Construct a divisor as a formal sum of height one prime ideals whose coefficients are real numbers
i1 : R = QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : D = realDivisor({1.7, -2.3}, {ideal(x+y+z), ideal(x)}) o2 = 1.7*Div(x+y+z) + -2.3*Div(x) of R o2 : RDiv |