Get the double dual (S2 - identification) of an ideal. If KnownNormal is false (default value is true), then the function will check whether it is normal, if not it will compute using a slower method which will give the correct answer.
i1 : R = QQ[x,y,z]/ideal(x^2-y*z) o1 = R o1 : QuotientRing |
i2 : m = ideal(x,y,z) o2 = ideal (x, y, z) o2 : Ideal of R |
i3 : reflexifyIdeal(m) o3 = ideal 1 o3 : Ideal of R |
i4 : I = ideal(x,y) o4 = ideal (x, y) o4 : Ideal of R |
i5 : reflexifyIdeal(I) o5 = ideal (y, x) o5 : Ideal of R |
i6 : reflexifyIdeal(I^2) o6 = ideal y o6 : Ideal of R |
i7 : reflexifyIdeal(I^3) 2 o7 = ideal (y , x*y) o7 : Ideal of R |