Given map from a rank 1 free module to a rank 1 reflexive module M, this finds the unique divisor D corresponding to the section. In the example below, we consider the divisor corresponding to the inclusion x*R1 -> (x,y)*R1
i1 : R = QQ[x,y,z]/ideal(x^2-y*z) o1 = R o1 : QuotientRing |
i2 : M = (ideal(x,y))*R^1 o2 = image | x y | 1 o2 : R-module, submodule of R |
i3 : mat = map(M, R^1, {{1},{0}}) o3 = {1} | 1 | {1} | 0 | o3 : Matrix |
i4 : moduleToDivisor(M) o4 = -1*Div(y, x) of R o4 : WDiv |