
SCSCP

Symbolic Computation Software
Composability Protocol

Version 2.2.2

28 February 2017

Alexander Konovalov
Steve Linton

Alexander Konovalov Email: alexander dot konovalov at st-andrews dot ac dot uk

Homepage: http://www.cs.st-andrews.ac.uk/~alexk/

Address: School of Computer Science

University of St Andrews

Jack Cole Building, North Haugh,

St Andrews, Fife, KY16 9SX, Scotland

Steve Linton Email: sal at cs dot st-andrews dot ac dot uk

Homepage: http://www.cs.st-andrews.ac.uk/~sal/

Address: School of Computer Science

University of St Andrews

Jack Cole Building, North Haugh,

St Andrews, Fife, KY16 9SX, Scotland

mailto://alexander dot konovalov at st-andrews dot ac dot uk
http://www.cs.st-andrews.ac.uk/~alexk/
mailto://sal at cs dot st-andrews dot ac dot uk
http://www.cs.st-andrews.ac.uk/~sal/

SCSCP 2

Abstract

The GAP package SCSCP implements the Symbolic Computation Software Composability protocol

(http://www.symbolic-computing.org/scscp) for the computational algebra system GAP.

Copyright

© 2007-2017 by Alexander Konovalov and Steve Linton

SCSCP is free software; you can redistribute it and/or modify it under the terms of the GNUGeneral Public

License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any

later version. For details, see the FSF's own site http://www.gnu.org/licenses/gpl.html.

If you obtained SCSCP, we would be grateful for a short noti�cation sent to one of the authors.

If you publish a result which was partially obtained with the usage of SCSCP, please cite it in the following

form:

A. Konovalov and S. Linton. SCSCP � Symbolic Computation Software Composability Protocol, Version

2.2.2; 2017 (https://gap-packages.github.io/scscp/).

Acknowledgements

The development of the SCSCP package has been supported by:

� EU FP6 Programme project 026133 �SCIEnce - Symbolic Computation Infrastructure for Europe� (see

http://www.symbolic-computing.org/).

� OpenDreamKit Horizon 2020 European Research Infrastructures project #676541 (see

http://opendreamkit.org/).

Colophon

Versions history:

� Version 0.1 - �rst half of 2007;

� Version 0.2 - December 2007;

� Version 0.3 - May 2008;

� Version 0.4 - August 2008;

� Version 1.0 - March 2009;

� Version 1.1 - May 2009;

� Version 1.2 - March 2010.

http://www.symbolic-computing.org/scscp
http://www.gnu.org/licenses/gpl.html
https://gap-packages.github.io/scscp/
http://www.symbolic-computing.org/
http://opendreamkit.org/

SCSCP 3

� Version 2.0 - October 2011.

� Version 2.1 - March 2012.

� Version 2.2 - February 2017.

Contents

1 Preface 6

2 Installation 8

2.1 Installation and system requirements . 8

2.2 Con�guration �les . 8

3 Using streams 10

3.1 Input-output TCP streams . 10

3.2 Example of client-server communication via input-output TCP streams 11

4 Message exchange by SCSCP 13

4.1 Communication with the SCSCP server . 13

4.2 Communication with the SCSCP client . 16

4.3 Example: SCSCP session . 17

5 Running SCSCP server 18

5.1 Installation of SCSCP procedures . 18

5.2 Starting SCSCP server . 20

5.3 Procedures to get information about the SCSCP server 21

6 Client's functionality 25

6.1 SCSCP connections . 25

6.2 Processes . 26

6.3 All-in-one tool: sending request and getting result 28

6.4 Switching between Binary and XML OpenMath Encodings 29

6.5 Remote objects . 32

7 Examples of SCSCP usage 36

7.1 Providing services with the SCSCP package . 36

7.2 Identifying groups of order 512 . 36

8 Parallel computing with SCSCP 39

8.1 Managing multiple requests . 39

8.2 MasterWorker skeleton . 41

8.3 Example: parallelising Karatsuba multiplication for polynomials 44

4

SCSCP 5

9 Service functions 47

9.1 Pinging SCSCP servers . 47

9.2 Info classes for SCSCP . 48

9.3 Other SCSCP Utilities . 51

References 54

Chapter 1

Preface

TheGAP package SCSCP implements the Symbolic Computation Software Composability protocol

[FHK+b]. This protocol speci�es anOpenMath-based remote procedure call framework, in which all

messages (procedure calls and returns of results of successful computation or error messages) are en-

coded in OpenMath using content dictionaries scscp1 and scscp2 ([FHK+a], [FHK+c]). Using the

SCSCP package,GAP can communicate locally or remotely with any otherOpenMath-enabledSC-

SCP-compliant application which may be not only another computer algebra system but also another

instance of the GAP system or even, for example, an external Java or C/C++ application via libraries

http://java.symcomp.org/ or http://www.imcce.fr/Equipes/ASD/trip/scscp/ providing

an SCSCP API. Such communication will go into seamless manner for the GAP user, since all con-

versions from GAP to OpenMath and vice versa will be performed in the background. See the SCI-

Ence project homepage http://www.symbolic-computing.org/ for the details about computer

algebra systems and other sotware supporting SCSCP

The SCSCP package for GAP has two main components:

� SCSCP server;

� SCSCP client.

There are several ways to start GAP SCSCP server:

� call RunSCSCPserver (5.2.1) from the GAP session specifying the server name and the port

number from the GAP session;

� startGAP as gap myserver.g, where myserver.g is the server con�guration �le with the last

command being the call of RunSCSCPserver (5.2.1) (an example of such con�guration �le is

given in scscp/example/myserver.g);

� start GAP as a daemon using the script gapd.sh which is supplied in the root directory of the

package (for the description of all available options see comments in gapd.sh).

During startup the server installs all procedures that it will provide and loads their lookup mechanisms,

and then begins to listen to the speci�ed port. The recommended port number is 26133 which has

been assigned to SCSCP by the Internet Assigned Numbers Authority (IANA) in November 2007,

see http://www.iana.org/assignments/port-numbers.

When the server accepts a connection from client, it starts the "accept-evaluate-return" loop:

� accepts the "procedure_call"; message;

6

http://java.symcomp.org/
http://www.imcce.fr/Equipes/ASD/trip/scscp/
http://www.symbolic-computing.org/
http://www.iana.org/assignments/port-numbers

SCSCP 7

� performs lookup of the appropriate GAP function;

� evaluates the result (or produces a side-effect);

� returns the result in the "procedure_completed" message or returns an error in the

"procedure_terminated" message.

The server works in a "multi-user" mode. When one client is connected, the server is busy for other

clients. As soon as the computation is �nished and the client is disconnected, the server is waiting

for the next connection, and normally it never stops until it will be terminated by the service provider.

The server maintain a queue of �ve incoming connections (this parameter can be easily modi�ed),

and on each iteration evaluates the next request from the queue.

There is anSCSCP server accessible at scscp.gap-system.org, port 26133. It is running under

development versions of theGAP system and a selection of currently distributed packages. The reader

is encouraged to try to use examples from the manual to access this service, replacing "localhost"

by its address, where appropriate. Please report to Alexander Konovalov if you will discover any bugs

or if the server seems not available.

The SCSCP client:

� establishes connection with the speci�ed server at the speci�ed port;

� sends the "procedure_call" message to the server;

� waits for the result of the computation or returns to pick it up later;

� fetches the response, extracting the result from the "procedure_completed" message or en-

tering the break loop in the case of the "procedure_terminated" message.

On the top of this functionality we built a set of instructions for simple parallel computations frame-

work using the SCSCP protocol, which allows to send several procedure calls in parallel and then

collect all results or pick up the �rst available result, and implements the master-worker skeleton.

These tools are presented in the Chapter 8.

The package also implements a new kind ofGAP input-output streams, namely input-output TCP

streams (see Chapter 3), based on the functionality for TCP/IP protocol usage provided by the GAP

package IO. Such streams may constitute an independent interest for adapting streams-using GAP

code to use streams across the network.

Finally, the manual describes how the communication by SCSCP goes between several instances

of the GAP system, but the same behaviour is expected from any SCSCP-compliant application: the

set of supported OpenMath symbols clearly will be different, but the rules of communication are

precisely speci�ed in the SCSCP speci�cation [FHK+b]. See the homepage of the SCIEnce project

http://www.symbolic-computing.org/ for the information about SCSCP-compliant computer

algebra systems and other tools developed in the project.

http://www.symbolic-computing.org/

Chapter 2

Installation

2.1 Installation and system requirements

Both SCSCP client and server for GAP work in Linux, OS X and Windows.

To use the SCSCP package it is necessary to install recent versions ofGAP4 packages IO [Neu],

GAPDoc [LN] and OpenMath [CKS].

The SCSCP package is distributed in standard formats (tar.gz, tar.bz2) and can be obtained

from https://gap-packages.github.io/scscp/ or from the GAP web site (the latter also offers

zoo- and win.zip-archives. To unpack the zoo-archive the program unzoo is needed, which can be

obtained from the GAP homepage http://www.gap-system.org/ (see section `Distribution'). To

install SCSCP package, put its zoo-archive into the pkg subdirectory of your GAP4.4 installation

and enter the command unzoo -x scscp-X.X.X.zoo, then the subdirectory scscp (containing sub-

directories doc, lib etc.) will be created in the pkg subdirectory. Installation using other archive

formats is performed in a similar way.

When there are no access rights to the root directory of the main GAP installation, it is also

possible to install the package outside the GAP main directory by unpacking it inside a directory

MYGAPDIR/pkg. Then to load the package GAP should be started with -l ";MYGAPDIR" option.

2.2 Con�guration �les

There are four �les in the package which may need to be modi�ed to setup and customise the package.

The �rst three �les are related with the server's functionality:

� scscp/config.g speci�es:

� default InfoLevel for the InfoSCSCP (9.2.1) class;

� default SCSCP server name and port to be used by RunSCSCPserver (5.2.1) if GAP is

started with the scscp/example/myserver.g �le;

� whether the server accepts calls to procedures which are standard OpenMath

symbols, or only procedures installed in the transient content dictionary (see

InstallSCSCPprocedure (5.1.1));

� service description to be returned to the client by GetServiceDescription (5.3.1).

� scscp/gapd.sh is the script to start the GAP SCSCP server as a daemon. To use it, adjust

the local call of GAP and, if necessary, call options (for example, memory usage, startup from

8

https://gap-packages.github.io/scscp/
http://www.gap-system.org/

SCSCP 9

the workspace etc.) and the location of the root directory of the SCSCP package in section 1

of this script.

� scscp/example/myserver.g is an example of the server con�guration �le which loads all

necessary packages, reads all needed code, installs all procedures which will be exposed to the

client and �nally starts the SCSCP server (see Chapter 5).

The fourth �le is related with the client's functionality for parallel computations:

� The �le scscp/configpar.g assigns the global variable SCSCPservers which speci�es a

list of hosts and ports to search for SCSCP services (which may be not only represented by

GAP services, but also by another SCSCP-compliant systems). It will be used to run parallel

computations with the SCSCP package (see Chapter 8).

See comments in these con�guration �les for further details and examples.

Chapter 3

Using streams

The package implements new kind of GAP input-output streams, called input-output TCP streams.

Such streams are based on the functionality for the TCP/IP protocol usage provided by the GAP

package IO, and may constitute an independent interest for GAP users.

Input-output TCP streams are intended to support all operations, implemented for streams in

GAP. It is assumed that all existing code using streams should work with this kind of streams as

well (please let us know, if you will notice that this is not the case!). We installed methods for input-

output TCP streams to support the following operations: ViewObj (Reference: ViewObj), PrintObj

(Reference: PrintObj), ReadByte (Reference: ReadByte), ReadLine (Reference: ReadLine),

ReadAll (Reference: ReadAll), WriteByte (Reference: WriteByte), WriteLine (Reference:

WriteLine), WriteAll (Reference: WriteAll), IsEndOfStream (Reference: IsEndOfStream),

CloseStream (Reference: CloseStream), FileDescriptorOfStream (Reference: FileDescrip-

torOfStream), UNIXSelect (Reference: UNIXSelect).

3.1 Input-output TCP streams

3.1.1 IsInputOutputTCPStream

. IsInputOutputTCPStream (�lter)

IsInputOutputTCPStream is a subcategory of IsInputOutputStream (Reference: IsIn-

putOutputStream). Streams in the category IsInputOutputTCPStream are created with the help

of the function InputOutputTCPStream (3.1.3) with one or two arguments dependently on whether

they will be used in the client or server mode. Examples of their creation and usage will be given in

subsequent sections.

3.1.2 IsInputOutputTCPStreamRep

. IsInputOutputTCPStreamRep (�lter)

This is the representation used for streams in the category IsInputOutputTCPStream (3.1.1).

10

SCSCP 11

3.1.3 InputOutputTCPStream (for server)

. InputOutputTCPStream(desc) (function)

. InputOutputTCPStream(host, port) (function)

Returns: stream

The one-argument version must be called from the SCSCP server. Its argument desc must be a

socket descriptor obtained using IO_accept (IO: IO_accept) function from the IO package (see the

example below). It returns a stream in the category IsInputOutputTCPStream (3.1.1) which will

use this socket to accept incoming connections. In most cases, the one-argument version is called

automatically from RunSCSCPserver (5.2.1) rather then manually.

The version with two arguments, a string host and an integer port , must be called from the

SCSCP client. It returns a stream in the category IsInputOutputTCPStream (3.1.1) which will

be used by the client for communication with the SCSCP server running at hostname host on port

port . In most cases, the two-argument version is called automatically from the higher level functions,

for example, EvaluateBySCSCP (6.3.1).

3.2 Example of client-server communication via input-output TCP

streams

The following example demonstrates the low-level interaction between client and server using input-

output TCP stream, and shows how such streams are created in the function RunSCSCPserver (5.2.1).

It uses some functions from the IO package (see the IO manual for their description). We will show

step by step what is happens on server and client (of course, if you will try this example, the numbers

denoting descriptors may be different).

Firts, we will start two GAP sessions, one for the server, another one for the client. Now we enter

the following commands on the server's side:
Example

gap> sock := IO_socket(IO.PF_INET, IO.SOCK_STREAM, "tcp");

3

gap> lookup := IO_gethostbyname("localhost");

rec(name := "localhost", aliases := [], addrtype := 2, length := 4,

addr := ["\177\000\000\>"])

gap> port:=26133;

26133

gap> res := IO_bind(sock, IO_make_sockaddr_in(lookup.addr[1], port));

true

gap> IO_listen(sock, 5);

true

gap> socket_descriptor := IO_accept(sock, IO_MakeIPAddressPort("0.0.0.0",0));

After the last command you will not see the GAP prompt because the server starts to wait for an

incoming connection. Now we go to the client's side and create an input-output TCP stream to the

server. Here it can be created in one step:
Example

gap> clientstream:=InputOutputTCPStream("localhost", 26133);

Creating a socket...

SCSCP 12

Connecting to a remote socket via TCP/IP...

Now we are trying to connect to the server, and as soon as the connection will be established, the

stream will be created at the client side, and we will see the output and the new GAP prompt:
Example

< input/output TCP stream to localhost >

gap>

On the server you will get the socket descriptor and then you will be able to create a stream from it:
Example

4

gap> serverstream := InputOutputTCPStream(socket_descriptor);

< input/output TCP stream to socket >

Now we can write to this stream on the client side and then read from it on the server side and

backwards. First, write on the client:
Example

gap> WriteLine(clientstream, "12345");

true

Now read and write on the server:
Example

gap> ReadLine(serverstream);

"12345\n"

gap> WriteLine(serverstream, "54321");

true

And �nally we read on the client and close the stream:
Example

gap> ReadLine(clientstream);

"54321\n"

gap> CloseStream(clientstream);

and similarly close the stream on the server:
Example

gap> CloseStream(serverstream);

In this way one can organise remote communication between two copies of GAP in various ways.

In subsequent chapters we explain how it is implemented using SCSCP to ensure compatibility not

only with GAP but with any other SCSCP-compliant system.

Chapter 4

Message exchange by SCSCP

To ensure the message exchange as required by SCSCP speci�cation, the SCSCP package extends

the global record OMsymRecord from the OpenMath package with new entries to support scscp1

and scscp2 content dictionaries ([FHK+a], [FHK+c]), and also service-dependent transient private

content dictionaries (see Chapter 5 for details about transient content dictionaries). It also overwrites

some OpenMath functions by their extended (but backwards compatible) versions, and adds some

new OpenMath-related functions to send and receive SCSCP messages, documented below.

Note that functions documented in this chapter belong to the middle-level interface, and the user

may �nd it more convenient to use functions developed on top of them and explained in next chapters.

4.1 Communication with the SCSCP server

4.1.1 StartSCSCPsession

. StartSCSCPsession(stream) (function)

Returns: string

Initialises SCSCP session and negotiates with the server about the version of the protocol. Re-

turns the string with the service_id (which may be used later as a part of the call identi�er) or causes

an error message if can not perform these tasks.
Example

gap> s := InputOutputTCPStream("localhost",26133);

< input/output TCP stream to localhost:26133 >

gap> StartSCSCPsession(s);

"localhost:26133:5541"

gap> CloseStream(s);

After the call to StartSCSCPsession the SCSCP server is ready to accept procedure calls.

4.1.2 OMPutProcedureCall

. OMPutProcedureCall(stream, proc_name, objrec) (function)

Returns: nothing

Takes a stream stream , the string proc_name and a record objrec , and writes to stream an

OpenMath object procedure_call for the procedure proc_name with arguments given by the list

13

SCSCP 14

objrec.object and procedure call options (which should be encoded asOpenMath attributes) given

in the list objrec.attributes.

This function accepts options cd and debuglevel.

cd:="cdname"may be used to specify the name of the content dictionary if the procedure is actu-

ally a standardOpenMath symbol. Note that the server may reject such a call if it accepts only calls of

procedures from the transient content dictionary, see InstallSCSCPprocedure (5.1.1) for explana-

tion). If the cdname is not speci�ed, scscp_transient_1 content dictionary will be assumed by de-

fault. The value of the debuglevel option is an integer. If it is non-zero, the procedure_completed

message will carry on also some additional information about the call, for example, runtime and

memory used.

Example

gap> t:="";; stream:=OutputTextString(t,true);;

gap> OMPutProcedureCall(stream, "WS_Factorial", rec(object:= [5],

> attributes:=[["call_id", "user007"],

> ["option_runtime",1000],

> ["option_min_memory",1024],

> ["option_max_memory",2048],

> ["option_debuglevel",1],

> ["option_return_object"]]));;

gap> Print(t);

<?scscp start ?>

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>user007</OMSTR>

<OMS cd="scscp1" name="option_runtime"/>

<OMI>1000</OMI>

<OMS cd="scscp1" name="option_min_memory"/>

<OMI>1024</OMI>

<OMS cd="scscp1" name="option_max_memory"/>

<OMI>2048</OMI>

<OMS cd="scscp1" name="option_debuglevel"/>

<OMI>1</OMI>

<OMS cd="scscp1" name="option_return_object"/>

<OMSTR></OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_call"/>

<OMA>

<OMS cd="scscp_transient_1" name="WS_Factorial"/>

<OMI>5</OMI>

</OMA>

</OMA>

</OMATTR>

</OMOBJ>

<?scscp end ?>

SCSCP 15

4.1.3 SCSCPwait

. SCSCPwait(stream[, timeout]) (function)

Returns: nothing

This function may be used by the SCSCP client to wait (using IO_select (IO: IO_select)) until

the result of the procedure call will be available from stream . By default the timeout is one hour, to

specify another value give it as the optional second argument in seconds. See the end of this chapter

for the example.

4.1.4 OMGetObjectWithAttributes

. OMGetObjectWithAttributes(stream) (function)

Returns: record with components object and attributes, or fail

This function is similar to the function OMGetObject from the OpenMath package, and the

main difference is that it is able to understand OpenMath attribution pairs. It retrieves exactly one

OpenMath object from the stream stream , and stores it in the object component of the returned

record. If the OpenMath object has no attributes, the attributes component of the returned record

will be an empty list, otherwise it will contain pairs [attribute_name,attribute_value], where

attribute_name is a string, and attribute_value is a GAP object, whose type is determined

by the kind of an attribute. Only attributes, de�ned by the SCSCP are allowed, otherwise an error

message will be displayed.

If the procedure was not successful, the function returns fail instead of an error message like

the function OMGetObject (OpenMath: OMGetObject) does. Returning fail is useful when

OMGetObjectWithAttributes is used inside accept-evaluate-return loop.

As an example, the �le scscp/tst/omdemo.om contains some OpenMath objects, including

those from the SCSCP Speci�cation [FHK+b]. We can retrieve them from this �le, preliminary

installing some SCSCP procedures using the function InstallSCSCPprocedure (5.1.1):
Example

gap> InstallSCSCPprocedure("WS_Factorial", Factorial);

gap> InstallSCSCPprocedure("GroupIdentificationService", IdGroup);

gap> InstallSCSCPprocedure("GroupByIdNumber", SmallGroup);

gap> InstallSCSCPprocedure("Length", Length, 1, 1);

gap> test:=Filename(Directory(Concatenation(

> GAPInfo.PackagesInfo.("scscp")[1].InstallationPath,"/tst/")),

> "omdemo.om");;

gap> stream:=InputTextFile(test);;

gap> OMGetObjectWithAttributes(stream);

rec(

attributes := [["option_return_object", ""], ["call_id", "5rc6rtG62"]]

, object := 6)

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [], object := 1)

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [], object := 120)

gap> OMGetObjectWithAttributes(stream);

rec(

attributes := [["call_id", "alexk_9053"], ["option_runtime", 300000],

["option_min_memory", 40964], ["option_max_memory", 134217728],

["option_debuglevel", 2], ["option_return_object", ""]],

SCSCP 16

object := [24, 12])

gap> OMGetObjectWithAttributes(stream);

rec(

attributes := [["call_id", "alexk_9053"], ["option_return_cookie", ""]

], object := <pc group of size 24 with 4 generators>)

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [["call_id", "alexk_9053"], ["info_runtime", 1234],

["info_memory", 134217728]], object := [24, 12])

gap> CloseStream(stream);

4.2 Communication with the SCSCP client

4.2.1 OMPutProcedureCompleted

. OMPutProcedureCompleted(stream, objrec) (function)

Returns: true

Takes a stream stream , and a record objrec , and writes to stream an OpenMath object

procedure_completed with the result being objrec.object and information messages (as Open-

Math attributes) given in the list objrec.attributes.
Example

gap> t:="";; stream:=OutputTextString(t,true);;

gap> OMPutProcedureCompleted(stream,

> rec(object:=120,

> attributes:=[["call_id", "user007"]]));

true

gap> Print(t);

<?scscp start ?>

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>user007</OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_completed"/>

<OMI>120</OMI>

</OMA>

</OMATTR>

</OMOBJ>

<?scscp end ?>

4.2.2 OMPutProcedureTerminated

. OMPutProcedureTerminated(stream, objrec, error_cd, error_type) (function)

Returns: nothing

Takes a stream stream , and a record with an error message objrec (for example rec(

attributes := [["call_id", "localhost:26133:87643:gcX33cCf"]], object :=

SCSCP 17

"localhost:26133 reports : Rational operations: <divisor> must not be zero")

and writes to the stream an OpenMath object procedure_terminated containing an error

determined by the symbol error_type from the content dictionary error_cd (for example,

error_memory, error_runtime or error_system_specific from the scscp1 content dictionary

([FHK+a]).

This is the internal function of the package which is used only in the code for the SCSCP server

to return the error message to the client.

4.3 Example: SCSCP session

In the following example we start an SCSCP session and perform ten procedure calls in a loop before

closing that session. Note that we demonstrate the usage of the session ID sid and the function

RandomString from the OpenMath package to produce some unique call identi�er. The call ID is a

mandatory attribute for any procedure call, however, it is not nesessarily random; for example, it may

be just a string with the number of the procedure call.

Example

gap> stream:=InputOutputTCPStream("localhost", 26133);

< input/output TCP stream to localhost:26133 >

gap> sid := StartSCSCPsession(stream);

"localhost:26133:5541"

gap> res:=[];

[]

gap> for i in [1..10] do

> OMPutProcedureCall(stream, "WS_Factorial",

> rec(object := [i],

> attributes := [["call_id",

> Concatenation(sid, ":", RandomString(8))]]));

> SCSCPwait(stream);

> res[i]:=OMGetObjectWithAttributes(stream).object;

> od;

gap> CloseStream(stream);

gap> res;

[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Also note the usage of SCSCPwait (4.1.3) to wait until the result of the computation will be available

from stream.

In this example we assumed that there is an SCSCP server running at localhost, port 26133.

In the next chapter we will explain how to con�gure and run a GAP SCSCP server and how to

interrogate it from a GAP client to learn about its functionality. After that, we will proceed with the

SCSCP client functionality for the end-user.

Chapter 5

Running SCSCP server

5.1 Installation of SCSCP procedures

There may various ways to run SCSCP server, for example:

� allowing generic services like evaluation of arbitrary OpenMath code;

� offering highly specialized procedures like identi�cation of groups of order 512;

� providing access to a database of mathematical objects.

Each of these use cases requires certain control over the level of functionality exposed to the

client. To achieve this, before starting SCSCP service its provider must call the function

InstallSCSCPprocedure (5.1.1) to make required procedures �visible� for the client.

Additionally, the service can be made made accessible only for clients running on the same com-

puter, or accessible only through a particular network interface, or generally accessible. This cus-

tomization is made at the stage of starting the SCSCP server with the function RunSCSCPserver

(5.2.1).

5.1.1 InstallSCSCPprocedure

. InstallSCSCPprocedure(procname, procfunc[, description][, narg1[, narg2][,

signature]]) (function)

Returns: nothing

For a string procname and a function procfunc , InstallSCSCPprocedure makes the

procfunc available as SCSCP procedure under the name procname , adding it to the transientOpen-

Math content dictionary scscp_transient_1 that will exist during the service lifetime.

The second argument procfunc may be either a standard or user-de�ned GAP function (proce-

dure, operation, etc.).

The rest of arguments are optional and may be used in a number of combinations:

� description is a string with the description of the procedure. It may be used by the help

system. If it is omitted, the procedure will be reported as undocumented.

� narg1 is a non-negative integer, specifying the minimal number of arguments, and narg2 is

a non-negative integer or in�nity, specifying the maximal number of arguments. If narg2 is

omitted then the maximal number of arguments will be set to narg1 . If both narg1 and narg2

18

SCSCP 19

are omitted then the minimal number of arguments will be set to zero and their maximal number

will be set to in�nity.

� signature is the signature record of the procedure. If the signature is given, then the num-

ber of arguments must be explicitly speci�ed (by narg1 with or without narg2) at least to zero

and in�nity respectively (to ensure proper matching of arguments). Note that it is completely

acceptable for a symbol from a transient content dictionary to overstate the set of symbols

which may occur in its children using the scscp2.symbol_set_all symbol, and to use stan-

dard OpenMath errors to reject requests later at the stage of their evaluation. For example,

using such approach, we will de�ne the procedure WS_Factorial accepting not only immedi-

ate <OMI> objects but anything which could be evaluated to an integer.

. The signature must be either a list of records, where i-th record corresponds to the i-th argu-

ment, or a record itself meaning that it speci�es the signature for all arguments. In the latter

case the record may be rec() corresponding to the scscp2.symbol_set_all symbol (this

will be assumed by default if the signature will be omitted).

If more detailed description of allowed arguments is needed, the signature record (one for all

arguments or a speci�c one) may have components CDgroups, CDs and Symbols. The �rst

two are lists of names of content dictionary groups and content dictionaries, and the third is

a record whose components are names of content dictionaries, containing lists of names of

allowed symbols from these dictionaries,for example:

Example

signature := rec(CDgroups := ["scscp"],

CDs := ["arith1", "linalg1"],

Symbols := rec(polyd1 := ["DMP", "term", "SDMP"],

polyu := ["poly_u_rep", "term"]));

In the following example we de�ne the function WS_Factorial that takes an integers and returns its

factorial, using only mandatory arguments of InstallSCSCPprocedure:
Example

gap> InstallSCSCPprocedure("WS_Factorial", Factorial);

InstallSCSCPprocedure : procedure WS_Factorial installed.

In the following example we install the procedure that will accept a list of permutations and return the

number in the GAP Small Groups library of the group they generate (for the sake of simplicity we

omit tests of validity of arguments, availability of IdGroup for groups of given order etc.)
Example

gap> IdGroupByGenerators:=function(permlist)

> return IdGroup(Group(permlist));

> end;

function(permlist) ... end

gap> InstallSCSCPprocedure("GroupIdentificationService", IdGroupByGenerators);

InstallSCSCPprocedure : procedure GroupIdentificationService installed.

SCSCP 20

After installation, the procedure may be reinstalled, if necessary:

Example

gap> InstallSCSCPprocedure("WS_Factorial", Factorial);

WS_Factorial is already installed. Do you want to reinstall it [y/n]? y

InstallSCSCPprocedure : procedure WS_Factorial reinstalled.

Finally, some examples of various combinations of optional arguments:

Example

InstallSCSCPprocedure("WS_Phi", Phi,

"Euler's totient function, see ?Phi in GAP", 1, 1);

InstallSCSCPprocedure("GroupIdentificationService",

IdGroupByGenerators, 1, infinity, rec());

InstallSCSCPprocedure("IdGroup512ByCode", IdGroup512ByCode, 1);

InstallSCSCPprocedure("WS_IdGroup", IdGroup, "See ?IdGroup in GAP");

Note that it is quite acceptable to overstate the signature of the procedure and use only mandatory

arguments in a call to InstallSCSCPprocedure, which will be installed then as a procedure that

can accept arbitrary number of arguments encoded without any restrictions on OpenMath symbols

used, because anyway the GAP system will return an error in case of the wrong number or type

of arguments, though it might be a good practice to give a way to the client to get more precise

procedure description a priori, that is before sending request. See 5.3 about utilities for obtaining such

information about the SCSCP service.

Some more examples of installation of SCSCP procedures are given in the �le

scscp/example/myserver.g.

5.1.2 OMsymRecord

. OMsymRecord (global variable)

This is the global record from theOpenMath package used for the conversion fromOpenMath to

GAP. It is extended in the SCSCP package by adding support for symbols from scscp1 and scscp2

content dictionaries ([FHK+a], [FHK+c]). Additionally, InstallSCSCPprocedure (5.1.1) adds to

this record a component corresponding to the appropriate transient content dictionary (by default,

scscp_transient_1) de�ning mappings between OpenMath symbols from this content dictionary

and installed SCSCP procedures.

5.2 Starting SCSCP server

5.2.1 RunSCSCPserver

. RunSCSCPserver(servertype, port) (function)

Returns: nothing

Will start the SCSCP server at port given by the integer port . The �rst parameter servertype

is either true, false or a string containing the server hostname:

SCSCP 21

� when servertype is true, the server will be started in a �universal� mode and will accept all

incoming connections;

� when servertype is false, the server will be started at localhost and will not accept any

incoming connections from outside;

� when servertype is a string, for example, "scscp.gap-system.org", the server will be

accessible only by speci�ed server name (this may be useful to manage accessibility if, for

example, the hardware has several network interfaces).

Example

gap> RunSCSCPserver("localhost", 26133);

Ready to accept TCP/IP connections at localhost:26133 ...

Waiting for new client connection at localhost:26133 ...

Actually, there is more than one way to run GAP SCSCP server:

� from the GAP session as shown in the example above;

� starting GAP as gap myserver.g, where myserver.g is the server con�guration �le with

the last command being the call RunSCSCPserver (5.2.1), which may take its arguments

from the con�guration �le scscp/config.g (an example of such con�guration �le is given

in scscp/example/myserver.g);

� start GAP as a daemon using the script gapd.sh which is supplied in the root directory of

the package (for the description of all available options see comments in gapd.sh) and may

overwrite parameters from scscp/config.g.

See Section 2.2 about con�guring �les config.g and gapd.sh.

5.3 Procedures to get information about the SCSCP server

5.3.1 GetServiceDescription

. GetServiceDescription(server, port) (function)

Returns: record

Returns the record with three components containing strings with the name, version and descrip-

tion of the service as speci�ed by the service provider in the scscp/config.g (for details about

con�guration �les, see 2.2).

Example

gap> GetServiceDescription("localhost", 26133);

rec(

description := "Started with the configuration file scscp/example/myserver.g\

on Thu 16 Feb 2017 16:03:56 GMT", service_name := "GAP SCSCP service",

version := "GAP 4.8.6 + SCSCP 2.2.1")

SCSCP 22

5.3.2 GetAllowedHeads

. GetAllowedHeads(server, port) (function)

Returns: record

Returns the record with components corresponding to content dictionaries. The name of each

component is the name of the content dictionary, and its the value is either a boolean or a list of

strings. In case it's value is a list, it contains names of symbols from the corresponding content

dictionary which are allowed to appear as a �head� symbol (i.e. the �rst child of the outermost <OMA>)

in an SCSCP procedure call to the SCSCP server running at server:port . If it's value is true, it

means the server allows all symbols from the corresponding content dictionary.

Note that it is acceptable (although not quite desirable) for a server to �overstate� the set of sym-

bols it accepts and use standard OpenMath errors to reject requests later.

Example

gap> GetAllowedHeads("localhost",26133);

rec(scscp_transient_1 := ["AClosestVectorCombinationsMatFFEVecFFE",

"Determinant", "GroupIdentificationService",

"IO_UnpickleStringAndPickleItBack", "IdGroup512ByCode", "Identity",

"IsPrimeInt", "Length", "MathieuGroup", "MatrixGroup",

"NormalizedUnitCFcommutator", "NormalizedUnitCFpower",

"NrConjugacyClasses", "NrSmallGroups", "NumberCFGroups",

"NumberCFSolvableGroups", "PointImages", "QuillenSeriesByIdGroup",

"ResetMinimumDistanceService", "SCSCPStartTracing", "SCSCPStopTracing",

"Size", "SylowSubgroup", "WS_AlternatingGroup", "WS_AutomorphismGroup",

"WS_ConwayPolynomial", "WS_Factorial", "WS_FactorsCFRAC",

"WS_FactorsECM", "WS_FactorsMPQS", "WS_FactorsPminus1",

"WS_FactorsPplus1", "WS_FactorsTD", "WS_IdGroup", "WS_LatticeSubgroups",

"WS_Mult", "WS_MultMatrix", "WS_Phi", "WS_PrimitiveGroup",

"WS_SmallGroup", "WS_SymmetricGroup", "WS_TransitiveGroup", "addition"

])

5.3.3 IsAllowedHead

. IsAllowedHead(cd, symbol, server, port) (function)

Returns: true or false

Checks whether the OpenMath symbol cd.symbol , which may be a symbol from a standard or

transient OpenMath content dictionary, is allowed to appear as �head� symbol (i.e. the �rst child of

the outermost <OMA> in an SCSCP procedure call to the SCSCP server running at server:port .

This enables the client to check whether a particular symbol is allowed without requesting the full list

of symbols.

Also, it is acceptable (although not necessarily desirable) for a server to �overstate� the set of

symbols it accepts and use standard OpenMath errors to reject requests later.

Example

gap> IsAllowedHead("permgp1", "group", "localhost", 26133);

true

gap> IsAllowedHead("setname1", "Q", "localhost", 26133);

true

gap> IsAllowedHead("setname1", "R", "localhost", 26133);

SCSCP 23

false

5.3.4 GetTransientCD

. GetTransientCD(transient_cd, server, port) (function)

Returns: record

Returns a record with the transient content dictionary transient_cd from the SCSCP server

running at server:port . Names of components of this record correspond to symbols from the meta

content dictionary.

By default, the name of the transient content dictionary for the GAP SCSCP server is

scscp_transient_1. Other systems may use transient content dictionaries with another names,

which, however, must always begin with scscp_transient_ and may be guessed from the output of

GetAllowedHeads (5.3.2).
Example

gap> GetTransientCD("scscp_transient_1", "localhost", 26133);

rec(CDDate := "2017-02-08",

CDDefinitions :=

[rec(Description := "Size is currently undocumented.", Name := "Size"),

rec(Description := "Length is currently undocumented.",

Name := "Length"),

rec(Description := "NrConjugacyClasses is currently undocumented.",

Name := "NrConjugacyClasses"),

...

rec(Description := "MatrixGroup is currently undocumented.",

Name := "MatrixGroup")], CDName := "scscp_transient_1",

CDReviewDate := "2017-02-08", CDRevision := "0", CDStatus := "private",

CDVersion := "0",

Description := "This is a transient CD for the GAP SCSCP service")

5.3.5 GetSignature

. GetSignature(transientcd, symbol, server, port) (function)

Returns: record

Returns a record with the signature of theOpenMath symbol transientcd.symbol from a tran-

sient OpenMath content dictionary. This record contains components corresponding to the Open-

Math symbol whose signature is described, the minimal and maximal number of its children (that is,

of its arguments), and symbols which may be used in the OpenMath encoding of its children. Note

that it is acceptable for a symbol from a transient content dictionary to overstate the set of symbols

which may occur in its children using the scscp2.symbol_set_all symbol, and use standardOpen-

Math errors to reject requests later, like in the example below: using such approach, the procedure

WS_Factorial is de�ned to accept not only immediate <OMI> objects but anything which could be

evaluated to an integer.

Example

gap> GetSignature("scscp_transient_1","WS_Factorial","localhost",26133);

rec(maxarg := 1, minarg := 1,

SCSCP 24

symbol := rec(cd := "scscp_transient_1", name := "WS_Factorial"),

symbolargs := rec(cd := "scscp2", name := "symbol_set_all"))

Chapter 6

Client's functionality

Sending and getting requests to the SCSCP server(s), the client operates with processes. Process is

an abstraction which in other words may be also called a remote task. It encapsulates an input/output

TCP stream (see IsInputOutputTCPStream (3.1.1)) from the client to the server and the process ID

of the CAS running as a server (deduced from the connection initiation message; may be unassigned,

if the server CAS did not communicate it).

There are two ways to create processes. One of them is to specify the hostname and port where

the SCSCP server is running; in this case a new input/output TCP stream will be created. Another

way is �rst to establish the connection with the SCSCP server using NewSCSCPconnection (6.1.2)

and then keep it alive across multiple remote procedure calls, thus saving time on the DNS lookup

and connection initiation. This may give a good speedup in computations with an intensive message

exchange. Note that as long as such connection is open, other SCSCP clients will not be able to get

through, so if several clients are interchanging with the SCSCP server at the same time, they should

not block each other with long-lasting connections.

6.1 SCSCP connections

6.1.1 IsSCSCPconnection

. IsSCSCPconnection (�lter)

This is the category of SCSCP connections. Objects in this category are created using the func-

tion NewSCSCPconnection (6.1.2).

6.1.2 NewSCSCPconnection

. NewSCSCPconnection(hostname, port) (function)

For a string hostname and an integer port , creates an object in the category

IsSCSCPconnection (6.1.1). This object will encapsulate two objects: tcpstream, which is

the input/output TCP stream to hostname:port , and session_id, which is the result of calling

StartSCSCPsession (4.1.1) on tcpstream. The connection will be kept alive across multiple re-

mote procedure calls until it will be closed with CloseSCSCPconnection (6.1.3).
Example

gap> SetInfoLevel(InfoSCSCP, 2);

25

SCSCP 26

gap> s:=NewSCSCPconnection("localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

6133:52918" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

< connection to localhost:26133 session_id=localhost:26133:52918 >

gap> CloseSCSCPconnection(s);

6.1.3 CloseSCSCPconnection

. CloseSCSCPconnection(s) (function)

Returns: nothing

Closes SCSCP connection s , which must be an object in the category IsSCSCPconnection

(6.1.1). Internally, it just calls CloseStream (Reference: CloseStream) on the underlying in-

put/output TCP stream of s .
Example

gap> SetInfoLevel(InfoSCSCP, 0);

gap> s:=NewSCSCPconnection("localhost",26133);

< connection to localhost:26133 session_id=localhost:26133:52918 >

gap> CloseSCSCPconnection(s);

6.2 Processes

6.2.1 IsProcess

. IsProcess (�lter)

This is the category of processes. Processes in this category are created using the function

NewProcess (6.2.2).

6.2.2 NewProcess

. NewProcess(command, listargs, server, port) (function)

. NewProcess(command, listargs, connection) (function)

Returns: object in the category IsProcess

In the �rst form, command and server are strings, listargs is a list of GAP objects and port

is an integer.

In the second form, an SCSCP connection in the category NewSCSCPconnection (6.1.2) is used

instead of server and port.

Calls the SCSCP procedure with the name command and the list of arguments listargs at the

server and port given by server and port or encapsulated in the connection . Returns an object in

the category IsProcess for the subsequent waiting the result from its underlying stream.

It accepts the following options:

SCSCP 27

� output:="object" is used to specify that the server must return the actual object evaluated as

a result of the procedure call. This is the default action requested by the client if the output

option is omitted.

� output:="cookie" is used to specify that the result of the procedure call should be stored on

the server, and the server should return a remote object (see 6.5) pointing to that result (that is,

a cookie);

� output:="nothing" is used to specify that the server is supposed to reply with a

procedure_completed message carrying no object just to signal that the call was completed

successfully (for the compatibility, this will be evaluated to a "procedure completed" string

on the client's side);

� cd:="cdname" is used to specify that the OpenMath symbol corresponding to the �rst argu-

ment command should be looked up in the particular content dictionary cdname. Otherwise, it

will be looked for in the default content dictionary (scscp_transient_1 for theGAP SCSCP

server);

� debuglevel:=N is used to obtain additional information attributes together with the result. The

GAP SCSCP server does the following: if N=1, it will report about the CPU time in millisec-

onds required to compute the result; if N=2 it will additionally report about the amount of mem-

ory used by GAP in bytes will be returned (using the output of MemoryUsageByGAPinKbytes

(9.3.4) converted to bytes); if N=3 it will additionally report the amount of memory in bytes

used by the resulting object and its subobjects (using the output of MemoryUsage (Reference:

MemoryUsage)).

See CompleteProcess (6.2.3) and EvaluateBySCSCP (6.3.1) for examples.

6.2.3 CompleteProcess

. CompleteProcess(process) (function)

Returns: record with components object and attributes

The function waits, if necessary, until the underlying stream of the process will contain some data,

then reads the appropriate OpenMath object from this stream and closes it.

It has the option output which may have two values:

� output:="cookie" has the same meaning as for the NewProcess (6.2.2)

� output:="tree" is used to specify that the result obtained from the server should be returned

as an XML parsed tree without its evaluation.

In the following example we demonstrate combination of the two previous functions to send request

and get result, calling the procedure WS_Factorial, installed in the previous chapter:
Example

gap> s := NewProcess("WS_Factorial", [10], "localhost", 26133);

< process at localhost:26133 pid=52918 >

gap> x := CompleteProcess(s);

rec(attributes := [["call_id", "localhost:26133:52918:TPNiMjCT"]],

object := 3628800)

SCSCP 28

See more examples in the description of the function EvaluateBySCSCP (6.3.1), which combines the

two previous functions by sending request and getting result in one call.

6.2.4 TerminateProcess

. TerminateProcess(process) (function)

The function is supposed to send an �out-of-band� interrupt signal to the server. Current imple-

mentation works only when the server is running as �localhost� by sending a SIGINT to the server

using its PID contained in the process . It will do nothing if the server is running remotely, as the

SCSCP speci�cation allows the server to ignore interrupt messages. Remote interrupts will be intro-

duced in one of the next versions of the package.

6.3 All-in-one tool: sending request and getting result

6.3.1 EvaluateBySCSCP

. EvaluateBySCSCP(command, listargs, server, port) (function)

. EvaluateBySCSCP(command, listargs, connection) (function)

Returns: record with components object and attributes

In the �rst form, command and server are strings, listargs is a list of GAP objects and port

is an integer.

In the second form, an SCSCP connection in the category NewSCSCPconnection (6.1.2) is used

instead of server and port.

Calls the SCSCP procedure with the name command and the list of arguments listargs at the

server and port given by server and port or encapsulated in the connection .

Since EvaluateBySCSCP combines NewProcess (6.2.2) and CompleteProcess (6.2.3), it ac-

cepts all options which may be used by that functions (output, cd and debuglevel) with the same

meanings.

Example

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Request sent ...

#I Waiting for reply ...

rec(attributes := [["call_id", "localhost:26133:2442:6hMEN40d"]],

object := 3628800)

gap> SetInfoLevel(InfoSCSCP,0);

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133 : output:="cookie");

rec(attributes := [["call_id", "localhost:26133:2442:jNQG6rml"]],

object := < remote object scscp://localhost:26133/TEMPVarSCSCP5KZIeiKD >)

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133 : output:="nothing");

rec(attributes := [["call_id", "localhost:26133:2442:9QHQrCjv"]],

object := "procedure completed")

SCSCP 29

Now we demonstrate the procedure GroupIdentificationService, also given in the previous

chapter:

Example

gap> G:=SymmetricGroup(4);

Sym([1 .. 4])

gap> gens:=GeneratorsOfGroup(G);

[(1,2,3,4), (1,2)]

gap> EvaluateBySCSCP("GroupIdentificationService", [gens],

> "localhost", 26133 : debuglevel:=3);

rec(attributes := [["call_id", "localhost:26133:2442:xOilXtnw"],

["info_runtime", 4], ["info_memory", 2596114432],

["info_message", "Memory usage for the result is 48 bytes"]],

object := [24, 12])

Service provider may suggest to the client to use a counterpart function

Example

gap> IdGroupWS := function(G)

> local H, result;

> if not IsPermGroup(G) then

> H:= Image(IsomorphismPermGroup(G));

> else

> H := G;

> fi;

> result := EvaluateBySCSCP ("GroupIdentificationService",

> [GeneratorsOfGroup(H)], "localhost", 26133);

> return result.object;

> end;;

which works exactly like IdGroup (Reference: IdGroup):
Example

gap> G:=DihedralGroup(64);

<pc group of size 64 with 6 generators>

gap> IdGroupWS(G);

[64, 52]

6.4 Switching between Binary and XML OpenMath Encodings

6.4.1 SwitchSCSCPmodeToBinary

. SwitchSCSCPmodeToBinary() (function)

. SwitchSCSCPmodeToXML() (function)

Returns: nothing

The OpenMath package supports both binary and XML encodings for OpenMath. To switch

between them, use SwitchSCSCPmodeToBinary and SwitchSCSCPmodeToXML. When the package is

SCSCP 30

loaded, the mode is initially set to XML. On the clients's side, you can change the mode back and

forth as many times as you wish during the same SCSCP session. The server will autodetect the

mode and will response in the same format, so one does not need to set the mode on the server's side.

For example, let us create a vector over GF(3):
Example

gap> x := [Z(3)^0, Z(3), 0*Z(3)];

[Z(3)^0, Z(3), 0*Z(3)]

The XML OpenMath encoding of such objects is quite bulky:
Example

gap> OMString(x);

"<OMOBJ xmlns=\"http://www.openmath.org/OpenMath\" version=\"2.0\"> <OMA> <OMS\

cd=\"list1\" name=\"list\"/> <OMA> <OMS cd=\"arith1\" name=\"power\"/> <OMA> \

<OMS cd=\"finfield1\" name=\"primitive_element\"/> <OMI>3</OMI> </OMA> <OMI>0<\

/OMI> </OMA> <OMA> <OMS cd=\"arith1\" name=\"power\"/> <OMA> <OMS cd=\"finfiel\

d1\" name=\"primitive_element\"/> <OMI>3</OMI> </OMA> <OMI>1</OMI> </OMA> <OMA\

> <OMS cd=\"arith1\" name=\"times\"/> <OMA> <OMS cd=\"finfield1\" name=\"primi\

tive_element\"/> <OMI>3</OMI> </OMA> <OMI>0</OMI> </OMA> </OMA> </OMOBJ>"

gap> Length(OMString(x));

507

We call the SCSCP procedure Identity just to test how this object may be sent back and forth. The

total length of the procedure call message is 969 symbols:
Example

gap> SetInfoLevel(InfoSCSCP,3);

gap> EvaluateBySCSCP("Identity",[x],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

6133:42448" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Composing procedure_call message:

<?scscp start ?>

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>localhost:26133:42448:IOs9ZkBU</OMSTR>

<OMS cd="scscp1" name="option_return_object"/>

<OMSTR></OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_call"/>

<OMA>

<OMS cd="scscp_transient_1" name="Identity"/>

SCSCP 31

<OMA>

<OMS cd="list1" name="list"/>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>1</OMI>

</OMA>

<OMA>

<OMS cd="arith1" name="times"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

</OMA>

</OMA>

</OMA>

</OMATTR>

</OMOBJ>

<?scscp end ?>

#I Total length 969 characters

...

rec(attributes := [["call_id", "localhost:26133:42448:IOs9ZkBU"]],

object := [Z(3)^0, Z(3), 0*Z(3)])

Now we switch to binary mode:
Example

gap> SwitchSCSCPmodeToBinary();

gap> EvaluateBySCSCP("Identity",[x],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

6133:42448" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Composing procedure_call message:

3C3F7363736370207374617274203F3E0A18121408060773637363703163616C6C5F6964061E6C\

6F63616C686F73743A32363133333A34323434383A3256675A5562755A0806147363736370316F\

SCSCP 32

7074696F6E5F72657475726E5F6F626A6563740600151008060E73637363703170726F63656475\

72655F63616C6C1008110873637363705F7472616E7369656E745F314964656E74697479100805\

046C697374316C69737410080605617269746831706F7765721008091166696E6669656C643170\

72696D69746976655F656C656D656E7401031101001110080605617269746831706F7765721008\

091166696E6669656C64317072696D69746976655F656C656D656E740103110101111008060561\

726974683174696D65731008091166696E6669656C64317072696D69746976655F656C656D656E\

7401031101001111111113193C3F736373637020656E64203F3E0A

#I Total length 339 bytes

#I Request sent ...

#I Waiting for reply ...

#I <?scscp start ?>

#I Got back: object [Z(3)^0, Z(3), 0*Z(3)] with attributes

[["call_id", "localhost:26133:42448:2VgZUbuZ"]]

rec(attributes := [["call_id", "localhost:26133:42448:2VgZUbuZ"]],

object := [Z(3)^0, Z(3), 0*Z(3)])

gap> SetInfoLevel(InfoSCSCP,3);

As we can see, the size of the message is almost three times shorter, and this is not the limit. Switching

to binary OpenMath encoding in combination with pickling and unpickling from IO package (see

in the last Chapter) and special methods for pickling compressed vectors implemented in the Cvec

available in GAP 4.5 allow to dramatically reduce the overhead for vectors and matrices over �nite

�elds, making a roundtrip up to a thousand times faster.

6.5 Remote objects

The SCSCP package introduces new kind of objects - remote objects. They provide an opportunity

to manipulate with objects on remote services without their actual transmitting over the network.

Remote objects store the information that allows to access the original object: the server name and the

port number through which the object can be accessed, and the variable name under which it is stored

in the remote system. Two remote objects are equal if and only if all these three parameters coincide.

There are two types of remote object which differ by their lifetime:

� temporary remote objects which exist only within a single session;

� persistent remote objects which stay alive across multiple sessions.

First we show the example of the temporary remote object in a session. The procedure PointImages

returns the set of images of a point i under the generators of the groupG. First we create the symmetric

group S3 on the client and store it remotely on the server (call 1), then we compute set of images for

i= 1;2 (calls 2,3) and �nally demonstrate that we may retrieve the group from the server (call 4):

Example

gap> stream:=InputOutputTCPStream("localhost", 26133);

< input/output TCP stream to localhost:26133 >

gap> StartSCSCPsession(stream);

"localhost:26133:6184"

gap> OMPutProcedureCall(stream, "store_session",

> rec(object := [SymmetricGroup(3)],

> attributes := [["call_id", "1"],

SCSCP 33

> ["option_return_cookie"]]));

true

gap> SCSCPwait(stream);

gap> G:=OMGetObjectWithAttributes(stream).object;

< remote object scscp://localhost:26133/TEMPVarSCSCPo3Bc8J75 >

gap> OMPutProcedureCall(stream, "PointImages",

> rec(object := [G, 1],

> attributes := [["call_id", "2"]]));

true

gap> SCSCPwait(stream);

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [["call_id", "2"]], object := [2])

gap> OMPutProcedureCall(stream, "PointImages",

> rec(object := [G, 2],

> attributes := [["call_id", "3"]]));

true

gap> SCSCPwait(stream);

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [["call_id", "3"]], object := [1, 3])

gap> OMPutProcedureCall(stream, "retrieve",

> rec(object := [G],

> attributes := [["call_id", "4"]]));

true

gap> SCSCPwait(stream);

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [["call_id", "4"]],

object := Group([(1,2,3), (1,2)]))

gap> CloseStream(stream);

After the stream is closed, it is no longer possible to retrieve the groupG again or use it as an argument.

Thus, the usage of remote objects existing during a session reduces the network traf�c, since we

pass only references instead of actual OpenMath representation of an object. Also, the remote object

on the server may accumulate certain information in its properties and attributes, which may not be

included in it default OpenMath representation.

Now we show remote objects which remain alive after the session is closed. Such remote objects

may be accessed later, for example, by:

� subsequent procedure calls from the same instance of GAP or another system;

� other instances of GAP or another systems (if the identi�er of an object is known)

� another SCSCP servers which obtained a reference to such object as an argument of a proce-

dure call.

6.5.1 StoreAsRemoteObjectPersistently

. StoreAsRemoteObjectPersistently(obj, server, port) (function)

. StoreAsRemoteObject(obj, server, port) (function)

Returns: remote object

Returns the remote object corresponding to the object created at server:port from the Open-

Math representation of the �rst argument obj . The second form is just a synonym.

SCSCP 34

Example

gap> s:=StoreAsRemoteObject(SymmetricGroup(3), "localhost", 26133);

< remote object scscp://localhost:26133/TEMPVarSCSCPLvIUUtL3 >

Internally, the remote object carries all the information which is required to get access to the

original object: its identi�er, server and port:

Example

gap> s![1];

"TEMPVarSCSCPLvIUUtL3"

gap> s![2];

"localhost"

gap> s![3];

26133

When the remote object is printed in the OpenMath format, we use symbols @ and : to combine

these parameters in the OpenMath reference:

Example

gap> OMPrint(s);

<OMOBJ>

<OMR href="scscp://localhost:26133/TEMPVarSCSCPLvIUUtL3" />

</OMOBJ>

This allows substitution of remote object as arguments into procedure calls in the same manner like

we do this with usual objects:

Example

gap> EvaluateBySCSCP("WS_IdGroup",[s],"localhost",26133);

rec(attributes := [["call_id", "localhost:26133:52918:Viq6EWBP"]],

Line 183 :

object := [6, 1])

6.5.2 IsRemoteObject

. IsRemoteObject (�lter)

This is the category of remote objects.

6.5.3 RemoteObjectsFamily

. RemoteObjectsFamily (family)

This is the family of remote objects.

SCSCP 35

6.5.4 RetrieveRemoteObject

. RetrieveRemoteObject(remoteobject) (function)

Returns: object

This function retrieves the remote object from the remote service in the OpenMath format and

constructs it locally. Note, however, that for a complex mathematical object its default OpenMath

representation may not contain all information about it which was accumulated during its lifetime on

the SCSCP server.
Example

gap> RetrieveRemoteObject(s);

Group([(1,2,3), (1,2)])

6.5.5 UnbindRemoteObject

. UnbindRemoteObject(remoteobject) (function)

Returns: true or false

Removes any value currently bound to the global variable determined by remoteobject at the

SCSCP server, and returns true or false dependently on whether this action was successful or not.
Example

gap> UnbindRemoteObject(s);

true

Finally, we show an example when �rst we create a group on the service running on port 26133,

and then identify it on the service running on port 26134:

Example

gap> s:=StoreAsRemoteObject(SymmetricGroup(3), "localhost", 26133);

< remote object scscp://localhost:26133/TEMPVarSCSCPNqc8Bkan >

gap> EvaluateBySCSCP("WS_IdGroup", [s], "localhost", 26134);

rec(object := [6, 1], attributes := [["call_id", "localhost:26134:7414"]])

Instead of transmitting the group to the client and then sending it as an argument to the second service,

the latter service directly retrieves the group from the �rst service:

Example

gap> EvaluateBySCSCP("WS_IdGroup",[s],"localhost",26133 : output:="cookie");

rec(attributes := [["call_id", "localhost:26133:52918:mRU6w471"]],

object := < remote object scscp://localhost:26133/TEMPVarSCSCPS9SVe9PZ >)

Chapter 7

Examples of SCSCP usage

In this chapter we are going to demonstrate some examples of communication between client and

server using the SCSCP.

7.1 Providing services with the SCSCP package

You can try to run the SCSCP server with the con�guration �le scscp/example/myserver.g. To

do this, go to that directory and enter gap myserver.g. After this you will see some information

messages and �nally the server will start to wait for the connection. The �nal part of the startup

screen may look as follows:

Example

#I Installed SCSCP procedure Factorial

#I Installed SCSCP procedure WS_Factorial

#I Installed SCSCP procedure GroupIdentificationService

#I Installed SCSCP procedure IdGroup512ByCode

#I Installed SCSCP procedure WS_IdGroup

#I Installed SCSCP procedure WS_Karatsuba

#I Installed SCSCP procedure EvaluateOpenMathCode

#I Ready to accept TCP/IP connections at localhost:26133 ...

#I Waiting for new client connection at localhost:26133 ...

See further self-explanatory comments in the �le scscp/example/myserver.g. There also some test

�les in the directory scscp/tst/ supplied with detailed comments. First, you may use demonstration

�les, preliminary turning on the demonstration mode as it is explained in these �les, or just executing

step by step each command from scscp/tst/demo.g and scscp/tst/omdemo.g. Then you can try

to use �les scscp/tst/id512.g, scscp/tst/idperm.g and scscp/tst/factor.g for further tests

of SCSCP services.

7.2 Identifying groups of order 512

We will give an example guiding you through all steps of creation of your own SCSCP service.

The GAP Small Group Library does not provide identi�cation for groups of order 512 using the

function IdGroup:

36

SCSCP 37

Example

gap> IdGroup(DihedralGroup(256));

[256, 539]

gap> IdGroup(DihedralGroup(512));

Error, the group identification for groups of size 512 is not available

called from

<function "unknown">(<arguments>)

called from read-eval loop at line 71 of *stdin*

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk>

However, the GAP package ANUPQ [GNO] has a function IdStandardPresented512Group that

does this work as demonstrated below:
Example

gap> LoadPackage("anupq");

Loading ANUPQ (ANU p-Quotient) 3.1.4

GAP code by Greg Gamble <Greg.Gamble@uwa.edu.au> (address for correspondence)

Werner Nickel (http://www.mathematik.tu-darmstadt.de/~nickel/)

[uses ANU pq binary (C code program) version: 1.9]

C code by Eamonn O'Brien (http://www.math.auckland.ac.nz/~obrien)

Co-maintained by Max Horn <max.horn@math.uni-giessen.de>

For help, type: ?ANUPQ

true

gap> G := DihedralGroup(512);

<pc group of size 512 with 9 generators>

gap> F := PqStandardPresentation(G);

<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9]>

gap> H := PcGroupFpGroup(F);

<pc group of size 512 with 9 generators>

gap> IdStandardPresented512Group(H);

[512, 2042]

The package ANUPQ requires UNIX environment and it is natural to provide an identi�cation service

for groups of order 512 to make it available for other platforms.

Now we need to decide how the client will transmit a group to the server. Can we encode this

group in OpenMath? But there is no content dictionary for PcGroups. Should we convert it to

a permutation representation to be able to use existing content dictionaries? But then the resulting

OpenMath code will be not compact. However, the SCSCP protocol provides enough freedom for

the user to select its own data representation, and since we are linking together two copies of the

same system, we may use the pcgs code to pass the data to the server (see CodePcGroup (Reference:

CodePcGroup).

First we create a function which accepts the integer number that is the code for pcgs of a group of

order 512 and returns the number of this group in the GAP Small Groups library:

SCSCP 38

Example

IdGroup512ByCode := function(code)

local G, F, H;

G := PcGroupCode(code, 512);

F := PqStandardPresentation(G);

H := PcGroupFpGroup(F);

return IdStandardPresented512Group(H);

end;

After such function was created on the server, we need to make it �visible� as an SCSCP procedure:

Example

gap> InstallSCSCPprocedure("IdGroup512", IdGroup512ByCode);

InstallSCSCPprocedure : procedure IdGroup512 installed.

Note that this function assumes that the argument is a valid code for some group of order 512, and we

wish the client to make it sure that this is the case. To do this, and also for the client's convenience,

we provide the client's counterpart for this service. Here the group must be a pc-group of order 512,

otherwise an error message will appear.

Example

gap> IdGroup512 := function(G)

> local code, result;

> if Size(G) <> 512 then

> Error("G must be a group of order 512 \n");

> fi;

> code := CodePcGroup(G);

> result := EvaluateBySCSCP("IdGroup512ByCode", [code],

> "localhost", 26133);

> return result.object;

> end;;

Now the client can call the function IdGroup512, and the procedure of getting result is as much

straightforward as using IdGroup for those groups where it works:
Example

gap> IdGroup512(DihedralGroup(512));

[512, 2042]

Chapter 8

Parallel computing with SCSCP

8.1 Managing multiple requests

Using procedure calls explained in the previous section, the user can create several requests to multiple

services to execute them in parallel, or to wait until the fastest result will be available.

8.1.1 SynchronizeProcesses

. SynchronizeProcesses(process1, process2, ..., processN) (function)

. SynchronizeProcesses(proclist) (function)

Returns: list of records with components object and attributes

The function collects results of from each process given in the argument, and returns the list, i-th

entry of which is the result obtained from the i-th process. The function accepts both one argument

that is a list of processes, and arbitrary number of arguments, each of them being a process.

Example

gap> a:=NewProcess("WS_Factorial", [10], "localhost", 26133);

< process at localhost:26133 pid=2064 >

gap> b:=NewProcess("WS_Factorial", [20], "localhost", 26134);

< process at localhost:26134 pid=1975 >

gap> SynchronizeProcesses(a,b);

[rec(attributes := [["call_id", "localhost:26133:2064:yCWBGYFO"]],

object := 3628800),

rec(attributes := [["call_id", "localhost:26134:1975:yAAWvGTL"]],

object := 2432902008176640000)]

8.1.2 FirstProcess

. FirstProcess(process1, process2, ..., processN) (function)

. FirstProcess(proclist) (function)

Returns: records with components object and attributes

The function waits for the result from each process given in the argument, and returns the result

coming �rst, terminating all remaining processes at the same time. The function accepts both one

argument that is a list of processes, and arbitrary number of arguments, each of them being a process.

39

SCSCP 40

Example

gap> a:=NewProcess("WS_Factorial", [10], "localhost", 26133);

< process at localhost:26133 pid=2064 >

gap> b:=NewProcess("WS_Factorial", [20], "localhost", 26134);

< process at localhost:26134 pid=1975 >

gap> FirstProcess(a,b);

rec(attributes := [["call_id", "localhost:26133:2064:mdb8RaO2"]],

object := 3628800)

8.1.3 SCSCPservers

. SCSCPservers (global variable)

SCSCPservers is a list of hosts and ports to search for SCSCP services (which may be not only

represented by GAP services, but also by another SCSCP-compliant systems).

It is used by parallel skeletons ParQuickWithSCSCP (8.1.4) and ParListWithSCSCP (8.2.1).

The initial value of this variable is speci�ed in the �le scscp/configpar.g and may be reas-

signed later.

8.1.4 ParQuickWithSCSCP

. ParQuickWithSCSCP(commands, listargs) (function)

Returns: record with components object and attributes

This function is constructed using the FirstProcess (8.1.2). It is useful when it is not known

which partcular method is more ef�cient, because it allows to call in parallel several procedures (given

by the list of their names commands) with the same list of arguments listargs (having the same

meaning as in EvaluateBySCSCP (6.3.1)) and obtain the result of that procedure call which will be

computed faster.

In the example below we call two factorisation methods from the GAP package FactInt to fac-

torise 2150 + 1. The example is selected in such a way that the runtime of these two methods is

approximately the same, so you should expect results from both methods in some random order from

repeated calls.
Example

gap> ParQuickWithSCSCP(["WS_FactorsECM", "WS_FactorsMPQS"], [2^150+1]);

rec(attributes := [["call_id", "localhost:26133:53877:GQX8MhC8"]],

object := [[5, 5, 5, 13, 41, 61, 101, 1201, 1321, 63901],

[2175126601, 15767865236223301]])

8.1.5 FirstTrueProcess

. FirstTrueProcess(process1, process2, ..., processN) (function)

. FirstTrueProcess(proclist) (function)

Returns: list of records

The function waits for the result from each process given in the argument, and stops waiting as

soon as the �rst true is returned, abandoning all remaining processes. It retuns a list containing a

SCSCP 41

records with components object and attributes at the position corresponding to the process that

returned true. If none of the processes returned true, it will return a complete list of procedure call

results.

The function accepts both one argument that is a list of processes, and arbitrary number of argu-

ments, each of them being a process.

In the �rst example, the second call returns true:
Example

gap> a:=NewProcess("IsPrimeInt", [2^15013-1], "localhost", 26134);

< process at localhost:26134 pid=42554 >

gap> b:=NewProcess("IsPrimeInt", [2^521-1], "localhost", 26133);

< process at localhost:26133 pid=42448 >

gap> FirstTrueProcess(a,b);

[, rec(attributes := [["call_id", "localhost:26133:42448:Lz1DL0ON"]],

object := true)]

In the next example both calls return false:
Example

gap> a:=NewProcess("IsPrimeInt", [2^520-1], "localhost", 26133);

< process at localhost:26133 pid=42448 >

gap> b:=NewProcess("IsPrimeInt", [2^15013-1], "localhost", 26134);

< process at localhost:26134 pid=42554 >

gap> FirstTrueProcess(a,b);

[rec(attributes := [["call_id", "localhost:26133:42448:nvsk8PQp"]],

object := false),

rec(attributes := [["call_id", "localhost:26134:42554:JnEYuXL8"]],

object := false)]

8.2 MasterWorker skeleton

In this section we will present more general framework to run parallel computations, which has a

number of useful features:

� it is implemented purely in GAP;

� the client (i.e. master, which orchestrates the computation) will work in UNIX/Linux, Mac OS

X and MS Windows;

� it may orchestrate both GAP and non-GAP SCSCP servers;

� if one of servers (i.e. workers) will be lost, it will retry the computation on another available

server;

� it allows to add dynamically new workers during the computation on hostnames and ports from

a range perviously declared in SCSCPservers (8.1.3).

To con�gure this functionality, the �le scscp/configpar.g assigns the global variable

SCSCPservers which speci�es a list of hosts and ports to search for SCSCP services (which may

be not only represented by GAP services, but also by another SCSCP-compliant systems). See

comments in this �le for further instructions.

SCSCP 42

8.2.1 ParListWithSCSCP

. ParListWithSCSCP(listargs, procname) (function)

Returns: list

ParListWithSCSCP implements the well-known master-worker skeleton: we have a master

(SCSCP client) and a number of workers (SCSCP servers) which obtain pieces of work from the

client, perform the required job and report back with the result, waiting for the next job.

It returns the list of the same length as listargs , i-th element of which is the result of calling the

procedure procname with the argument listargs[i] .

It accepts two options which should be given as non-negative integers: timeout which speci�es

in minutes how long the client must wait for the result (if not given, the default value is one hour) and

recallfrequency which speci�es the number of iterations after which the search for new services

will be performed (if not given the default value is zero meaning no such search at all). There is also

a boolean option noretry which, if set to true, means that no retrying calls will be performed if the

timeout is exceeded and an incomplete resut may be returned.

Example

gap> ParListWithSCSCP(List([2..6], n -> SymmetricGroup(n)), "WS_IdGroup");

#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 2])

#I master -> ["localhost", 26134] : SymmetricGroup([1 .. 3])

#I ["localhost", 26133] --> master : [2, 1]

#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 4])

#I ["localhost", 26134] --> master : [6, 1]

#I master -> ["localhost", 26134] : SymmetricGroup([1 .. 5])

#I ["localhost", 26133] --> master : [24, 12]

#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 6])

#I ["localhost", 26133] --> master : [720, 763]

#I ["localhost", 26134] --> master : [120, 34]

[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

8.2.2 SCSCPreset

. SCSCPreset() (function)

Returns: nothing

If an error occurs during a call of ParQuickWithSCSCP (8.1.4) and ParListWithSCSCP (8.2.1),

some of parallel requests may be still running at the remaining services, making them inaccessible for

further procedure calls. SCSCPreset resets them by closing all open streams to SCSCP servers.

8.2.3 SCSCPLogTracesToGlobal

. SCSCPLogTracesToGlobal(testname) (function)

. SCSCPLogTracesToGlobal() (function)

To analyse the performance of parallel SCSCP framework, we make use of the EdenTV program

[BL07] developed initially to visualize the performance of parallel programs written in functional

programming language Eden, and now distributed under the GNU Public License and available from

http://www.mathematik.uni-marburg.de/~eden/?content=EdenTV.

http://www.mathematik.uni-marburg.de/~eden/?content=EdenTV

SCSCP 43

Called with the string containing the name of the test, this functions turns on writing informa-

tion about key activity events into trace �les in current directories for the client and servers listed

SCSCPservers (8.1.3). The trace �le will have the name of the format testname.client.tr for

the client and testname.<hostname>.<port>.tr for the server. After the test these �les should be

collected from remote servers and concatenated (e.g. using cat) together with the standard preamble

from the �le scscp/tracing/stdhead.txt (we recommend to put after the preamble �rst all traces

from servers and then the client's traces to have nicer diagrams). The resulting �le then may be opened

with EdenTV.

In the following example we use a dual core MacBook laptop to generate trace �les for two tests

and then show their corresponding trace diagrams:

Example

SCSCPLogTracesToGlobal("quillen100");

ParListWithSCSCP(List([1..100], i->[512,i]), "QuillenSeriesByIdGroup");

SCSCPLogTracesToGlobal();

SCSCPLogTracesToGlobal("euler");

ParListWithSCSCP([1..1000], "WS_Phi");

SCSCPLogTracesToGlobal();

SCSCP 44

The diagrams (made on an dual core MacBook laptop), shows that in the �rst case parallelising is

ef�cient and master successfully distributes load to workers, while in the second case a single com-

putation is just too short, so most of the time is spent on communication. To parallelize the Euler's

function example ef�ciently, tasks must rather be grouped in chunks, which should be enough large

to reduce the communication overload, but enough small to ensure that tasks are evenly distributed.

Of course, tracing can be used to investigate communication between a client and a single server

in a non-parallel context as well. For this purpose, SCSCPservers (8.1.3) must be modi�ed to contain

only one server.

ParListWithSCSCP (8.2.1) can be easily modi�ed to have parallel versions of other list operations

like ForAll (Reference: ForAll), ForAny (Reference: ForAny), First (Reference: First), Number

(Reference: Number), Filtered (Reference: Filtered), and also to have the skeleton in which the

queue may be modi�ed during the computation (for example, to compute orbits). We plan to provide

such tools in one of the next versions of the package.

8.3 Example: parallelising Karatsuba multiplication for polynomials

The �le scscp/example/karatsuba.g contains an implementation of the Karatsuba multiplication

algorithm for polynomials. This algorithm can be easily parallelized since each recursive step creates

three recursive calls of the same function for other polynomials. We will not parallelize each recur-

sive call, since this will create enormous data �ow. Instead of this we parallelize only the top-level

function. For our experiments with parallelising Karatsuba multiplication for polynomials with inte-

ger coef�cients we used the multi-core workstation, on which we started one SCSCP client and two

SCSCP servers. To use it, modify the server con�guration �le adding to it the command to read the

�le scscp/example/karatsuba.g, then de�ne there the following function
Example

KaratsubaPolynomialMultiplicationExtRepByString:=function(s1,s2)

SCSCP 45

return String(KaratsubaPolynomialMultiplicationExtRep(

EvalString(s1), EvalString(s2)));

end;;

and �nally add the following lines to made it available as an SCSCP procedure under the name

WS_Karatsuba:
Example

InstallSCSCPprocedure("WS_Karatsuba",

KaratsubaPolynomialMultiplicationExtRepByString);

(we do not include it into the default scscp/example/myserver.g since the code contains a call to

EvalString (Reference: EvalString)).

This function provides a "bridge" between the client's func-

tion KaratsubaPolynomialMultiplicationWS and the server's function

KaratsubaPolynomialMultiplicationExtRep, which performs the actual work on the server.

WS_Karatsuba converts its string arguments into internal representation of univariate polynomials

(basically, lists of integers) and then converts the result back into string (since such data exchange

format was chosen).

SCSCP 46

We are going to parallelize the following part of the client's code:

Example

...

u := KaratsubaPolynomialMultiplicationExtRep(f1,g1);

v := KaratsubaPolynomialMultiplicationExtRep(f0,g0);

w := KaratsubaPolynomialMultiplicationExtRep(

PlusLaurentPolynomialsExtRep(f1,f0),

PlusLaurentPolynomialsExtRep(g1,g0));

...

and this can be done straightforwardly - we replace two �rst calls by calls of the appropriate SCSCP

services, then perform the 3rd call locally and then collect the results from the two remote calls:

Example

...

u := NewProcess("WS_Karatsuba",[String(f1), String(g1)],"localhost", 26133);

v := NewProcess("WS_Karatsuba",[String(f0), String(g0)],"localhost", 26134);

w := KaratsubaPolynomialMultiplicationExtRep(

PlusLaurentPolynomialsExtRep(f1,f0),

PlusLaurentPolynomialsExtRep(g1,g0));

wsresult:=SynchronizeProcesses2(u,v);

u := EvalString(wsresult[1].object);

v := EvalString(wsresult[2].object);

...

We obtain almost double speedup on three cores on randomly generated polynomials of degree 32000:

Example

gap> ReadPackage("scscp/example/karatsuba.g");

gap> fam:=FamilyObj(1);;

gap> f:=LaurentPolynomialByCoefficients(fam,

> List([1..32000],i->Random(Integers)), 0, 1);;

gap> g:=LaurentPolynomialByCoefficients(fam,

> List([1..32000],i->Random(Integers)), 0, 1);;

gap> t2:=KaratsubaPolynomialMultiplication(f,g);;time;

5892

gap> t3:=KaratsubaPolynomialMultiplicationWS(f,g);;time;

2974

Chapter 9

Service functions

9.1 Pinging SCSCP servers

9.1.1 PingSCSCPservice

. PingSCSCPservice(hostname, portnumber) (function)

Returns: true or fail

This function returns true if the client can establish connection with the SCSCP server at

hostname :portnumber . Otherwise, it returns fail.
Example

gap> PingSCSCPservice("localhost",26133);

true

gap> PingSCSCPservice("localhost",26140);

Error: rec(

message := "Connection refused",

number := 61)

fail

9.1.2 PingStatistic

. PingStatistic(hostname, portnumber, n) (function)

Returns: nothing

The function is similar to the UNIX ping. It tries n times to establish connection with the SCSCP

server at hostname :portnumber , and then displays statistical information.

Example

gap> PingStatistic("localhost",26133,1000);

1000 packets transmitted, 1000 received, 0% packet loss, time 208ms

min/avg/max = [0, 26/125, 6]

47

SCSCP 48

9.2 Info classes for SCSCP

9.2.1 InfoSCSCP

. InfoSCSCP (info class)

InfoSCSCP is a special Info class for the SCSCP package. The amount of information to be

displayed can be speci�ed by the user by setting InfoLevel for this class from 0 to 4, and the de-

fault value of InfoLevel for the package is speci�ed in the �le scscp/config.g. The higher the

level is, the more information will be displayed. To change the InfoLevel to k, use the command

SetInfoLevel(InfoSCSCP, k). In the following examples we demonstrate various degrees of out-

put details using Info messages.

Default Info level:
Example

gap> SetInfoLevel(InfoSCSCP,2);

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

6133:286" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Request sent ...

#I Waiting for reply ...

#I <?scscp start ?>

#I <?scscp end ?>

#I Got back: object 3628800 with attributes

[["call_id", "localhost:26133:286:JL6KRQeh"]]

rec(attributes := [["call_id", "localhost:26133:286:JL6KRQeh"]],

object := 3628800)

Minimal Info level:
Example

gap> SetInfoLevel(InfoSCSCP,0);

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133);

rec(attributes := [["call_id", "localhost:26133:286:jzjsp6th"]],

object := 3628800)

Verbose Info level:
Example

gap> SetInfoLevel(InfoSCSCP,3);

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

SCSCP 49

6133:286" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Composing procedure_call message:

<?scscp start ?>

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>localhost:26133:286:Jok6cQAf</OMSTR>

<OMS cd="scscp1" name="option_return_object"/>

<OMSTR></OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_call"/>

<OMA>

<OMS cd="scscp_transient_1" name="WS_Factorial"/>

<OMI>10</OMI>

</OMA>

</OMA>

</OMATTR>

</OMOBJ>

<?scscp end ?>

#I Total length 396 characters

#I Request sent ...

#I Waiting for reply ...

#I <?scscp start ?>

#I Received message:

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>localhost:26133:286:Jok6cQAf</OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_completed"/>

<OMI>3628800</OMI>

</OMA>

</OMATTR>

</OMOBJ>

#I <?scscp end ?>

#I Got back: object 3628800 with attributes

[["call_id", "localhost:26133:286:Jok6cQAf"]]

rec(attributes := [["call_id", "localhost:26133:286:Jok6cQAf"]],

object := 3628800)

gap> SetInfoLevel(InfoSCSCP,0);

9.2.2 InfoMasterWorker

. InfoMasterWorker (info class)

SCSCP 50

InfoMasterWorker is a special Info class for the Master-Worker skeleton ParListWithSCSCP

(8.2.1). The amount of information to be displayed can be speci�ed by the user by setting InfoLevel

for this class from 0 to 5, and the default value of InfoLevel for the package is speci�ed in the �le

scscp/config.g. The higher the level is, the more information will be displayed. To change the In-

foLevel to k, use the command SetInfoLevel(InfoMasterWorker, k). In the following examples

we demonstrate various degrees of output details using Info messages.

Default Info level:
Example

gap> SetInfoLevel(InfoMasterWorker,2);

gap> ParListWithSCSCP(List([2..6], n -> SymmetricGroup(n)), "WS_IdGroup");

#I 1/5:master --> localhost:26133

#I 2/5:master --> localhost:26134

#I 3/5:master --> localhost:26133

#I 4/5:master --> localhost:26134

#I 5/5:master --> localhost:26133

[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

Minimal Info level:
Example

gap> SetInfoLevel(InfoSCSCP,0);

gap> SetInfoLevel(InfoMasterWorker,0);

gap> ParListWithSCSCP(List([2..6], n -> SymmetricGroup(n)), "WS_IdGroup");

[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

Verbose Info level:
Example

gap> SetInfoLevel(InfoMasterWorker,5);

gap> ParListWithSCSCP(List([2..6], n -> SymmetricGroup(n)), "WS_IdGroup");

#I 1/5:master --> localhost:26133 : SymmetricGroup([1 .. 2])

#I 2/5:master --> localhost:26134 : SymmetricGroup([1 .. 3])

#I localhost:26133 --> 1/5:master : [2, 1]

#I 3/5:master --> localhost:26133 : SymmetricGroup([1 .. 4])

#I localhost:26134 --> 2/5:master : [6, 1]

#I 4/5:master --> localhost:26134 : SymmetricGroup([1 .. 5])

#I localhost:26133 --> 3/5:master : [24, 12]

#I 5/5:master --> localhost:26133 : SymmetricGroup([1 .. 6])

#I localhost:26134 --> 4/5:master : [120, 34]

#I localhost:26133 --> 5/5:master : [720, 763]

[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

gap> SetInfoLevel(InfoMasterWorker,2);

SCSCP 51

9.3 Other SCSCP Utilities

9.3.1 DateISO8601

. DateISO8601() (function)

Returns: string

Returns the current date in the ISO-8601 YYYY-MM-DD format. This is an internal function of

the package which is used by the SCSCP server to generate the transient content dictionary, accord-

ingly to the de�nition of the OpenMath symbol meta.CDDate.
Example

gap> DateISO8601();

"2017-02-05"

9.3.2 CurrentTimestamp

. CurrentTimestamp() (function)

Returns: string

Returns the result of the call to date. This is an internal function of the package which is used to

add the timestamp to the SCSCP service description.
Example

gap> CurrentTimestamp();

"Tue 30 Jan 2017 11:19:38 BST"

9.3.3 Hostname

. Hostname() (function)

Returns: string

Returns the result of the call to hostname. This function may be used in the con�guration �le

scscp/config.g to specify that the default hostname which will be used by the SCSCP server will

be detected automatically using hostname.
Example

gap> Hostname();

"scscp.gap-system.org"

9.3.4 MemoryUsageByGAPinKbytes

. MemoryUsageByGAPinKbytes() (function)

Returns: integer

Returns the current volume of the memory used by GAP in kylobytes. This is equivalent to

calling ps -p <PID> -o vsz, where <PID> is the process ID of the GAP process. This is an in-

ternal function of the package which is used by the SCSCP server to report its memory usage

in the info_memory attribute when being called with the option debuglevel=2 (see options in

EvaluateBySCSCP (6.3.1) and NewProcess (6.2.2)).

SCSCP 52

Example

gap> MemoryUsageByGAPinKbytes();

649848

9.3.5 LastReceivedCallID

. LastReceivedCallID() (function)

Returns: string

Returns the call ID contained in the most recently received message. It may contain some useful

debugging information; in particular, the call ID for the GAP SCSCP client and server contains

colon-separated server name, port number, process ID and a random string.

Example

gap> LastReceivedCallID();

"scscp.gap-system.org:26133:77372:choDZBgA"

9.3.6 IO_PickleToString

. IO_PickleToString(obj) (function)

Returns: string containing "pickled" object

This function "pickles" or "serialises" the object obj using the operation IO_Pickle (IO:

IO_Pickle) from the IO package, and writes it to a string, from which it could be later restored

using IO_UnpickleFromString (9.3.7). This provides a way to design SCSCP procedures which

transmit GAP objects in the "pickled" format as OpenMath strings, which may be useful for objects

which may be "pickled" by the IO package but can not be converted to OpenMath or for which the

"pickled" representation is more compact or can be encoded/decoded much faster.

See IO_Pickle (IO: IO_Pickle) and IO_Unpickle (IO: IO_Unpickle) for more details.

Example

gap> f := IO_PickleToString(GF(125));

"FFIEINTG\>15INTG\>13FAIL"

9.3.7 IO_UnpickleFromString

. IO_UnpickleFromString(s) (function)

Returns: "unpickled" GAP object

This function "unpickles" the string s which was created using the function IO_PickleToString

(9.3.6), using the operation IO_Unpickle (IO: IO_Unpickle) from the IO package. See

IO_PickleToString (9.3.6) for more details and suggestions about its usage.

Example

gap> IO_UnpickleFromString(f);

GF(5^3)

gap> f = IO_UnpickleFromString(IO_PickleToString(f));

SCSCP 53

true

References

[BL07] Jost Berthold and Rita Loogen. Visualizing Parallel Functional Program Runs � Case

Studies with the Eden Trace Viewer. In Parallel Computing: Architectures, Algorithms

and Applications. Proceedings of the International Conference ParCo 2007, volume 15 of

Advances in Parallel Computing. IOS Press, 2007. 42

[CKS] Marco Costantini, Alexander Konovalov, and Andrew Solomon. Openmath � OpenMath

functionality in GAP. GAP4 package (http://www.cs.st-andrews.ac.uk/~alexk/

openmath.htm). 8

[FHK+a] Sebastian Freundt, Peter Horn, Alexander Konovalov, Sylla Lesseni, Steve Linton, and

Dan Roozemond. OpenMath content dictionary scscp1. (http://www.win.tue.nl/

SCIEnce/cds/scscp1.html). 6, 13, 17, 20

[FHK+b] Sebastian Freundt, Peter Horn, Alexander Konovalov, Sylla Lesseni, Steve Linton, and Dan

Roozemond. Symbolic Computation Software Composability Protocol (SCSCP) speci�ca-

tion, version 1.3, 2009. (http://www.symbolic-computing.org/scscp). 6, 7, 15

[FHK+c] Sebastian Freundt, Peter Horn, Alexander Konovalov, Steve Linton, and Dan Rooze-

mond. OpenMath content dictionary scscp2. (http://www.win.tue.nl/SCIEnce/cds/

scscp2.html). 6, 13, 20

[GNO] Greg Gamble, Werner Nickel, and Eamonn O'Brien. ANUPQ� ANU p-Quotient. GAP4

package (http://www.math.rwth-aachen.de/~Greg.Gamble/ANUPQ/). 37

[LN] Frank Lübeck andMax Neunhöffer. GAPDoc�AMeta Package for GAPDocumentation.

GAP4 package (http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc). 8

[Neu] Max Neunhöffer. IO � Bindings for low level C library IO. GAP4 package (http://

www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html). 8

54

http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm
http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm
http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.symbolic-computing.org/scscp
http://www.win.tue.nl/SCIEnce/cds/scscp2.html
http://www.win.tue.nl/SCIEnce/cds/scscp2.html
http://www.math.rwth-aachen.de/~Greg.Gamble/ANUPQ/
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html

Index

CloseSCSCPconnection, 26

CompleteProcess, 27

CurrentTimestamp, 51

DateISO8601, 51

EvaluateBySCSCP, 28

for SCSCP connection, 28

FirstProcess, 39

for list of processes, 39

FirstTrueProcess, 40

for list of processes, 40

GetAllowedHeads, 22

GetServiceDescription, 21

GetSignature, 23

GetTransientCD, 23

Hostname, 51

InfoMasterWorker, 49

InfoSCSCP, 48

InputOutputTCPStream

for client, 11

for server, 11

InstallSCSCPprocedure, 18

IO_PickleToString, 52

IO_UnpickleFromString, 52

IsAllowedHead, 22

IsInputOutputTCPStream, 10

IsInputOutputTCPStreamRep, 10

IsProcess, 26

IsRemoteObject, 34

IsSCSCPconnection, 25

LastReceivedCallID, 52

MemoryUsageByGAPinKbytes, 51

NewProcess, 26

for SCSCP connection, 26

NewSCSCPconnection, 25

OMGetObjectWithAttributes, 15

OMPutProcedureCall, 13

OMPutProcedureCompleted, 16

OMPutProcedureTerminated, 16

OMsymRecord, 20

ParListWithSCSCP, 42

ParQuickWithSCSCP, 40

PingSCSCPservice, 47

PingStatistic, 47

RemoteObjectsFamily, 34

RetrieveRemoteObject, 35

RunSCSCPserver, 20

SCSCP package, 2

SCSCPLogTracesToGlobal, 42

to stop tracing, 42

SCSCPreset, 42

SCSCPservers, 40

SCSCPwait, 15

StartSCSCPsession, 13

StoreAsRemoteObject, 33

StoreAsRemoteObjectPersistently, 33

SwitchSCSCPmodeToBinary, 29

SwitchSCSCPmodeToXML, 29

SynchronizeProcesses, 39

for list of processes, 39

TerminateProcess, 28

UnbindRemoteObject, 35

55

	Preface
	Installation
	Installation and system requirements
	Configuration files

	Using streams
	Input-output TCP streams
	Example of client-server communication via input-output TCP streams

	Message exchange by SCSCP
	Communication with the SCSCP server
	Communication with the SCSCP client
	Example: SCSCP session

	Running SCSCP server
	Installation of SCSCP procedures
	Starting SCSCP server
	Procedures to get information about the SCSCP server

	Client's functionality
	SCSCP connections
	Processes
	All-in-one tool: sending request and getting result
	Switching between Binary and XML OpenMath Encodings
	Remote objects

	Examples of SCSCP usage
	Providing services with the SCSCP package
	Identifying groups of order 512

	Parallel computing with SCSCP
	Managing multiple requests
	MasterWorker skeleton
	Example: parallelising Karatsuba multiplication for polynomials

	Service functions
	Pinging SCSCP servers
	Info classes for SCSCP
	Other SCSCP Utilities

	References

