Beginner’s Guide to CPROVER

Martin Brain*

December 3, 2016

1 Background Information

First off; read the CPROVER manual. It describes how to get, build and use
CBMC and SATABS. This document covers the internals of the system and
how to get started on development.

1.1 Documentation

Apart from the (user-orientated) CPROVER manual and this document, most
of the rest of the documentation is inline in the code as doxygen and some
comments. A man page for CBMC, goto-cc and goto-instrument is contained
in the doc/ directory and gives some options for these tools. All of these could
be improved and patches are very welcome. In some cases the algorithms used
are described in the relevant papers.

1.2 Architecture

CPROVER is structured in a similar fashion to a compiler. It has language
specific front-ends which perform limited syntactic analysis and then convert to
an intermediate format. The intermediate format can be output to files (this is
what goto-cc does) and are (informally) referred to as “goto binaries” or “goto
programs”. The back-end are tools process this format, either directly from the
front-end or from it’s saved output. These include a wide range of analysis and
transformation tools (see Section 1.5).

1.3 Coding Standards

CPROVER is written in a fairly minimalist subset of C++; templates and meta-
programming are avoided except where necessary. The standard library is used
but in many cases there are alternatives provided in util/ (see Section 2.3.1)
which are preferred. Boost is not used.

*But most of the content is from Michael Tautschnig



Patches should be formatted so that code is indented with two space char-
acters, not tab and wrapped to 75 or 72 columns. Headers for doxygen should
be given (and preferably filled!) and the author will be the person who first
created the file.

Identifiers should be lower case with underscores to separate words. Types
(classes, structures and typedefs) names must! end with a t. Types that model
types (i.e. C types in the program that is being interpreted) are named with
_typet. For example ui message_handlert rather than UI_message handlert
or UIMessageHandler and union_typet.

1.4 How to Contribute

Fixes, changes and enhancements to the CPROVER code base should be devel-
oped against the trunk version and submitted to Daniel as patches produced by
diff -Naur or svn diff. Entire applications are best developed independently
(git svn is a popular choice for tracking the main trunk but also having local
development) until it is clear what their utility, future and maintenance is likely
to be.

1.5 Other Useful Code

The CPROVER subversion archive contains a number of separate programs.
Others are developed separately as patches or separate branches.Interfaces are
have been and are continuing to stablise but older code may require work to
compile and function correctly.

In the main archive:

CBMC A bounded model checking tool for C and C++. See Section 2.3.9.

goto-cc A drop-in, flag compatible replacement for GCC and other compilers
that produces goto-programs rather than executable binaries. See Section
2.3.10.

goto-instrument A collection of functions for instrumenting and modifying
goto-programs. See Section 2.3.11.

Model checkers and similar tools:

SatABS A CEGAR model checker using predicate abstraction. Is roughly 10,000
lines of code (on top of the CPROVER code base) and is developed in its
own subversion archive. It uses an external model checker to find poten-
tially feasible paths. Key limitations are related to code with pointers and
there is scope for significant improvement.

Scratch Alistair Donaldson’s k-induction based tool. The front-end is in the
old project CVS and some of the functionality is in goto-instrument.

IThere are a couple of exceptions, including the graph classes



Wolverine An implementation of Ken McMillan’s IMPACT algorithm for se-
quential programs. In the old project CVS.

C-Impact An implementation of Ken McMillan’s IMPACT algorithm for par-
allel programs. In the old project CVS.

LoopFrog A loop summarisation tool.
7?77 Christoph’s termination analyser.
Test case generation:

cover A basic test-input generation tool. In the old project CVS.

FShell A test-input generation tool that allows the user to specify the desired
coverage using a custom language (which includes regular expressions over
paths). It uses incremental SAT and is thus faster than the naive “add
assertions one at a time and use the counter-examples” approach. Is de-
veloped in its own subversion.

Alternative front-ends and input translators:

Scoot A System-C to C translator. Probably in the old project CVS.
7?77 A Simulink to C translator. In the old project CVS.
7?77 A Verilog front-end. In the old project CVS.

777 A converter from Codewarrior project files to Makefiles. In the old project

CVS.
Other tools:

ai Leo’s hybrid abstract interpretation / CEGAR tool.

DeltaCheck? Ajitha’s slicing tool, aimed at locating changes and differential
verification. In the old project CVS.

There are tools based on the CPROVER framework from other research

groups which are not listed here.

2 Source Walkthrough

This section walks through the code bases in a rough order of interest / com-
prehensibility to the new developer.

2.1 doc
At the moment just contains the CBMC man page.



2.2 regression/

The regression tests are currently being moved from CVS. The regression/
directory contains all of those that have been moved. They are grouped into
directories for each of the tools. Each of these contains a directory per test case,
containing a C or C++ file that triggers the bug and a .dsc file that describes
the tests, expected output and so on. There is a Perl script, test.pl that is
used to invoke the tests as:

../test.pl -c PATH_TO_CBMC

The --help option gives instructions for use and the format of the descrip-
tion files.

2.3 src/

The source code is divided into a number of sub-directories, each containing the
code for a different part of the system. In the top level files there are only a few
files:

config.inc The user-editable configuration parameters for the build process.
The main use of this file is setting the paths for the various external SAT
solvers that are used. As such, anyone building from source will likely
need to edit this.

Makefile The main systems Make file. Parallel builds are supported and en-
couraged; please don’t break them!

common System specific magic required to get the system to build. This should
only need to be edited if porting CBMC to a new platform / build envi-
ronment.

doxygen.cfg The config file for doxygen.cfg

2.3.1 util/

util/ contains the low-level data structures and manipulation functions that
are used through-out the CPROVER code-base. For almost any low-level task,
the code required is probably in util/. Key files include:

irep.h This contains the definition of irept, the basis of many of the data
structures in the project. They should not be used directly; one of the
derived classes should be used. For more information see Section 3.1.

expr.h The parent class for all of the expressions. Provides a number of generic
functions, exprt can be used with these but when creating data, subclasses
of exprt should be used.



std_expr.h Provides subclasses of exprt for common kinds of expression for
example plus_exprt, minus_exprt, dereference_exprt. These are the
intended interface for creating expressions.

std_types.h Provides subclasses of typet (a subclass of irept) to model C
and C++ types. This is one of the preferred interfaces to irept. The
front-ends handle type promotion and most coercision so the type system
and checking goto-programs is simpler than C.

dstring.h The CPROVER string class. This enables sharing between strings
which significantly reduces the amount of memory required and speeds
comparison. dstring should not be used directly, irep_idt should be
used instead, which (dependent on build options) is an alias for dstring.

mp_arith.h The wrapper class for multi-precision arithmetic within CPROVER.
Also see arith_tools.h.

ieee_float.h The arbitrary precision float model used within CPROVER.
Based on mp_integers.

context.h A generic container for symbol table like constructs such as names-
paces. Lookup gives type, location of declaration, name, ‘pretty name’,
whether it is static or not.

namespace.h The preferred interface for the context class. The key function is
lookup which converts a string (irep_idt) to a symbol which gives the
scope of declaration, type and so on. This works for functions as well as
variables.

2.3.2 langapi/

This contains the basic interfaces and support classes for programming language
front ends. Developers only really need look at this if they are adding support
for a new language. It’s main users are the two (in trunk) language front-ends;
ansi-c/ and cpp/.

2.3.3 ansi-c/

Contains the front-end for ANSI C, plus a variety of common extensions. This
parses the file, performs some basic sanity checks (this is one area in which the UI
could be improved; patches most welcome) and then produces a goto-program
(see below). The parser is a traditional Flex / Bison system.

internal _addition.c contains the implementation of various ‘magic’ func-
tions that are that allow control of the analysis from the source code level. These
include assertions, assumptions, atomic blocks, memory fences and rounding
modes.

The library/ subdirectory contains versions of some of the C standard
header files that make use of the CPROVER built-in functions. This allows



CPROVER programs to be ‘aware’ of the functionality and model it correctly.
Examples include stdio.c, string.c, setjmp.c and various threading inter-
faces.

2.3.4 cpp/

This directory contains the C++ front-end. It supports the subset of C++ com-
monly found in embedded and system applications. Consequentially it doesn’t
have full support for templates and many of the more advanced and obscure
C++ features. The subset of the language that can be handled is being ex-
tended over time so bug reports of programs that cannot be parsed are useful.

The functionality is very similar to the ANSI C front end; parsing the code
and converting to goto-programs. It makes use of code from langapi and
ansi-c.

2.3.5 goto-programs/

Goto programs are the intermediate representation of the CPROVER tool chain.
They are language independent and similar to many of the compiler intermedi-
ate languages. Section 3.2 describes the goto_programt and goto_functionst
data structures in detail. However it useful to understand some of the basic con-
cepts. Each function is a list of instructions, each of which has a type (one of
18 kinds of instruction), a code expression, a guard expression and potentially
some targets for the next instruction. They are not natively in static single-
assign (SSA) form. Transitions are nondeterministic (although in practise the
guards on the transitions normally cover form a disjoint cover of all possibili-
ties). Local variables have non-deterministic values if they are not initialised.
Variables and data within the program is commonly one of three types (param-
eterised by width): unsignedbv_typet, signedbv_typet and floatbv_typet,
see util/std_types.h for more information. Goto programs can be serialised
in a binary (wrapped in ELF headers) format or in XML (see the various
_serialization files).

The cbmc option --show-goto-programs is often a good starting point as
it outputs goto-programs in a human readable form. However there are a few
things to be aware of. Functions have an internal name (for example c: :£00)
and a ‘pretty name’ (for example £00) and which is used depends on whether
it is internal or being presented to the user. The main method is the ‘logical’
main which is not necessarily the main method from the code. In the output
NONDET is use to represent a nondeterministic assignment to a variable. Likewise
IF as a beautified GOTO instruction where the guard expression is used as the
condition. RETURN instructions may be dropped if they precede an END_FUNCTION
instruction. The comment lines are generated from the locationt field of the
instructiont structure.

goto-programs/ is one of the few places in the CPROVER codebase that
templates are used. The intention is to allow the general architecture of pro-
gram and functions to be used for other formalisms. At the moment most of



the templates have a single instantiation; for example goto_functionst and
goto_function templatet and goto_programt and goto_program templatet.

2.3.6 goto-symex/

This directory contains a symbolic evaluation system for goto-programs. This
takes a goto-program and translates it to an equation system by traversing the
program, branching and merging and unwinding loops as needed. Each reverse
goto has a separate counter (the actual counting is handled by cbmc, see the
--unwind and --unwind-set options). When a counter limit is reach, an asser-
tion can be added to explicitly show when analysis is incomplete. The symbolic
execution includes constant folding so loops that have a constant number of it-
erations will be handled completely (assuming the unwinding limit is sufficient).

The output of the symbolic execution is a system of equations; an object con-
taining a list of symex_target_elements, each of which are equalities between
expr expressions. See symex_target_equation.h. The output is in static, sin-
gle assignment (SSA) form, which is not the case for goto-programs.

2.3.7 pointer-analysis/

To perform symbolic execution on programs with dereferencing of arbitrary
pointers, some alias analysis is needed. pointer-analysis contains the three
levels of analysis; flow and context insensitive, context sensitive and flow and
context sensitive. The code needed is subtle and sophisticated and thus there
may be bugs.

2.3.8 solvers/

The solvers/ directory contains interfaces to a number of different decision
procedures, roughly one per directory.

prop/ The basic and common functionality. The key file is prop_conv.h which
defines prop_convt. This is the base class that is used to interface to the
decision procedures. The key functions are convert which takes an exprt
and converts it to the appropriate, solver specific, data structures and
dec_solve (inherited from decision_proceduret) which invokes the ac-
tual decision procedures. Individual decision procedures (named *_dect)
objects can be created but prop_convt is the preferred interface for code
that uses them.

flattening/ A library that converts operations to bit-vectors, including call-
ing the conversions in floatbv as necessary. Is implemented as a simple
conversion (with caching) and then a post-processing function that adds
extra constraints. This is not used by the SMT or CVC back-ends.

dplib/ Provides the dplib_dect object which used the decision procedure li-
brary from “Decision Procedures : An Algorithmic Point of View”.



cve/ Provides the cvc_dect type which interfaces to the old (pre SMTLib)
input format for the CVC family of solvers. This format is still supported
by depreciated in favour of SMTLib 2.

smtl/ Provides the smt1_dect type which converts the formulae to SMTLib
version 1 and then invokes one of Boolector, CVC3, OpenSMT, Yices,
MathSAT or Z3. Again, note that this format is depreciated.

smt2/ Provides the smt2_dect type which functions in a similar way to smt1_dect,
calling Boolector, CVC3, MathSAT, Yices or Z3. Note that the interac-
tion with the solver is batched and uses temporary files rather than using
the interactive command supported by SMTLib 2. With the --fpa op-
tion, this output mode will not flatten the floating point arithmetic and
instead output the proposed SMTLib floating point standard.

gbf/ Back-ends for a variety of QBF solvers. Appears to be no longer used or
maintained.

sat/ Back-ends for a variety of SAT solvers and DIMACS output.

2.3.9 cbmc/

This contains the first full application. CBMC is a bounded model checker that
uses the front ends (ansi-c, cpp, goto-program or others) to create a goto-
program, goto-symex to unwind the loops the given number of times and to
produce and equation system and finally solvers to find a counter-example
(technically, goto-symex is then used to construct the counter-example trace).

2.3.10 goto-cc/

goto-cc is a compiler replacement that just performs the first step of the pro-
cess; converting C or C++ programs to goto-binaries. It is intended to be
dropped in to an existing build procedure in place of the compiler, thus it em-
ulates flags that would affect the semantics of the code produced. Which set of
flags are emulated depends on the naming of the goto-cc/ binary. If it is called
goto-cc then it emulates GCC flags, goto-armcc emulates the ARM compiler,
goto-cl emulates VCC and goto-cw emulates the Code Warrior compiler. The
output of this tool can then be used with cbmc or goto-instrument.

2.3.11 goto-instrument/

The goto-instrument/ directory contains a number of tools, one per file, that
are built into the goto-instrument program. All of them take in a goto-
program (produced by goto-cc) and either modify it or perform some analysis.
Examples include nondet_static.cpp which initialises static variables to a non-
deterministic value, nondet_volatile.cpp which assigns a non-deterministic
value to any volatile variable before it is read and weak memory.h which per-
forms the necessary transformations to reason about weak memory models.



The exception to the “one file for each piece of functionality” rule are the pro-
gram instrumentation options (mostly those given as “Safety checks” in the
goto-instrument help text) which are included in the goto-program/ direc-
tory. An example of this is goto-program/stack_depth.h and the general rule
seems to be that transformations and instrumentation that cbmc uses should be
in goto-program/, others should be in goto-instrument.

goto-instrument is a very good template for new analysis tools. New de-
velopers are advised to copy the directory, remove all files apart from main. *,
parseoptions.* and the Makefile and use these as the skeleton of their appli-
cation. The doit() method in parseoptions.cpp is the preferred location for
the top level control for the program.

2.3.12 linking/

Probably the code to emulate a linker. This allows multiple ‘object files’ (goto-
programs) to be linked into one ‘executable’ (another goto-program), thus allow-
ing existing build systems to be used to build complete goto-program binaries.

2.3.13 big-int/

CPROVER is distributed with its own multi-precision arithmetic library; mainly
for historical and portability reasons. The library is externally developed and
thus big-int contains the source as it is distributed. This should not be used
directly, see util/mp_arith.h for the CPROVER interface.

2.3.14 =xmllang/

CPROVER has optional XML output for results and there is an XML format for
goto-programs. It is used to interface to various IDEs. The xmllang/ directory
contains the parser and helper functions for handling this format.

2.3.15 floatbv/

This library contains the code that is used to convert floating point variables
(floatbv) to bit vectors (bv). This is referred to as ‘bit-blasting’ and is called
in the solver code during conversion to SAT or SMT. It also contains the
abstraction code described in the FMCADO9 paper.

3 Data Structures

This section discusses some of the key data-structures used in the CPROVER
codebase.



3.1 irept

There are a large number of kind of tree structured or tree-like data in CPROVER.
irept provides a single, unified representation for all of these, allowing struc-
ture sharing and reference counting of data. As such irept is the basic unit
of data in CPROVER. Each irept contains? a basic unit of data (of type dt)
which contains four things:

data A string®, which is returned when the id() function is used.

named_sub A map from irep namet (a string) to an irept. This is used for
named children, i.e. subexpressions, parameters, etc.

comments Another map from irep_namet to irept which is used for annota-
tions and other ‘non-semantic’ information

sub A vector of irept which is used to store ordered but unnamed children.

The irept: :pretty function outputs the contents of an irept directly and
can be used to understand an debug problems with irepts.

On their own irepts do not “mean” anything; they are effectively generic
tree nodes. Their interpretation depends on the contents of result of the id
function (the data) field. util/irep_ids.txt contains the complete list of id
values. During the build process it is used to generate util/irep_ids.h which
gives constants for each id (named ID_*). These can then be used to identify
what kind of data irept stores and thus what can be done with it.

To simplify this process, there are a variety of classes that inherit from
irept, roughly corresponding to the ids listed (i.e. ID_or (the string "or’?)
corresponds to the class or_exprt). These give semantically relevant accessor
functions for the data; effectively different APIs for the same underlying data
structure. None of these classes add fields (only methods) and so static casting
can be used. The inheritance graph of the subclasses of irept is a useful starting
point for working out how to manipulate data.

There are three main groups of classes (or APIs); those derived from typet,
codet and exprt respectively. Although all of these inherit from irept, these
are the most abstract level that code should handle data. If code is manipulating
plain irepts then something is wrong with the architecture of the code.

Many of the key descendent of exprt are declared in std_expr.h. All ex-
pressions have a named subfield / annotation which gives the type of the expres-
sion (slightly simplified from C/C++ as unsignedbv_typet, signedbv_typet,
floatbv_typet, etc.). All type conversions are explicit with an expression with
id() == ID_typecast and an ‘interface class’ named typecast_exprt. One
key descendent of exprt is symbol_exprt which creates irept instances with

20r references, if reference counted data sharing is enabled. It is enabled by default; see
the SHARING macro.

3When USE_DSTRING is enabled (it is by default), this is actually a dstring and thus an
integer which is a reference into a string table

10



the id of “symbol”. These are used to represent variables; the name of which
can be found using the get_identifier accessor function.

codet inherits from exprt and is defined in std_code.h. They represent
executable code; statements in C rather than expressions. In the front-end there
are versions of these that hold whole code blocks, but in goto-programs these
have been flattened so that each irept represents one sequence point (almost
one line of code / one semi-colon). The most common descendents of codet are
code_assignt so a common pattern is to cast the codet to an assignment and
then recurse on the expression on either side.

3.2 goto-programs

The common starting point for working with goto-programs is the read_goto_binary
function which populates an object of goto_functionst type. This is defined in
goto_functions.h and is an instantiation of the template goto_functions_templatet
which is contained in goto_functions_template.h. They are wrappers around
a map from strings to goto_programt’s and iteration macros are provided.
Note that goto_function templatet (no s) is defined in the same header
as goto_functions_templatet and is gives the C type for the function and
Boolean which indicates whether the body is available (before linking this
might not always be true). Also note the slightly counter-intuitive naming;
goto_functionst instances are the top level structure representing the program
and contain goto_programt instances which represent the individual functions.
At the time of writing goto_functionst is the only instantiation of the tem-
plate goto_functions_templatet but other could be produced if a different
data-structures / kinds of models were needed for functions.

goto_programt is also an instantiation of a template. In a similar fashion it
is goto_program_templatet and allows the types of the guard and expression
used in instructions to be parameterised. Again, this is currently the only use of
the template. As such there are only really helper functions in goto_program.h
and thus goto_program template.h is probably the key file that describes the
representation of (C) functions in the goto-program format. It is reasonably
stable and reasonably documented and thus is a good place to start looking at
the code.

An instance of goto_program templatet is effectively a list of instructions
(and inner template called instructiont). It is important to use the copy and
insertion functions that are provided as iterators are used to link instructions to
their predecessors and targets and careless manipulation of the list could break
these. Likewise there are helper macros for iterating over the instructions in
an instance of goto_program_templatet and the use of these is good style and
strongly encouraged.

Individual instructions are instances of type instructiont. They represent
one step in the function. Each has a type, an instance of goto_program_instruction_typet
which denotes what kind of instruction it is. They can be computational (such
as ASSIGN or FUNCTION CALL), logical (such as ASSUME and ASSERT) or infor-
mational (such as LOCATION and DEAD). At the time of writing there are 18

11



possible values for goto_program_instruction_typet / kinds of instruction.
Instructions also have a guard field (the condition under which it is executed)
and a code field (what the instruction does). These may be empty depending on
the kind of instruction. In the default instantiations these are of type exprt and
codet respectively and thus covered by the previous discussion of irept and its
descendents. The next instructions (remembering that transitions are guarded
by non-deterministic) are given by the list targets (with the corresponding
list of labels labels) and the corresponding set of previous instructions is get
by incoming edges. Finally instructiont have informational function and
location fields that indicate where they are in the code.

12



