
1 1

1 1

2 2

2 2

1

Contents

Introduction 3

1 Setting up a converter 5
1.1 from structure to setup 5
1.2 alternative solutions 7

2 Filtering content 11
2.1 TEX versus LUA 11
2.2 a few details 12
2.3 CDATA 13
2.4 Entities 13

3 Commands 17
3.1 nodes and lpaths 17
3.2 commands 17
3.3 loading 18
3.4 saving 19
3.5 flushing data 20
3.6 information 22
3.7 manipulation 23
3.8 integration 23
3.9 setups 24
3.10 testing 25
3.11 initialization 26
3.12 helpers 27

4 Expressions and filters 29
4.1 path expressions 29
4.2 functions as filters 31
4.3 example 33
4.4 tables 35

5 Tips and tricks 37
5.1 tracing 37
5.2 expansion 39
5.3 special cases 43
5.4 collecting 44
5.5 selectors and injectors 46

6 Lookups using lpaths 51
6.1 introduction 51
6.2 special cases 51
6.3 wildcards 52
6.4 multiple steps 53

3 3

3 3

2

6.5 pitfals 54
6.6 more special cases 54
6.7 more wildcards 57
6.8 special axis 58
6.9 some more examples 61

7 Examples 69
7.1 attribute chains 69
7.2 conditional setups 70
7.3 manipulating 70
7.4 cross referencing 71
7.5 mapping values 73
7.6 using LUA 75
7.7 last match 83

4 4

4 4

3

Introduction

This manual presents the MkIV way of dealing with xml. Although the traditional MkII streaming
parser has a charming simplicity in its control, for complex documents the tree based MkIV method
is more convenient. It is for this reason that the old method has been removed from MkIV. If you
are familiar with xml processing in MkII, then you will have noticed that the MkII commands have
XML in their name. The MkIV commands have a lowercase xml in their names. That way there is no
danger for confusion or a mixup.

You may wonder why we do these manipulations in TEX and not use xslt (or other transformation
methods) instead. The advantage of an integrated approach is that it simplifies usage. Think of not
only processing the document, but also using xml for managing resources in the same run. An xslt
approach is just as verbose (after all, you still need to produce TEX code) and probably less readable.
In the case of MkIV the integrated approach is also faster and gives us the option to manipulate
content at runtime using Lua. It has the additional advantage that to some extend we can handle a
mix of TEX and xml because we know when we’re doing one or the other.

This manual is dedicated to Taco Hoekwater, one of the first ConTEXt users, and also the first to use
it for processing xml. Who could have thought at that time that we would have a more convenient
way of dealing with those angle brackets. The second version for this manual is dedicated to Thomas
Schmitz, a power user who occasionally became victim of the evolving mechanisms.

Hans Hagen
Pragma ADE
Hasselt NL
2008–2016

5 5

5 5

4

6 6

6 6

5

< 1 > Setting up a converter

<< 1.1 >> from structure to setup

We use a very simple document structure for demonstrating how a converter is defined. In practice a
mapping will be more complex, especially when we have a style with complex chapter openings using
data coming from all kind of places, different styling of sections with the same name, selectively (out
of order) flushed content, special formatting, etc.

<?xml version='1.0' standalone='yes?>

<document>
<section>

<title>Some title</title>
<content>

<p>a paragraph of text</p>
<p>another paragraph of text</p>

</content>
</section>

</document>

Say that this document is stored in the file demo.xml, then the following code can be used as starting
point:

\startxmlsetups xml:demo:base
\xmlsetsetup{#1}{*}{-}
\xmlsetsetup{#1}{document|section|p}{xml:demo:*}

\stopxmlsetups

\xmlregisterdocumentsetup{demo}{xml:demo:base}

\startxmlsetups xml:demo:document
\starttitle[title={Contents}]

\placelist[chapter]
\stoptitle
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:demo:section
\startchapter[title=\xmlfirst{#1}{/title}]

\xmlfirst{#1}{/content}
\stopchapter

\stopxmlsetups

\startxmlsetups xml:demo:p

7 7

7 7

Setting up a converter

6

\xmlflush{#1}\endgraf
\stopxmlsetups

\xmlprocessfile{demo}{demo.xml}{}

Watch out! These are not just setups, but specific xml setups which get an argument passed (the #1).
If for some reason your xml processing fails, it might be that you mistakenly have used a normal
setup definition. The argument #1 represents the current node (element) and is a unique identifier.
For instance a <p>..</p> can have an identifier demo::5. So, we can get something:

\xmlflush{demo::5}\endgraf

but as well:

\xmlflush{demo::6}\endgraf

Keep in mind that the references tor the actual nodes (elements) are abstractions, you never see those
<id>::<number>’s, because we will use either the abstract #1 (any node) or an explicit reference like
demo. The previous setup when issued will be like:

\startchapter[title=\xmlfirst{demo::3}{/title}]
\xmlfirst{demo::4}{/content}

\stopchapter

Here the title is used to typeset the chapter title but also for an entry in the table of contents. At
the moment the title is typeset the xml node gets looked up and expanded in real text. However, for
the list it gets stored for later use. One can argue that this is not needed for xml, because one can
just filter all the titles and use page references, but then one also looses the control one normally
has over such titles. For instance it can be that some titles are rendered differently and for that we
need to keep track of usage. Doing that with transformations or filtering is often more complex than
leaving that to TEX. As soon as the list gets typeset, the reference (demo::#3) is used for the lookup.
This is because by default the title is stored as given. So, as long as we make sure the xml source
is loaded before the table of contents is typeset we’re ok. Later we will look into this in more detail,
for now it’s enough to know that in most cases the abstract #1 reference will work out ok.

Contrary to the style definitions this interface looks rather low level (with no optional arguments)
and the main reason for this is that we want processing to be fast. So, the basic framework is:

\startxmlsetups xml:demo:base
% associate setups with elements

\stopxmlsetups

\xmlregisterdocumentsetup{demo}{xml:demo:base}

% define setups for matches

\xmlprocessfile{demo}{demo.xml}{}

8 8

8 8

Setting up a converter

7

In this example we mostly just flush the content of an element and in the case of a section we flush
explicit child elements. The #1 in the example code represents the current element. The line:

\xmlsetsetup{demo}{*}{-}

sets the default for each element to ‘just ignore it’. A + would make the default to always flush the
content. This means that at this point we only handle:

<section>
<title>Some title</title>
<content>

<p>a paragraph of text</p>
</content>

</section>

In the next section we will deal with the slightly more complex itemize and figure placement. At first
sight all these setups may look overkill but keep in mind that normally the number of elements is
rather limited. The complexity is often in the style and having access to each snippet of content is
actually quite handy for that.

<< 1.2 >> alternative solutions

Dealing with an itemize is rather simple (as long as we forget about attributes that control the be-
haviour):

<itemize>
<item>first</item>
<item>second</item>

</itemize>

First we need to add itemize to the setup assignment (unless we’ve used the wildcard *):

\xmlsetsetup{demo}{document|section|p|itemize}{xml:demo:*}

The setup can look like:

\startxmlsetups xml:demo:itemize
\startitemize

\xmlfilter{#1}{/item/command(xml:demo:itemize:item)}
\stopitemize

\stopxmlsetups

\startxmlsetups xml:demo:itemize:item
\startitem

\xmlflush{#1}
\stopitem

\stopxmlsetups

9 9

9 9

Setting up a converter

8

An alternative is to map item directly:

\xmlsetsetup{demo}{document|section|p|itemize|item}{xml:demo:*}

and use:

\startxmlsetups xml:demo:itemize
\startitemize

\xmlflush{#1}
\stopitemize

\stopxmlsetups

\startxmlsetups xml:demo:item
\startitem

\xmlflush{#1}
\stopitem

\stopxmlsetups

Sometimes, a more local solution using filters and /command(...) makes more sense, especially
when the item tag is used for other purposes as well.

Explicit flushing with command is definitely the way to go when you have complex products. In one
of our projects we compose math school books from many thousands of small xml files, and from
one source set several products are typeset. Within a book sections get done differently, content
gets used, ignored or interpreted differently depending on the kind of content, so there is a constant
checking of attributes that drive the rendering. In that a generic setup for a title element makes
less sense than explicit ones for each case. (We’re talking of huge amounts of files here, including
multiple images on each rendered page.)

When using command you can pass two arguments, the first is the setup for the match, the second
one for the miss, as in:

\xmlfilter{#1}{/element/command(xml:true,xml:false)}

Back to the example, this leaves us with dealing with the resources, like figures:

<resource type='figure'>
<caption>A picture of a cow.</caption>
<content><external file="cow.pdf"/></content>

</resource>

Here we can use a more restricted match:

\xmlsetsetup{demo}{resource[@type='figure']}{xml:demo:figure}
\xmlsetsetup{demo}{external}{xml:demo:*}

and the definitions:

\startxmlsetups xml:demo:figure

10 10

10 10

Setting up a converter

9

\placefigure
{\xmlfirst{#1}{/caption}}
{\xmlfirst{#1}{/content}}

\stopxmlsetups

\startxmlsetups xml:demo:external
\externalfigure[\xmlatt{#1}{file}]

\stopxmlsetups

At this point it is good to notice that \xmlatt{#1}{file} is passed as it is: a macro call. This means
that when a macro like \externalfigure uses the first argument frequently without first storing
its value, the lookup is done several times. A solution for this is:

\startxmlsetups xml:demo:external
\expanded{\externalfigure[\xmlatt{#1}{file}]}

\stopxmlsetups

Because the lookup is rather fast, normally there is no need to bother about this too much because
internally ConTEXt already makes sure such expansion happens only once.

An alternative definition for placement is the following:

\xmlsetsetup{demo}{resource}{xml:demo:resource}

with:

\startxmlsetups xml:demo:resource
\placefloat

[\xmlatt{#1}{type}]
{\xmlfirst{#1}{/caption}}
{\xmlfirst{#1}{/content}}

\stopxmlsetups

This way you can specify table as type too. Because you can define your own float types, more
complex variants are also possible. In that case it makes sense to provide some default behaviour
too:

\definefloat[figure-here][figure][default=here]
\definefloat[figure-left][figure][default=left]
\definefloat[table-here] [table] [default=here]
\definefloat[table-left] [table] [default=left]

\startxmlsetups xml:demo:resource
\placefloat

[\xmlattdef{#1}{type}{figure}-\xmlattdef{#1}{location}{here}]
{\xmlfirst{#1}{/caption}}
{\xmlfirst{#1}{/content}}

\stopxmlsetups

11 11

11 11

Setting up a converter

10

In this example we support two types and two locations. We default to a figure placed (when possible)
at the current location.

12 12

12 12

11

< 2 > Filtering content

<< 2.1 >> TEX versus LUA

It will not come as a surprise that we can access xml files from TEX as well as from Lua. In fact
there are two methods to deal with xml in Lua. First there are the low level xml functions in the xml
namespace. On top of those functions there is a set of functions in the lxml namespace that deals
with xml in a more TEXie way. Most of these have similar commands at the TEX end.

\startxmlsetups first:demo:one
\xmlfilter {#1} {artist/name[text()='Randy Newman']/..

/albums/album[position()=3]/command(first:demo:two)}
\stopxmlsetups

\startxmlsetups first:demo:two
\blank \start \tt

\xmldisplayverbatim{#1}
\stop \blank

\stopxmlsetups

\xmlprocessfile{demo}{music-collection.xml}{first:demo:one}

This gives the following snippet of verbatim xml code. The indentation is conform the indentation
in the whole xml file.1

<name>Land Of Dreams</name>
<tracks>
<track length="248">Dixie Flyer</track>
<track length="212">New Orleans Wins The War</track>
<track length="218">Four Eyes</track>
<track length="181">Falling In Love</track>
<track length="187">Something Special</track>
<track length="168">Bad News From Home</track>
<track length="207">Roll With The Punches</track>
<track length="209">Masterman And Baby J</track>
<track length="134">Follow The Flag</track>
<track length="246">I Want You To Hurt Like I Do</track>
<track length="248">It's Money That Matters</track>
<track length="156">Red Bandana</track>

</tracks>

An alternative written in Lua looks as follows:

1 The (probably outdated) xml file contains the collection stores on my slimserver instance. You can use the mtxrun --script
flac to generate such files.

13 13

13 13

Filtering content

12

\blank \start \tt \startluacode
local m = lxml.load("mine","music-collection.xml") -- m == lxml.id("mine")
local p = "artist/name[text()='Randy Newman']/../albums/album[position()=4]"
local l = lxml.filter(m,p) -- returns a list (with one entry)
lxml.displayverbatim(l[1])

\stopluacode \stop \blank

This produces:

<name>Bad Love</name>
<tracks>
<track length="340">My Country</track>
<track length="295">Shame</track>
<track length="205">I'm Dead (But I Don't Know It)</track>
<track length="213">Every Time It Rains</track>
<track length="206">The Great Nations of Europe</track>
<track length="220">The One You Love</track>
<track length="164">The World Isn't Fair</track>
<track length="264">Big Hat, No Cattle</track>
<track length="243">Better Off Dead</track>
<track length="236">I Miss You</track>
<track length="126">Going Home</track>
<track length="180">I Want Everyone To Like Me</track>

</tracks>

You can use both methods mixed but in practice we will use the TEX commands in regular styles and
the mixture in modules, for instance in those dealing with MathML and cals tables. For complex
matters you can write your own finalizers (the last action to be taken in a match) in Lua and use
them at the TEX end.

<< 2.2 >> a few details

In ConTEXt setups are a rather common variant on macros (TEX commands) but with their own
namespace. An example of a setup is:

\startsetup doc:print
\setuppapersize[A4][A4]

\stopsetup

\startsetup doc:screen
\setuppapersize[S6][S4]

\stopsetup

Given the previous definitions, later on we can say something like:

\doifmodeelse {paper} {

14 14

14 14

Filtering content

13

\setup[doc:print]
} {

\setup[doc:screen]
}

Another example is:

\startsetup[doc:header]
\marking[chapter]
\space
--
\space
\pagenumber

\stopsetup

in combination with:

\setupheadertexts[\setup{doc:header}]

Here the advantage is that instead of ending up with an unreadable header definitions, we use a
nicely formatted setup. An important property of setups and the reason why they were introduced
long ago is that spaces and newlines are ignored in the definition. This means that we don’t have to
worry about so called spurious spaces but it also means that when we do want a space, we have to
use the \space command.

The only difference between setups and xml setups is that the following ones get an argument (#1)
that reflects the current node in the xml tree.

<< 2.3 >> CDATA

What to do with CDATA? There are a few methods at tle Lua end for dealing with it but here we just
mention how you can influence the rendering. There are four macros that play a role here:

\unexpanded\def\xmlcdataobeyedline {\obeyedline}
\unexpanded\def\xmlcdataobeyedspace{\strut\obeyedspace}
\unexpanded\def\xmlcdatabefore {\begingroup\tt}
\unexpanded\def\xmlcdataafter {\endgroup}

Technically you can overload them but beware of side effects. Normally you won’t see much CDATA
and whenever we do, it involves special data that needs very special treatment anyway.

<< 2.4 >> Entities

As usual with any way of encoding documents you need escapes in order to encode the characters
that are used in tagging the content, embedding comments, escaping special characters in strings (in
programming languages), etc. In xml this means that in order characters like < you need an escape
like < and in order then to encode an & you need &.

15 15

15 15

Filtering content

14

In a typesetting workflow using a programming language like TEX, another problem shows up. There
we have different special characters, like $ $ for triggering math, but also the backslash, braces etc.
Even one such special character is already enough to have yet another escaping mechanism at work.

Ideally a user should not worry about these issues but it helps figuring out issues when you know
what happens under the hood. Also it is good to know that in the code there are several ways to deal
with these issues. Take the following document:

<text>
Here we have a bit of a <&mess>:

#
% %
\ \
{ {
| |
} }
~ ~

</text>

When the file is read the < entity will be replaced by < and the > by >. The numeric entities
will be replaced by the characters they refer to. The &mess is kind of special. We do preload a huge
list of more or less standardized entities but mess is not in there. However, it is possible to have it
defined in the document preamble, like:

<!DOCTYPE dummy SYSTEM "dummy.dtd" [
<!ENTITY mess "what a mess" >

]>

or even this:

<!DOCTYPE dummy SYSTEM "dummy.dtd" [
<!ENTITY mess "<p>what a mess</p>" >

]>

You can also define it in your document style using one of:

\xmlsetentity {...} {...}
replaces entity with name IDENTIFIER by TEXT

\xmltexentity {...} {...}
replaces entity with name IDENTIFIER by TEXT typeset under a TEX regime

Such a definition will always have a higher priority than the one defined in the document. Anyway,
when the document is read in all entities are resolved and those that need a special treatment because
they map to some text are stored in such a way that we can roundtrip them. As a consequence, as
soon as the content gets pushed into TEX, we need not only to intercept special characters but also
have to make sure that the following works:

16 16

16 16

Filtering content

15

\xmltexentity {tex} {\TEX}

Here the backslash starts a control sequence while in regular content a backslash is just that: a
backslash.

Special characters are really special when we have to move text around in a TEX ecosystem.

<text>
<title>About #3</title>

</text>

If we map and define title as follows:

\startxmlsetup xml:title
\title{\xmlflush{#1}}

\stopxmlsetup

normally something \xmlflush{id::123} will be written to the auxiliary file and in most cases that
is quite okay, but if we have this:

\setuphead[title][expansion=yes]

then we don’t want the # to end up as hash because later on TEX can get very confused about it
because it sees some argument then in a probably unexpected way. This is solved by escaping the
hash like this:

About \Ux{23}3

The \Ux command will convert its hexadecimal argument into a character. Of course one then needs
to typeset such a text under a TEX character regime but that is normally the case anyway.

17 17

17 17

16

18 18

18 18

17

< 3 > Commands

<< 3.1 >> nodes and lpaths

The amount of commands available for manipulating the xml file is rather large. Many of the com-
mands cooperate with the already discussed setups, a fancy name for a collection of macro calls
either or not mixed with text.

Most of the commands are just shortcuts to Lua calls, which means that the real work is done by
Lua. In fact, what happens is that we have a continuous transfer of control from TEX to Lua, where
Lua prints back either data (like element content or attribute values) or just invokes a setup whereby
it passes a reference to the node resolved conform the path expression. The invoked setup itself
might return control to Lua again, etc.

This sounds complicated but examples will show what we mean here. First we present the whole
repertoire of commands. Because users can read the source code, they might uncover more com-
mands, but only the ones discussed here are official. The commands are grouped in categories.

In the following sections NODE means a reference to a node: this can be the identifier of the root (the
loaded xml tree) or a reference to a node in that tree (often the result of some lookup. A LPATH is a
fancy name for a path expression (as with xslt) but resolved by Lua.

<< 3.2 >> commands

There are a lot of commands available but you probably can ignore most of them. We try to be
complete which means that there is for instance \xmlfirst as well as \xmllast but you probably
never need the last one. There are also commands that were used when testing this interface and
we see no reason to remove them. Some obscure ones are used in modules and after a while even I
often forget that they exist. To give you an idea of what commands are important we show their use
in generating the ConTEXt command definitions (x-set-11.mkiv) per Januari 2016:

\xmlall 1
\xmlatt 23
\xmlattribute 1
\xmlcount 1
\xmldoif 2
\xmldoifelse 1
\xmlfilterlist 4

\xmlflush 5
\xmlinclude 1
\xmlloadonly 1
\xmlregisterdocumentsetup 1
\xmlsetsetup 1
\xmlsetup 4

As you can see filtering, flushing and accessing attributes score high. Belowwe show the statistics of a
quite complex rendering (5 variants of schoolbooks: basic book, answers, teachers guide, worksheets,
full blown version with extensive tracing).

\xmladdindex 3
\xmlall 5

\xmlappendsetup 1
\xmlapplyselectors 1

19 19

19 19

Commands

18

\xmlatt 40
\xmlattdef 9
\xmlattribute 10
\xmlbadinclusions 3
\xmlconcat 3
\xmlcount 1
\xmldelete 11
\xmldoif 39
\xmldoifelse 28
\xmldoifelsetext 13
\xmldoifnot 2
\xmldoifnotselfempty 1
\xmlfilter 100
\xmlfirst 51
\xmlflush 69
\xmlflushcontext 2
\xmlinclude 1
\xmlincludeoptions 5

\xmlinclusion 16
\xmlinjector 1
\xmlloaddirectives 1
\xmlmapvalue 4
\xmlmatch 1
\xmlprependsetup 5
\xmlregisterdocumentsetup 2
\xmlregistersetup 1
\xmlremapnamespace 1
\xmlsetfunction 2
\xmlsetinjectors 2
\xmlsetsetup 11
\xmlsetup 76
\xmlstrip 1
\xmlstripanywhere 1
\xmltag 1
\xmltext 53
\xmlvalue 2

Here many more are used but this is an exceptional case. The top is again dominated by filtering,
flushing and attribute consulting. The list can actually be smaller. For instance, the \xmlcount
can just as well be \xmlfilter with a count finalizer. There are also some special ones, like the
injectors, that are needed for finetuning the final result.

<< 3.3 >> loading

\xmlloadfile {...} {...} {...}
loads the file FILE and registers it under IDENTIFIER and applies either given or standard
XMLSETUP (alias: \xmlload)

\xmlloadbuffer {...} {...} {...}
loads the buffer BUFFER and registers it under IDENTIFIER and applies either given or standard
XMLSETUP

\xmlloaddata {...} {...} {...}
loads TEXT and registers it under IDENTIFIER and applies either given or standard XMLSETUP

\xmlloadonly {...} {...} {...}
loads TEXT and registers it under IDENTIFIER and applies either given or standard XMLSETUP
but doesn’t flush the content

\xmlinclude {...} {...} {...}
includes the file specified by attribute IDENTIFIER of the element located by LPATH at node NODE

\xmlprocessfile {...} {...} {...}
registers file FILE as IDENTIFIER and process the tree starting with XMLSETUP (alias:
\xmlprocess)

20 20

20 20

Commands

19

\xmlprocessbuffer {...} {...} {...}
registers buffer IDENTIFIER as IDENTIFIER and process the tree starting with XMLSETUP

\xmlprocessdata {...} {...} {...}
registers TEXT as IDENTIFIER and process the tree starting with XMLSETUP

The initial setup defaults to xml:process that is defined as follows:

\startsetups xml:process
\xmlregistereddocumentsetups\xmldocument
\xmlmain\xmldocument

\stopsetups

First we apply the setups associated with the document (including common setups) and then we
flush the whole document. The macro \xmldocument expands to the current document id. There is
also \xmlself which expands to the current node number (#1 in setups).

\xmlmain {...}
returns the whole document

Normally such a flush will trigger a chain reaction of setups associated with the child elements.

<< 3.4 >> saving

\xmlsave {...} {...}
saves the given node NODE in the file FILE

\xmltofile {...} {...} {...}
saves the match of LPATH in the file FILE

\xmltobuffer {...} {...} {...}
saves the match of LPATH in the buffer BUFFER

\xmltobufferverbose {...} {...} {...}
saves the match of LPATH verbatim in the buffer BUFFER

The next command is only needed when you have messed with the tree using Lua code.

\xmladdindex {...}
(re)indexes a tree

The following macros are only used in special situations and are not really meant for users.

\xmlraw {...}
flush the content if NODE with original entities

\startxmlraw ... \stopxmlraw
flush the wrapped content with original entities

21 21

21 21

Commands

20

<< 3.5 >> flushing data

When we flush an element, the associated xml setups are expanded. The most straightforward way
to flush an element is the following. Keep in mind that the returned values itself can trigger setups
and therefore flushes.

\xmlflush {...}
returns all nodes under NODE

You can restrict flushing by using commands that accept a specification.

\xmltext {...} {...}
returns the text of the matching LPATH under NODE

\xmlpure {...} {...}
returns the text of the matching LPATH under NODE without \Ux escaped special TEX characters

\xmlflushtext {...}
returns the text of the NODE

\xmlflushpure {...}
returns the text of the NODE without \Ux escaped special TEX characters

\xmlnonspace {...} {...}
returns the text of the matching LPATH under NODE without embedded spaces

\xmlall {...} {...}
returns all nodes under NODE that matches LPATH

\xmllastmatch
returns all nodes found in the last match

\xmlfirst {...} {...}
returns the first node under NODE that matches LPATH

\xmllast {...} {...}
returns the last node under NODE that matches LPATH

\xmlfilter {...} {...}
at a match of LPATH a given filter filter is applied and the result is returned

\xmlsnippet {...} {...}
returns the NUMBERth element under NODE

\xmlposition {...} {...} {...}
returns the NUMBERth match of LPATH at node NODE; a negative number starts at the end (alias:
\xmlindex)

\xmlelement {...} {...}
returns the NUMBERth child of node NODE; a negative number starts at the end

22 22

22 22

Commands

21

\xmlpos {...}
returns the index (position) in the parent node of NODE

\xmlconcat {...} {...} {...}
returns the sequence of nodes that match LPATH at NODE whereby TEXT is put between each
match

\xmlconcatrange {...} {...} {...} {...} {...}
returns the FIRSTth upto LASTth of nodes that match LPATH at NODEwhereby TEXT is put between
each match

\xmlcommand {...} {...} {...}
apply the given XMLSETUP to each match of LPATH at node NODE

\xmlstrip {...} {...}
remove leading and trailing spaces from nodes under NODE that match LPATH

\xmlstripped {...} {...}
remove leading and trailing spaces from nodes under NODE that match LPATH and return the
content afterwards

\xmlstripnolines {...} {...}
remove leading and trailing spaces as well as collapse embedded spaces from nodes under NODE
that match LPATH

\xmlstrippednolines {...} {...}
remove leading and trailing spaces as well as collapse embedded spaces from nodes under NODE
that match LPATH and return the content afterwards

\xmlverbatim {...}
flushes the content verbatim code (without any wrapping, i.e. no fonts are selected and such)

\xmlinlineverbatim {...}
return the content of the node as inline verbatim code; no further interpretation (expansion)
takes place and spaces are honoured; it uses the following wrapper

\startxmlinlineverbatim [...] ... \stopxmlinlineverbatim
wraps inline verbatim mode using the environment specified (a prefix xml: is added to the
environment name)

\xmldisplayverbatim {...}
return the content of the node as display verbatim code; no further interpretation (expansion)
takes place and leading and trailing spaces and newlines are treated special; it uses the following
wrapper

\startxmldisplayverbatim [...] ... \stopxmldisplayverbatim
wraps the content in display verbatim using the environment specified (a prefix xml: is added
to the environment name)

23 23

23 23

Commands

22

\xmlprettyprint {...} {...}
pretty print (with colors) the node NODE; use the ConTEXt SciTE lexers when available
(\usemodule[scite])

\xmlflushspacewise {...}
flush node NODE obeying spaces and newlines

\xmlflushlinewise {...}
flush node NODE obeying newlines

<< 3.6 >> information

The following commands return strings. Normally these are used in tests.

\xmlname {...}
returns the complete name (including namespace prefix) of the given NODE

\xmlnamespace {...}
returns the namespace of the given NODE

\xmltag {...}
returns the tag of the element, without namespace prefix

\xmlcount {...}
returns the number of matches of LPATH at node NODE

\xmlatt {...} {...}
returns the value of attribute IDENTIFIER or empty if no such attribute exists

\xmlattdef {...} {...} {...}
returns the value of attribute IDENTIFIER or cd:string if no such attribute exists

\xmlrefatt {...} {...}
returns the value of attribute IDENTIFIER or empty if no such attribute exists; a leading # is
removed (nicer for tex)

\xmlchainatt {...} {...}
returns the value of attribute IDENTIFIER or empty if no such attribute exists; backtracks till a
match is found

\xmlchainattdef {...} {...} {...}
returns the value of attribute IDENTIFIER or cd:string if no such attribute exists; backtracks
till a match is found

\xmlattribute {...} {...} {...}
finds a first match for LPATH at NODE and returns the value of attribute IDENTIFIER or empty if
no such attribute exists

24 24

24 24

Commands

23

\xmlattributedef {...} {...} {...} {...}
finds a first match for LPATH at NODE and returns the value of attribute IDENTIFIER or TEXT if
no such attribute exists

\xmllastatt
returns the last attribute found (this avoids a lookup)

<< 3.7 >> manipulation

You can use Lua code to manipulate the tree and it makes no sense to duplicate this in TEX. In the
future we might provide an interface to some of this functionality. Keep in mind that manipuating
the tree might have side effects as we maintain several indices into the tree that also needs to be
updated then.

<< 3.8 >> integration

If you write a module that deals with xml, for instance processing cals tables, then you need ways
to control specific behaviour. For instance, you might want to add a background to the table. Such
directives are collected in xml files and can be loaded on demand.

\xmlloaddirectives {...}
loads ConTEXt directives from FILE that will get interpreted when processing documents

A directives definition file looks as follows:

<?xml version="1.0" standalone="yes"?>

<directives>
<directive attribute='id' value="100"

setup="cdx:100"/>
<directive attribute='id' value="101"

setup="cdx:101"/>
<directive attribute='cdx' value="colors" element="cals:table"

setup="cdx:cals:table:colors"/>
<directive attribute='cdx' value="vertical" element="cals:table"

setup="cdx:cals:table:vertical"/>
<directive attribute='cdx' value="noframe" element="cals:table"

setup="cdx:cals:table:noframe"/>
<directive attribute='cdx' value="*" element="cals:table"

setup="cdx:cals:table:*"/>
</directives>

Examples of usage can be found in x-cals.mkiv. The directive is triggered by an attribute. Instead
of a setup you can specify a setup to be applied before and after the node gets flushed.

\xmldirectives {...}
apply the setups directive associated with the node

25 25

25 25

Commands

24

\xmldirectivesbefore {...}
apply the before directives associated with the node

\xmldirectivesafter {...}
apply the after directives associated with the node

\xmlinstalldirective
defines a directive that hooks into a handler

Normally a directive will be put in the xml file, for instance as:

<?context-mathml-directive minus reduction yes ?>

Here the mathml is the general class of directives and minus a subclass, in our case a specific element.

<< 3.9 >> setups

The basic building blocks of xml processing are setups. These are just collections of macros that
are expanded. These setups get one argument passed (#1):

\startxmlsetups somedoc:somesetup
\xmlflush{#1}

\stopxmlsetups

This argument is normally a number that internally refers to a specific node in the xml tree. The
user should see it as an abstract reference and not depend on its numeric property. Just think of it
as ‘the current node’. You can (and probably will) call such setups using:

\xmlsetup {...} {...}
expands setup SETUP and pass NODE as argument

However, in most cases the setups are associated to specific elements, something that users of xslt
might recognize as templates.

\xmlsetfunction {...} {...} {...}
associates function LUAFUNCTION to the elements in namespace IDENTIFIER that match LPATH

\xmlsetsetup {...} {...} {...}
associates setups SETUP (TEX code) with the matching nodes of LPATH or root NODE

\xmlprependsetup {...}
pushes SETUP to the front of global list of setups

\xmlappendsetup {...}
adds SETUP to the global list of setups to be applied (alias: \xmlregistersetup)

\xmlbeforesetup {...} {...}
pushes SETUP into the global list of setups; the last setup is the position

26 26

26 26

Commands

25

\xmlaftersetup {...} {...}
adds SETUP to the global list of setups; the last setup is the position

\xmlremovesetup {...}
removes SETUP from the global list of setups

\xmlprependdocumentsetup {...} {...}
pushes SETUP to the front of list of setups to be applied to IDENTIFIER

\xmlappenddocumentsetup {...} {...}
adds SETUP to the list of setups to be applied to IDENTIFIER (you can also use the alias:
\xmlregisterdocumentsetup)

\xmlbeforedocumentsetup {...} {...} {...}
pushes SETUP into the setups to be applied to IDENTIFIER; the last setup is the position

\xmlafterdocumentsetup {...} {...} {...}
adds SETUP to the setups to be applied to IDENTIFIER; the last setup is the position

\xmlremovedocumentsetup {...} {...}
removes SETUP from the global list of setups to be applied to IDENTIFIER

\xmlresetsetups {...}
removes all global setups

\xmlresetdocumentsetups {...}
removes all setups from the IDENTIFIER specific list of setups to be applied

\xmlflushdocumentsetups {...} {...} setup
applies SETUP (can be a list) to IDENTIFIER

\xmlregisteredsetups
applies all global setups to the current document

\xmlregistereddocumentsetups {...} {...}
applies all document specific SETUP to document IDENTIFIER

<< 3.10 >> testing

The following test macros all take a NODE as first argument and an LPATH as second:

\xmldoif {...} {...} {...}
expands to TRUE when LPATH matches at node NODE

\xmldoifnot {...} {...} {...}
expands to TRUE when LPATH does not match at node NODE

\xmldoifelse {...} {...} {...} {...}
expands to TRUE when LPATH matches at node NODE and to FALSE otherwise

27 27

27 27

Commands

26

\xmldoiftext {...} {...} {...}
expands to TRUE when the node matching LPATH at node NODE has some content

\xmldoifnottext {...} {...} {...}
expands to TRUE when the node matching LPATH at node NODE has no content

\xmldoifelsetext {...} {...} {...} {...}
expands to TRUE when the node matching LPATH at node NODE has content and to FALSE other-
wise

\xmldoifelseempty {...} {...} {...} {...}
expands to TRUE when the node matching LPATH at node NODE is empty and to FALSE otherwise

\xmldoifelseselfempty {...} {...} {...}
expands to TRUE when the node is empty and to FALSE otherwise

\xmldoifselfempty {...} {...}
expands to TRUE when NODE is empty

\xmldoifnotselfempty {...} {...}
expands to TRUE when NODE is not empty

<< 3.11 >> initialization

The general setup command (not to be confused with setups) that deals with the MkIV tree handler
is \setupxml. There are currently only a few options.

\setupxml [.=.,.=.]
*

* default = hidden none text
compress = yes no

When you set default to TEXT elements with no setup assigned will end up as text. When set to
hidden such elements will be hidden. You can apply the default yourself using:

\xmldefaulttotext {...}
presets the tree with root NODE to the handlers set up with \setupxml option default

You can set compress to yes in which case comment is stripped from the tree when the file is read.

\xmlregisterns {...} {...}
associates an internal namespace (like mml) with one given in the document as url (like mathml)

\xmlremapname {...} {...} {...} {...}
changes the namespace and tag of the matching elements

\xmlremapnamespace {...} {...} {...}
replaces all references to the given namespace to a new one (applied recursively)

28 28

28 28

Commands

27

\xmlchecknamespace {...} {...}
sets the namespace of the matching elements unless a namespace is already set

<< 3.12 >> helpers

Often an attribute will determine the rendering and this may result in many tests. Especially when
we have multiple attributes that control the output such tests can become rather extensive and
redundant because one gets 𝑛×𝑚 or more such tests.

Therefore we have a convenient way to map attributes onto for instance strings or commands.

\xmlmapvalue {...} {...} {...}
associate a TEXT with a CATEGORY and IDENTIFIER (alias: \xmlmapval)

\xmlvalue {...} {...} {...}
expand the value associated with a CATEGORY and IDENTIFIER and if not resolved, expand to
the TEXT (alias: \xmlval)

\xmldoifelsevalue {...} {...} {...} {...}
associate a TEXT with a CATEGORY and IDENTIFIER

This is used as follows. We define a couple of mappings in the same category:

\xmlmapvalue{emph}{bold} {\bf}
\xmlmapvalue{emph}{italic}{\it}

Assuming that we have associated the following setup with the emph element, we can say (with #1
being the current element):

\startxmlsetups demo:emph
\begingroup

\xmlvalue{emph}{\xmlatt{#1}{type}}{}
\endgroup

\stopxmlsetups

In this case we have no default. The type attribute triggers the actions, as in:

normal <emph type='bold'>bold</emph> normal

This mechanism is not really bound to elements and attributes so you can use this mechanism for
other purposes as well.

29 29

29 29

28

30 30

30 30

29

< 4 > Expressions and filters

<< 4.1 >> path expressions

In the previous chapters we used LPATH expressions, which are a variant on xpath expressions as
in xslt but in this case more geared towards usage in TEX. This mechanisms will be extended when
demands are there.

A path is a sequence of matches. A simple path expression is:

a/b/c/d

Here each / goes one level deeper. We can go backwards in a lookup with ..:

a/b/../d

We can also combine lookups, as in:

a/(b|c)/d

A negated lookup is preceded by a !:

a/(b|c)/!d

A wildcard is specified with a *:

a/(b|c)/!d/e/*/f

In addition to these tag based lookups we can use attributes:

a/(b|c)/!d/e/*/f[@type=whatever]

An @ as first character means that we are dealing with an attribute. Within the square brackets there
can be boolean expressions:

a/(b|c)/!d/e/*/f[@type=whatever and @id>100]

You can use functions as in:

a/(b|c)/!d/e/*/f[something(text()) == "oeps"]

There are a couple of predefined functions:

rootposition order number the index of the matched root element (kind of special)
position number the current index of the matched element in the match list
match number the current index of the matched element sub list with the same

parent
first number
last number

31 31

31 31

Expressions and filters

30

index number the current index of the matched element in its parent list
firstindex number
lastindex number
element number the element’s index
firstelement number
lastelement number
text string the textual representation of the matched element
content table the node of the matched element
name string the full name of the matched element: namespace and tag
namespace ns string the namespace of the matched element
tag string the tag of the matched element
attribute string the value of the attribute with the given name of the matched ele-

ment

There are fundamental differences between position, match and index. Each step results in a new
list of matches. The position is the index in this new (possibly intermediate) list. The match is
also an index in this list but related to the specific match of element names. The index refers to the
location in the parent element.

Say that we have:

<collection>
<resources>

<manual>
<screen>.1.</screen>
<paper>.1.</paper>

</manual>
<manual>

<paper>.2.</paper>
<screen>.2.</screen>

</manual>
<resources>
<resources>

<manual>
<screen>.3.</screen>
<paper>.3.</paper>

</manual>
<resources>

<collection>

The following then applies:

collection/resources/manual[position()==1]/paper .1.
collection/resources/manual[match()==1]/paper .1. .3.
collection/resources/manual/paper[index()==1] .2.

In most cases the position test is more restrictive than the match test.

32 32

32 32

Expressions and filters

31

You can pass your own functions too. Such functions are defined in the the xml.expressions
namespace. We have defined a few shortcuts:

find(str,pattern) string.find
contains(str) string.find
oneof(str,...) is str in list
upper(str) characters.upper
lower(str) characters.lower
number(str) tonumber
boolean(str) toboolean
idstring(str) removes leading hash
name(index) full tag name
tag(index) tag name
namespace(index) namespace of tag
text(index) content
error(str) quit and show error
quit() quit
print() print message
count(pattern) number of matches
child(pattern) take child that matches

You can also use normal Lua functions as long as you make sure that you pass the right arguments.
There are a few predefined variables available inside such functions.

list table the list of matches
l number the current index in the list of matches
ll element the current element that matched
order number the position of the root of the path

The given expression between [] is converted to a Lua expression so you can use the usual operators:

== ~= <= >= < > not and or ()

In addition, = equals == and != is the same as ~=. If you mess up the expression, you quite likely get
a Lua error message.

<< 4.2 >> functions as filters

At the Lua end a whole LPATH expression results in a (set of) node(s) with its environment, but that
is hardly usable in TEX. Think of code like:

for e in xml.collected(xml.load('text.xml'),"title") do
-- e = the element that matched

end

The older variant is still supported but you can best use the previous variant.

for r, d, k in xml.elements(xml.load('text.xml'),"title") do

33 33

33 33

Expressions and filters

32

-- r = root of the title element
-- d = data table
-- k = index in data table

end

Here d[k] points to the title element and in this case all titles in the tree pass by. In practice
this kind of code is encapsulated in function calls, like those returning elements one by one, or
returning the first or last match. The result is then fed back into TEX, possibly after being altered by
an associated setup. We’ve seen the wrappers to such functions already in a previous chapter.

In addition to the previously discussed expressions, one can add so called filters to the expression,
for instance:

a/(b|c)/!d/e/text()

In a filter, the last part of the LPATH expression is a function call. The previous example returns the
text of each element e that results from matching the expression. When running TEX the following
functions are available. Some are also available when using pure Lua. In TEX you can often use one
of the macros like \xmlfirst instead of a \xmlfilter with finalizer first(). The filter can be
somewhat faster but that is hardly noticeable.

context() string the serialized text with TEX catcode regime
function() string depends on the function
name() string the (remapped) namespace
tag() string the name of the element
tags() list the names of the element
text() string the serialized text
upper() string the serialized text uppercased
lower() string the serialized text lowercased
stripped() string the serialized text stripped
lettered() string the serialized text only letters (cf. Unicode)
count() number the number of matches
index() number the matched index in the current path
match() number the matched index in the preceding path
attribute(name) content returns the attribute with the given name
chainattribute(name) content sidem, but backtracks till one is found
command(name) content expands the setup with the given name for each found el-

ement
position(n) content processes the nth instance of the found element
all() content processes all instances of the found element
reverse() content idem in reverse order
first() content processes the first instance of the found element
last() content processes the last instance of the found element
concat(...) content concatinates the match
concatrange(from,to,...) content concatinates a range of matches

The extra arguments of the concatinators are: separator (string), lastseparator (string) and
textonly (a boolean).

34 34

34 34

Expressions and filters

33

These filters are in fact Lua functions whichmeans that if neededmore of them can be added. Indeed
this happens in some of the xml related MkIV modules, for instance in the MathML processor.

<< 4.3 >> example

The number of commands is rather large and if you want to avoid them this is often possible. Take
for instance:

\xmlall{#1}{/a/b[position()>3]}

Alternatively you can use:

\xmlfilter{#1}{/a/b[position()>3]/all()}

and actually this is also faster as internally it avoids a function call. Of course in practice this is
hardly measurable.

In previous examples we’ve already seen quite some expressions, and it might be good to point out
that the syntax is modelled after xslt but is not quite the same. The reason is that we started with
a rather minimal system and have already styles in use that depend on compatibility.

namespace:// axis node(set) [expr 1]..[expr n] / ... / filter

When we are inside a ConTEXt run, the namespace is tex. Hoewever, if you want not to print back to
TEX you need to be more explicit. Say that we typeset examns and have a (not that logical) structure
like:

<question>
<text>...</text>
<answer>

<item>one</item>
<item>two</item>
<item>three</item>

</answer>
<alternative>

<condition>true</condition>
<score>1</score>

</alternative>
<alternative>

<condition>false</condition>
<score>0</score>

</alternative>
<alternative>

<condition>true</condition>
<score>2</score>

</alternative>
</question>

35 35

35 35

Expressions and filters

34

Say that we typeset the questions with:

\startxmlsetups question
\blank
score: \xmlfunction{#1}{totalscore}
\blank
\xmlfirst{#1}{text}
\startitemize

\xmlfilter{#1}{/answer/item/command(answer:item)}
\stopitemize
\endgraf
\blank

\stopxmlsetups

Each item in the answer results in a call to:

\startxmlsetups answer:item
\startitem

\xmlflush{#1}
\endgraf
\xmlfilter{#1}{../../alternative[position()=rootposition()]/

condition/command(answer:condition)}
\stopitem

\stopxmlsetups

\startxmlsetups answer:condition
\endgraf
condition: \xmlflush{#1}
\endgraf

\stopxmlsetups

Now, there are two rather special filters here. The first one involves calculating the total score. As
we look forward we use a function to deal with this.

\startluacode
function xml.functions.totalscore(root)

local score = 0
for e in xml.collected(root,"/alternative") do

score = score + xml.filter(e,"xml:///score/number()") or 0
end
tex.write(score)

end
\stopluacode

Watch how we use the namespace to keep the results at the Lua end.

The second special trick shown here is to limit a match using the current position of the root (#)
match.

36 36

36 36

Expressions and filters

35

As you can see, a path expression can be more than just filtering a few nodes. At the end of this
manual you will find a bunch of examples.

<< 4.4 >> tables

If you want to know how the internal xml tables look you can print such a table:

print(table.serialize(e))

This produces for instance:

t={
["at"]={
["label"]="whatever",
},
["dt"]={ "some text" },
["ns"]="",
["rn"]="",
["tg"]="demo",

}

The rn entry is the renamed namespace (when renaming is applied). If you see tags like @pi@ this
means that we don’t have an element, but (in this case) a processing instruction.

@rt@ the root element
@dd@ document definition
@cm@ comment, like <!-- whatever -->
@cd@ so called CDATA
@pi@ processing instruction, like <?whatever we want ?>

There are many ways to deal with the content, but in the perspective of TEX only a few matter.

xml.sprint(e) print the content to TEX and apply setups if needed
xml.tprint(e) print the content to TEX (serialize elements verbose)
xml.cprint(e) print the content to TEX (used for special content)

Keep in mind that anything low level that you uncover is not part of the official interface unless
mentioned in this manual.

37 37

37 37

36

38 38

38 38

37

< 5 > Tips and tricks

<< 5.1 >> tracing

It can be hard to debug code as much happens kind of behind the screens. Therefore we have a
couple of tracing options. Of course you can typeset some status information, using for instance:

\xmlshow {...}
typeset the tree given by NODE

\xmlinfo {...}
typeset the name if the element given by NODE

\xmlpath {...}
returns the complete path (including namespace prefix and index) of the given NODE

Say that we have the following xml:

<?xml version "1.0"?>
<document>

<section>
<content>

<p>first</p>
<p>second</p>

</content>
</section>
<section>

<content>
<p>third</p>
<p>fourth</p>

</content>
</section>

</document>

and the next definitions:

\startxmlsetups xml:demo:base
\xmlsetsetup{#1}{p|b}{xml:demo:*}

\stopxmlsetups

\startxmlsetups xml:demo:p
\xmlflush{#1}
\par

\stopxmlsetups

\startxmlsetups xml:demo:b

39 39

39 39

Tips and tricks

38

\par
\xmlpath{#1} : \xmlflush{#1}
\par

\stopxmlsetups

\xmlregisterdocumentsetup{example-10}{xml:demo:base}

\xmlprocessbuffer{example-10}{demo}{}

This will give us:

first
document/section[1]/content[1]/p[2]/b[1] : second
document/section[2]/content[1]/p[1]/b[1] : third
fourth

If you use \xmlshow you will get a complete subtree which can be handy for tracing but can also lead
to large documents.

We also have a bunch of trackers that can be enabled, like:

\enabletrackers[xml.show,xml.parse]

The full list (currently) is:

xml.entities show what entities are seen and replaced
xml.path show the result of parsing an lpath expression
xml.parse show stepwise resolving of expressions
xml.profile report all parsed lpath expressions (in the log)
xml.remap show what namespaces are remapped
lxml.access report errors with respect to resolving (symbolic) nodes
lxml.comments show the comments that are encountered (if at all)
lxml.loading show what files are loaded and converted
lxml.setups show what setups are being associated to elements

In one of our workflows we produce books from xml where the (educational) content is organized
in many small files. Each book has about 5 chapters and each chapter is made of sections that
contain text, exercises, resources, etc. and so the document is assembled from thousands of files
(don’t worry, runtime inclusion is pretty fast). In order to see where in the sources content resides
we can trace the filename.

\xmlinclusion {...}
returns the file where the node comes from

\xmlinclusions {...}
returns the list of files where the node comes from

\xmlbadinclusions {...}
returns a list of files that were not included due to some problem

40 40

40 40

Tips and tricks

39

Of course you have to make sure that these names end up somewhere visible, for instance in the
margin.

<< 5.2 >> expansion

For novice users the concept of expansionmight sound frightening and to some extend it is. However,
it is important enough to spend some words on it here.

It is good to realize that most setups are sort of immediate. When one setup is issued, it can call
another one and so on. Normally you won’t notice that but there are cases where that can be a
problem. In TEX you can define a macro, take for instance:

\startxmlsetups xml:foo
\def\foobar{\xmlfirst{#1}{/bar}}

\stopxmlsetups

you store the reference top node bar in \foobar maybe for later use. In this case the content is not
yet fetched, it will be done when \foobar is called.

\startxmlsetups xml:foo
\edef\foobar{\xmlfirst{#1}{/bar}}

\stopxmlsetups

Here the content of bar becomes the body of the macro. But what if bar itself contains elements
that also contain elements. When there is a setup for bar it will be triggered and so on.

When that setup looks like:

\startxmlsetups xml:bar
\def\barfoo{\xmlflush{#1}}

\stopxmlsetups

Here we get something like:

\foobar => {\def\barfoo{...}}

When \barfoo is not defined we get an error and when it is known and expands to something weird
we might also get an error.

Especially when you don’t know what content can show up, this can result in errors when an expan-
sion fails, for example because some macro being used is not defined. To prevent this we can define
a macro:

\starttexdefinition unexpanded xml:bar:macro #1
\def\barfoo{\xmlflush{#1}}

\stoptexdefinition

\startxmlsetups xml:bar

41 41

41 41

Tips and tricks

40

\texdefinition{xml:bar:macro}{#1}
\stopxmlsetups

The setup xml:bar will still expand but the replacement text now is just the call to the macro, think
of:

\foobar => {\texdefinition{xml:bar:macro}{#1}}

But this is often not needed, most ConTEXt commands can handle the expansions quite well but it’s
good to know that there is a way out. So, now to some examples. Imagine that we have an xml file
that looks as follows:

<?xml version='1.0' ?>
<demo>

<chapter>
<title>Some short title</title>
<content>

zeta
<index>

<key>zeta</key>
<content>zeta again</content>

</index>
alpha
<index>

<key>alpha</key>
<content>alpha again</content>

</index>
gamma
<index>

<key>gamma</key>
<content>gamma</content>

</index>
beta
<index>

<key>beta</key>
<content>beta</content>

</index>
delta
<index>

<key>delta</key>
<content>delta</content>

</index>
done!

</content>
</chapter>

</demo>

42 42

42 42

Tips and tricks

41

There are a few structure related elements here: a chapter (with its list entry) and some index entries.
Both are multipass related and therefore travel around. This means that when we let data end up in
the auxiliary file, we need to make sure that we end up with either expanded data (i.e. no references
to the xml tree) or with robust forward and backward references to elements in the tree.

Here we discuss three approaches (and more may show up later): pushing xml into the auxiliary file
and using references to elements either or not with an associated setup. We control the variants with
a switch.

\newcount\TestMode

\TestMode=0 % expansion=xml
\TestMode=1 % expansion=yes, index, setup
\TestMode=2 % expansion=yes

We apply a couple of setups:

\startxmlsetups xml:mysetups
\xmlsetsetup{\xmldocument}{demo|index|content|chapter|title|em}{xml:*}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

The main document is processed with:

\startxmlsetups xml:demo
\xmlflush{#1}
\subject{contents}
\placelist[chapter][criterium=all]
\subject{index}
\placeregister[index][criterium=all]
\page % else buffer is forgotten when placing header

\stopxmlsetups

First we show three alternative ways to deal with the chapter. The first case expands the xml ref-
erence so that we have an xml stream in the auxiliary file. This stream is processed as a small
independent subfile when needed. The second case registers a reference to the current element (#1).
This means that we have access to all data of this element, like attributes, title and content. What
happens depends on the given setup. The third variant does the same but here the setup is part of
the reference.

\startxmlsetups xml:chapter
\ifcase \TestMode

% xml code travels around
\setuphead[chapter][expansion=xml]
\startchapter[title=eh: \xmltext{#1}{title}]

\xmlfirst{#1}{content}
\stopchapter

43 43

43 43

Tips and tricks

42

\or
% index is used for access via setup
\setuphead[chapter][expansion=yes,xmlsetup=xml:title:flush]
\startchapter[title=\xmlgetindex{#1}]

\xmlfirst{#1}{content}
\stopchapter

\or
% tex call to xml using index is used
\setuphead[chapter][expansion=yes]
\startchapter[title=hm: \xmlreference{#1}{xml:title:flush}]

\xmlfirst{#1}{content}
\stopchapter

\fi
\stopxmlsetups

\startxmlsetups xml:title:flush
\xmltext{#1}{title}

\stopxmlsetups

We need to deal with emphasis and the content of the chapter.

\startxmlsetups xml:em
\begingroup\em\xmlflush{#1}\endgroup

\stopxmlsetups

\startxmlsetups xml:content
\xmlflush{#1}

\stopxmlsetups

A similar approach is followed with the index entries. Watch how we use the numbered entries
variant (in this case we could also have used just entries and keys).

\startxmlsetups xml:index
\ifcase \TestMode

\setupregister[index][expansion=xml,xmlsetup=]
\setstructurepageregister

[index]
[entries:1=\xmlfirst{#1}{content},
keys:1=\xmltext{#1}{key}]

\or
\setupregister[index][expansion=yes,xmlsetup=xml:index:flush]
\setstructurepageregister

[index]
[entries:1=\xmlgetindex{#1},
keys:1=\xmltext{#1}{key}]

\or
\setupregister[index][expansion=yes,xmlsetup=]

44 44

44 44

Tips and tricks

43

\setstructurepageregister
[index]
[entries:1=\xmlreference{#1}{xml:index:flush},
keys:1=\xmltext{#1}{key}]

\fi
\stopxmlsetups

\startxmlsetups xml:index:flush
\xmlfirst{#1}{content}

\stopxmlsetups

Instead of this flush, you can use the predefined setup xml:flush unless it is overloaded by you.

The file is processed by:

\starttext
\xmlprocessfile{main}{test.xml}{}

\stoptext

We don’t show the result here. If you’re curious what the output is, you can test it yourself. In that
case it also makes sense to peek into the test.tuc file to see how the information travels around.
The metadata fields carry information about how to process the data.

The first case, the xml expansion one, is somewhat special in the sense that internally we use small
pseudo files. You can control the rendering by tweaking the following setups:

\startxmlsetups xml:ctx:sectionentry
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:ctx:registerentry
\xmlflush{#1}

\stopxmlsetups

When these methods work out okay the other structural elements will be dealt with in a similar way.

<< 5.3 >> special cases

Normally the content will be flushed under a special (so called) catcode regime. This means that
characters that have a special meaning in TEX will have no such meaning in an xml file. If you want
content to be treated as TEX code, you can use one of the following:

\xmlflushcontext {...}
flush the given NODE using the TEX character interpretation scheme

\xmlcontext {...} {...}
flush the match of LPATH for the given NODE using the TEX character interpretation scheme

45 45

45 45

Tips and tricks

44

We use this in cases like:

....
\xmlsetsetup {#1} {

tm|texformula|
} {xml:*}

....

\startxmlsetups xml:tm
\mathematics{\xmlflushcontext{#1}}

\stopxmlsetups

\startxmlsetups xml:texformula
\placeformula\startformula\xmlflushcontext{#1}\stopformula

\stopxmlsetups

<< 5.4 >> collecting

Say that your document has

<table>
<tr>

<td>foo</td>
<td>bar<td>

</tr>
</table>

And that you need to convert that to TEX speak like:

\bTABLE
\bTR

\bTD foo \eTD
\bTD bar \eTD

\eTR
\eTABLE

A simple mapping is:

\startxmlsetups xml:table
\bTABLE \xmlflush{#1} \eTABLE

\stopxmlsetups
\startxmlsetups xml:tr

\bTR \xmlflush{#1} \eTR
\stopxmlsetups
\startxmlsetups xml:td

\bTD \xmlflush{#1} \eTD
\stopxmlsetups

46 46

46 46

Tips and tricks

45

The \bTD command is a so called delimited command which means that it picks up its argument by
looking for an \eTD. For the simple case here this works quite well because the flush is inside the
pair. This is not the case in the following variant:

\startxmlsetups xml:td:start
\bTD

\stopxmlsetups
\startxmlsetups xml:td:stop

\eTD
\stopxmlsetups
\startxmlsetups xml:td

\xmlsetup{#1}{xml:td:start}
\xmlflush{#1}
\xmlsetup{#1}{xml:td:stop}

\stopxmlsetups

When for some reason TEX gets confused you can revert to a mechanism that collects content.

\startxmlsetups xml:td:start
\startcollect

\bTD
\stopcollect

\stopxmlsetups
\startxmlsetups xml:td:stop

\startcollect
\eTD

\stopcollect
\stopxmlsetups
\startxmlsetups xml:td

\startcollecting
\xmlsetup{#1}{xml:td:start}
\xmlflush{#1}
\xmlsetup{#1}{xml:td:stop}

\stopcollecting
\stopxmlsetups

You can even implement solutions that effectively do this:

\startcollecting
\startcollect \bTABLE \stopcollect

\startcollect \bTR \stopcollect
\startcollect \bTD \stopcollect
\startcollect foo\stopcollect
\startcollect \eTD \stopcollect
\startcollect \bTD \stopcollect
\startcollect bar\stopcollect
\startcollect \eTD \stopcollect

47 47

47 47

Tips and tricks

46

\startcollect \eTR \stopcollect
\startcollect \eTABLE \stopcollect

\stopcollecting

Of course you only need to go that complex when the situation demands it. Here is another weird
one:

\startcollecting
\startcollect \setupsomething[\stopcollect

\startcollect foo=\stopcollect
\startcollect FOO,\stopcollect
\startcollect bar=\stopcollect
\startcollect BAR,\stopcollect

\startcollect]\stopcollect
\stopcollecting

<< 5.5 >> selectors and injectors

This section describes a bit special feature, one that we needed for a project where we could not touch
the original content but could add specific sections for our own purpose. Hopefully the example
demonstrates its useability.

<?xml version="1.0" encoding="UTF-8"?>

<?context-directive message info 1: this is a demo file ?>
<?context-message-directive info 2: this is a demo file ?>

<one>
<two>

<?context-select begin t1 t2 t3 ?>
<three>

t1 t2 t3
<?context-directive injector crlf t1 ?>
t1 t2 t3

</three>
<?context-select end ?>
<?context-select begin t4 ?>

<four>
t4

</four>
<?context-select end ?>
<?context-select begin t8 ?>

<four>
t8.0
t8.0

</four>

48 48

48 48

Tips and tricks

47

<?context-select end ?>
<?context-include begin t4 ?>

<!--
<three>

t4.t3
<?context-directive injector crlf t1 ?>
t4.t3

</three>
-->
<three>

t3
<?context-directive injector crlf t1 ?>
t3

</three>
<?context-include end ?>
<?context-select begin t8 ?>

<four>
t8.1
t8.1

</four>
<?context-select end ?>
<?context-select begin t8 ?>

<four>
t8.2
t8.2

</four>
<?context-select end ?>
<?context-select begin t4 ?>

<four>
t4
t4

</four>
<?context-select end ?>
<?context-directive injector page t7 t8 ?>
foo
<?context-directive injector blank t1 ?>
bar
<?context-directive injector page t7 t8 ?>
bar

</two>
</one>

First we show how to plug in a directive. Processing instructions like the following are normally
ignored by an xml processor, unless they make sense to it.

<?context-directive message info 1: this is a demo file ?>

49 49

49 49

Tips and tricks

48

<?context-message-directive info 2: this is a demo file ?>

We can define a message handler as follows:

\def\MyMessage#1#2#3{\writestatus{#1}{#2 #3}}

\xmlinstalldirective{message}{MyMessage}

When this file is processed you will see this on the console:

info > 1: this is a demo file
info > 2: this is a demo file

The file has some sections that can be used or ignored. The recipe for obeying t1 and t4 is the
following:

\xmlsetinjectors[t1]
\xmlsetinjectors[t4]

\startxmlsetups xml:initialize
\xmlapplyselectors{#1}
\xmlsetsetup {#1} {

one|two|three|four
} {xml:*}

\stopxmlsetups

\xmlregistersetup{xml:initialize}

\startxmlsetups xml:one
[ONE \xmlflush{#1} ONE]

\stopxmlsetups

\startxmlsetups xml:two
[TWO \xmlflush{#1} TWO]

\stopxmlsetups

\startxmlsetups xml:three
[THREE \xmlflush{#1} THREE]

\stopxmlsetups

\startxmlsetups xml:four
[FOUR \xmlflush{#1} FOUR]

\stopxmlsetups

This typesets:

[ONE [TWO [THREE t1 t2 t3 t1 t2 t3 THREE] [FOUR t4 FOUR] [THREE t4.t3 t4.t3 THREE]
[THREE t3 t3 THREE] [FOUR t4 t4 FOUR] foo

50 50

50 50

Tips and tricks

49

bar bar TWO] ONE]

The include coding is kind of special: it permits adding content (in a comment) and ignoring the rest
so that we indeed can add something without interfering with the original. Of course in a normal
workflow suchmessy solutions are not needed, but alas, often workflows are not that clean, especially
when one has no real control over the source.

\xmlsetinjectors [...]
enables a list of injectors that will be used

\xmlresetinjectors
resets the list of injectors

\xmlinjector {...}
expands an injection (command); normally this one is only used (in some setup) or for testing

\xmlapplyselectors {...}
analyze the tree NODE for marked sections that will be injected

We have some injections predefined:

\startsetups xml:directive:injector:page
\page

\stopsetups

\startsetups xml:directive:injector:column
\column

\stopsetups

\startsetups xml:directive:injector:blank
\blank

\stopsetups

In the example we see:

<?context-directive injector page t7 t8 ?>

When we set \xmlsetinjector[t7] a pagebreak will injected in that spot. Tags like t7, t8 etc. can
represent versions.

51 51

51 51

50

52 52

52 52

51

< 6 > Lookups using lpaths

<< 6.1 >> introduction

There is not that much system in the following examples. They resulted from tests with different
documents. The current implementation evolved out of the experimental code. For instance, I de-
cided to add the multiple expressions in row handling after a few email exchanges with Jean-Michel
Huffen.

One of the main differences between the way xslt resolves a path and our way is the anchor. Take:

/something
something

The first one anchors in the current (!) element so it will only consider direct children. The second
one does a deep lookup and looks at the descendants as well. Furthermore we have a few extra
shortcuts like ** in a/**/b which represents all descendants.

The expressions (between square brackets) has to be valid Lua and some preprocessing is done to
resolve the built in functions. So, you might use code like:

my_lpeg_expression:match(text()) == "whatever"

given that my_lpeg_expression is known. In the examples below we use the visualizer to show the
steps. Some are shown more than once as part of a set.

<< 6.2 >> special cases

pattern:

1 axis auto-self

pattern: *

1 axis auto-descendant

pattern: .

1 axis self

pattern: /

1 axis auto-self

53 53

53 53

Lookups using lpaths

52

<< 6.3 >> wildcards

pattern: *

1 axis auto-descendant

pattern: *:*

1 axis auto-descendant

pattern: /*

1 axis child

pattern: /*:*

1 axis auto-child

pattern: */*

1 axis child
2 axis child

pattern: *:*/*:*

1 axis auto-descendant
2 nodes *:*
3 axis auto-child

pattern: a/*

1 axis auto-descendant
2 nodes *:a
3 axis child

pattern: a/*:*

1 axis auto-descendant
2 nodes *:a
3 axis auto-child

pattern: /a/*

1 axis auto-child
2 nodes *:a
3 axis child

54 54

54 54

Lookups using lpaths

53

pattern: /a/*:*

1 axis auto-child
2 nodes *:a
3 axis auto-child

pattern: /*

1 axis child

pattern: /**

1 axis descendant

pattern: /***

1 axis descendant

<< 6.4 >> multiple steps

pattern: answer

1 axis auto-descendant
2 nodes *:answer

pattern: answer/test/*

1 axis auto-descendant
2 nodes *:answer
3 axis auto-child
4 nodes *:test
5 axis child

pattern: answer/test/child::

1 axis auto-descendant
2 nodes *:answer
3 axis auto-child
4 nodes *:test
5 axis child

pattern: answer/*

1 axis auto-descendant
2 nodes *:answer
3 axis child

55 55

55 55

Lookups using lpaths

54

pattern: answer/*[tag()='p' and position()=1 and text()!='']

1 axis auto-descendant
2 nodes *:answer
3 axis child
4 expression tag()='p' and position()=1 and text()!=''

<< 6.5 >> pitfals

pattern: [oneof(lower(@encoding),'tex','context','ctx')]

1 axis auto-descendant
2 expression oneof(lower(@encoding),'tex','context','ctx')

pattern: .[oneof(lower(@encoding),'tex','context','ctx')]

1 axis self
2 expression oneof(lower(@encoding),'tex','context','ctx')

<< 6.6 >> more special cases

pattern: **

1 axis descendant

pattern: *

1 axis auto-descendant

pattern: ..

1 axis parent

pattern: .

1 axis self

pattern: //

1 axis descendant-or-self

pattern: /

1 axis auto-self

56 56

56 56

Lookups using lpaths

55

pattern: **/

1 axis descendant

pattern: **/*

1 axis descendant
2 axis child

pattern: **/.

1 axis descendant
2 axis self

pattern: **//

1 axis descendant
2 axis descendant-or-self

pattern: */

1 axis child

pattern: */*

1 axis child
2 axis child

pattern: */.

1 axis child
2 axis self

pattern: *//

1 axis child
2 axis descendant-or-self

pattern: /**/

1 axis descendant

pattern: /**/*

1 axis descendant
2 axis child

57 57

57 57

Lookups using lpaths

56

pattern: /**/.

1 axis descendant
2 axis self

pattern: /**//

1 axis descendant
2 axis descendant-or-self

pattern: /*/

1 axis child

pattern: /*/*

1 axis child
2 axis child

pattern: /*/.

1 axis child
2 axis self

pattern: /*//

1 axis child
2 axis descendant-or-self

pattern: ./

1 axis self

pattern: ./*

1 axis self
2 axis child

pattern: ./.

1 axis self
2 axis self

58 58

58 58

Lookups using lpaths

57

pattern: .//

1 axis self
2 axis descendant-or-self

pattern: ../

1 axis parent

pattern: ../*

1 axis parent
2 axis child

pattern: ../.

1 axis parent
2 axis self

pattern: ..//

1 axis parent
2 axis descendant-or-self

<< 6.7 >> more wildcards

pattern: one//two

1 axis auto-descendant
2 nodes *:one
3 axis descendant-or-self
4 nodes *:two

pattern: one/*/two

1 axis auto-descendant
2 nodes *:one
3 axis child
4 axis auto-child
5 nodes *:two

pattern: one/**/two

1 axis auto-descendant
2 nodes *:one

59 59

59 59

Lookups using lpaths

58

3 axis descendant
4 axis auto-child
5 nodes *:two

pattern: one/***/two

1 axis auto-descendant
2 nodes *:one
3 axis descendant-or-self
4 nodes *:two

pattern: one/x//two

1 axis auto-descendant
2 nodes *:one
3 axis auto-child
4 nodes *:x
5 axis descendant-or-self
6 nodes *:two

pattern: one//x/two

1 axis auto-descendant
2 nodes *:one
3 axis descendant-or-self
4 nodes *:x
5 axis auto-child
6 nodes *:two

pattern: //x/two

1 axis descendant-or-self
2 nodes *:x
3 axis auto-child
4 nodes *:two

<< 6.8 >> special axis

pattern: descendant::whocares/ancestor::whoknows

1 axis descendant
2 nodes *:whocares
3 axis ancestor
4 nodes *:whoknows

60 60

60 60

Lookups using lpaths

59

pattern: descendant::whocares/ancestor::whoknows/parent::

1 axis descendant
2 nodes *:whocares
3 axis ancestor
4 nodes *:whoknows
5 axis parent

pattern: descendant::whocares/ancestor::

1 axis descendant
2 nodes *:whocares
3 axis ancestor

pattern: child::something/child::whatever/child::whocares

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares

pattern: child::something/child::whatever/child::whocares|whoknows

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares|*:whoknows

pattern: child::something/child::whatever/child::(whocares|whoknows)

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares|*:whoknows

pattern: child::something/child::whatever/child::!(whocares|whoknows)

1 axis child
2 nodes *:something

61 61

61 61

Lookups using lpaths

60

3 axis child
4 nodes *:whatever
5 axis child
6 nodes not(*:whocares|*:whoknows)

pattern: child::something/child::whatever/child::(whocares)

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares

pattern: child::something/child::whatever/child::(whocares)[position()>2]

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares
7 expression position()>2

pattern: child::something/child::whatever[position()>2][position()=1]

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 expression position()>2
6 expression position()=1

pattern: child::something/child::whatever[whocares][whocaresnot]

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 expression whocares
6 expression whocaresnot

pattern: child::something/child::whatever[whocares][not(whocaresnot)]

1 axis child
2 nodes *:something

62 62

62 62

Lookups using lpaths

61

3 axis child
4 nodes *:whatever
5 expression whocares
6 expression not(whocaresnot)

pattern: child::something/child::whatever/self::whatever

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis self
6 nodes *:whatever

There is also last-match:: that starts with the last found set of nodes. This can save some runtime
when you do lots of tests combined with a same check afterwards.

<< 6.9 >> some more examples

pattern: /something/whatever

1 axis auto-child
2 nodes *:something
3 axis auto-child
4 nodes *:whatever

pattern: something/whatever

1 axis auto-descendant
2 nodes *:something
3 axis auto-child
4 nodes *:whatever

pattern: /**/whocares

1 axis descendant
2 axis auto-child
3 nodes *:whocares

pattern: whoknows/whocares

1 axis auto-descendant
2 nodes *:whoknows
3 axis auto-child
4 nodes *:whocares

63 63

63 63

Lookups using lpaths

62

pattern: whoknows

1 axis auto-descendant
2 nodes *:whoknows

pattern: whocares[contains(text(),'f') or contains(text(),'g')]

1 axis auto-descendant
2 nodes *:whocares
3 expression contains(text(),'f') or contains(text(),'g')

pattern: whocares/first()

1 axis auto-descendant
2 nodes *:whocares
3 finalizer first()

pattern: whocares/last()

1 axis auto-descendant
2 nodes *:whocares
3 finalizer last()

pattern: whatever/all()

1 axis auto-descendant
2 nodes *:whatever
3 finalizer all()

pattern: whocares/position(2)

1 axis auto-descendant
2 nodes *:whocares
3 finalizer position("2")

pattern: whocares/position(-2)

1 axis auto-descendant
2 nodes *:whocares
3 finalizer position("-2")

pattern: whocares[1]

1 axis auto-descendant
2 nodes *:whocares
3 expression 1

64 64

64 64

Lookups using lpaths

63

pattern: whocares[-1]

1 axis auto-descendant
2 nodes *:whocares
3 expression -1

pattern: whocares[2]

1 axis auto-descendant
2 nodes *:whocares
3 expression 2

pattern: whocares[-2]

1 axis auto-descendant
2 nodes *:whocares
3 expression -2

pattern: whatever[3]/attribute(id)

1 axis auto-descendant
2 nodes *:whatever
3 expression 3
4 finalizer attribute("id")

pattern: whatever[2]/attribute('id')

1 axis auto-descendant
2 nodes *:whatever
3 expression 2
4 finalizer attribute('id')

pattern: whatever[3]/text()

1 axis auto-descendant
2 nodes *:whatever
3 expression 3
4 finalizer text()

pattern: /whocares/first()

1 axis auto-child
2 nodes *:whocares
3 finalizer first()

65 65

65 65

Lookups using lpaths

64

pattern: /whocares/last()

1 axis auto-child
2 nodes *:whocares
3 finalizer last()

pattern: xml://whatever/all()

1 axis auto-descendant
2 nodes *:whatever
3 finalizer all()

pattern: whatever/all()

1 axis auto-descendant
2 nodes *:whatever
3 finalizer all()

pattern: //whocares

1 axis descendant-or-self
2 nodes *:whocares

pattern: ..[2]

1 axis parent
2 expression 2

pattern: ../*[2]

1 axis parent
2 axis child
3 expression 2

pattern: /(whocares|whocaresnot)

1 axis auto-child
2 nodes *:whocares|*:whocaresnot

pattern: /!(whocares|whocaresnot)

1 axis auto-child
2 nodes not(*:whocares|*:whocaresnot)

66 66

66 66

Lookups using lpaths

65

pattern: /!whocares

1 axis auto-child
2 nodes not(*:whocares)

pattern: /interface/command/command(xml:setups:register)

1 axis auto-child
2 nodes *:interface
3 axis auto-child
4 nodes *:command
5 finalizer command("xml:setups:register")

pattern: /interface/command[@name='xxx']/command(xml:setups:typeset)

1 axis auto-child
2 nodes *:interface
3 axis auto-child
4 nodes *:command
5 expression @name='xxx'
6 finalizer command("xml:setups:typeset")

pattern: /arguments/*

1 axis auto-child
2 nodes *:arguments
3 axis child

pattern: /sequence/first()

1 axis auto-child
2 nodes *:sequence
3 finalizer first()

pattern: /arguments/text()

1 axis auto-child
2 nodes *:arguments
3 finalizer text()

pattern: /sequence/variable/first()

1 axis auto-child
2 nodes *:sequence
3 axis auto-child

67 67

67 67

Lookups using lpaths

66

4 nodes *:variable
5 finalizer first()

pattern: /interface/define[@name='xxx']/first()

1 axis auto-child
2 nodes *:interface
3 axis auto-child
4 nodes *:define
5 expression @name='xxx'
6 finalizer first()

pattern: /parameter/command(xml:setups:parameter:measure)

1 axis auto-child
2 nodes *:parameter
3 finalizer command("xml:setups:parameter:measure")

pattern: /(*:library|figurelibrary)/*:figure/*:label

1 axis auto-child
2 nodes *:library|*:figurelibrary
3 axis auto-child
4 nodes *:figure
5 axis auto-child
6 nodes *:label

pattern: /(*:library|figurelibrary)/figure/*:label

1 axis auto-child
2 nodes *:library|*:figurelibrary
3 axis auto-child
4 nodes *:figure
5 axis auto-child
6 nodes *:label

pattern: /(*:library|figurelibrary)/figure/label

1 axis auto-child
2 nodes *:library|*:figurelibrary
3 axis auto-child
4 nodes *:figure
5 axis auto-child
6 nodes *:label

68 68

68 68

Lookups using lpaths

67

pattern: /(*:library|figurelibrary)/figure:*/label

1 axis auto-child
2 nodes *:library|*:figurelibrary
3 axis auto-child
4 nodes figure:*
5 axis auto-child
6 nodes *:label

69 69

69 69

68

70 70

70 70

69

< 7 > Examples

<< 7.1 >> attribute chains

In css, when an attribute is not present, the parent element is checked, and when not found again,
the lookup follows the chain till a match is found or the root is reached. The following example
demonstrates how such a chain lookup works.

<something mine="1" test="one" more="alpha">
<whatever mine="2" test="two">

<whocares mine="3">
<!-- this is a test -->

</whocares>
</whatever>

</something>

We apply the following setups to this tree:

\startxmlsetups xml:common
[

\xmlchainatt{#1}{mine},
\xmlchainatt{#1}{test},
\xmlchainatt{#1}{more},
\xmlchainatt{#1}{none}

]\par
\stopxmlsetups

\startxmlsetups xml:something
something: \xmlsetup{#1}{xml:common}
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:whatever
whatever: \xmlsetup{#1}{xml:common}
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:whocares
whocares: \xmlsetup{#1}{xml:common}
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:mysetups
\xmlsetsetup{#1}{something|whatever|whocares}{xml:*}

\stopxmlsetups

71 71

71 71

Examples

70

\xmlregisterdocumentsetup{example-1}{xml:mysetups}

\xmlprocessbuffer{example-1}{test}{}

This gives:

something: [1,one,alpha,]

whatever: [21,twoone,alpha,]

whocares: [321,twoone,alpha,]

<< 7.2 >> conditional setups

Say that we have this code:

\xmldoifelse {#1} {/what[@a='1']} {
\xmlfilter {#1} {/what/command('xml:yes')}

} {
\xmlfilter {#1} {/what/command('xml:nop')}

}

Here we first determine if there is a child what with attribute a set to 1. Depending on the outcome
again we check the child nodes for being named what. A faster solution which also takes less code
is this:

\xmlfilter {#1} {/what[@a='1']/command('xml:yes','xml:nop')}

<< 7.3 >> manipulating

Assume that we have the following xml data:

<A>
right
wrong

But, instead of right we want to see okay. We can do that with a finalizer:

\startluacode
local rehash = {

["right"] = "okay",
}

function xml.finalizers.tex.Okayed(collected,what)
for i=1,#collected do

if what == "all" then
local str = xml.text(collected[i])

72 72

72 72

Examples

71

context(rehash[str] or str)
else

context(str)
end

end
end
\stopluacode

\startxmlsetups xml:A
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:B
(It's \xmlfilter{#1}{./Okayed("all")})

\stopxmlsetups

\startxmlsetups xml:testsetups
\xmlsetsetup{#1}{A|B}{xml:*}

\stopxmlsetups

\xmlregisterdocumentsetup{example-2}{xml:testsetups}
\xmlprocessbuffer{example-2}{test}{}

The result is:

(It’s okay) (It’s wrong)

<< 7.4 >> cross referencing

A rather common way to add cross references to xml files is to borrow the asymmetrical id’s from
html. This means that one cannot simply use a value of (say) href to locate an id. The next example
came up on the ConTEXt mailing list.

<doc>
<p>Text

¹ and
²

</p>
<div class="footnotes">

<hr />

<li id="fn1"><p>A footnote.</p>
<li id="fn2"><p>A second footnote.</p>

</div>

</doc>

73 73

73 73

Examples

72

We give two variants for dealing with such references. The first solution does lookups and depending
on the size of the file can be somewhat inefficient.

\startxmlsetups xml:doc
\blank
\xmlflush{#1}
\blank

\stopxmlsetups

\startxmlsetups xml:p
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:footnote
(variant 1)\footnote

{\xmlfirst
{example-3-1}
{div[@class='footnotes']/ol/li[@id='\xmlrefatt{#1}{href}']}}

\stopxmlsetups

\startxmlsetups xml:initialize
\xmlsetsetup{#1}{p|doc}{xml:*}
\xmlsetsetup{#1}{a[@class='footnoteref']}{xml:footnote}
\xmlsetsetup{#1}{div[@class='footnotes']}{xml:nothing}

\stopxmlsetups

\xmlresetdocumentsetups{*}
\xmlregisterdocumentsetup{example-3-1}{xml:initialize}

\xmlprocessbuffer{example-3-1}{test}{}

This will typeset two footnotes.

Text (variant 1)2 and (variant 1)3

The second variant collects the references so that the time spend on lookups is less.

\startxmlsetups xml:doc
\blank
\xmlflush{#1}
\blank

\stopxmlsetups

\startxmlsetups xml:p

2 A footnote.
3 A second footnote.

74 74

74 74

Examples

73

\xmlflush{#1}
\stopxmlsetups

\startluacode
userdata.notes = {}

\stopluacode

\startxmlsetups xml:collectnotes
\ctxlua{userdata.notes['\xmlrefatt{#1}{id}'] = '#1'}

\stopxmlsetups

\startxmlsetups xml:footnote
(variant 2)\footnote

{\xmlflush
{\cldcontext{userdata.notes['\xmlrefatt{#1}{href}']}}}

\stopxmlsetups

\startxmlsetups xml:initialize
\xmlsetsetup{#1}{p|doc}{xml:*}
\xmlsetsetup{#1}{a[@class='footnoteref']}{xml:footnote}
\xmlfilter{#1}{div[@class='footnotes']/ol/li/command(xml:collectnotes)}
\xmlsetsetup{#1}{div[@class='footnotes']}{}

\stopxmlsetups

\xmlregisterdocumentsetup{example-3-2}{xml:initialize}

\xmlprocessbuffer{example-3-2}{test}{}

This will again typeset two footnotes:

Text (variant 2)4 and (variant 2)5

<< 7.5 >> mapping values

One way to process options frame in the example below is to map the values to values known by
ConTEXt.

<a>
<nattable frame="on">

<tr><td>#1</td><td>#2</td><td>#3</td><td>#4</td></tr>
<tr><td>#5</td><td>#6</td><td>#7</td><td>#8</td></tr>

</nattable>
<nattable frame="off">

4 A footnote.
5 A second footnote.

75 75

75 75

Examples

74

<tr><td>#1</td><td>#2</td><td>#3</td><td>#4</td></tr>
<tr><td>#5</td><td>#6</td><td>#7</td><td>#8</td></tr>

</nattable>
<nattable frame="no">

<tr><td>#1</td><td>#2</td><td>#3</td><td>#4</td></tr>
<tr><td>#5</td><td>#6</td><td>#7</td><td>#8</td></tr>

</nattable>

The \xmlmapvalue mechanism is rather efficient and involves a minimum of testing.

\startxmlsetups xml:a
\xmlflush{#1}

\stopxmlsetups

\xmlmapvalue {nattable:frame} {on} {on}
\xmlmapvalue {nattable:frame} {yes} {on}
\xmlmapvalue {nattable:frame} {off} {off}
\xmlmapvalue {nattable:frame} {no} {off}

\startxmlsetups xml:nattable
\startplacetable[title=#1]

\setupTABLE[frame=\xmlval{nattable:frame}{\xmlatt{#1}{frame}}{on}]%
\bTABLE

\xmlflush{#1}
\eTABLE

\stopplacetable
\stopxmlsetups

\startxmlsetups xml:tr
\bTR

\xmlflush{#1}
\eTR

\stopxmlsetups

\startxmlsetups xml:td
\bTD

\xmlflush{#1}
\eTD

\stopxmlsetups

\startxmlsetups xml:testsetups
\xmlsetsetup{example-4}{a|nattable|tr|td|}{xml:*}

\stopxmlsetups

\xmlregisterdocumentsetup{example-4}{xml:testsetups}

76 76

76 76

Examples

75

\xmlprocessbuffer{example-4}{test}{}

We get:

#1 #2 #3 #4

#5 #6 #7 #8

Table 7.1 example-4::3

#1 #2 #3 #4

#5 #6 #7 #8

Table 7.2 example-4::14

#1 #2 #3 #4

#5 #6 #7 #8

Table 7.3 example-4::25

<< 7.6 >> using LUA

In this example we demonstrate how you can delegate rendering to Lua. We will construct a so called
extreme table. The input is:

<?xml version="1.0" encoding="utf-8"?>

<a>
 <c>1</c> <d>Text</d>
 <c>2</c> <d>More text</d>
 <c>2</c> <d>Even more text</d>
 <c>2</c> <d>And more</d>
 <c>3</c> <d>And even more</d>
 <c>2</c> <d>The last text</d>

The processor code is:

\startxmlsetups xml:a
\xmlflush{#1}

\stopxmlsetups

\xmlmapvalue {nattable:frame} {on} {on}
\xmlmapvalue {nattable:frame} {yes} {on}
\xmlmapvalue {nattable:frame} {off} {off}
\xmlmapvalue {nattable:frame} {no} {off}

\startxmlsetups xml:nattable
\startplacetable[title=#1]

77 77

77 77

Examples

76

\setupTABLE[frame=\xmlval{nattable:frame}{\xmlatt{#1}{frame}}{on}]%
\bTABLE

\xmlflush{#1}
\eTABLE

\stopplacetable
\stopxmlsetups

\startxmlsetups xml:tr
\bTR

\xmlflush{#1}
\eTR

\stopxmlsetups

\startxmlsetups xml:td
\bTD

\xmlflush{#1}
\eTD

\stopxmlsetups

\startxmlsetups xml:testsetups
\xmlsetsetup{example-4}{a|nattable|tr|td|}{xml:*}

\stopxmlsetups

\xmlregisterdocumentsetup{example-4}{xml:testsetups}

\xmlprocessbuffer{example-4}{test}{}

We color a sequence of the same titles (numbers here) differently. The first solution remembers the
last title:

\startxmlsetups xml:a
\startembeddedxtable

\xmlflush{#1}
\stopembeddedxtable

\stopxmlsetups

\startxmlsetups xml:b
\xmlfunction{#1}{test_ba}

\stopxmlsetups

\startluacode
local lasttitle = nil

function xml.functions.test_ba(t)
local title = xml.text(t, "/c")
local content = xml.text(t, "/d")

78 78

78 78

Examples

77

context.startxrow()
context.startxcell {

background = "color",
backgroundcolor = lasttitle == title and "colorone" or "colortwo",
foregroundstyle = "bold",
foregroundcolor = "white",

}
context(title)
lasttitle = title
context.stopxcell()
context.startxcell()
context(content)
context.stopxcell()
context.stopxrow()

end
\stopluacode

The embeddedxtable environment is needed because the table is picked up as argument.

1 Text

2 More text

2 Even more text

2 And more

3 And even more

2 The last text

The second implemetation remembers what titles are already processed so here we can color the last
one too.

\startxmlsetups xml:a
\ctxlua{xml.functions.reset_bb()}
\startembeddedxtable

\xmlflush{#1}
\stopembeddedxtable

\stopxmlsetups

\startxmlsetups xml:b
\xmlfunction{#1}{test_bb}

\stopxmlsetups

\startluacode
local titles

function xml.functions.reset_bb(t)
titles = { }

79 79

79 79

Examples

78

end

function xml.functions.test_bb(t)
local title = xml.text(t, "/c")
local content = xml.text(t, "/d")
context.startxrow()
context.startxcell {

background = "color",
backgroundcolor = titles[title] and "colorone" or "colortwo",
foregroundstyle = "bold",
foregroundcolor = "white",

}
context(title)
titles[title] = true
context.stopxcell()
context.startxcell()
context(content)
context.stopxcell()
context.stopxrow()

end
\stopluacode

1 Text

2 More text

2 Even more text

2 And more

3 And even more

2 The last text

A solution without any state variable is given below.

\startxmlsetups xml:a
\startembeddedxtable

\xmlflush{#1}
\stopembeddedxtable

\stopxmlsetups

\startxmlsetups xml:b
\xmlfunction{#1}{test_bc}

\stopxmlsetups

\startluacode
function xml.functions.test_bc(t)

local title = xml.text(t, "/c")
local content = xml.text(t, "/d")

80 80

80 80

Examples

79

context.startxrow()
local okay = xml.text(t,"./preceding-sibling::/[-1]") == title
context.startxcell {

background = "color",
backgroundcolor = okay and "colorone" or "colortwo",
foregroundstyle = "bold",
foregroundcolor = "white",

}
context(title)
context.stopxcell()
context.startxcell()
context(content)
context.stopxcell()
context.stopxrow()

end
\stopluacode

1 Text

2 More text

2 Even more text

2 And more

3 And even more

2 The last text

Here is a solution that delegates even more to Lua. The previous variants were actually not that safe
with repect to special characters and didn’t handle nested elements either but the next one does.

<?xml version="1.0" encoding="utf-8"?>

<a>
 <c>#1</c> <d>Text</d>
 <c>#2</c> <d>More text</d>
 <c>#2</c> <d>Even more text</d>
 <c>#2</c> <d>And more</d>
 <c>#3</c> <d>And even more</d>
 <c>#2</c> <d>Something <i>nested</i> </d>

We also need to map the i element.

\startxmlsetups xml:a
\starttexcode

\xmlfunction{#1}{test_a}
\stoptexcode

\stopxmlsetups

81 81

81 81

Examples

80

\startxmlsetups xml:c
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:d
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:i
{\em\xmlflush{#1}}

\stopxmlsetups

\startluacode
function xml.functions.test_a(t)

context.startxtable()
local previous = false
for b in xml.collected(lxml.getid(t),"/b") do

context.startxrow()
local current = xml.text(b,"/c")
context.startxcell {

background = "color",
backgroundcolor = (previous == current) and "colorone" or "colortwo",
foregroundstyle = "bold",
foregroundcolor = "white",

}
lxml.first(b,"/c")
context.stopxcell()
context.startxcell()
lxml.first(b,"/d")
context.stopxcell()
previous = current

context.stopxrow()
end
context.stopxtable()

end
\stopluacode

\startxmlsetups xml:test_setups
\xmlsetsetup{#1}{a|b|c|d|i}{xml:*}

\stopxmlsetups

\xmlregisterdocumentsetup{example-5}{xml:test_setups}

\xmlprocessbuffer{example-5}{demo}{}

82 82

82 82

Examples

81

#1 Text

#2 More text

#2 Even more text

#2 And more

#3 And even more

#2 Something nested

The question is, do we really need Lua? Often we don’t, apart maybe from an occasional special
finalizer. A pure TEX solution is given next:

\startxmlsetups xml:a
\glet\MyPreviousTitle\empty
\glet\MyCurrentTitle \empty
\startembeddedxtable

\xmlflush{#1}
\stopembeddedxtable

\stopxmlsetups

\startxmlsetups xml:b
\startxrow

\xmlflush{#1}
\stopxrow

\stopxmlsetups

\startxmlsetups xml:c
\xdef\MyCurrentTitle{\xmltext{#1}{.}}
\doifelse {\MyPreviousTitle} {\MyCurrentTitle} {

\startxcell
[background=color,
backgroundcolor=colorone,
foregroundstyle=bold,
foregroundcolor=white]

} {
\glet\MyPreviousTitle\MyCurrentTitle
\startxcell

[background=color,
backgroundcolor=colortwo,
foregroundstyle=bold,
foregroundcolor=white]

}
\xmlflush{#1}
\stopxcell

\stopxmlsetups

\startxmlsetups xml:d

83 83

83 83

Examples

82

\startxcell
\xmlflush{#1}

\stopxcell
\stopxmlsetups

\startxmlsetups xml:i
{\em\xmlflush{#1}}

\stopxmlsetups

\startxmlsetups xml:test_setups
\xmlsetsetup{#1}{*}{xml:*}

\stopxmlsetups

\xmlregisterdocumentsetup{example-5}{xml:test_setups}

\xmlprocessbuffer{example-5}{demo}{}

#1 Text

#2 More text

#2 Even more text

#2 And more

#3 And even more

#2 Something nested

You can even save a few lines of code:

\startxmlsetups xml:c
\xdef\MyCurrentTitle{\xmltext{#1}{.}}
\startxcell

[background=color,
backgroundcolor=color\ifx\MyPreviousTitle\MyCurrentTitle one\else two\fi,
foregroundstyle=bold,
foregroundcolor=white]

\xmlflush{#1}
\stopxcell
\glet\MyPreviousTitle\MyCurrentTitle

\stopxmlsetups

Or if you prefer:

\startxmlsetups xml:c
\xdef\MyCurrentTitle{\xmltext{#1}{.}}
\doifelse {\MyPreviousTitle} {\MyCurrentTitle} {

\xmlsetup{#1}{xml:c:one}
} {

84 84

84 84

Examples

83

\xmlsetup{#1}{xml:c:two}
}

\stopxmlsetups

\startxmlsetups xml:c:one
\startxcell

[background=color,
backgroundcolor=colorone,
foregroundstyle=bold,
foregroundcolor=white]

\xmlflush{#1}
\stopxcell

\stopxmlsetups

\startxmlsetups xml:c:two
\startxcell

[background=color,
backgroundcolor=colortwo,
foregroundstyle=bold,
foregroundcolor=white]

\xmlflush{#1}
\stopxcell
\global\let\MyPreviousTitle\MyCurrentTitle

\stopxmlsetups

These examples demonstrate that it doesn’t hurt to know a little bit of TEX programming: defining
macros and basic comparisons can come in handy. There are examples in the test suite, you can
peek in the source code, you can consult the wiki or you can just ask on the list.

<< 7.7 >> last match

For the next example we use the following xml input:

<?xml version "1.0"?>
<document>

<section id="1">
<content>

<p>first</p>
<p>second</p>

</content>
</section>
<section id="2">

<content>
<p>third</p>
<p>fourth</p>

</content>

85 85

85 85

Examples

84

</section>
</document>

If you check if some element is present and then act accordingly, you can end up with doing the
same lookup twice. Although it might sound inefficient, in practice it’s often not measureable.

\startxmlsetups xml:demo:document
\type{\xmlall{#1}{/section[@id='2']/content/p}}\par
\xmldoif{#1}{/section[@id='2']/content/p} {

\xmlall{#1}{/section[@id='2']/content/p}
}
\type{\xmllastmatch}\par
\xmldoif{#1}{/section[@id='2']/content/p} {

\xmllastmatch
}
\type{\xmlall{#1}{last-match::}}\par
\xmldoif{#1}{/section[@id='2']/content/p} {

\xmlall{#1}{last-match::}
}
\type{\xmlfilter{#1}{last-match::/command(xml:demo:p)}}\par
\xmldoif{#1}{/section[@id='2']/content/p} {

\xmlfilter{#1}{last-match::/command(xml:demo:p)}
}

\stopxmlsetups

\startxmlsetups xml:demo:p
\quad\xmlflush{#1}\endgraf

\stopxmlsetups

\startxmlsetups xml:demo:base
\xmlsetsetup{#1}{document|p}{xml:demo:*}

\stopxmlsetups

\xmlregisterdocumentsetup{example-6}{xml:demo:base}

\xmlprocessbuffer{example-6}{demo}{}

In the second check we just flush the last match, so effective we do an \xmlall here. The third and
fourth alternatives demonstrate how we can use last-match as axis. The gain is 10% or more on
the lookup but of course typesetting often takes relatively more time than the lookup.

\xmlall{example-6::3}{/section[@id='2']/content/p}
third
fourth

\xmllastmatch
third
fourth

86 86

86 86

Examples

85

\xmlall{example-6::3}{last-match::}
third
fourth

\xmlfilter{example-6::3}{last-match::/command(xml:demo:p)}
third
fourth

87 87

87 87

86

88 88

88 88

