HyperplaneArrangements : Index
- Arrangement -- class of hyperplane arrangements
- arrangement -- create a hyperplane arrangement
- Arrangement ^ Flat -- restriction of arrangement to flat
- Arrangement _ Flat -- Subarrangement containing a fixed flat
- arrangement(Arrangement,Ring) -- create a hyperplane arrangement
- arrangement(List) -- create a hyperplane arrangement
- arrangement(List,Ring) -- create a hyperplane arrangement
- arrangement(Matrix) -- create a hyperplane arrangement
- arrangement(Matrix,Ring) -- create a hyperplane arrangement
- arrangement(RingElement) -- create a hyperplane arrangement
- arrangement(String,PolynomialRing) -- look up a built-in hyperplane arrangement
- arrangementLibrary (missing documentation)
- arrangementSum (missing documentation)
- CentralArrangement -- class of central hyperplane arrangements
- changeRing (missing documentation)
- circuits -- list the circuits of an arrangement
- circuits(Arrangement) -- list the circuits of an arrangement
- closure -- closure operation in the intersection lattice
- closure(Arrangement,List) -- closure operation in the intersection lattice
- coefficients(Arrangement) -- create a matrix from the coefficients of the equations of an arrangment
- compress(Arrangement) -- extract nonzero equations
- cone(Arrangement,RingElement) -- Cone of an arrangement
- deCone -- produce an affine arrangement from a central one
- deCone(CentralArrangement,RingElement) -- produce an affine arrangement from a central one
- deCone(CentralArrangement,ZZ) -- produce an affine arrangement from a central one
- deletion -- subarrangement given by deleting a hyperplane
- deletion(Arrangement,RingElement) -- subarrangement given by deleting a hyperplane
- der -- Module of logarithmic derivations
- der(..., Strategy => ...)
- der(CentralArrangement) -- Module of logarithmic derivations
- der(CentralArrangement,List) -- Module of logarithmic derivations
- dual(CentralArrangement) -- the Gale dual of A
- EPY -- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
- EPY(Arrangement) -- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
- EPY(Arrangement,PolynomialRing) -- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
- EPY(Ideal) -- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
- EPY(Ideal,PolynomialRing) -- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
- euler(Arrangement) -- Euler characteristic
- euler(Flat) -- Euler characteristic
- Flat -- intersection of hyperplanes
- flat -- make a flat from a list of indices
- Flat ^ Flat -- meet operation in intersection lattice
- Flat | Flat -- join operation in intersection lattice
- flat(Arrangement,List) -- make a flat from a list of indices
- flats -- list the flats of an arrangement of given rank
- flats(Arrangement) -- list the flats of an arrangement of given rank
- flats(ZZ,Arrangement) -- list the flats of an arrangement of given rank
- graphic -- Make a graphic arrangement
- graphic(List) -- Make a graphic arrangement
- graphic(List,PolynomialRing) -- Make a graphic arrangement
- graphic(List,Ring) -- Make a graphic arrangement
- HypAtInfinity (missing documentation)
- HyperplaneArrangements -- hyperplane arrangements
- isCentral (missing documentation)
- isDecomposable -- test if an arrangement is decomposable
- isDecomposable(CentralArrangement) -- test if an arrangement is decomposable
- isDecomposable(CentralArrangement,Ring) -- test if an arrangement is decomposable
- lct -- Compute the log-canonical threshold of an arrangement
- lct(CentralArrangement) -- Compute the log-canonical threshold of an arrangement
- matrix(Arrangement) -- create a matrix from the equations of an arrangement
- meet -- meet operation in intersection lattice
- meet(Flat,Flat) -- meet operation in intersection lattice
- multIdeal -- compute a multiplier ideal
- multIdeal(QQ,CentralArrangement) -- compute a multiplier ideal
- multIdeal(QQ,CentralArrangement,List) -- compute a multiplier ideal
- multIdeal(ZZ,CentralArrangement) -- compute a multiplier ideal
- multIdeal(ZZ,CentralArrangement,List) -- compute a multiplier ideal
- NaiveAlgorithm (missing documentation)
- orlikSolomon -- defining ideal for the Orlik-Solomon algebra
- orlikSolomon(..., HypAtInfinity => ...) -- hyperplane at infinity
- orlikSolomon(..., Projective => ...) -- specify projective complement
- orlikSolomon(Arrangement) -- defining ideal for the Orlik-Solomon algebra
- orlikSolomon(Arrangement,Ring) -- defining ideal for the Orlik-Solomon algebra
- orlikSolomon(Arrangement,Symbol) -- defining ideal for the Orlik-Solomon algebra
- orlikTerao -- defining ideal for the Orlik-Terao algebra
- orlikTerao(CentralArrangement) -- defining ideal for the Orlik-Terao algebra
- orlikTerao(CentralArrangement,PolynomialRing) -- defining ideal for the Orlik-Terao algebra
- orlikTerao(CentralArrangement,Symbol) -- defining ideal for the Orlik-Terao algebra
- randomArrangement -- generate an arrangement at random
- randomArrangement(ZZ,ZZ,ZZ) -- generate an arrangement at random
- rank(Arrangement) -- compute the rank
- restriction -- restriction of arrangement to flat/hyperplane
- restriction(Arrangement,Flat) -- restriction of arrangement to flat/hyperplane
- restriction(Arrangement,Ideal) -- restriction of arrangement to flat/hyperplane
- restriction(Arrangement,RingElement) -- restriction of arrangement to flat/hyperplane
- restriction(Flat) -- restriction of arrangement to flat/hyperplane
- ring(Arrangement) -- get the associated ring
- subArrangement -- Subarrangement containing a fixed flat
- subArrangement(Arrangement,Flat) -- Subarrangement containing a fixed flat
- subArrangement(Flat) -- Subarrangement containing a fixed flat
- tolist (missing documentation)
- trim(Arrangement) -- minimize the generators
- typeA -- Type A reflection arrangement
- typeA(ZZ) -- Type A reflection arrangement
- typeA(ZZ,PolynomialRing) -- A_n arrangement with specified coordinate ring
- typeA(ZZ,Ring) -- A_n reflection arrangement with specified coefficient ring
- typeB -- Type B reflection arrangement
- typeB(ZZ) -- Type B reflection arrangement
- typeB(ZZ,PolynomialRing) -- Type B reflection arrangement
- typeB(ZZ,Ring) -- Type B reflection arrangement
- typeD -- Type D reflection arrangement
- typeD(ZZ) -- Type D reflection arrangement
- typeD(ZZ,PolynomialRing) -- Type D reflection arrangement
- typeD(ZZ,Ring) -- Type D reflection arrangement
- vee -- join operation in intersection lattice
- vee(Flat,Flat) -- join operation in intersection lattice