr2);

false

gap> adj2 := AdjacencyMatrix(gr2);;

gap> Display(adj2);

[[0, 1, 1],

[1, 0, 1],

[0, 1, 1]]

gap> adj2 = TransposedMat(adj2);

false

6.1.11 IsTournament

. IsTournament(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is a tournament, and false if it is not.

A tournament is an orientation of a complete (undirected) graph. Speci�cally, a tournament is a

digraph which has a unique directed edge (of some orientation) between any pair of distinct vertices,

and no loops.

Example
gap> gr := Digraph([[2, 3, 4], [3, 4], [4], []]);

<digraph with 4 vertices, 6 edges>

gap> IsTournament(gr);

true

gap> gr := Digraph([[2], [1], [3]]);

<digraph with 3 vertices, 3 edges>

Digraphs 73

gap> IsTournament(gr);

false

6.1.12 IsTransitiveDigraph

. IsTransitiveDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is transitive, and false if it is not. A digraph is

transitive if whenever [i, j] and [j, k] are edges of the digraph, then [i, k] is also an

edge of the digraph.

Let n be the number of vertices of an arbitrary digraph, and let m be the number of edges.

For general digraphs, the methods used for this property use a version of the Floyd-Warshall

algorithm, and have complexity O(n3). However for digraphs which are topologically sortable

[DigraphTopologicalSort (5.1.7)], then methods with complexity O(m+ n+m � n) will be used

when appropriate.

Example
gap> gr := Digraph([[1, 2], [3], [3]]);

<digraph with 3 vertices, 4 edges>

gap> IsTransitiveDigraph(gr);

false

gap> gr2 := Digraph([[1, 2, 3], [3], [3]]);

<digraph with 3 vertices, 5 edges>

gap> IsTransitiveDigraph(gr2);

true

gap> gr2 = DigraphTransitiveClosure(gr);

true

gap> gr3 := Digraph([[1, 2, 2, 3], [3, 3], [3]]);

<multidigraph with 3 vertices, 7 edges>

gap> IsTransitiveDigraph(gr3);

true

6.1.13 IsPartialOrderDigraph

. IsPartialOrderDigraph(digraph) (property)

Returns: true or false.

This is a synonym for IsReflexiveDigraph (6.1.9) and IsAntisymmetricDigraph (6.1.2) and

IsTransitiveDigraph (6.1.12). For a partial order digraph digraph , the corresponding partial

order is the relation �, de�ned by x� y if and only if [x, y] is an edge of digraph .
Example

gap> gr := Digraph([[1, 3], [2, 3], [3]]);

<digraph with 3 vertices, 5 edges>

gap> IsPartialOrderDigraph(gr);

true

gap> gr := CycleDigraph(5);

<digraph with 5 vertices, 5 edges>

gap> IsPartialOrderDigraph(gr);

false

gap> gr := Digraph([[1, 1], [1, 1, 2], [3], [3, 3, 4, 4]]);

<multidigraph with 4 vertices, 10 edges>

Digraphs 74

gap> IsPartialOrderDigraph(gr);

true

6.1.14 IsMeetSemilatticeDigraph

. IsMeetSemilatticeDigraph(digraph) (property)

. IsJoinSemilatticeDigraph(digraph) (property)

. IsLatticeDigraph(digraph) (property)

Returns: true or false.

IsMeetSemilatticeDigraph returns true if the digraph digraph is a meet semilattice;

IsJoinSemilatticeDigraph returns true if the digraph digraph is a join semilattice; and

IsLatticeDigraph returns true if the digraph digraph is both a meet and a join semilattice.

For a partial order digraph IsPartialOrderDigraph (6.1.13) the corresponding partial order is

the relation �, de�ned by x � y if and only if [x, y] is an edge. A digraph is a meet semilattice if

it is a partial order and every pair of vertices has a greatest lower bound (meet) with respect to the

aforementioned relation. A join semilattice is a partial order where every pair of vertices has a least

upper bound (join) with respect to the relation.

Example
gap> gr := Digraph([[1, 3], [2, 3], [3]]);

<digraph with 3 vertices, 5 edges>

gap> IsMeetSemilatticeDigraph(gr);

false

gap> IsJoinSemilatticeDigraph(gr);

true

gap> IsLatticeDigraph(gr);

false

gap> gr := Digraph([[1], [2], [1 .. 3]]);

<digraph with 3 vertices, 5 edges>

gap> IsJoinSemilatticeDigraph(gr);

false

gap> IsMeetSemilatticeDigraph(gr);

true

gap> IsLatticeDigraph(gr);

false

gap> gr := Digraph([[1 .. 4], [2, 4], [3, 4], [4]]);

<digraph with 4 vertices, 9 edges>

gap> IsMeetSemilatticeDigraph(gr);

true

gap> IsJoinSemilatticeDigraph(gr);

true

gap> IsLatticeDigraph(gr);

true

gap> gr := Digraph([[1, 1, 1], [1, 1, 2, 2],

> [1, 3, 3], [1, 2, 3, 3, 4]]);

<multidigraph with 4 vertices, 15 edges>

gap> IsMeetSemilatticeDigraph(gr);

true

gap> IsJoinSemilatticeDigraph(gr);

true

gap> IsLatticeDigraph(gr);

Digraphs 75

true

6.2 Regularity

6.2.1 IsInRegularDigraph

. IsInRegularDigraph(digraph) (property)

Returns: true or false.

This property is true if there is an integer n such that for every vertex v of digraph

digraph there are exactly n edges terminating in v. See also IsOutRegularDigraph (6.2.2) and

IsRegularDigraph (6.2.3).
Example

gap> IsInRegularDigraph(CompleteDigraph(4));

true

gap> IsInRegularDigraph(ChainDigraph(4));

false

6.2.2 IsOutRegularDigraph

. IsOutRegularDigraph(digraph) (property)

Returns: true or false.

This property is true if there is an integer n such that for every vertex v of digraph digraph there

are exactly n edges starting at v. See also IsInRegularDigraph (6.2.1) and IsRegularDigraph

(6.2.3).
Example

gap> IsOutRegularDigraph(CompleteDigraph(4));

true

gap> IsOutRegularDigraph(ChainDigraph(4));

false

6.2.3 IsRegularDigraph

. IsRegularDigraph(digraph) (property)

Returns: true or false.

This property is true if there is an integer n such that for every vertex v of digraph digraph

there are exactly n edges starting and terminating at v. In other words, the property is true

if digraph is both in-regular and and out-regular. See also IsInRegularDigraph (6.2.1) and

IsOutRegularDigraph (6.2.2).
Example

gap> IsRegularDigraph(CompleteDigraph(4));

true

gap> IsRegularDigraph(ChainDigraph(4));

false

6.2.4 IsDistanceRegularDigraph

. IsDistanceRegularDigraph(digraph) (property)

Returns: true or false.

Digraphs 76

If digraph is a connected symmetric graph, this property returns true if for any two vertices u

and v of digraph and any two integers i and j between 0 and the diameter of digraph , the number

of vertices at distance i from u and distance j from v depends only on i, j, and the distance between

vertices u and v.

Alternatively, a distance regular graph is a graph for which there exist integers b_i, c_i, and

i such that for any two vertices u, v in digraph which are distance i apart, there are exactly b_i

neighbors of v which are at distance i - 1 away from u, and c_i neighbors of v which are at distance

i + 1 away from u. This de�nition is used to check whether digraph is distance regular.

In the case where digraph is not symmetric or not connected, the property is false.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;

gap> IsDistanceRegularDigraph(gr);

false

gap> gr := Digraph([[2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3]]);

<digraph with 4 vertices, 12 edges>

gap> IsDistanceRegularDigraph(gr);

true

6.3 Connectivity and cycles

6.3.1 IsAcyclicDigraph

. IsAcyclicDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is acyclic, and false if it is not. A digraph is acyclic

if every directed cycle on the digraph is trivial. See section 1.1.1 for the de�nition of a directed cycle,

and of a trivial directed cycle.

The method used in this operation has complexity O(m+ n) where m is the number of edges

(counting multiple edges as one) and n is the number of vertices in the digraph.

Example
gap> Petersen := Graph(SymmetricGroup(5), [[1, 2]], OnSets,

> function(x, y)

> return IsEmpty(Intersection(x, y));

> end);;

gap> gr := Digraph(Petersen);

<digraph with 10 vertices, 30 edges>

gap> IsAcyclicDigraph(gr);

false

gap> gr := DigraphFromDiSparse6String(

> ".b_OGCIDBaPGkULEbQHCeRIdrHcuZMfRyDAbPhTi|zF");

<digraph with 35 vertices, 34 edges>

gap> IsAcyclicDigraph(gr);

true

gap> IsAcyclicDigraph(ChainDigraph(10));

true

gap> IsAcyclicDigraph(CycleDigraph(10));

false

Digraphs 77

6.3.2 IsConnectedDigraph

. IsConnectedDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is weakly connected and false if it is not. A

digraph digraph is weakly connected if it is possible to travel from any vertex to any other vertex by

traversing edges in either direction (possibly against the orientation of some of them).

The method used in this function has complexity O(m) if the digraph's DigraphSource (5.2.4)

attribute is set, otherwise it has complexity O(m+ n) (where m is the number of edges and n is the

number of vertices of the digraph).
Example

gap> gr := Digraph([[2], [3], []]);;

gap> IsConnectedDigraph(gr);

true

gap> gr := Digraph([[1, 3], [4], [3], []]);;

gap> IsConnectedDigraph(gr);

false

6.3.3 IsBiconnectedDigraph

. IsBiconnectedDigraph(digraph) (property)

Returns: true or false.

A connected digraph is biconnected if it is still connected (in the sense of IsConnectedDigraph

(6.3.2)) when any vertex is removed. IsBiconnectedDigraph returns true if the digraph digraph

is biconnected, and false if it is not. In particular, IsBiconnectedDigraph returns false if

digraph is not connected.

Multiple edges and loops are ignored by this method.

The method used in this operation has complexity O(m+ n) where m is the number of edges

(counting multiple edges as one, and not counting loops) and n is the number of vertices in the digraph.

See also ArticulationPoints (5.3.13).
Example

gap> IsBiconnectedDigraph(Digraph([[1, 3], [2, 3], [3]]));

false

gap> IsBiconnectedDigraph(CycleDigraph(5));

true

gap> digraph := Digraph([[1, 1], [1, 1, 2], [3], [3, 3, 4, 4]]);;

gap> IsBiconnectedDigraph(digraph);

false

6.3.4 IsStronglyConnectedDigraph

. IsStronglyConnectedDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is strongly connected and false if it is not.

A digraph digraph is strongly connected if there is a directed path from every vertex to every

other vertex. See section 1.1.1 for the de�nition of a directed path.

The method used in this operation is based on Gabow's Algorithm [Gab00] and has complexity

O(m+ n), where m is the number of edges (counting multiple edges as one) and n is the number of

vertices in the digraph.

Digraphs 78

Example
gap> gr := CycleDigraph(250000);

<digraph with 250000 vertices, 250000 edges>

gap> IsStronglyConnectedDigraph(gr);

true

gap> gr := DigraphRemoveEdges(gr, [[250000, 1]]);

<digraph with 250000 vertices, 249999 edges>

gap> IsStronglyConnectedDigraph(gr);

false

6.3.5 IsAperiodicDigraph

. IsAperiodicDigraph(digraph) (property)

Returns: true or false.

This property is true if the digraph digraph is aperiodic, i.e. if its DigraphPeriod (5.3.14) is

equal to 1. Otherwise, the property is false.
Example

gap> gr := Digraph([[6], [1], [2], [3], [4, 4], [5]]);

<multidigraph with 6 vertices, 7 edges>

gap> IsAperiodicDigraph(gr);

false

gap> gr := Digraph([[2], [3, 5], [4], [5], [1, 2]]);

<digraph with 5 vertices, 7 edges>

gap> IsAperiodicDigraph(gr);

true

6.3.6 IsDirectedTree

. IsDirectedTree(digraph) (property)

Returns: true or false.

Returns true if the digraph digraph is a directed tree, and false if it is not.

A directed tree is an acyclic digraph with precisely 1 source, such that no two vertices share an

out-neighbour. Note the empty digraph is not considered a directed tree as it has no source.

See also DigraphSources (5.1.6).

Example
gap> gr := Digraph([[], [2]]);

<digraph with 2 vertices, 1 edge>

gap> IsDirectedTree(gr);

false

gap> gr := Digraph([[3], [3], []]);

<digraph with 3 vertices, 2 edges>

gap> IsDirectedTree(gr);

false

gap> gr := Digraph([[2], [3], []]);

<digraph with 3 vertices, 2 edges>

gap> IsDirectedTree(gr);

true

gap> gr := Digraph([[2, 3], [6], [4, 5], [], [], []]);

<digraph with 6 vertices, 5 edges>

Digraphs 79

gap> IsDirectedTree(gr);

true

6.3.7 IsUndirectedTree

. IsUndirectedTree(digraph) (property)

. IsUndirectedForest(digraph) (property)

Returns: true or false.

The property IsUndirectedTree returns true if the digraph digraph is an undirected tree, and

the property IsUndirectedForest returns true if digraph is an undirected forest; otherwise, these

properties return false.

An undirected tree is a symmetric digraph without loops, in which for any pair of distinct vertices

u and v, there is exactly one directed path from u to v. See IsSymmetricDigraph (6.1.10) and

DigraphHasLoops (6.1.1), and see section 1.1.1 for the de�nition of directed path. This de�nition

implies that an undirected tree has no multiple edges.

An undirected forest is a digraph, each of whose connected components is an undirected tree.

In other words, an undirected forest is isomorphic to a disjoint union of undirected trees. See

DigraphConnectedComponents (5.3.8) and DigraphDisjointUnion (3.3.25). In particular, every

undirected tree is an undirected forest.

Please note that the digraph with zero vertices is considered to be neither an undirected tree nor

an undirected forest.
Example

gap> gr := Digraph([[3], [3], [1, 2]]);

<digraph with 3 vertices, 4 edges>

gap> IsUndirectedTree(gr);

true

gap> IsSymmetricDigraph(gr) and not DigraphHasLoops(gr);

true

gap> gr := Digraph([[3], [5], [1, 4], [3], [2]]);

<digraph with 5 vertices, 6 edges>

gap> IsConnectedDigraph(gr);

false

gap> IsUndirectedTree(gr);

false

gap> IsUndirectedForest(gr);

true

gap> gr := Digraph([[1, 2], [1], [2]]);

<digraph with 3 vertices, 4 edges>

gap> IsUndirectedTree(gr) or IsUndirectedForest(gr);

false

gap> IsSymmetricDigraph(gr) or not DigraphHasLoops(gr);

false

6.3.8 IsEulerianDigraph

. IsEulerianDigraph(digraph) (property)

Returns: true or false.

This property returns true if the digraph digraph is Eulerian.

Digraphs 80

A digraph is called Eulerian if there exists a directed circuit on the digraph which includes every

edge exactly once. See section 1.1.1 for the de�nition of a directed circuit.

Example
gap> gr := Digraph([[]]);

<digraph with 1 vertex, 0 edges>

gap> IsEulerianDigraph(gr);

true

gap> gr := Digraph([[2], []]);

<digraph with 2 vertices, 1 edge>

gap> IsEulerianDigraph(gr);

false

gap> gr := Digraph([[3], [], [2]]);

<digraph with 3 vertices, 2 edges>

gap> IsEulerianDigraph(gr);

false

gap> gr := Digraph([[2], [3], [1]]);

<digraph with 3 vertices, 3 edges>

gap> IsEulerianDigraph(gr);

true

6.3.9 IsHamiltonianDigraph

. IsHamiltonianDigraph(digraph) (property)

Returns: true or false.

If digraph is Hamiltonian, then this property returns true, and false if it is not.

A digraph with n vertices is Hamiltonian if it has a directed cycle of length n. See Section 1.1.1

for the de�nition of a directed cycle. Note the empty digraphs on 0 and 1 vertices are considered to

be Hamiltonian.

The method used in this operation has the worst case complexity as DigraphMonomorphism

(7.3.4).
Example

gap> g := Digraph([[]]);

<digraph with 1 vertex, 0 edges>

gap> IsHamiltonianDigraph(g);

true

gap> g := Digraph([[2], [1]]);

<digraph with 2 vertices, 2 edges>

gap> IsHamiltonianDigraph(g);

true

gap> g := Digraph([[3], [], [2]]);

<digraph with 3 vertices, 2 edges>

gap> IsHamiltonianDigraph(g);

false

gap> g := Digraph([[2], [3], [1]]);

<digraph with 3 vertices, 3 edges>

gap> IsHamiltonianDigraph(g);

true

Digraphs 81

6.3.10 IsCycleDigraph

. IsCycleDigraph(digraph) (property)

Returns: true or false.

IsCycleDigraph returns true if the digraph digraph is isomorphic to the cycle digraph with

the same number of vertices as digraph , and false if it is not; see CycleDigraph (3.5.5).

A digraph is a cycle if and only if it is strongly connected and has the same number of edges as

vertices.
Example

gap> gr := Digraph([[1, 3], [2, 3], [3]]);

<digraph with 3 vertices, 5 edges>

gap> IsCycleDigraph(gr);

false

gap> gr := CycleDigraph(5);

<digraph with 5 vertices, 5 edges>

gap> IsCycleDigraph(gr);

true

gap> gr := OnDigraphs(gr, (1, 2, 3));

<digraph with 5 vertices, 5 edges>

gap> gr = CycleDigraph(5);

false

gap> IsCycleDigraph(gr);

true

Chapter 7

Homomorphisms

7.1 Acting on digraphs

7.1.1 OnDigraphs (for a digraph and a perm)

. OnDigraphs(digraph, perm) (operation)

. OnDigraphs(digraph, trans) (operation)

Returns: A digraph.

If digraph is a digraph, and the second argument perm is a permutation of the vertices of

digraph , then this operation returns a digraph constructed by relabelling the vertices of digraph

according to perm . Note that for an automorphism f of a digraph, we have OnDigraphs(digraph,

f) = digraph .

If the second argument is a transformation trans of the vertices of digraph , then this oper-

ation returns a digraph constructed by transforming the source and range of each edge according

to trans . Thus a vertex which does not appear in the image of trans will be isolated in the re-

turned digraph, and the returned digraph may contain multiple edges, even if digraph does not.

If trans is mathematically a permutation, then the result coincides with OnDigraphs(digraph,

AsPermutation(trans)).

The DigraphVertexLabels (5.1.9) of digraph will not be retained in the returned digraph.

Example
gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);

<digraph with 5 vertices, 11 edges>

gap> new := OnDigraphs(gr, (1, 2));

<digraph with 5 vertices, 11 edges>

gap> OutNeighbours(new);

[[2, 3, 5], [3], [2], [2, 1, 4], [1, 3, 5]]

gap> gr := Digraph([[2], [], [2]]);

<digraph with 3 vertices, 2 edges>

gap> t := Transformation([1, 2, 1]);;

gap> new := OnDigraphs(gr, t);

<multidigraph with 3 vertices, 2 edges>

gap> OutNeighbours(new);

[[2, 2], [], []]

gap> ForAll(DigraphEdges(gr),

> e -> IsDigraphEdge(new, [e[1] ^ t, e[2] ^ t]));

true

82

Digraphs 83

7.1.2 OnMultiDigraphs

. OnMultiDigraphs(digraph, pair) (operation)

. OnMultiDigraphs(digraph, perm1, perm2) (operation)

Returns: A digraph.

If digraph is a digraph, and pair is a pair consisting of a permutation of the vertices and a

permutation of the edges of digraph , then this operation returns a digraph constructed by relabelling

the vertices and edges of digraph according to perm[1] and perm[2] , respectively.

In its second form, OnMultiDigraphs returns a digraph with vertices and edges permuted by

perm1 and perm2 , respectively.

Note that OnDigraphs(digraph, perm)=OnMultiDigraphs(digraph, [perm, ()]) where

perm is a permutation of the vertices of digraph . If you are only interested in the action of a permu-

tation on the vertices of a digraph, then you can use OnDigraphs instead of OnMultiDigraphs.
Example

gap> gr1 := Digraph([

> [3, 6, 3], [], [3], [9, 10], [9], [], [], [10, 4, 10], [], []]);

<multidigraph with 10 vertices, 10 edges>

gap> p := BlissCanonicalLabelling(gr1);

[(1,9,5,3,10,6,4,7), (1,7,9,5,2,8,4,10,3,6)]

gap> gr2 := OnMultiDigraphs(gr1, p);

<multidigraph with 10 vertices, 10 edges>

gap> OutNeighbours(gr2);

[[], [], [5], [], [], [], [5, 6], [6, 7, 6],

[10, 4, 10], [10]]

7.2 Isomorphisms and canonical labellings

From version 0.11.0 of Digraphs it is possible to use either bliss or nauty (via NautyTracesInterface)

to calculate canonical labellings and automorphism groups of digraphs; see [JK07] and [MP14] for

more details about bliss and nauty, respectively.

7.2.1 DigraphsUseNauty

. DigraphsUseNauty() (function)

. DigraphsUseBliss() (function)

Returns: Nothing.

These functions can be used to specify whether nauty or bliss should be used by default by Di-

graphs. If NautyTracesInterface is not available, then these functions do nothing. Otherwise, by

calling DigraphsUseNauty subsequent computations will default to using nauty rather than bliss,

where possible.

You can call these functions at any point in a GAP session, as many times as you like,

it is guaranteed that existing digraphs remain valid, and that comparison of existing digraphs

and newly created digraphs via IsIsomorphicDigraph (7.2.14), IsIsomorphicDigraph (7.2.15),

IsomorphismDigraphs (7.2.16), and IsomorphismDigraphs (7.2.17) are also valid.

It is also possible to compute the automorphism group of a speci�c digraph using both nauty and

bliss using NautyAutomorphismGroup (7.2.4) and BlissAutomorphismGroup (7.2.3), respectively.

http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
https://github.com/sebasguts/NautyTracesInterface
http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/

Digraphs 84

7.2.2 AutomorphismGroup (for a digraph)

. AutomorphismGroup(digraph) (attribute)

Returns: A permutation group.

If digraph is a digraph, then this attribute contains the group of automorphisms of digraph . An

automorphism of digraph is an isomorphism from digraph to itself. See IsomorphismDigraphs

(7.2.16) for more information about isomorphisms of digraphs.

The form in which the automorphism group is returned depends on whether digraph has multiple

edges; see IsMultiDigraph (6.1.8).

for a digraph without multiple edges

If digraph has no multiple edges, then the automorphism group is returned as a group of

permutations on the vertices of digraph .

for a multidigraph

If digraph is a multidigraph, then the automorphism group is a group of permutations on the

vertices and edges of digraph .

For convenience, the group is returned as the direct product G of the group of automorphisms

of the vertices of digraph with the stabiliser of the vertices in the automorphism group of

the edges. These two groups can be accessed using the operation Projection (Reference:

Projection for a domain and a positive integer), with the second argument being 1 or 2,

respectively.

The permutations in the group Projection(G, 1) act on the vertices of digraph , and the per-

mutations in the group Projection(G, 2) act on the indices of DigraphEdges(digraph).

By default, the automorphism group is found using bliss by Tommi Junttila and Petteri Kaski. If Nau-

tyTracesInterface is available, then nauty by Brendan Mckay and Adolfo Piperno can be used instead;

see BlissAutomorphismGroup (7.2.3), NautyAutomorphismGroup (7.2.4), DigraphsUseBliss

(7.2.1), and DigraphsUseNauty (7.2.1).
Example

gap> johnson := DigraphFromGraph6String("E}lw");

<digraph with 6 vertices, 24 edges>

gap> G := AutomorphismGroup(johnson);

Group([(3,4), (2,3)(4,5), (1,2)(5,6)])

gap> cycle := CycleDigraph(9);

<digraph with 9 vertices, 9 edges>

gap> G := AutomorphismGroup(cycle);

Group([(1,2,3,4,5,6,7,8,9)])

gap> IsCyclic(G) and Size(G) = 9;

true

gap> gr := DigraphEdgeUnion(CycleDigraph(3), CycleDigraph(3));

<multidigraph with 3 vertices, 6 edges>

gap> G := AutomorphismGroup(gr);

Group([(1,2,3), (8,9), (6,7), (4,5)])

gap> Range(Projection(G, 1));

Group([(1,2,3)])

gap> Range(Projection(G, 2));

Group([(5,6), (3,4), (1,2)])

gap> Size(G);

24

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 85

gap> gr := Digraph([[2], [3, 3], [3], [2]]);

<multidigraph with 4 vertices, 5 edges>

gap> G := AutomorphismGroup(gr);

Group([(1,2), (3,4)])

gap> P1 := Projection(G, 1);

1st projection of Group([(1,2), (3,4)])

gap> P2 := Projection(G, 2);

2nd projection of Group([(1,2), (3,4)])

gap> DigraphVertices(gr);

[1 .. 4]

gap> Range(P1);

Group([(1,4)])

gap> DigraphEdges(gr);

[[1, 2], [2, 3], [2, 3], [3, 3], [4, 2]]

gap> Range(P2);

Group([(2,3)])

7.2.3 BlissAutomorphismGroup

. BlissAutomorphismGroup(digraph[, colours]) (attribute)

Returns: A permutation group.

If digraph is a digraph, then this attribute contains the group of automorphisms of digraph as

calculated using bliss by Tommi Junttila and Petteri Kaski.

The attribute AutomorphismGroup (7.2.2) and operation AutomorphismGroup (7.2.5) returns the

value of either BlissAutomorphismGroup or NautyAutomorphismGroup (7.2.4). These groups are,

of course, equal but their generating sets may differ.

See also DigraphsUseBliss (7.2.1), and DigraphsUseNauty (7.2.1).

Example
gap> BlissAutomorphismGroup(JohnsonDigraph(5, 2));

Group([(3,4)(6,7)(8,9), (2,3)(5,6)(9,10), (2,5)(3,6)(4,7), (1,2)(6,8)

(7,9)])

7.2.4 NautyAutomorphismGroup

. NautyAutomorphismGroup(digraph[, colours]) (attribute)

Returns: A permutation group.

If digraph is a digraph, then this attribute contains the group of automorphisms of digraph

as calculated using nauty by Brendan Mckay and Adolfo Piperno via NautyTracesInterface. The

attribute AutomorphismGroup (7.2.2) and operation AutomorphismGroup (7.2.5) returns the value

of either NautyAutomorphismGroup or BlissAutomorphismGroup (7.2.3). These groups are, of

course, equal but their generating sets may differ.

See also DigraphsUseBliss (7.2.1), and DigraphsUseNauty (7.2.1).

Example
gap> NautyAutomorphismGroup(JohnsonDigraph(5, 2));

Group([(3,4)(6,7)(8,9), (2,3)(5,6)(9,10), (2,5)(3,6)(4,7), (1,2)(6,8)(7,9)])

http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
https://github.com/sebasguts/NautyTracesInterface

Digraphs 86

7.2.5 AutomorphismGroup (for a digraph and a homogeneous list)

. AutomorphismGroup(digraph, colours) (operation)

Returns: A permutation group.

This operation computes the automorphism group of a coloured digraph. A coloured digraph can

be speci�ed by its underlying digraph digraph and its colouring colours . Let n be the number of

vertices of digraph . The colouring colours may have one of the following two forms:

� a list of n integers, where colours[i] is the colour of vertex i, using the colours [1 .. m]

for some m <= n; or

� a list of non-empty disjoint lists whose union is DigraphVertices(digraph), such that

colours[i] is the list of all vertices with colour i.

The automorphism group of a coloured digraph digraph with colouring colours is the group con-

sisting of its automorphisms; an automorphism of digraph is an isomorphism of coloured digraphs

from digraph to itself. This group is equal to the subgroup of AutomorphismGroup(digraph)

consisting of those automorphisms that preserve the colouring speci�ed by colours . See

AutomorphismGroup (7.2.2), and see IsomorphismDigraphs (7.2.17) for more information about

isomorphisms of coloured digraphs.

The form in which the automorphism group is returned depends on whether digraph has multiple

edges; see IsMultiDigraph (6.1.8).

for a digraph without multiple edges

If digraph has no multiple edges, then the automorphism group is returned as a group of

permutations on the vertices of digraph .

for a multidigraph

If digraph is a multidigraph, then the automorphism group is a group of permutations on the

vertices and edges of digraph .

For convenience, the group is returned as the direct product G of the group of automorphisms

of the vertices of digraph with the stabiliser of the vertices in the automorphism group of

the edges. These two groups can be accessed using the operation Projection (Reference:

Projection for a domain and a positive integer), with the second argument being 1 or 2,

respectively.

The permutations in the group Projection(G, 1) act on the vertices of digraph , and the per-

mutations in the group Projection(G, 2) act on the indices of DigraphEdges(digraph).

By default, the automorphism group is found using bliss by Tommi Junttila and Petteri Kaski. If Nau-

tyTracesInterface is available, then nauty by Brendan Mckay and Adolfo Piperno can be used instead;

see BlissAutomorphismGroup (7.2.3), NautyAutomorphismGroup (7.2.4), DigraphsUseBliss

(7.2.1), and DigraphsUseNauty (7.2.1).
Example

gap> cycle := CycleDigraph(9);

<digraph with 9 vertices, 9 edges>

gap> G := AutomorphismGroup(cycle);;

gap> IsCyclic(G) and Size(G) = 9;

true

gap> colours := [[1, 4, 7], [2, 5, 8], [3, 6, 9]];;

gap> H := AutomorphismGroup(cycle, colours);;

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 87

gap> Size(H);

3

gap> H = AutomorphismGroup(cycle, [1, 2, 3, 1, 2, 3, 1, 2, 3]);

true

gap> H = SubgroupByProperty(G, p -> OnTuplesSets(colours, p) = colours);

true

gap> IsTrivial(AutomorphismGroup(cycle, [1, 1, 2, 2, 2, 2, 2, 2, 2]));

true

gap> gr := Digraph([[2], [3, 3], [3], [2], [2]]);

<multidigraph with 5 vertices, 6 edges>

gap> G := AutomorphismGroup(gr, [1, 1, 2, 3, 1]);

Group([(1,2), (3,4)])

gap> P1 := Projection(G, 1);

1st projection of Group([(1,2), (3,4)])

gap> P2 := Projection(G, 2);

2nd projection of Group([(1,2), (3,4)])

gap> DigraphVertices(gr);

[1 .. 5]

gap> Range(P1);

Group([(1,5)])

gap> DigraphEdges(gr);

[[1, 2], [2, 3], [2, 3], [3, 3], [4, 2], [5, 2]]

gap> Range(P2);

Group([(2,3)])

7.2.6 BlissCanonicalLabelling (for a digraph)

. BlissCanonicalLabelling(digraph) (attribute)

. NautyCanonicalLabelling(digraph) (attribute)

Returns: A permutation, or a list of two permutations.

A function r that maps a digraph to a digraph is a canonical representative map if the following

two conditions hold for all digraphs G and H:

� r(G) and G are isomorphic as digraphs; and

� r(G) = r(H) if and only if G and H are isomorphic as digraphs.

A canonical labelling of a digraph G (under r) is an isomorphism of G onto its canonical repre-

sentative, r(G). See IsomorphismDigraphs (7.2.16) for more information about isomorphisms of

digraphs.

BlissCanonicalLabelling returns a canonical labelling of the digraph digraph found using

bliss by Tommi Junttila and Petteri Kaski. NautyCanonicalLabelling returns a canonical labelling

of the digraph digraph found using nauty by Brendan McKay and Adolfo Piperno. Note that the

canonical labellings returned by bliss and nauty are not usually the same (and may depend of the

version used).

The form of the canonical labelling returned by BlissCanonicalLabelling depends on whether

digraph has multiple edges; see IsMultiDigraph (6.1.8).

for a digraph without multiple edges

If the digraph digraph has no multiple edges, then the canonical labelling of digraph is given

http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/

Digraphs 88

as a permutation of its vertices. The canonical representative of digraph can be created from

digraph and its canonical labelling p by using the operation OnDigraphs (7.1.1):

Example
gap> OnDigraphs(digraph, p);

for a multidigraph

The canonical labelling of the multidigraph digraph is given as a pair P of permutations. The

�rst, P[1], is a permutation of the vertices of digraph . The second, P[2], is a permutation

of the edges of digraph ; it acts on the indices of the list DigraphEdges(digraph). The

canonical representative of digraph can be created from digraph and its canonical labelling

P by using the operation OnMultiDigraphs (7.1.2):

Example
gap> OnMultiDigraphs(digraph, P);

Example
gap> digraph1 := DigraphFromDiSparse6String(".ImNS_AiB?qRN");

<digraph with 10 vertices, 8 edges>

gap> BlissCanonicalLabelling(digraph1);

(1,3,4)(2,10,6,7,9,8)

gap> p := (1, 2, 7, 5)(3, 9)(6, 10, 8);;

gap> digraph2 := OnDigraphs(digraph1, p);

<digraph with 10 vertices, 8 edges>

gap> digraph1 = digraph2;

false

gap> OnDigraphs(digraph1, BlissCanonicalLabelling(digraph1)) =

> OnDigraphs(digraph2, BlissCanonicalLabelling(digraph2));

true

gap> gr := DigraphFromDiSparse6String(".ImEk|O@SK?od");

<multidigraph with 10 vertices, 10 edges>

gap> BlissCanonicalLabelling(gr);

[(1,9,7,5)(2,10,3), (1,6,9)(2,5,10,4,8)(3,7)]

gap> gr := Digraph([[2], [3, 3], [3], [2], [2]]);

<multidigraph with 5 vertices, 6 edges>

gap> BlissCanonicalLabelling(gr, [1, 2, 2, 1, 3]);

[(1,2,4), (1,2,6,4,3,5)]

7.2.7 BlissCanonicalLabelling (for a digraph and a list)

. BlissCanonicalLabelling(digraph, colours) (operation)

. NautyCanonicalLabelling(digraph, colours) (operation)

Returns: A permutation.

A function r that maps a coloured digraph to a coloured digraph is a canonical representative

map if the following two conditions hold for all coloured digraphs G and H:

� r(G) and G are isomorphic as coloured digraphs; and

� r(G) = r(H) if and only if G and H are isomorphic as coloured digraphs.

A canonical labelling of a coloured digraph G (under r) is an isomorphism of G onto its canonical

representative, r(G). See IsomorphismDigraphs (7.2.17) for more information about isomorphisms

of coloured digraphs.

Digraphs 89

A coloured digraph can be speci�ed by its underlying digraph digraph and its colouring

colours . Let n be the number of vertices of digraph . The colouring colours may have one of

the following two forms:

� a list of n integers, where colours[i] is the colour of vertex i, using the colours [1 .. m]

for some m <= n; or

� a list of non-empty disjoint lists whose union is DigraphVertices(digraph), such that

colours[i] is the list of all vertices with colour i.

If digraph and colours together form a coloured digraph, BlissCanonicalLabelling returns a

canonical labelling of the digraph digraph found using bliss by Tommi Junttila and Petteri Kaski.

Similarly, NautyCanonicalLabelling returns a canonical labelling of the digraph digraph found

using nauty by Brendan McKay and Adolfo Piperno. Note that the canonical labellings returned by

bliss and nauty are not usually the same (and may depend of the version used).

The form of the canonical labelling returned by BlissCanonicalLabelling depends on whether

digraph has multiple edges; see IsMultiDigraph (6.1.8).

for a digraph without multiple edges

If the digraph digraph has no multiple edges, then the canonical labelling of digraph is given

as a permutation of its vertices. The canonical representative of digraph can be created from

digraph and its canonical labelling p by using the operation OnDigraphs (7.1.1):

Example
gap> OnDigraphs(digraph, p);

for a multidigraph

The canonical labelling of the multidigraph digraph is given as a pair P of permutations. The

�rst, P[1], is a permutation of the vertices of digraph . The second, P[2], is a permutation

of the edges of digraph ; it acts on the indices of the list DigraphEdges(digraph). The

canonical representative of digraph can be created from digraph and its canonical labelling

P by using the operation OnMultiDigraphs (7.1.2):

Example
gap> OnMultiDigraphs(digraph, P);

In either case, the colouring of the canonical representative can easily be constructed. A vertex v (in

digraph) has colour i if and only if the vertex v ^ p (in the canonical representative) has colour

i, where p is the permutation of the canonical labelling that acts on the vertices of digraph . In

particular, if colours has the �rst form that is described above, then the colouring of the canonical

representative is given by:

Example
gap> List(DigraphVertices(digraph), i -> colours[i / p]);

On the other hand, if colours has the second form above, then the canonical representative has

colouring:

Example
gap> OnTuplesSets(colours, p);

http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/

Digraphs 90

Example
gap> digraph := DigraphFromDiSparse6String(".ImNS_AiB?qRN");

<digraph with 10 vertices, 8 edges>

gap> colours := [[1, 2, 8, 9, 10], [3, 4, 5, 6, 7]];;

gap> p := BlissCanonicalLabelling(digraph, colours);

(2,3,7,10)(4,6,9,5,8)

gap> OnDigraphs(digraph, p);

<digraph with 10 vertices, 8 edges>

gap> OnTuplesSets(colours, p);

[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]

gap> colours := [1, 1, 1, 1, 2, 3, 1, 3, 2, 1];;

gap> p := BlissCanonicalLabelling(digraph, colours);

(2,3,4,6,10,5,8,9,7)

gap> OnDigraphs(digraph, p);

<digraph with 10 vertices, 8 edges>

gap> List(DigraphVertices(digraph), i -> colours[i / p]);

[1, 1, 1, 1, 1, 1, 2, 2, 3, 3]

7.2.8 BlissCanonicalDigraph

. BlissCanonicalDigraph(digraph) (attribute)

. NautyCanonicalDigraph(digraph) (attribute)

Returns: A digraph.

The attribute BlissCanonicalLabelling returns the canonical representative found by applying

BlissCanonicalLabelling (7.2.6). The digraph returned is canonical in the sense that

� BlissCanonicalDigraph(digraph) and digraph are isomorphic as digraphs; and

� If gr is any digraph then BlissCanonicalDigraph(gr) and

BlissCanonicalDigraph(digraph) are equal if and only if gr and digraph are iso-

morphic as digraphs.

Analogously, the attribute NautyCanonicalLabelling returns the canonical representative found by

applying NautyCanonicalLabelling (7.2.6).
Example

gap> digraph := Digraph([[1], [2, 3], [3], [1, 2, 3]]);

<digraph with 4 vertices, 7 edges>

gap> canon := BlissCanonicalDigraph(digraph);

<digraph with 4 vertices, 7 edges>

gap> OutNeighbours(canon);

[[1], [2, 4], [1, 2, 4], [4]]

7.2.9 DigraphGroup

. DigraphGroup(digraph) (attribute)

Returns: A permutation group.

If digraph was created knowing a subgroup of its automorphism group, then this group is stored

in the attribute DigraphGroup. If digraph is not created knowing a subgroup of its automorphism

group, then DigraphGroup returns the entire automorphism group of digraph .

Note that certain other constructor operations such as CayleyDigraph (3.1.10),

BipartiteDoubleDigraph (3.3.31), and DoubleDigraph (3.3.30), may not require a group

Digraphs 91

as one of the arguments, but use the standard constructor method using a group, and hence set the

DigraphGroup attribute for the resulting digraph.

Example
gap> n := 4;;

gap> adj := function(x, y)

> return (((x - y) mod n) = 1) or (((x - y) mod n) = n - 1);

> end;;

gap> group := CyclicGroup(IsPermGroup, n);

Group([(1,2,3,4)])

gap> digraph := Digraph(group, [1 .. n], \^, adj);

<digraph with 4 vertices, 8 edges>

gap> HasDigraphGroup(digraph);

true

gap> DigraphGroup(digraph);

Group([(1,2,3,4)])

gap> AutomorphismGroup(digraph);

Group([(2,4), (1,2)(3,4)])

gap> ddigraph := DoubleDigraph(digraph);

<digraph with 8 vertices, 32 edges>

gap> HasDigraphGroup(ddigraph);

true

gap> DigraphGroup(ddigraph);

Group([(1,2,3,4)(5,6,7,8), (1,5)(2,6)(3,7)(4,8)])

gap> AutomorphismGroup(ddigraph) =

> Group([(6, 8), (5, 7), (4, 6), (3, 5), (2, 4),

> (1, 2)(3, 4)(5, 6)(7, 8)]);

true

gap> digraph := Digraph([[2, 3], [], []]);

<digraph with 3 vertices, 2 edges>

gap> HasDigraphGroup(digraph);

false

gap> HasAutomorphismGroup(digraph);

false

gap> DigraphGroup(digraph);

Group([(2,3)])

gap> HasAutomorphismGroup(digraph);

true

gap> group := DihedralGroup(8);

<pc group of size 8 with 3 generators>

gap> digraph := CayleyDigraph(group);

<digraph with 8 vertices, 24 edges>

gap> HasDigraphGroup(digraph);

true

gap> DigraphGroup(digraph);

Group([(1,2)(3,8)(4,6)(5,7), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)

(5,8)])

7.2.10 DigraphOrbits

. DigraphOrbits(digraph) (attribute)

Returns: A list of lists of integers.

Digraphs 92

DigraphOrbits returns the orbits of the action of the DigraphGroup (7.2.9) on the set of vertices

of digraph .
Example

gap> G := Group([(2, 3)(7, 8, 9), (1, 2, 3)(4, 5, 6)(8, 9)]);;

gap> gr := EdgeOrbitsDigraph(G, [1, 2]);

<digraph with 9 vertices, 6 edges>

gap> DigraphOrbits(gr);

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

7.2.11 DigraphOrbitReps

. DigraphOrbitReps(digraph) (attribute)

Returns: A list of integers.

DigraphOrbitReps returns a list of orbit representatives of the action of the DigraphGroup

(7.2.9) on the set of vertices of digraph .
Example

gap> digraph := CayleyDigraph(AlternatingGroup(4));

<digraph with 12 vertices, 24 edges>

gap> DigraphOrbitReps(digraph);

[1]

gap> digraph := DigraphFromDigraph6String("+I?OGg????A?Ci_o_@?");

<digraph with 10 vertices, 14 edges>

gap> DigraphOrbitReps(digraph);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

7.2.12 DigraphSchreierVector

. DigraphSchreierVector(digraph) (attribute)

Returns: A list of integers.

DigraphSchreierVector returns the so-called Schreier vector of the action of the

DigraphGroup (7.2.9) on the set of vertices of digraph . The Schreier vector is a list sch of in-

tegers with length DigraphNrVertices(digraph) where:

sch[i] < 0:

implies that i is an orbit representative and DigraphOrbitReps(digraph)[-sch[i]] = i.

sch[i] > 0:

implies that i / gens[sch[i]] is one step closer to the root (or representative) of the tree,

where gens is the generators of DigraphGroup(digraph).

Example
gap> digraph := CayleyDigraph(AlternatingGroup(4));

<digraph with 12 vertices, 24 edges>

gap> sch := DigraphSchreierVector(digraph);

[-1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1]

gap> DigraphOrbitReps(digraph);

[1]

gap> gens := GeneratorsOfGroup(DigraphGroup(digraph));

[(1,5,7)(2,4,8)(3,6,9)(10,11,12), (1,2,3)(4,7,10)(5,9,11)(6,8,12)]

gap> 10 / gens[sch[10]];

7

Digraphs 93

gap> 7 / gens[sch[7]];

5

gap> 5 / gens[sch[5]];

1

7.2.13 DigraphStabilizer

. DigraphStabilizer(digraph, v) (operation)

Returns: A permutation group.

DigraphStabilizer returns the stabilizer of the vertex v under of the action of the

DigraphGroup (7.2.9) on the set of vertices of digraph .
Example

gap> digraph := DigraphFromDigraph6String("+GUIQQWWXHHPg");

<digraph with 8 vertices, 24 edges>

gap> DigraphStabilizer(digraph, 8);

Group(())

gap> DigraphStabilizer(digraph, 2);

Group(())

7.2.14 IsIsomorphicDigraph (for digraphs)

. IsIsomorphicDigraph(digraph1, digraph2) (operation)

Returns: true or false.

This operation returns true if there exists an isomorphism from the digraph digraph1 to the

digraph digraph2 . See IsomorphismDigraphs (7.2.16) for more information about isomorphisms

of digraphs.

By default, an isomorphism is found using the canonical labellings of the digraphs obtained

from bliss by Tommi Junttila and Petteri Kaski. If NautyTracesInterface is available, then nauty

by Brendan Mckay and Adolfo Piperno can be used instead; see DigraphsUseBliss (7.2.1), and

DigraphsUseNauty (7.2.1).

Example
gap> digraph1 := CycleDigraph(4);

<digraph with 4 vertices, 4 edges>

gap> digraph2 := CycleDigraph(5);

<digraph with 5 vertices, 5 edges>

gap> IsIsomorphicDigraph(digraph1, digraph2);

false

gap> digraph2 := DigraphReverse(digraph1);

<digraph with 4 vertices, 4 edges>

gap> IsIsomorphicDigraph(digraph1, digraph2);

true

gap> digraph1 := DigraphFromDiSparse6String(".IiGdqrHiogeaF");

<multidigraph with 10 vertices, 10 edges>

gap> digraph2 := DigraphFromDiSparse6String(".IiK`K@FFSouF_|^");

<multidigraph with 10 vertices, 10 edges>

gap> IsIsomorphicDigraph(digraph1, digraph2);

false

gap> digraph1 := Digraph([[3], [], []]);

<digraph with 3 vertices, 1 edge>

gap> digraph2 := Digraph([[], [], [2]]);

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 94

<digraph with 3 vertices, 1 edge>

gap> IsIsomorphicDigraph(digraph1, digraph2);

true

7.2.15 IsIsomorphicDigraph (for digraphs and homogeneous lists)

. IsIsomorphicDigraph(digraph1, digraph2, colours1, colours2) (operation)

Returns: true or false.

This operation tests for isomorphism of coloured digraphs. A coloured digraph can be speci�ed

by its underlying digraph digraph1 and its colouring colours1 . Let n be the number of vertices of

digraph1 . The colouring colours1 may have one of the following two forms:

� a list of n integers, where colours[i] is the colour of vertex i, using the colours [1 .. m]

for some m <= n; or

� a list of non-empty disjoint lists whose union is DigraphVertices(digraph), such that

colours[i] is the list of all vertices with colour i.

If digraph1 and digraph2 are digraphs without multiple edges, and colours1 and colours2 are

colourings of digraph1 and digraph2 , respectively, then this operation returns true if there exists

an isomorphism between these two coloured digraphs. See IsomorphismDigraphs (7.2.17) for more

information about isomorphisms of coloured digraphs.

By default, an isomorphism is found using the canonical labellings of the digraphs obtained

from bliss by Tommi Junttila and Petteri Kaski. If NautyTracesInterface is available, then nauty

by Brendan Mckay and Adolfo Piperno can be used instead; see DigraphsUseBliss (7.2.1), and

DigraphsUseNauty (7.2.1).
Example

gap> digraph1 := ChainDigraph(4);

<digraph with 4 vertices, 3 edges>

gap> digraph2 := ChainDigraph(3);

<digraph with 3 vertices, 2 edges>

gap> IsIsomorphicDigraph(digraph1, digraph2,

> [[1, 4], [2, 3]], [[1, 2], [3]]);

false

gap> digraph2 := DigraphReverse(digraph1);

<digraph with 4 vertices, 3 edges>

gap> IsIsomorphicDigraph(digraph1, digraph2,

> [1, 1, 1, 1], [1, 1, 1, 1]);

true

gap> IsIsomorphicDigraph(digraph1, digraph2,

> [1, 2, 2, 1], [1, 2, 2, 1]);

true

gap> IsIsomorphicDigraph(digraph1, digraph2,

> [1, 1, 2, 2], [1, 1, 2, 2]);

false

gap> digraph1 := Digraph([[2, 1, 2], [1, 2, 1]]);

<multidigraph with 2 vertices, 6 edges>

gap> IsIsomorphicDigraph(digraph1, digraph1, [2, 1], [1, 2]);

true

gap> IsIsomorphicDigraph(digraph1, digraph1, [1, 1], [1, 2]);

false

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 95

7.2.16 IsomorphismDigraphs (for digraphs)

. IsomorphismDigraphs(digraph1, digraph2) (operation)

Returns: A permutation, or a pair of permutations, or fail.

This operation returns an isomorphism between the digraphs digraph1 and digraph2 if one

exists, else this operation returns fail.

for digraphs without multiple edges

An isomorphism from a digraph digraph1 to a digraph digraph2 is a bijection p from the

vertices of digraph1 to the vertices of digraph2 with the following property: for all vertices

i and j of digraph1 , [i, j] is an edge of digraph1 if and only if [i ^ p, j ^ p] is an

edge of digraph2 .

If there exists such an isomorphism, then this operation returns one. The form of this isomor-

phism is a permutation p of the vertices of digraph1 such that

OnDigraphs(digraph1, p) = digraph2.

for multidigraphs

An isomorphism from a multidigraph digraph1 to a multidigraph digraph2 is a bijection

P[1] from the vertices of digraph1 to the vertices of digraph2 and a bijection P[2] from

the indices of edges of digraph1 to the indices of edges of digraph2 with the following

property: [i, j] is the kth edge of digraph1 if and only if [i ^ P[1], j ^ P[1]] is the

(k ^ P[2])th edge of digraph2 .

If there exists such an isomorphism, then this operation returns one. The form of this isomor-

phism is a pair of permutations P -� where the �rst is a permutation of the vertices of digraph1

and the second is a permutation of the indices of DigraphEdges(digraph1) �- such that

OnMultiDigraphs(digraph1, P) = digraph2 .

By default, an isomorphism is found using the canonical labellings of the digraphs obtained from

bliss by Tommi Junttila and Petteri Kaski. If NautyTracesInterface is available, then nauty by

Brendan Mckay and Adolfo Piperno can be used instead; see DigraphsUseBliss (7.2.1), and

DigraphsUseNauty (7.2.1).
Example

gap> digraph1 := CycleDigraph(4);

<digraph with 4 vertices, 4 edges>

gap> digraph2 := CycleDigraph(5);

<digraph with 5 vertices, 5 edges>

gap> IsomorphismDigraphs(digraph1, digraph2);

fail

gap> digraph1 := CompleteBipartiteDigraph(10, 5);

<digraph with 15 vertices, 100 edges>

gap> digraph2 := CompleteBipartiteDigraph(5, 10);

<digraph with 15 vertices, 100 edges>

gap> p := IsomorphismDigraphs(digraph1, digraph2);

(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)

gap> OnDigraphs(digraph1, p) = digraph2;

true

gap> digraph1 := DigraphFromDiSparse6String(".ImNS_?DSE@ce[~");

<multidigraph with 10 vertices, 10 edges>

gap> digraph2 := DigraphFromDiSparse6String(".IkOlQefi_kgOf");

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 96

<multidigraph with 10 vertices, 10 edges>

gap> IsomorphismDigraphs(digraph1, digraph2);

[(1,9,5,3,10,6,4,7,2), (1,8,6,3,7)(2,9,4,10,5)]

gap> digraph1 := DigraphByEdges([[7, 10], [7, 10]], 10);

<multidigraph with 10 vertices, 2 edges>

gap> digraph2 := DigraphByEdges([[2, 3], [2, 3]], 10);

<multidigraph with 10 vertices, 2 edges>

gap> IsomorphismDigraphs(digraph1, digraph2);

[(2,4,6,8,9,10,3,5,7), ()]

7.2.17 IsomorphismDigraphs (for digraphs and homogeneous lists)

. IsomorphismDigraphs(digraph1, digraph2, colours1, colours2) (operation)

Returns: A permutation, or fail.

This operation searches for an isomorphism between coloured digraphs. A coloured digraph can

be speci�ed by its underlying digraph digraph1 and its colouring colours1 . Let n be the number

of vertices of digraph1 . The colouring colours1 may have one of the following two forms:

� a list of n integers, where colours[i] is the colour of vertex i, using the colours [1 .. m]

for some m <= n; or

� a list of non-empty disjoint lists whose union is DigraphVertices(digraph), such that

colours[i] is the list of all vertices with colour i.

An isomorphism between coloured digraphs is an isomorphism between the underlying digraphs that

preserves the colourings. See IsomorphismDigraphs (7.2.16) for more information about isomor-

phisms of digraphs. More precisely, let f be an isomorphism of digraphs from the digraph digraph1

(with colouring colours1) to the digraph digraph2 (with colouring colours2), and let p be the

permutation of the vertices of digraph1 that corresponds to f. Then f preserves the colourings of

digraph1 and digraph2 � and hence is an isomorphism of coloured digraphs � if colours1[i] =

colours2[i ^ p] for all vertices i in digraph1 .

This operation returns such an isomorphism if one exists, else it returns fail.

By default, an isomorphism is found using the canonical labellings of the digraphs obtained

from bliss by Tommi Junttila and Petteri Kaski. If NautyTracesInterface is available, then nauty

by Brendan Mckay and Adolfo Piperno can be used instead; see DigraphsUseBliss (7.2.1), and

DigraphsUseNauty (7.2.1).

Example
gap> digraph1 := ChainDigraph(4);

<digraph with 4 vertices, 3 edges>

gap> digraph2 := ChainDigraph(3);

<digraph with 3 vertices, 2 edges>

gap> IsomorphismDigraphs(digraph1, digraph2,

> [[1, 4], [2, 3]], [[1, 2], [3]]);

fail

gap> digraph2 := DigraphReverse(digraph1);

<digraph with 4 vertices, 3 edges>

gap> colours1 := [1, 1, 1, 1];;

gap> colours2 := [1, 1, 1, 1];;

gap> p := IsomorphismDigraphs(digraph1, digraph2, colours1, colours2);

(1,4)(2,3)

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 97

gap> OnDigraphs(digraph1, p) = digraph2;

true

gap> List(DigraphVertices(digraph1), i -> colours1[i ^ p]) = colours2;

true

gap> colours1 := [1, 1, 2, 2];;

gap> colours2 := [2, 2, 1, 1];;

gap> p := IsomorphismDigraphs(digraph1, digraph2, colours1, colours2);

(1,4)(2,3)

gap> OnDigraphs(digraph1, p) = digraph2;

true

gap> List(DigraphVertices(digraph1), i -> colours1[i ^ p]) = colours2;

true

gap> IsomorphismDigraphs(digraph1, digraph2,

> [1, 1, 2, 2], [1, 1, 2, 2]);

fail

gap> digraph1 := Digraph([[2, 2], [2], [1]]);

<multidigraph with 3 vertices, 4 edges>

gap> digraph2 := Digraph([[1], [1, 1], [2]]);

<multidigraph with 3 vertices, 4 edges>

gap> IsomorphismDigraphs(digraph1, digraph2, [1, 2, 2], [2, 1, 2]);

[(1,2), (1,2,3)]

7.2.18 RepresentativeOutNeighbours

. RepresentativeOutNeighbours(digraph) (attribute)

Returns: An immutable list of immutable lists.

This function returns the list out of out-neighbours of each representative of the orbits of the

action of DigraphGroup (7.2.9) on the vertex set of the digraph digraph .

More speci�cally, if reps is the list of orbit representatives, then a vertex j appears in out[i]

each time there exists an edge with source reps[i] and range j in digraph .

If DigraphGroup (7.2.9) is trivial, then OutNeighbours (5.2.5) is returned.

Example
gap> digraph := Digraph([

> [2, 1, 3, 4, 5], [3, 5], [2], [1, 2, 3, 5], [1, 2, 3, 4]]);

<digraph with 5 vertices, 16 edges>

gap> DigraphGroup(digraph);

Group(())

gap> RepresentativeOutNeighbours(digraph);

[[2, 1, 3, 4, 5], [3, 5], [2], [1, 2, 3, 5], [1, 2, 3, 4]]

gap> digraph := DigraphFromDigraph6String("+GUIQQWWXHHPg");

<digraph with 8 vertices, 24 edges>

gap> DigraphGroup(digraph);

Group([(1,2)(3,4)(5,6)(7,8), (1,3,2,4)(5,7,6,8), (1,5)(2,6)(3,8)

(4,7)])

gap> RepresentativeOutNeighbours(digraph);

[[2, 3, 5]]

Digraphs 98

7.3 Homomorphisms of digraphs

The following methods exist to �nd homomorphisms between digraphs. If an argument to one of

these methods is a digraph with multiple edges, then the multiplicity of edges will be ignored in order

to perform the calculation; the digraph will be treated as if it has no multiple edges.

7.3.1 HomomorphismDigraphsFinder

. HomomorphismDigraphsFinder(gr1, gr2, hook, user_param, limit, hint,

injective, image, map) (function)

Returns: The argument user_param .

This function �nds homomorphisms from the graph gr1 to the graph gr2 subject to the conditions

imposed by the other arguments as described below.

If f and g are homomorphisms found by HomomorphismGraphsFinder, then f cannot be obtained

from g by right multiplying by an automorphism of gr2 .

hook

This argument should be a function or fail.

If hook is a function, then it should have two arguments user_param (see below) and a trans-

formation t. The function hook(user_param, t) is called every time a new homomorphism

t is found by HomomorphismGraphsFinder.

If hook is fail, then a default function is used which simply adds every new homomorphism

found by HomomorphismGraphsFinder to user_param , which must be a list in this case.

user_param

If hook is a function, then user_param can be any GAP object. The object user_param is

used as the �rst argument for the function hook . For example, user_param might be a trans-

formation semigroup, and hook(user_param, t) might set user_param to be the closure of

user_param and t.

If the value of hook is fail, then the value of user_param must be a list.

limit

This argument should be a positive integer or infinity. HomomorphismGraphsFinder will

return after it has found limit homomorphisms or the search is complete.

hint

This argument should be a positive integer or fail.

If hint is a positive integer, then only homorphisms of rank hint are found.

If hint is fail, then no restriction is put on the rank of homomorphisms found.

injective

This argument should be true or false. If it is true, then only injective homomorphisms are

found, and if it is false there are no restrictions imposed by this argument.

image

This argument should be a subset of the vertices of the graph gr2 .

HomomorphismGraphsFinder only �nds homomorphisms from gr1 to the subgraph of

gr2 induced by the vertices image .

Digraphs 99

map This argument should be a partial map from gr1 to gr2 , that is, a (not necessarily dense) list

of vertices of the graph gr2 of length no greater than the number vertices in the graph gr1 .

HomomorphismGraphsFinder only �nds homomorphisms extending map (if any).

Example
gap> gr := ChainDigraph(10);

<digraph with 10 vertices, 9 edges>

gap> gr := DigraphSymmetricClosure(gr);

<digraph with 10 vertices, 18 edges>

gap> HomomorphismDigraphsFinder(gr, gr, fail, [], infinity, 2, false,

> [3, 4], [], fail, fail);

[Transformation([3, 4, 3, 4, 3, 4, 3, 4, 3, 4]),

Transformation([4, 3, 4, 3, 4, 3, 4, 3, 4, 3])]

gap> gr2 := CompleteDigraph(6);;

gap> HomomorphismDigraphsFinder(gr, gr2, fail, [], 1, fail, false,

> [1 .. 6], [1, 2, 1], fail, fail);

[Transformation([1, 2, 1, 3, 4, 5, 6, 1, 2, 1])]

gap> func := function(user_param, t)

> Add(user_param, t * user_param[1]);

> end;;

gap> HomomorphismDigraphsFinder(gr, gr2, func, [Transformation([2, 2])],

> 3, fail, false, [1 .. 6], [1, 2, 1], fail, fail);

[Transformation([2, 2]),

Transformation([2, 2, 2, 3, 4, 5, 6, 2, 2, 2]),

Transformation([2, 2, 2, 3, 4, 5, 6, 2, 2, 3]),

Transformation([2, 2, 2, 3, 4, 5, 6, 2, 2, 4])]

7.3.2 DigraphHomomorphism

. DigraphHomomorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.

A homomorphism from digraph1 to digraph2 is a mapping from the vertex set of digraph1 to

a subset of the vertices of digraph2 , such that every pair of vertices [i,j] which has an edge i->j

is mapped to a pair of vertices [a,b] which has an edge a->b. Note that non adjacent vertices can

still be mapped onto adjacent ones.

DigraphHomomorphism returns a single homomorphism between digraph1 and digraph2 if it

exists, otherwise it returns fail.
Example

gap> gr1 := ChainDigraph(3);;

gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);

<digraph with 5 vertices, 6 edges>

gap> DigraphHomomorphism(gr1, gr1);

IdentityTransformation

gap> DigraphHomomorphism(gr1, gr2);

Transformation([1, 3, 1])

7.3.3 HomomorphismsDigraphs

. HomomorphismsDigraphs(digraph1, digraph2) (operation)

. HomomorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.

Digraphs 100

HomomorphismsDigraphsRepresentatives �nds every DigraphHomomorphism (7.3.2) be-

tween digraph1 and digraph2 , up to right multiplication by an element of the AutomorphismGroup

(7.2.2) of digraph2 . In other words, every homomorphism f between digraph1

and digraph2 can be written as the composition f = g * x, where g is one of the

HomomorphismsDigraphsRepresentatives and x is an automorphism of digraph2 .

HomomorphismsDigraphs returns all homomorphisms between digraph1 and digraph2 .
Example

gap> gr1 := ChainDigraph(3);;

gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);

<digraph with 5 vertices, 6 edges>

gap> HomomorphismsDigraphs(gr1, gr2);

[Transformation([1, 3, 1]), Transformation([1, 3, 3]),

Transformation([1, 5, 4, 4, 5]), Transformation([2, 2, 2]),

Transformation([3, 1, 3]), Transformation([3, 1, 5, 4, 5]),

Transformation([3, 3, 1]), Transformation([3, 3, 3])]

gap> HomomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));

[IdentityTransformation, Transformation([1, 2, 1])]

7.3.4 DigraphMonomorphism

. DigraphMonomorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.

DigraphMonomorphism returns a single injective DigraphHomomorphism (7.3.2) between

digraph1 and digraph2 if one exists, otherwise it returns fail.
Example

gap> gr1 := ChainDigraph(3);;

gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);

<digraph with 5 vertices, 6 edges>

gap> DigraphMonomorphism(gr1, gr1);

IdentityTransformation

gap> DigraphMonomorphism(gr1, gr2);

Transformation([1, 5, 4, 4, 5])

7.3.5 MonomorphismsDigraphs

. MonomorphismsDigraphs(digraph1, digraph2) (operation)

. MonomorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.

These operations behave the same as HomomorphismsDigraphs (7.3.3) and

HomomorphismsDigraphsRepresentatives (7.3.3), expect they only return injective homo-

morphisms.
Example

gap> gr1 := ChainDigraph(3);;

gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);

<digraph with 5 vertices, 6 edges>

gap> MonomorphismsDigraphs(gr1, gr2);

[Transformation([1, 5, 4, 4, 5]),

Transformation([3, 1, 5, 4, 5])]

gap> MonomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));

[IdentityTransformation]

Digraphs 101

7.3.6 DigraphEpimorphism

. DigraphEpimorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.

DigraphEpimorphism returns a single surjective DigraphHomomorphism (7.3.2) between

digraph1 and digraph2 if one exists, otherwise it returns fail.
Example

gap> gr1 := DigraphReverse(ChainDigraph(4));

<digraph with 4 vertices, 3 edges>

gap> gr2 := DigraphRemoveEdge(CompleteDigraph(3), [1, 2]);

<digraph with 3 vertices, 5 edges>

gap> DigraphEpimorphism(gr2, gr1);

fail

gap> DigraphEpimorphism(gr1, gr2);

Transformation([1, 2, 3, 1])

7.3.7 EpimorphismsDigraphs

. EpimorphismsDigraphs(digraph1, digraph2) (operation)

. EpimorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.

These operations behave the same as HomomorphismsDigraphs (7.3.3) and

HomomorphismsDigraphsRepresentatives (7.3.3), expect they only return surjective homo-

morphisms.
Example

gap> gr1 := DigraphReverse(ChainDigraph(4));

<digraph with 4 vertices, 3 edges>

gap> gr2 := DigraphSymmetricClosure(CycleDigraph(3));

<digraph with 3 vertices, 6 edges>

gap> EpimorphismsDigraphsRepresentatives(gr1, gr2);

[Transformation([1, 2, 3, 1]), Transformation([1, 2, 3, 2]),

Transformation([1, 2, 1, 3])]

gap> EpimorphismsDigraphs(gr1, gr2);

[Transformation([1, 2, 1, 3]), Transformation([1, 2, 3, 1]),

Transformation([1, 2, 3, 2]), Transformation([1, 3, 1, 2]),

Transformation([1, 3, 2, 1]), Transformation([1, 3, 2, 3]),

Transformation([2, 1, 2, 3]), Transformation([2, 1, 3, 1]),

Transformation([2, 1, 3, 2]), Transformation([2, 3, 1, 2]),

Transformation([2, 3, 1, 3]), Transformation([2, 3, 2, 1]),

Transformation([3, 1, 2, 1]), Transformation([3, 1, 2, 3]),

Transformation([3, 1, 3, 2]), Transformation([3, 2, 1, 2]),

Transformation([3, 2, 1, 3]), Transformation([3, 2, 3, 1])]

7.3.8 GeneratorsOfEndomorphismMonoid

. GeneratorsOfEndomorphismMonoid(digraph[, colors][, limit]) (function)

. GeneratorsOfEndomorphismMonoidAttr(digraph) (attribute)

Returns: A list of transformations.

An endomorphism of digraph is a homomorphism DigraphHomomorphism (7.3.2) from

digraph back to itself. GeneratorsOfEndomorphismMonoid, called with a single argument, re-

turns a generating set for the monoid of all endomorphisms of digraph .

Digraphs 102

If the colors argument is speci�ed, then it will return a generating set for the monoid of endo-

morphisms which respect the given colouring. The colouring colors can be in one of two forms:

� A list of positive integers of size the number of vertices of digraph , where colors[i] is the

colour of vertex i.

� A list of lists, such that colors[i] is a list of all vertices with colour i.

If the limit argument is speci�ed, then it will return only the �rst limit homomorphisms, where

limit must be a positive integer or infinity.

Example
gap> gr := Digraph(List([1 .. 3], x -> [1 .. 3]));;

gap> GeneratorsOfEndomorphismMonoid(gr);

[Transformation([1, 3, 2]), Transformation([2, 1]),

IdentityTransformation, Transformation([1, 2, 1]),

Transformation([1, 2, 2]), Transformation([1, 1, 2]),

Transformation([1, 1, 1])]

gap> GeneratorsOfEndomorphismMonoid(gr, 3);

[Transformation([1, 3, 2]), Transformation([2, 1]),

IdentityTransformation]

gap> gr := CompleteDigraph(3);;

gap> GeneratorsOfEndomorphismMonoid(gr);

[Transformation([1, 3, 2]), Transformation([2, 1]),

IdentityTransformation]

gap> GeneratorsOfEndomorphismMonoid(gr, [1, 2, 2]);

[Transformation([1, 3, 2]), IdentityTransformation]

gap> GeneratorsOfEndomorphismMonoid(gr, [[1], [2, 3]]);

[Transformation([1, 3, 2]), IdentityTransformation]

7.3.9 DigraphColouring (for a digraph and a number of colours)

. DigraphColouring(digraph, n) (operation)

. DigraphColoring(digraph, n) (operation)

. DigraphColouring(digraph) (attribute)

. DigraphColoring(digraph) (attribute)

Returns: A transformation, or fail.

A proper colouring of a digraph is a labelling of its vertices in such a way that adjacent vertices

have different labels. A proper n-colouring is a proper colouring that uses exactly n colours. Equiva-

lently, a proper (n-)colouring of a digraph can be de�ned to be a DigraphEpimorphism (7.3.6) from

a digraph onto the complete digraph (with n vertices); see CompleteDigraph (3.5.2). Note that a

digraph with loops (DigraphHasLoops (6.1.1)) does not have a proper n-colouring for any value n.

If digraph is a digraph and n is a non-negative integer, then DigraphColouring(digraph, n)

returns an epimorphism from digraph onto the complete digraph with n vertices if one exists, else it

returns fail.

If the optional second argument n is not provided, then DigraphColouring uses a greedy al-

gorithm to obtain some proper colouring of digraph , which may not use the minimal number of

colours.

Note that a digraph with at least two vertices has a 2-colouring if and only if it is bipartite, see

IsBipartiteDigraph (6.1.3).

Digraphs 103

Example
gap> DigraphColouring(CompleteDigraph(5), 4);

fail

gap> DigraphColouring(ChainDigraph(10), 1);

fail

gap> gr := ChainDigraph(10);;

gap> t := DigraphColouring(gr, 2);

Transformation([1, 2, 1, 2, 1, 2, 1, 2, 1, 2])

gap> ForAll(DigraphEdges(gr), e -> e[1] ^ t <> e[2] ^ t);

true

gap> DigraphColouring(gr);

Transformation([1, 2, 1, 2, 1, 2, 1, 2, 1, 2])

7.3.10 DigraphEmbedding

. DigraphEmbedding(digraph1, digraph2) (operation)

Returns: A transformation, or fail.

An embedding of a digraph digraph1 into another digraph digraph2 is a

DigraphMonomorphism (7.3.4) from digraph1 to digraph2 which has the additional prop-

erty that a pair of vertices [i, j] which have no edge i -> j in digraph1 are mapped to a pair of

vertices [a, b] which have no edge a->b in digraph2 .

In other words, an embedding t is an isomorphism from digraph1 to the InducedSubdigraph

(3.3.2) of digraph2 on the image of t.

DigraphEmbedding returns a single embedding if one exists, otherwise it returns fail.
Example

gap> gr := ChainDigraph(3);

<digraph with 3 vertices, 2 edges>

gap> DigraphEmbedding(gr, CompleteDigraph(4));

fail

gap> DigraphEmbedding(gr, Digraph([[3], [1, 4], [1], [3]]));

Transformation([2, 4, 3, 4])

7.3.11 ChromaticNumber

. ChromaticNumber(digraph) (attribute)

Returns: A non-negative integer.

A proper colouring of a digraph is a labelling of its vertices in such a way that adjacent

vertices have different labels. Equivalently, a proper digraph colouring can be de�ned to be a

DigraphEpimorphism (7.3.6) from a digraph onto a complete digraph.

If digraph is a digraph without loops (see DigraphHasLoops (6.1.1), then ChromaticNumber

returns the least non-negative integer n such that there is a proper colouring of digraph with

n colours. In other words, for a digraph with at least one vertex, ChromaticNumber returns

the least number n such that DigraphColouring(digraph, n) does not return fail. See

DigraphColouring (7.3.9).

Example
gap> ChromaticNumber(NullDigraph(10));

1

gap> ChromaticNumber(CompleteDigraph(10));

10

Digraphs 104

gap> ChromaticNumber(CompleteBipartiteDigraph(5, 5));

2

gap> ChromaticNumber(Digraph([[], [3], [5], [2, 3], [4]]));

3

gap> ChromaticNumber(NullDigraph(0));

0

Chapter 8

Finding cliques and independent sets

In Digraphs, a clique of a digraph is a set of mutually adjacent vertices of the digraph, and an inde-

pendent set is a set of mutually non-adjacent vertices of the digraph. A maximal clique is a clique

which is not properly contained in another clique, and a maximal independent set is an independent

set which is not properly contained in another independent set. Using this de�nition in Digraphs,

cliques and independent sets are both permitted, but not required, to contain vertices at which there is

a loop. Another name for a clique is a complete subgraph.

Digraphs provides extensive functionality for computing cliques and independent sets of a di-

graph, whether maximal or not. The fundamental algorithm used in most of the methods in Digraphs

to calculate cliques and independent sets is a version of the Bron-Kerbosch algorithm. Calculating

the cliques and independent sets of a digraph is a well-known and hard problem, and searching for

cliques or independent sets in a digraph can be very length, even for a digraph with a small number of

vertices. Digraphs uses several strategies to increase the performance of these calculations.

From the de�nition of cliques and independent sets, it follows that the presence of loops and mul-

tiple edges in a digraph is irrelevant to the existence of cliques and independent sets in the digraph.

See DigraphHasLoops (6.1.1) and IsMultiDigraph (6.1.8) for more information about these prop-

erties. Therefore given a digraph digraph , the cliques and independent sets of digraph are equal to

the cliques and independent sets of the digraph:

� DigraphRemoveLoops(DigraphRemoveAllMultipleEdges(digraph)).

See DigraphRemoveLoops (3.3.22) and DigraphRemoveAllMultipleEdges (3.3.23) for more in-

formation about these attributes. Furthermore, the cliques of this digraph are equal to the cliques of

the digraph formed by removing any edge [u,v] for which the corresponding reverse edge [v,u]

is not present. Therefore, overall, the cliques of digraph are equal to the cliques of the symmetric

digraph:

� MaximalSymmetricSubdigraphWithoutLoops(digraph).

See MaximalSymmetricSubdigraphWithoutLoops (3.3.4) for more information about this at-

tribute. The AutomorphismGroup (7.2.2) of this symmetric digraph contains the automorphism group

of digraph as a subgroup. By performing the search for maximal cliques with the help of this larger

automorphism group to reduce the search space, the computation time may be reduced. The functions

and attributes which return representatives of cliques of digraph will return orbit representatives of

cliques under the action of the automorphism group of the maximal symmetric subdigraph without

loops on sets of vertices.

105

Digraphs 106

The independent sets of a digraph are equal to the independent sets of the

DigraphSymmetricClosure (3.3.9). Therefore, overall, the independent sets of digraph are

equal to the independent sets of the symmetric digraph:

� DigraphSymmetricClosure(DigraphRemoveLoops(DigraphRemoveAllMultipleEdges(

digraph))).

Again, the automorphism group of this symmetric digraph contains the automorphism group of

digraph . Since a search for independent sets is equal to a search for cliques in the DigraphDual

(3.3.8), the methods used in Digraphs usually transform a search for independent sets into a search

for cliques, as described above. The functions and attributes which return representatives of inde-

pendent sets of digraph will return orbit representatives of independent sets under the action of the

automorphism group of the symmetric closure of the digraph formed by removing loops and multiple

edges.

Please note that in Digraphs, cliques and indepedent sets are not required to be maximal. Some

authors use the word clique to mean maximal clique, and some authors use the phrase independent set

to mean maximal independent set, but please note that Digraphs does not use this de�nition.

8.1 Finding cliques

8.1.1 IsClique

. IsClique(digraph, l) (operation)

. IsMaximalClique(digraph, l) (operation)

Returns: true or false.

If digraph is a digraph and l is a duplicate-free list of vertices of digraph , then

IsClique(digraph,l) returns true if l is a clique of digraph and false if it is not. Similarly,

IsMaximalClique(digraph,l) returns true if l is a maximal clique of digraph and false if it

is not.

A clique of a digraph is a set of mutually adjacent vertices of the digraph. A maximal clique is a

clique which is not properly contained in another clique. A clique is permitted, but not required, to

contain vertices at which there is a loop.

Example
gap> gr := CompleteDigraph(4);;

gap> IsClique(gr, [1, 3, 2]);

true

gap> IsMaximalClique(gr, [1, 3, 2]);

false

gap> IsMaximalClique(gr, DigraphVertices(gr));

true

gap> gr := Digraph([[1, 2, 4, 4], [1, 3, 4], [2, 1], [1, 2]]);

<multidigraph with 4 vertices, 11 edges>

gap> IsClique(gr, [2, 3, 4]);

false

gap> IsMaximalClique(gr, [1, 2, 4]);

true

Digraphs 107

8.1.2 CliquesFinder

. CliquesFinder(digraph, hook, user_param, limit, include, exclude, max, size,

reps) (function)

Returns: The argument user_param .

This function �nds cliques of the digraph digraph subject to the conditions imposed by the other

arguments as described below. Note that a clique is represented by a list of the vertices which it

contains.

Let G denote the automorphism group of the maximal symmetric subdigraph of digraph with-

out loops (see AutomorphismGroup (7.2.2) and MaximalSymmetricSubdigraphWithoutLoops

(3.3.4)).

hook

This argument should be a function or fail.

If hook is a function, then it should have two arguments user_param (see below) and a clique

c. The function hook(user_param, c) is called every time a new clique c is found by

CliquesFinder.

If hook is fail, then a default function is used which simply adds every new clique found by

CliquesFinder to user_param , which must be a list in this case.

user_param

If hook is a function, then user_param can be any GAP object. The object user_param is

used as the �rst argument for the function hook . For example, user_param might be a list, and

hook(user_param, c) might add the size of the clique c to the list user_param .

If the value of hook is fail, then the value of user_param must be a list.

limit

This argument should be a positive integer or infinity. CliquesFinder will return after it

has found limit cliques or the search is complete.

include and exclude

These arguments should each be a (possibly empty) duplicate-free list of vertices of digraph

(i.e. positive integers less than the number of vertices of digraph).

CliquesFinder will only look for cliques containing all of the vertices in include and con-

taining none of the vertices in exclude .

Note that the search may be much more ef�cient if each of these lists is invariant under the

action of G on sets of vertices.

max This argument should be true or false. If max is true then CliquesFinder will only search

for maximal cliques. If max is false then non-maximal cliques may be found.

size

This argument should be fail or a positive integer. If size is a positive integer then

CliquesFinder will only search for cliques which contain precisely size vertices. If size is

fail then cliques of any size may be found.

reps

This argument should be true or false.

Digraphs 108

If reps is true then the arguments include and exclude are each required to be invariant

under the action of G on sets of vertices. In this case, CliquesFinder will �nd representatives

of the orbits of the desired cliques under the action of G, although representatives may be re-

turned which are in the same orbit. If reps is false then CliquesFinder will not take this into

consideration.

For a digraph such that G is non-trivial, the search for clique representatives can be much more

ef�cient than the search for all cliques.

This function uses a version of the Bron-Kerbosch algorithm.

Example
gap> gr := CompleteDigraph(5);

<digraph with 5 vertices, 20 edges>

gap> user_param := [];;

gap> f := function(a, b) # Calculate size of clique

> AddSet(user_param, Size(b));

> end;;

gap> CliquesFinder(gr, f, user_param, infinity, [], [], false, fail,

> true);

[1, 2, 3, 4, 5]

gap> CliquesFinder(gr, fail, [], 5, [2, 4], [3], false, fail, false);

[[2, 4], [1, 2, 4], [2, 4, 5], [1, 2, 4, 5]]

gap> CliquesFinder(gr, fail, [], 2, [2, 4], [3], false, fail, false);

[[2, 4], [1, 2, 4]]

gap> CliquesFinder(gr, fail, [], infinity, [], [], true, 5, false);

[[1, 2, 3, 4, 5]]

gap> CliquesFinder(gr, fail, [], infinity, [1, 3], [], false, 3, false);

[[1, 2, 3], [1, 3, 4], [1, 3, 5]]

gap> CliquesFinder(gr, fail, [], infinity, [1, 3], [], true, 3, false);

[]

8.1.3 DigraphClique

. DigraphClique(digraph[, include[, exclude[, size]]]) (function)

. DigraphMaximalClique(digraph[, include[, exclude[, size]]]) (function)

Returns: A list of positive integers, or fail.

If digraph is a digraph, then these functions returns a clique of digraph if one exists which

satis�es the arguments, else it returns fail. A clique is de�ned by the set of vertices which it contains;

see IsClique (8.1.1) and IsMaximalClique (8.1.1).

The optional arguments include and exclude must each be a (possibly empty) duplicate-free

list of vertices of digraph , and the optional argument size must be a positive integer. By default,

include and exclude are empty. These functions will search for a clique of digraph which includes

the vertices of include and which does not include any vertices in exclude ; if the argument size

is supplied, then additionally the clique will be required to contain precisely size vertices.

If include is not a clique, then these functions return fail. Otherwise, the functions behave in

the following way, depending on the number of arguments:

One or two arguments

If one or two arguments are supplied, then DigraphClique and DigraphMaximalClique

greedily enlarge the clique include until it can not continue. The result is guaranteed

Digraphs 109

to be a maximal clique. This may or may not return an answer more quickly than using

DigraphMaximalCliques (8.1.4). with a limit of 1.

Three arguments

If three arguments are supplied, then DigraphClique greedily enlarges the clique include

until it can not continue, although this clique may not be maximal.

Given three arguments, DigraphMaximalClique returns the maximal clique returned by

DigraphMaximalCliques(digraph, include, exclude, 1) if one exists, else fail.

Four arguments

If four arguments are supplied, then DigraphClique returns the clique returned by

DigraphCliques(digraph, include, exclude, 1, size) if one exists, else fail. This

clique may not be maximal.

Given four arguments, DigraphMaximalClique returns the maximal clique returned by

DigraphMaximalCliques(digraph, include, exclude, 1, size) if one exists, else

fail.

Example
gap> gr := Digraph([[2, 3, 4], [1, 3], [1, 2], [1, 5], []]);

<digraph with 5 vertices, 9 edges>

gap> IsSymmetricDigraph(gr);

false

gap> DigraphClique(gr);

[5]

gap> DigraphMaximalClique(gr);

[5]

gap> DigraphClique(gr, [1, 2]);

[1, 2, 3]

gap> DigraphMaximalClique(gr, [1, 3]);

[1, 3, 2]

gap> DigraphClique(gr, [1], [2]);

[1, 4]

gap> DigraphMaximalClique(gr, [1], [3, 4]);

fail

gap> DigraphClique(gr, [1, 5]);

fail

gap> DigraphClique(gr, [], [], 2);

[1, 2]

8.1.4 DigraphMaximalCliques

. DigraphMaximalCliques(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphMaximalCliquesReps(digraph[, include[, exclude[, limit[, size]]]])

(function)

. DigraphCliques(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphCliquesReps(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphMaximalCliquesAttr(digraph) (attribute)

. DigraphMaximalCliquesRepsAttr(digraph) (attribute)

Returns: A list of lists of positive integers.

Digraphs 110

If digraph is digraph, then these functions and attributes use CliquesFinder (8.1.2) to return

cliques of digraph . A clique is de�ned by the set of vertices which it contains; see IsClique (8.1.1)

and IsMaximalClique (8.1.1).

The optional arguments include and exclude must each be a (possibly empty) list of vertices

of digraph , the optional argument limit must be either a positive integer or infinity, and the

optional argument size must be a positive integer. If not speci�ed, then include and exclude are

empty lists, and limit is infinity.

The functions will return as many suitable cliques as possible, up to the number limit . These

functions will �nd cliques which contain all of the vertices of include and which do not contain any

of the vertices of exclude . The argument size restricts the search to those cliques which contain

precisely size vertices. If the function or attribute has Maximal in its name, then only maximal

cliques will be returned; otherwise non-maximal cliques may be returned.

Let G denote the automorphism group of maximal symmetric subdigraph of digraph with-

out loops (see AutomorphismGroup (7.2.2) and MaximalSymmetricSubdigraphWithoutLoops

(3.3.4)).

Distinct cliques

DigraphMaximalCliques and DigraphCliques each return a duplicate-free list of at most

limit cliques of digraph which satisfy the arguments.

The computation may be signi�cantly faster if include and exclude are invariant under the

action of G on sets of vertices.

Orbit representatives of cliques

To use DigraphMaximalCliquesReps or DigraphCliquesReps, the arguments include and

exclude must each be invariant under the action of G on sets of vertices.

If this is the case, then DigraphMaximalCliquesReps and DigraphCliquesReps each re-

turn a duplicate-free list of at most limit orbits representatives (under the action of G on sets

vertices) of cliques of digraph which satisfy the arguments.

The representatives are not guaranteed to be in distinct orbits. However, if lim is not speci�ed,

or fewer than lim results are returned, then there will be at least one representative from each

orbit of maximal cliques.

Example
gap> gr := Digraph([

> [2, 3], [1, 3], [1, 2, 4], [3, 5, 6], [4, 6], [4, 5]]);

<digraph with 6 vertices, 14 edges>

gap> IsSymmetricDigraph(gr);

true

gap> G := AutomorphismGroup(gr);

Group([(5,6), (1,2), (1,5)(2,6)(3,4)])

gap> DigraphMaximalCliques(gr);

[[1, 2, 3], [4, 5, 6], [3, 4]]

gap> DigraphMaximalCliquesReps(gr);

[[1, 2, 3], [3, 4]]

gap> Orbit(G, [1, 2, 3], OnSets);

[[1, 2, 3], [4, 5, 6]]

gap> Orbit(G, [3, 4], OnSets);

[[3, 4]]

gap> DigraphMaximalCliquesReps(gr, [3, 4], [], 1);

[[3, 4]]

Digraphs 111

gap> DigraphMaximalCliques(gr, [1, 2], [5, 6], 1, 2);

[]

gap> DigraphCliques(gr, [1], [5, 6], infinity, 2);

[[1, 2], [1, 3]]

8.1.5 CliqueNumber

. CliqueNumber(digraph) (attribute)

Returns: A non-negative integer.

If digraph is a digraph, then CliqueNumber(digraph) returns the largest integer n such that

digraph contains a clique with n vertices as an induced subdigraph.

A clique of a digraph is a set of mutually adjacent vertices of the digraph. Loops and multiple

edges are ignored for the purpose of determining the clique number of a digraph.

Example
gap> gr := CompleteDigraph(4);;

gap> CliqueNumber(gr);

4

gap> gr := Digraph([[1, 2, 4, 4], [1, 3, 4], [2, 1], [1, 2]]);

<multidigraph with 4 vertices, 11 edges>

gap> CliqueNumber(gr);

3

8.2 Finding independent sets

8.2.1 IsIndependentSet

. IsIndependentSet(digraph, l) (operation)

. IsMaximalIndependentSet(digraph, l) (operation)

Returns: true or false.

If digraph is a digraph and l is a duplicate-free list of vertices of digraph , then

IsIndependentSet(digraph,l) returns true if l is an independent set of digraph and false

if it is not. Similarly, IsMaximalIndependentSet(digraph,l) returns true if l is a maximal

independent set of digraph and false if it is not.

An independent set of a digraph is a set of mutually non-adjacent vertices of the digraph. A

maximal independent set is an independent set which is not properly contained in another independent

set. An independent set is permitted, but not required, to contain vertices at which there is a loop.

Example
gap> gr := CycleDigraph(4);;

gap> IsIndependentSet(gr, [1]);

true

gap> IsMaximalIndependentSet(gr, [1]);

false

gap> IsIndependentSet(gr, [1, 4, 3]);

false

gap> IsIndependentSet(gr, [2, 4]);

true

gap> IsMaximalIndependentSet(gr, [2, 4]);

true

Digraphs 112

8.2.2 DigraphIndependentSet

. DigraphIndependentSet(digraph[, include[, exclude[, size]]]) (function)

. DigraphMaximalIndependentSet(digraph[, include[, exclude[, size]]]) (function)

Returns: A lists of positive integers, or fail.

If digraph is a digraph, then these functions returns a independent set of digraph if one exists

which satis�es the arguments, else it returns fail. A independent set is de�ned by the set of vertices

which it contains; see IsIndependentSet (8.2.1) and IsMaximalIndependentSet (8.2.1).

The optional arguments include and exclude must each be a (possibly empty) duplicate-free

list of vertices of digraph , and the optional argument size must be a positive integer. By default,

include and exclude are empty. These functions will search for a independent set of digraph

which includes the vertices of include and which does not include any vertices in exclude ; if the

argument size is supplied, then additionally the independent set will be required to contain precisely

size vertices.

If include is not a independent set, then these functions return fail. Otherwise, the functions

behave in the following way, depending on the number of arguments:

One or two arguments

If one or two arguments are supplied, then DigraphIndependentSet and

DigraphMaximalIndependentSet greedily enlarge the independent set include until

it can not continue. The result is guaranteed to be a maximal independent set. This may or may

not return an answer more quickly than using DigraphMaximalIndependentSets (8.2.3).

with a limit of 1.

Three arguments

If three arguments are supplied, then DigraphIndependentSet greedily enlarges the indepen-

dent set include until it can not continue, although this independent set may not be maximal.

Given three arguments, DigraphMaximalIndependentSet returns the maximal independent

set returned by DigraphMaximalIndependentSets(digraph, include, exclude, 1) if

one exists, else fail.

Four arguments

If four arguments are supplied, then DigraphIndependentSet returns the independent set

returned by DigraphIndependentSets(digraph, include, exclude, 1, size) if one

exists, else fail. This independent set may not be maximal.

Given four arguments, DigraphMaximalIndependentSet returns the maximal independent

set returned by DigraphMaximalIndependentSets(digraph, include, exclude, 1,

size) if one exists, else fail.

Example
gap> gr := ChainDigraph(6);

<digraph with 6 vertices, 5 edges>

gap> DigraphIndependentSet(gr);

[6, 4, 2]

gap> DigraphMaximalIndependentSet(gr);

[6, 4, 2]

gap> DigraphIndependentSet(gr, [2, 4]);

[2, 4, 6]

gap> DigraphMaximalIndependentSet(gr, [1, 3]);

[1, 3, 6]

Digraphs 113

gap> DigraphIndependentSet(gr, [2, 4], [6]);

[2, 4]

gap> DigraphMaximalIndependentSet(gr, [2, 4], [6]);

fail

gap> DigraphIndependentSet(gr, [1], [], 2);

[1, 3]

gap> DigraphMaximalIndependentSet(gr, [1], [], 2);

fail

gap> DigraphMaximalIndependentSet(gr, [1], [], 3);

[1, 3, 5]

8.2.3 DigraphMaximalIndependentSets

. DigraphMaximalIndependentSets(digraph[, include[, exclude[, limit[,

size]]]]) (function)

. DigraphMaximalIndependentSetsReps(digraph[, include[, exclude[, limit[,

size]]]]) (function)

. DigraphIndependentSets(digraph[, include[, exclude[, limit[, size]]]]) (func-

tion)

. DigraphIndependentSetsReps(digraph[, include[, exclude[, limit[, size]]]])

(function)

. DigraphMaximalIndependentSetsAttr(digraph) (attribute)

. DigraphMaximalIndependentSetsRepsAttr(digraph) (attribute)

Returns: A list of lists of positive integers.

If digraph is digraph, then these functions and attributes use CliquesFinder (8.1.2) to return

independent sets of digraph . An independent set is de�ned by the set of vertices which it contains;

see IsMaximalIndependentSet (8.2.1) and IsIndependentSet (8.2.1).

The optional arguments include and exclude must each be a (possibly empty) list of vertices

of digraph , the optional argument limit must be either a positive integer or infinity, and the

optional argument size must be a positive integer. If not speci�ed, then include and exclude are

empty lists, and limit is infinity.

The functions will return as many suitable independent sets as possible, up to the number limit .

These functions will �nd independent sets which contain all of the vertices of include and which do

not contain any of the vertices of exclude The argument size restricts the search to those cliques

which contain precisely size vertices. If the function or attribute has Maximal in its name, then only

maximal independent sets will be returned; otherwise non-maximal independent sets may be returned.

Let G denote the AutomorphismGroup (7.2.2) of the DigraphSymmetricClosure (3.3.9) of the

digraph formed from digraph by removing loops and ignoring the multiplicity of edges.

Distinct independent sets

DigraphMaximalIndependentSets and DigraphIndependentSets each return a duplicate-

free list of at most limit independent sets of digraph which satisfy the arguments.

The computation may be signi�cantly faster if include and exclude are invariant under the

action of G on sets of vertices.

Representatives of distinct orbits of independent sets

To use DigraphMaximalIndependentSetsReps or DigraphIndependentSetsReps, the ar-

guments include and exclude must each be invariant under the action of G on sets of vertices.

Digraphs 114

If this is the case, then DigraphMaximalIndependentSetsReps and

DigraphIndependentSetsReps each return a list of at most limit orbits representa-

tives (under the action of G on sets of vertices) of independent sets of digraph which satisfy

the arguments.

The representatives are not guaranteed to be in distinct orbits. However, if lim is not speci�ed,

or fewer than lim results are returned, then there will be at least one representative from each

orbit of maximal independent sets.

Example
gap> gr := CycleDigraph(5);

<digraph with 5 vertices, 5 edges>

gap> DigraphMaximalIndependentSetsReps(gr);

[[1, 3]]

gap> DigraphIndependentSetsReps(gr);

[[1], [1, 3]]

gap> Set(DigraphMaximalIndependentSets(gr));

[[1, 3], [1, 4], [2, 4], [2, 5], [3, 5]]

gap> DigraphMaximalIndependentSets(gr, [1]);

[[1, 3], [1, 4]]

gap> DigraphIndependentSets(gr, [], [4, 5]);

[[1], [2], [3], [1, 3]]

gap> DigraphIndependentSets(gr, [], [4, 5], 1, 2);

[[1, 3]]

Chapter 9

Visualising and IO

9.1 Visualising a digraph

9.1.1 Splash

. Splash(str[, opts]) (function)

Returns: Nothing.

This function attempts to convert the string str into a pdf document and open this document, i.e.

to splash it all over your monitor.

The string str must correspond to a valid dot or LaTeX text �le and you must have have

GraphViz and pdflatex installed on your computer. For details about these �le formats, see

http://www.latex-project.org and http://www.graphviz.org.

This function is provided to allow convenient, immediate viewing of the pictures produced by the

function DotDigraph (9.1.2).

The optional second argument opts should be a record with components corresponding to various

options, given below.

path this should be a string representing the path to the directory where you want Splash to do its

work. The default value of this option is "~/".

directory

this should be a string representing the name of the directory in path where you want Splash

to do its work. This function will create this directory if does not already exist.

The default value of this option is "tmp.viz" if the option path is present, and the result of

DirectoryTemporary (Reference: DirectoryTemporary) is used otherwise.

�lename

this should be a string representing the name of the �le where str will be written. The default

value of this option is "vizpicture".

viewer

this should be a string representing the name of the program which should open the �les pro-

duced by GraphViz or pdflatex.

type this option can be used to specify that the string str contains a LATEX or dot document. You

can specify this option in str directly by making the �rst line "%latex" or "//dot". There is

no default value for this option, this option must be speci�ed in str or in opt.type .

115

http://www.latex-project.org
http://www.graphviz.org

Digraphs 116

�letype

this should be a string representing the type of �le which Splash should produce. For LATEX

�les, this option is ignored and the default value "pdf" is used.

This function was written by Attila Egri-Nagy and Manuel Delgado with some minor changes by J.

D. Mitchell.
Example

gap> Splash(DotDigraph(RandomDigraph(4)));

9.1.2 DotDigraph

. DotDigraph(digraph) (attribute)

. DotVertexLabelledDigraph(digraph) (operation)

Returns: A string.

DotDigraph produces a graphical representation of the digraph digraph . Vertices are displayed

as circles, numbered consistently with digraph . Edges are displayed as arrowed lines between ver-

tices, with the arrowhead of each line pointing towards the range of the edge.

DotVertexLabelledDigraph differs from DotDigraph only in that the values in

DigraphVertexLabels (5.1.9) are used to label the vertices in the produced picture rather

than the numbers 1 to the number of vertices of the digraph.

The output is in dot format (also known as GraphViz) format. For details about this �le format,

and information about how to display or edit this format see http://www.graphviz.org.

The string returned by DotDigraph or DotVertexLabelledDigraph can be written to a �le

using the command FileString (GAPDoc: FileString).
Example

gap> adj := List([1 .. 4], x -> [1, 1, 1, 1]);

[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]

gap> adj[1][3] := 0;

0

gap> gr := DigraphByAdjacencyMatrix(adj);

<digraph with 4 vertices, 15 edges>

gap> FileString("dot/k4.dot", DotDigraph(gr));

154

9.1.3 DotSymmetricDigraph

. DotSymmetricDigraph(digraph) (attribute)

Returns: A string.

This function produces a graphical representation of the symmetric digraph digraph .

DotSymmetricDigraph will return an error if digraph is not a symmetric digraph. See

IsSymmetricDigraph (6.1.10).

Vertices are displayed as circles, numbered consistently with digraph . Since digraph is sym-

metric, for every non-loop edge there is a complementary edge with opposite source and range.

DotSymmetricDigraph displays each pair of complementary edges as a single line between the rel-

evant vertices, with no arrowhead.

The output is in dot format (also known as GraphViz) format. For details about this �le format,

and information about how to display or edit this format see http://www.graphviz.org.

The string returned by DotSymmetricDigraph can be written to a �le using the command

FileString (GAPDoc: FileString).

http://www.graphviz.org
http://www.graphviz.org

Digraphs 117

Example
gap> star := Digraph([[2, 2, 3, 4], [1, 1], [1], [1, 4]]);

<multidigraph with 4 vertices, 9 edges>

gap> IsSymmetricDigraph(star);

true

gap> FileString("dot/star.dot", DotSymmetricDigraph(gr));

83

9.2 Reading and writing graphs to a �le

This section describes different ways to store and read graphs from a �le in the Digraphs package.

Graph6

Graph6 is a graph data format for storing undirected graphs with no multiple edges nor loops

of size up to 236�1 in printable chracters. The format consists of two parts. The �rst part uses

one to eight bytes to store the number of vertices. And the second part is the upper half of the

adjacency matrix converted into ASCII characters. For a more detail description see Graph6.

Sparse6

Sparse6 is a graph data format for storing undirected graphs with possibly multiple edges or

loops. The maximal number of vertices allowed is 236� 1. The format consists of two parts.

The �rst part uses one to eight bytes to store the number of vertices. And the second part only

stores information about the edges. Therefore, the Sparse6 format return a more compact

encoding then Graph6 for sparse graph, i.e. graphs where the number of edges is much less

than the number of vertices squared. For a more detail description see Sparse6.

Digraph6

Digraph6 is a new format based on Graph6 , but designed for digraphs. The entire adjacency

matrix is stored, and therefore there is support for directed edges and single-vertex loops. How-

ever, multiple edges are not supported.

DiSparse6

DiSparse6 is a new format based on Sparse6 , but designed for digraphs. In this format the list

of edges is partitioned into inceasing and decreasing edges, depending whether the edge has its

source bigger than the range. Then both sets of edges are written separetly in Sparse6 format

with a separation symbol in between.

9.2.1 DigraphFromGraph6String

. DigraphFromGraph6String(str) (operation)

. DigraphFromDigraph6String(str) (operation)

. DigraphFromSparse6String(str) (operation)

. DigraphFromDiSparse6String(str) (operation)

Returns: A digraph.

If str is a string encoding a graph in Graph6, Digraph6, Sparse6 or DiSparse6 format, then the

corresponding function returns a digraph. In the case of either Graph6 or Sparse6, formats which

do not support directed edges, this will be a digraph such that for every edge, the edge going in the

opposite direction is also present.

 http://cs.anu.edu.au/~bdm/data/formats.txt
 http://cs.anu.edu.au/~bdm/data/formats.txt

Digraphs 118

Example
gap> DigraphFromGraph6String("?");

<digraph with 0 vertices, 0 edges>

gap> DigraphFromGraph6String("C]");

<digraph with 4 vertices, 8 edges>

gap> DigraphFromGraph6String("H?AAEM{");

<digraph with 9 vertices, 22 edges>

gap> DigraphFromDigraph6String("+?");

<digraph with 0 vertices, 0 edges>

gap> DigraphFromDigraph6String("+CQFG");

<digraph with 4 vertices, 6 edges>

gap> DigraphFromDigraph6String("+IM[SrKLc~lhesbU[F_");

<digraph with 10 vertices, 51 edges>

gap> DigraphFromDiSparse6String(".CaWBGA?b");

<multidigraph with 4 vertices, 9 edges>

9.2.2 Graph6String

. Graph6String(digraph) (operation)

. Digraph6String(digraph) (operation)

. Sparse6String(digraph) (operation)

. DiSparse6String(digraph) (operation)

Returns: A string.

These four functions return a highly compressed string fully describing the digraph digraph .

Graph6 and Digraph6 are formats best used on small, dense graphs, if applicable. For larger,

sparse graphs use Sparse6 and Disparse6 (this latter also preserves multiple edges).

See WriteDigraphs (9.2.5).

Example
gap> gr := Digraph([[2, 3], [1], [1]]);

<digraph with 3 vertices, 4 edges>

gap> Sparse6String(gr);

":Bc"

gap> DiSparse6String(gr);

".Bc{f"

9.2.3 DigraphFile

. DigraphFile(filename[, coder][, mode]) (function)

Returns: An IO �le object.

If filename is a string representing the name of a �le, then DigraphFile returns an IO package

�le object for that �le.

If the optional argument coder is speci�ed and is a function which either encodes a digraph as

a string, or decodes a string into a digraph, then this function will be used when reading or writing

to the returned �le object. If the optional argument coder is not speci�ed, then the encoding of the

digraphs in the returned �le object must be speci�ed in the the �le extension. The �le extension must

be one of: .g6, .s6, .d6, .ds6, .txt, .p, or .pickle; more details of these �le formats is given

below.

If the optional argument mode is speci�ed, then it must be one of: "w" (for write), "a" (for

append), or "r" (for read). If mode is not speci�ed, then "r" is used by default.

 http://gap-packages.github.io/io/

Digraphs 119

If filename ends in one of: .gz, .bz2, or .xz, then the digraphs which are read from, or written

to, the returned �le object are decompressed, or compressed, appropriately.

The �le object returned by DigraphFile can be given as the �rst argument for either of the

functions ReadDigraphs (9.2.4) or WriteDigraphs (9.2.5). The purpose of this is to reduce the

overhead of recreating the �le object inside the functions ReadDigraphs (9.2.4) or WriteDigraphs

(9.2.5) when, for example, reading or writing many digraphs in a loop.

The currently supported �le formats, and associated �lename extensions, are:

graph6 (.g6)

A standard and widely-used format for undirected graphs, with no support for loops or multiple

edges. Only symmetric graphs are allowed � each edge is combined with its converse edge to

produce a single undirected edge. This format is best used for "dense" graphs � those with many

edges per vertex.

sparse6 (.s6)

Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited

to symmetric graphs. This format is better-suited to "sparse" graphs � those with few edges per

vertex.

digraph6 (.d6)

This format is based on graph6, but stores direction information - therefore is not limited to

symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with

"dense" graphs.

disparse6 (.ds6)

Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all

allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)

This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4

8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More speci�cally, the vertices

making up one edge must be separated by a single space, and pairs of vertices must be separated

by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more �exible way to store digraphs in a plain text

�le.

pickled (.p or .pickle)

Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup

(7.2.9) is non-trivial.

Example
gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;

gap> file := DigraphFile(filename, "w");;

gap> for i in [1 .. 10] do

> WriteDigraphs(file, Digraph([[1, 3], [2], [1, 2]]));

> od;

gap> IO_Close(file);;

gap> file := DigraphFile(filename, "r");;

gap> ReadDigraphs(file, 9);

<digraph with 3 vertices, 5 edges>

 http://gap-packages.github.io/io/

Digraphs 120

9.2.4 ReadDigraphs

. ReadDigraphs(filename[, decoder][, n]) (function)

Returns: A digraph, or a list of digraphs.

If filename is a string containing the name of a �le containing encoded digraphs or an IO �le

object created using DigraphFile (9.2.3), then ReadDigraphs returns the digraphs encoded in the

�le as a list. Note that if filename is a compressed �le, which has been compressed appropriately to

give a �lename extension of .gz, .bz2, or .xz, then ReadDigraphs can read filename without it

�rst needing to be decompressed.

If the optional argument n is speci�ed, then ReadDigraphs returns the n th digraph encoded in

the �le filename .

If the optional argument decoder is speci�ed and is a function which decodes a string into a

digraph, then ReadDigraphs will use decoder to decode the digraphs contained in filename . If

the optional argument decoder is not speci�ed, then ReadDigraphs will deduce which decoder to

use based on the �lename extension of filename (after removing the compression-related �lename

extensions .gz, .bz2, and .xz). For example, if the �lename extension if .g6, then ReadDigraphs

will use the graph6 decoder DigraphFromGraph6String (9.2.1).

The currently supported �le formats, and associated �lename extensions, are:

graph6 (.g6)

A standard and widely-used format for undirected graphs, with no support for loops or multiple

edges. Only symmetric graphs are allowed � each edge is combined with its converse edge to

produce a single undirected edge. This format is best used for "dense" graphs � those with many

edges per vertex.

sparse6 (.s6)

Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited

to symmetric graphs. This format is better-suited to "sparse" graphs � those with few edges per

vertex.

digraph6 (.d6)

This format is based on graph6, but stores direction information - therefore is not limited to

symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with

"dense" graphs.

disparse6 (.ds6)

Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all

allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)

This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4

8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More speci�cally, the vertices

making up one edge must be separated by a single space, and pairs of vertices must be separated

by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more �exible way to store digraphs in a plain text

�le.

pickled (.p or .pickle)

Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup

(7.2.9) is non-trivial.

 http://gap-packages.github.io/io/
 http://gap-packages.github.io/io/

Digraphs 121

Example
gap> ReadDigraphs(

> Concatenation(DIGRAPHS_Dir(), "/data/graph5.g6.gz"), 10);

<digraph with 5 vertices, 8 edges>

gap> ReadDigraphs(

> Concatenation(DIGRAPHS_Dir(), "/data/graph5.g6.gz"), 17);

<digraph with 5 vertices, 12 edges>

gap> ReadDigraphs(

> Concatenation(DIGRAPHS_Dir(), "/data/tree9.4.txt"));

[<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>]

9.2.5 WriteDigraphs

. WriteDigraphs(filename, digraphs[, encoder][, mode]) (function)

If digraphs is a list of digraphs or a digraph and filename is a string or an IO �le object

created using DigraphFile (9.2.3), then WriteDigraphs writes the digraphs to the �le represented

by filename . If the supplied �lename ends in one of the extensions .gz, .bz2, or .xz, then the �le

will be compressed appropriately. Excluding these extensions, if the �le ends with an extension in

the list below, the corresponding graph format will be used to encode it. If such an extension is not

included, an appropriate format will be chosen intelligently, and an extension appended, to minimise

�le size.

For more verbose information on the progress of the function, set the info level of InfoDigraphs

to 1 or higher, using SetInfoLevel.

The currently supported �le formats are:

graph6 (.g6)

A standard and widely-used format for undirected graphs, with no support for loops or multiple

edges. Only symmetric graphs are allowed � each edge is combined with its converse edge to

produce a single undirected edge. This format is best used for "dense" graphs � those with many

edges per vertex.

sparse6 (.s6)

Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited

to symmetric graphs. This format is better-suited to "sparse" graphs � those with few edges per

vertex.

 http://gap-packages.github.io/io/

Digraphs 122

digraph6 (.d6)

This format is based on graph6, but stores direction information - therefore is not limited to

symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with

"dense" graphs.

disparse6 (.ds6)

Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all

allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)

This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4

8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More speci�cally, the vertices

making up one edge must be separated by a single space, and pairs of vertices must be separated

by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more �exible way to store digraphs in a plain text

�le.

pickled (.p or .pickle)

Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup

(7.2.9) is non-trivial.
Example

gap> grs := [];;

gap> grs[1] := Digraph([]);

<digraph with 0 vertices, 0 edges>

gap> grs[2] := Digraph([[1, 3], [2], [1, 2]]);

<digraph with 3 vertices, 5 edges>

gap> grs[3] := Digraph([

> [6, 7], [6, 9], [1, 3, 4, 5, 8, 9],

> [1, 2, 3, 4, 5, 6, 7, 10], [1, 5, 6, 7, 10], [2, 4, 5, 9, 10],

> [3, 4, 5, 6, 7, 8, 9, 10], [1, 3, 5, 7, 8, 9], [1, 2, 5],

> [1, 2, 4, 6, 7, 8]]);

<digraph with 10 vertices, 51 edges>

gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;

gap> WriteDigraphs(filename, grs, "w");

IO_OK

gap> ReadDigraphs(filename);

[<digraph with 0 vertices, 0 edges>,

<digraph with 3 vertices, 5 edges>,

<digraph with 10 vertices, 51 edges>]

9.2.6 IteratorFromDigraphFile

. IteratorFromDigraphFile(filename[, decoder]) (function)

Returns: An iterator.

If filename is a string representing the name of a �le containing encoded digraphs, then

IteratorFromDigraphFile returns an iterator for which the value of NextIterator (Reference:

NextIterator) is the next digraph encoded in the �le.

If the optional argument decoder is speci�ed and is a function which decodes a string into a

digraph, then IteratorFromDigraphFile will use decoder to decode the digraphs contained in

filename .

 http://gap-packages.github.io/io/

Digraphs 123

The purpose of this function is to easily allow looping over digraphs encoded in a �le when loading

all of the encoded digraphs would require too much memory.

To see what �le types are available, see WriteDigraphs (9.2.5).

Example
gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;

gap> file := DigraphFile(filename, "w");;

gap> for i in [1 .. 10] do

> WriteDigraphs(file, Digraph([[1, 3], [2], [1, 2]]));

> od;

gap> IO_Close(file);;

gap> iter := IteratorFromDigraphFile(filename);

<iterator>

gap> for x in iter do od;

9.2.7 DigraphPlainTextLineEncoder

. DigraphPlainTextLineEncoder(delimiter1[, delimiter2], offset) (function)

. DigraphPlainTextLineDecoder(delimiter1[, delimiter2], offset) (function)

Returns: A string.

These two functions return a function which encodes or decodes a digraph in a plain text format.

DigraphPlainTextLineEncoder returns a function which takes a single digraph as an argu-

ment. The function returns a string describing the edges of that digraph; each edge is written as a pair

of integers separated by the string delimiter2 , and the edges themselves are separated by the string

delimiter1 . DigraphPlainTextLineDecoder returns the corresponding decoder function, which

takes a string argument in this format and returns a digraph.

If only one delimiter is passed as an argument to DigraphPlainTextLineDecoder , it will return

a function which decodes a single edge, returning its contents as a list of integers.

The argument offset should be an integer, which will describe a number to be added to each

vertex before it is encoded, or after it is decoded. This may be used, for example, to label vertices

starting at 0 instead of 1.

Note that the number of vertices of a digraph is not stored, and so vertices which are not connected

to any edge may be lost.

Example
gap> gr := Digraph([[2, 3], [1], [1]]);

<digraph with 3 vertices, 4 edges>

gap> enc := DigraphPlainTextLineEncoder(" ", " ", -1);;

gap> dec := DigraphPlainTextLineDecoder(" ", " ", 1);;

gap> enc(gr);

"0 1 0 2 1 0 2 0"

gap> dec(last);

<digraph with 3 vertices, 4 edges>

9.2.8 TournamentLineDecoder

. TournamentLineDecoder(str) (function)

Returns: A digraph.

This function takes a string str , decodes it, and then returns the tournament [see IsTournament

(6.1.11)] which it de�nes, according to the following rules.

Digraphs 124

The characters of the string str represent the entries in the upper triangle of a tournament's

adjacency matrix. The number of vertices n will be detected from the length of the string and will be

as large as possible.

The �rst character represents the possible edge 1 -> 2, the second represents 1 -> 3 and so on

until 1 -> n; then the following character represents 2 -> 3, and so on up to the character which

represents the edge n-1 -> n.

If a character of the string with corresponding edge i -> j is equal to 1, then the edge i -> j is

present in the tournament. Otherwise, the edge i -> j is present instead. In this way, all the possible

edges are encoded one-by-one.

Example
gap> gr := TournamentLineDecoder("100001");

<digraph with 4 vertices, 6 edges>

gap> OutNeighbours(gr);

[[2], [], [1, 2, 4], [1, 2]]

9.2.9 AdjacencyMatrixUpperTriangleLineDecoder

. AdjacencyMatrixUpperTriangleLineDecoder(str) (function)

Returns: A digraph.

This function takes a string str , decodes it, and then returns the topologically sorted digraph [see

DigraphTopologicalSort (5.1.7)] which it de�nes, according to the following rules.

The characters of the string str represent the entries in the upper triangle of a digraph's adjacency

matrix. The number of vertices n will be detected from the length of the string and will be as large as

possible.

The �rst character represents the possible edge 1 -> 2, the second represents 1 -> 3 and so on

until 1 -> n; then the following character represents 2 -> 3, and so on up to the character which

represents the edge n-1 -> n. If a character of the string with corresponding edge i -> j is equal

to 1, then this edge is present in the digraph. Otherwise, it is not present. In this way, all the possible

edges are encoded one-by-one.

In particular, note that there exists no edge [i, j] if j � i. In order words, the digraph will be

topologically sorted.

Example
gap> gr := AdjacencyMatrixUpperTriangleLineDecoder("100001");

<digraph with 4 vertices, 2 edges>

gap> OutNeighbours(gr);

[[2], [], [4], []]

gap> gr := AdjacencyMatrixUpperTriangleLineDecoder("111111x111");

<digraph with 5 vertices, 9 edges>

gap> OutNeighbours(gr);

[[2, 3, 4, 5], [3, 4], [4, 5], [5], []]

9.2.10 TCodeDecoder

. TCodeDecoder(str) (function)

Returns: A digraph.

If str is a string consisting of at least two non-negative integers separated by spaces, then this

function will attempt to return the digraph which it de�nes as a TCode string.

Digraphs 125

The �rst integer of the string de�nes the number of vertices v in the digraph, and the second

de�nes the number of edges e. The following 2e integers should be vertex numbers in the range [0

.. v-1]. These integers are read in pairs and de�ne the digraph's edges. This function will return

an error if str has fewer than 2e+2 entries.

Note that the vertex numbers will be incremented by 1 in the digraph returned. Hence the string

fragment 0 6 will describe the edge [1,7].
Example

gap> gr := TCodeDecoder("3 2 0 2 2 1");

<digraph with 3 vertices, 2 edges>

gap> OutNeighbours(gr);

[[3], [], [2]]

gap> gr := TCodeDecoder("12 3 0 10 5 2 8 8");

<digraph with 12 vertices, 3 edges>

gap> OutNeighbours(gr);

[[11], [], [], [], [], [3], [], [], [9], [],

[], []]

9.2.11 PlainTextString

. PlainTextString(digraph) (operation)

. DigraphFromPlainTextString(s) (operation)

Returns: A string.

PlainTextString takes a single digraph, and returns a string describing the edges of that di-

graph. DigraphFromPlainTextString takes such a string and returns the digraph which it de-

scribes. Each edge is written as a pair of integers separated by a single space. The edges themselves

are separated by a double space. Vertex numbers are reduced by 1 when they are encoded, so that

vertices in the string are labelled starting at 0.

Note that the number of vertices of a digraph is not stored, and so vertices which are not connected

to any edge may be lost.

Example
gap> gr := Digraph([[2, 3], [1], [1]]);

<digraph with 3 vertices, 4 edges>

gap> PlainTextString(gr);

"0 1 0 2 1 0 2 0"

gap> DigraphFromPlainTextString(last);

<digraph with 3 vertices, 4 edges>

9.2.12 WritePlainTextDigraph

. WritePlainTextDigraph(filename, digraph, delimiter, offset) (function)

. ReadPlainTextDigraph(filename, delimiter, offset, ignore) (function)

These functions write and read a single digraph in a human-readable plain text format as follows:

each line contains a single edge, and each edge is written as a pair of integers separated by the string

delimiter .

filename should be the name of a �le which will be written to or read from, and offset

should be an integer which is added to each vertex number as it is written or read. For example,

if WritePlainTextDigraph is called with offset -1, then the vertices will be numbered in the �le

Digraphs 126

starting from 0 instead of 1 - ReadPlainTextDigraph would then need to be called with offset 1

to convert back to the original graph.

ignore should be a list of characters which will be ignored when reading the graph.

Example
gap> gr := Digraph([[1, 2, 3], [1, 1], [2]]);

<multidigraph with 3 vertices, 6 edges>

gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/plain.txt");;

gap> WritePlainTextDigraph(filename, gr, ",", -1);

gap> ReadPlainTextDigraph(filename, ",", 1, ['/', '%']);

<multidigraph with 3 vertices, 6 edges>

9.2.13 WriteDIMACSDigraph

. WriteDIMACSDigraph(filename, digraph) (operation)

. ReadDIMACSDigraph(filename) (operation)

These operations write or read the single symmetric digraph digraph to or from a �le in

DIMACS format, as appropriate. The operation WriteDIMACSDigraph records the vertices and

edges of digraph . The vertex labels of digraph will be recorded only if they are integers. See

IsSymmetricDigraph (6.1.10) and DigraphVertexLabels (5.1.9).

The �rst argument filename should be the name of the �le which will be written to or read from.

A �le can contain one symmetric digraph in DIMACS format. If filename ends in one of .gz, .bz2,

or .xz, then the �le is compressed, or decompressed, appropriately.

The DIMACS format is described as follows. Each line in the DIMACS �le has one of four types:

� A line beginning with c and followed by any number of characters is a comment line, and is

ignored.

� A line beginning with p de�nes the numbers of vertices and edges the digraph. This line has the

format p edge <nr_vertices> <nr_edges>, where <nr_vertices> and <nr_edges> are

replaced by the relevant integers. There must be exactly one such line in the �le, and it must

occur before any of the following kinds of line.

Although it is required to be present, the value of <nr_edges> will be ignored. The correct

number of edges will be deduced from the rest of the information in the �le.

� A line of the form e <v> <w>, where <v> and <w> are integers in the range [1 ..

<nr_vertices>], speci�es that there is a (symmetric) edge in the digraph between the ver-

tices <v> and <w>. A symmetric edge only needs to be de�ned once; an additional line e <v>

<w>, or e <w> <v>, will be interpreted as an additional, multiple, edge. Loops are permitted.

� A line of the form n <v> <label>, where <v> is an integer in the range [1 ..

<nr_vertices>] and <label> is an integer, signi�es that the vertex <v> has the label <label>

in the digraph. If a label is not speci�ed for a vertex, then ReadDIMACSDigraph will assign the

label 1, according to the DIMACS speci�cation.

A detailed de�nition of the DIMACS format can be found at

http://mat.gsia.cmu.edu/COLOR/general/ccformat.ps, in Section 2.1. Note that optional

descriptor lines, as described in Section 2.1, will be ignored.

http://mat.gsia.cmu.edu/COLOR/general/ccformat.ps

Digraphs 127

Example
gap> gr := Digraph([[2], [1, 3, 4], [2, 4], [2, 3]]);

<digraph with 4 vertices, 8 edges>

gap> filename := Concatenation(DIGRAPHS_Dir(),

> "/tst/out/dimacs.dimacs");;

gap> WriteDIMACSDigraph(filename, gr);;

gap> ReadDIMACSDigraph(filename);

<digraph with 4 vertices, 8 edges>

Appendix A

Grape to Digraphs Command Map

Below is a table of Grape commands with the Digraphs counterparts. The sections in this chapter

correspond to the chapters in the Grape manual.

A.1 Functions to construct and modify graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command

Graph Digraph (3.1.5)

EdgeOrbitsGraph EdgeOrbitsDigraph (3.1.8)

NullGraph NullDigraph (3.5.6)

CompleteGraph CompleteDigraph (3.5.2)

JohnsonGraph JohnsonDigraph (3.5.7)

CayleyGraph CayleyDigraph (3.1.10)

AddEdgeOrbit DigraphAddEdgeOrbit (3.3.15)

RemoveEdgeOrbit DigraphRemoveEdgeOrbit (3.3.20)

AssignVertexNames SetDigraphVertexLabels (5.1.9)

A.2 Functions to inspect graphs, vertices and edges

The table in this section contains more information when viewed in html format.

128

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 129

Grape command Digraphs command

IsGraph IsDigraph (3.1.1)

OrderGraph DigraphNrVertices (5.1.2)

IsVertex(graph, v) v in DigraphVertices(digraph)

VertexName DigraphVertexLabel (5.1.8)

VertexNames DigraphVertexLabels (5.1.9)

Vertices DigraphVertices (5.1.1)

VertexDegree OutDegreeOfVertex (5.2.9)

VertexDegrees OutDegreeSet (5.2.7)

IsLoopy DigraphHasLoops (6.1.1)

IsSimpleGraph IsSymmetricDigraph (6.1.10)

Adjacency OutNeighboursOfVertex (5.2.10)

IsEdge IsDigraphEdge (5.1.14)

DirectedEdges DigraphEdges (5.1.3)

UndirectedEdges None

Distance DigraphShortestDistance (5.3.2)

Diameter DigraphDiameter (5.3.1)

Girth DigraphUndirectedGirth (5.3.7)

IsConnectedGraph IsStronglyConnectedDigraph (6.3.4)

IsBipartite IsBipartiteDigraph (6.1.3)

IsNullGraph IsNullDigraph (6.1.6)

IsCompleteGraph IsCompleteDigraph (6.1.5)

A.3 Functions to determine regularity properties of graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command

IsRegularGraph IsOutRegularDigraph (6.2.2)

LocalParameters None

GlobalParameters None

IsDistanceRegular IsDistanceRegularDigraph (6.2.4)

CollapsedAdjacencyMat None

OrbitalGraphColadjMats None

VertexTransitiveDRGs None

A.4 Some special vertex subsets of a graph

The table in this section contains more information when viewed in html format.

Grape command Digraphs command

ConnectedComponent DigraphConnectedComponent (5.3.9)

ConnectedComponents DigraphConnectedComponents (5.3.8)

Bicomponents DigraphBicomponents (5.3.12)

DistanceSet DigraphDistanceSet (5.3.5)

Layers DigraphLayers (5.3.21)

IndependentSet DigraphIndependentSet (8.2.2)

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 130

A.5 Functions to construct new graphs from old

The table in this section contains more information when viewed in html format.

Grape command Digraphs command

InducedSubgraph InducedSubdigraph (3.3.2)

DistanceSetInduced None

DistanceGraph DistanceDigraph (3.3.33)

ComplementGraph DigraphDual (3.3.8)

PointGraph None

EdgeGraph EdgeUndirectedDigraph (3.3.29)

SwitchedGraph None

UnderlyingGraph DigraphSymmetricClosure (3.3.9)

QuotientGraph QuotientDigraph (3.3.6)

BipartiteDouble BipartiteDoubleDigraph (3.3.31)

GeodesicsGraph None

CollapsedIndependentOrbitsGraph None

CollapsedCompleteOrbitsGraph None

NewGroupGraph None

A.6 Vertex-Colouring and Complete Subgraphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command

VertexColouring DigraphColouring (7.3.9)

CompleteSubgraphs DigraphCliques (8.1.4)

CompleteSubgraphsOfGivenSize DigraphCliques (8.1.4)

A.7 Automorphism groups and isomorphism testing for graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command

AutGroupGraph AutomorphismGroup (7.2.2)

GraphIsomorphism IsomorphismDigraphs (7.2.16)

IsIsomorphicGraph IsIsomorphicDigraph (7.2.14)

GraphIsomorphismClassRepresentatives None

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

References

[CK86] R. Calderbank and W. M. Kantor. The geometry of two-weight codes. Bull. London Math.

Soc., 18(2):97�122, 1986. 12

[Gab00] Harold N. Gabow. Path-based depth-�rst search for strong and biconnected components.

Information Processing Letters, 74(34):107 � 114, 2000. 58, 77

[JK07] Tommi Junttila and Petteri Kaski. Engineering an ef�cient canonical labeling tool for large

and sparse graphs. In David Applegate, Gerth Stølting Brodal, Daniel Panario, and Robert

Sedgewick, editors, Proceedings of the Ninth Workshop on Algorithm Engineering and Ex-

periments and the Fourth Workshop on Analytic Algorithms and Combinatorics, pages 135�

149. SIAM, 2007. 5, 83

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Journal of

Symbolic Computation, 60(0):94 � 112, 2014. 6, 83

[vLS81] J. H. van Lint and A. Schrijver. Construction of strongly regular graphs, two-weight codes

and partial geometries by �nite �elds. Combinatorica, 1(1):63�73, 1981. 12

131

Index

< (for digraphs), 37

= (for digraphs), 37

AdjacencyMatrix, 46

AdjacencyMatrixMutableCopy, 46

AdjacencyMatrixUpperTriangleLine-

Decoder, 124

ArticulationPoints, 59

AsBinaryRelation, 15

AsDigraph, 15

AsGraph, 16

AsTransformation, 17

AutomorphismGroup

for a digraph, 84

for a digraph and a homogeneous list, 86

BipartiteDoubleDigraph, 31

BlissAutomorphismGroup, 85

BlissCanonicalDigraph, 90

BlissCanonicalLabelling

for a digraph, 87

for a digraph and a list, 88

BooleanAdjacencyMatrix, 47

BooleanAdjacencyMatrixMutableCopy, 47

CayleyDigraph, 14

ChainDigraph, 34

ChromaticNumber, 103

CliqueNumber, 111

CliquesFinder, 107

CompleteBipartiteDigraph, 34

CompleteDigraph, 34

CompleteMultipartiteDigraph, 34

CycleDigraph, 35

Digraph, 11

for a group, list, function, and function, 11

for a list and function, 11

Digraph6String, 118

DigraphAddAllLoops, 32

DigraphAddEdge, 24

DigraphAddEdgeOrbit, 24

DigraphAddEdges, 25

DigraphAddVertex, 23

DigraphAddVertices, 23

DigraphAdjacencyFunction, 48

DigraphAllSimpleCircuits, 63

DigraphBicomponents, 59

DigraphByAdjacencyMatrix, 13

DigraphByEdges, 13

DigraphByInNeighbors, 14

DigraphByInNeighbours, 14

DigraphClique, 108

DigraphCliques, 109

DigraphCliquesReps, 109

DigraphClosure

for a digraph and positive integer, 32

DigraphColoring

for a digraph, 102

for a digraph and a number of colours, 102

DigraphColouring

for a digraph, 102

for a digraph and a number of colours, 102

DigraphConnectedComponent, 58

DigraphConnectedComponents, 57

DigraphCopy, 17

DigraphDegeneracy, 64

DigraphDegeneracyOrdering, 65

DigraphDiameter, 54

DigraphDisjointUnion

for a list of digraphs, 29

for an arbitrary number of digraphs, 29

DigraphDistanceSet

for a digraph, a pos int, and a list, 56

for a digraph, a pos int, and an int, 56

DigraphDual, 21

DigraphEdgeLabel, 44

DigraphEdgeLabels, 44

DigraphEdges, 41

132

Digraphs 133

DigraphEdgeUnion

for a list of digraphs, 29

for an arbitrary number of digraphs, 29

DigraphEmbedding, 103

DigraphEpimorphism, 101

DigraphFamily, 10

DigraphFile, 118

DigraphFloydWarshall, 60

DigraphFromDigraph6String, 117

DigraphFromDiSparse6String, 117

DigraphFromGraph6String, 117

DigraphFromPlainTextString, 125

DigraphFromSparse6String, 117

DigraphGirth, 56

DigraphGroup, 90

DigraphHasLoops, 68

DigraphHomomorphism, 99

DigraphIndependentSet, 112

DigraphIndependentSets, 113

DigraphIndependentSetsReps, 113

DigraphInEdges, 45

DigraphJoin

for a list of digraphs, 30

for an arbitrary number of digraphs, 30

DigraphLayers, 64

DigraphLongestDistanceFromVertex, 55

DigraphLongestSimpleCircuit, 64

DigraphLoops, 52

DigraphMaximalClique, 108

DigraphMaximalCliques, 109

DigraphMaximalCliquesAttr, 109

DigraphMaximalCliquesReps, 109

DigraphMaximalCliquesRepsAttr, 109

DigraphMaximalIndependentSet, 112

DigraphMaximalIndependentSets, 113

DigraphMaximalIndependentSetsAttr, 113

DigraphMaximalIndependentSetsReps, 113

DigraphMaximalIndependentSetsRepsAttr,

113

DigraphMonomorphism, 100

DigraphNrEdges, 41

DigraphNrVertices, 40

DigraphOrbitReps, 92

DigraphOrbits, 91

DigraphOutEdges, 45

DigraphPath, 62

DigraphPeriod, 60

DigraphPlainTextLineDecoder, 123

DigraphPlainTextLineEncoder, 123

DigraphRange, 48

DigraphReflexiveTransitiveClosure, 21

DigraphReflexiveTransitiveReduction, 22

DigraphRemoveAllMultipleEdges, 28

DigraphRemoveEdge, 26

DigraphRemoveEdgeOrbit, 26

DigraphRemoveEdges, 27

DigraphRemoveLoops, 27

DigraphRemoveVertex, 25

DigraphRemoveVertices , 26

DigraphReverse, 20

DigraphReverseEdge, 28

DigraphReverseEdges, 28

Digraphs package overview, 5

DigraphSchreierVector, 92

DigraphShortestDistance

for a digraph and a list, 54

for a digraph and two vertices, 54

for a digraph, a list, and a list, 54

DigraphShortestDistances, 55

DigraphSinks, 42

DigraphsMakeDoc, 9

DigraphSource, 48

DigraphSources, 42

DigraphStabilizer, 93

DigraphsTestInstall, 9

DigraphsTestStandard, 9

DigraphStronglyConnectedComponent, 59

DigraphStronglyConnectedComponents, 58

DigraphsUseBliss, 83

DigraphsUseNauty, 83

DigraphSymmetricClosure, 21

DigraphTopologicalSort, 42

DigraphTransitiveClosure, 21

DigraphTransitiveReduction, 22

DigraphType, 10

DigraphUndirectedGirth, 57

DigraphVertexLabel, 42

DigraphVertexLabels, 43

DigraphVertices, 40

DiSparse6String, 118

DistanceDigraph

for digraph and int, 32

for digraph and list, 32

DotDigraph, 116

Digraphs 134

DotSymmetricDigraph, 116

DotVertexLabelledDigraph, 116

DoubleDigraph, 31

EdgeDigraph, 30

EdgeOrbitsDigraph, 14

EdgeUndirectedDigraph, 31

EmptyDigraph, 35

EpimorphismsDigraphs, 101

EpimorphismsDigraphsRepresentatives,

101

GeneratorsOfCayleyDigraph, 66

GeneratorsOfEndomorphismMonoid, 101

GeneratorsOfEndomorphismMonoidAttr, 101

Graph, 16

Graph6String, 118

GroupOfCayleyDigraph, 66

HamiltonianPath, 65

HomomorphismDigraphsFinder, 98

HomomorphismsDigraphs, 99

HomomorphismsDigraphsRepresentatives,

99

InDegreeOfVertex, 52

InDegrees, 51

InDegreeSequence, 51

InDegreeSet, 51

InducedSubdigraph, 17

InNeighbors, 49

InNeighborsMutableCopy, 49

InNeighborsOfVertex, 52

InNeighbours, 49

InNeighboursMutableCopy, 49

InNeighboursOfVertex, 52

IsAcyclicDigraph, 76

IsAntisymmetricDigraph, 68

IsAperiodicDigraph, 78

IsBiconnectedDigraph, 77

IsBipartiteDigraph, 69

IsCayleyDigraph, 10

IsClique, 106

IsCompleteBipartiteDigraph, 69

IsCompleteDigraph, 70

IsConnectedDigraph, 77

IsCycleDigraph, 81

IsDigraph, 10

IsDigraphEdge

for digraph and list, 45

for digraph and two pos ints, 45

IsDigraphWithAdjacencyFunction, 10

IsDirectedTree, 78

IsDistanceRegularDigraph, 75

IsEmptyDigraph, 70

IsEulerianDigraph, 79

IsFunctionalDigraph, 70

IsHamiltonianDigraph, 80

IsIndependentSet, 111

IsInRegularDigraph, 75

IsIsomorphicDigraph

for digraphs, 93

for digraphs and homogeneous lists, 94

IsJoinSemilatticeDigraph, 74

IsLatticeDigraph, 74

IsMatching, 46

IsMaximalClique, 106

IsMaximalIndependentSet, 111

IsMaximalMatching, 46

IsMeetSemilatticeDigraph, 74

IsMultiDigraph, 71

IsNullDigraph, 70

IsomorphismDigraphs

for digraphs, 95

for digraphs and homogeneous lists, 96

IsOutRegularDigraph, 75

IsPartialOrderDigraph, 73

IsPerfectMatching, 46

IsReachable, 61

IsReflexiveDigraph, 71

IsRegularDigraph, 75

IsStronglyConnectedDigraph, 77

IsSubdigraph, 37

IsSymmetricDigraph, 72

IsTournament, 72

IsTransitiveDigraph, 73

IsUndirectedForest, 79

IsUndirectedSpanningForest, 38

IsUndirectedSpanningTree, 38

IsUndirectedTree, 79

IteratorFromDigraphFile, 122

IteratorOfPaths, 62

JohnsonDigraph, 35

Digraphs 135

LineDigraph, 30

LineUndirectedDigraph, 31

MaximalSymmetricSubdigraph, 18

MaximalSymmetricSubdigraphWithout-

Loops, 18

MonomorphismsDigraphs, 100

MonomorphismsDigraphsRepresentatives,

100

NautyAutomorphismGroup, 85

NautyCanonicalDigraph, 90

NautyCanonicalLabelling

for a digraph, 87

for a digraph and a list, 88

NullDigraph, 35

OnDigraphs

for a digraph and a perm, 82

for a digraph and a transformation, 82

OnMultiDigraphs, 83

for a digraph, perm, and perm, 83

OutDegreeOfVertex, 51

OutDegrees, 50

OutDegreeSequence, 50

OutDegreeSet, 50

OutNeighbors, 49

OutNeighborsMutableCopy, 49

OutNeighborsOfVertex, 51

OutNeighbours, 49

OutNeighboursMutableCopy, 49

OutNeighboursOfVertex, 51

PartialOrderDigraphJoinOfVertices

for a digraph and two vertices, 53

PartialOrderDigraphMeetOfVertices

for a digraph and two vertices, 53

PlainTextString, 125

QuotientDigraph, 20

RandomDigraph, 33

RandomMultiDigraph, 33

RandomTournament, 33

ReadDigraphs, 120

ReadDIMACSDigraph, 126

ReadPlainTextDigraph, 125

ReducedDigraph, 18

RepresentativeOutNeighbours, 97

SemigroupOfCayleyDigraph, 66

SetDigraphEdgeLabel, 44

SetDigraphEdgeLabels

for a digraph and a function, 44

for a digraph and a list of lists, 44

SetDigraphVertexLabel, 42

SetDigraphVertexLabels, 43

Sparse6String, 118

Splash, 115

TCodeDecoder, 124

TournamentLineDecoder, 123

UndirectedSpanningForest, 19

UndirectedSpanningTree, 19

WriteDigraphs, 121

WriteDIMACSDigraph, 126

WritePlainTextDigraph, 125

	 The Digraphs package
	Introduction

	Installing Digraphs
	For those in a hurry
	Optional package dependencies
	Compiling the kernel module
	Rebuilding the documentation
	Testing your installation

	Creating digraphs
	Creating digraphs
	Changing representations
	New digraphs from old
	Random digraphs
	Standard examples

	Operators
	Operators for digraphs

	Attributes and operations
	Vertices and edges
	Neighbours and degree
	Reachability and connectivity
	Cayley graphs of groups

	Properties of digraphs
	Edge properties
	Regularity
	Connectivity and cycles

	Homomorphisms
	Acting on digraphs
	Isomorphisms and canonical labellings
	Homomorphisms of digraphs

	Finding cliques and independent sets
	Finding cliques
	Finding independent sets

	Visualising and IO
	Visualising a digraph
	Reading and writing graphs to a file

	 Grape to Digraphs Command Map
	 Functions to construct and modify graphs
	 Functions to inspect graphs, vertices and edges
	 Functions to determine regularity properties of graphs
	 Some special vertex subsets of a graph
	 Functions to construct new graphs from old
	 Vertex-Colouring and Complete Subgraphs
	 Automorphism groups and isomorphism testing for graphs

	References
	Index

