
Contents

1 Cellular complexes 3

2 ZG-Resolutions and Group Cohomology 16

3 Homological Group Theory 23

4 Parallel Computation 25

5 Resolutions of the ground ring 26

6 Resolutions of modules 28

7 Induced equivariant chain maps 29

8 Functors 30

9 Chain complexes 32

10 Sparse Chain complexes 34

11 Homology and cohomology groups 36

12 Poincare series 38

13 Cohomology ring structure 40

14 Cohomology rings of p-groups (mainly p= 2) 42

15 Commutator and nonabelian tensor computations 43

16 Lie commutators and nonabelian Lie tensors 45

17 Generators and relators of groups 47

18 Orbit polytopes and fundamental domains 49

19 Cocycles 51

20 Words in free ZG-modules 52

1



2

21 FpG-modules 54

22 Meataxe modules 56

23 G-Outer Groups 57

24 Cat-1-groups 58

25 Simplicial groups 59

26 Coxeter diagrams and graphs of groups 61

27 Torsion Subcomplexes 64

28 Simplicial Complexes 66

29 Cubical Complexes 68

30 Regular CW-Complexes 70

31 Knots and Links 71

32 Finite metric spaces and their �ltered complexes 73

33 Commutative diagrams and abstract categories 75

34 Arrays and Pseudo lists 78

35 Parallel Computation - Core Functions 80

36 Parallel Computation - Extra Functions 82

37 Some functions for accessing basic data 83

38 Miscellaneous 84



Chapter 1

Cellular complexes

Data �! Cellular Complexes

3



4

RegularCWPolytope(L):: List �> RegCWComplex RegularCWPolytope(G,v)::

PermGroup, List �> RegCWComplex

Inputs a list L of vectors in Rn and outputs their convex hull as a regular CW-complex.

Inputs a permutation group G of degree d and vector v 2 Rd , and outputs the convex hull of the orbit

fvg : g 2 Gg as a regular CW-complex.

CubicalComplex(A):: List �> CubicalComplex

Inputs a binary array A and returns the cubical complex represented by A. The array A must of course

be such that it represents a cubical complex.

PureCubicalComplex(A):: List �> PureCubicalComplex

Inputs a binary array A and returns the pure cubical complex represented by A.

PureCubicalKnot(n,k):: Int, Int �> PureCubicalComplex PureCubicalKnot(L)::

List �> PureCubicalComplex

Inputs integers n;k and returns the k-th prime knot on n crossings as a pure cubical complex (if this

prime knot exists).

Inputs a list L describing an arc presentation for a knot or link and returns the knot or link as a pure

cubical complex.

PurePermutahedralKnot(n,k):: Int, Int �> PurePermutahedralComplex

PurePermutahedralKnot(L):: List �> PurePermutahedralComplex

Inputs integers n;k and returns the k-th prime knot on n crossings as a pure permutahedral complex

(if this prime knot exists).

Inputs a list L describing an arc presentation for a knot or link and returns the knot or link as a pure

permutahedral complex.

PurePermutahedralComplex(A):: List �> PurePermComplex

Inputs a binary array A and returns the pure permutahedral complex represented by A.

CayleyGraphOfGroup(G,L):: Group, List �> Graph

Inputs a �nite group G and a list L of elements in G.It returns the Cayley graph of the group generated

by L.

EquivariantEuclideanSpace(G,v):: MatrixGroup, List �> EquivariantRegCWComplex

Inputs a crystallographic group G with left action on Rn together with a row vector v 2 Rn. It returns

an equivariant regular CW-space corresponding to the Dirichlet-Voronoi tessellation of Rn produced

from the orbit of v under the action.

EquivariantOrbitPolytope(G,v):: PermGroup, List �> EquivariantRegCWComplex

Inputs a permutation group G of degree n together with a row vector v 2 Rn. It returns, as an equiv-

ariant regular CW-space, the convex hull of the orbit of v under the canonical left action of G on

Rn.

EquivariantTwoComplex(G):: Group �> EquivariantRegCWComplex

Inputs a suitable group G and returns, as an equivariant regular CW-space, the 2-complex associated

to some presentation of G.

QuillenComplex(G,p):: Group, Int �> SimplicialComplex

Inputs a �nite group G and prime p, and returns the simplicial complex arising as the order complex

of the poset of elementary abelian p-subgroups of G.

RestrictedEquivariantCWComplex(Y,H):: RegCWComplex, Group �>

EquivariantRegCWComplex

Inputs a G-equivariant regular CW-space Y and a subgroup H �G for which GAP can �nd a transver-

sal. It returns the equivariant regular CW-complex obtained by retricting the action to H.

RandomSimplicialGraph(n,p):: Int, Int �> SimplicialComplex

Inputs an integer n � 1 and positive prime p, and returns an Erd\"os-R\'enyi random graph as a 1-

dimensional simplicial complex. The graph has n vertices. Each pair of vertices is, with probability

p, directly connected by an edge.

RandomSimplicialTwoComplex(n,p):: Int, Int �> SimplicialComplex

Inputs an integer n � 1 and positive prime p, and returns a Linial-Meshulam random simplicial 2-

complex. The 1-skeleton of this simplicial complex is the complete graph on n vertices. Each triple

of vertices lies, with probability p, in a common 2-simplex of the complex.

ReadCSVfileAsPureCubicalKnot(str):: String �> PureCubicalComplex

ReadCSVfileAsPureCubicalKnot(str,r):: String, Int �> PureCubicalComplex

ReadCSVfileAsPureCubicalKnot(L):: List �> PureCubicalComplex

ReadCSVfileAsPureCubicalKnot(L,R):: List,List �> PureCubicalComplex

Reads a CSV �le identi�ed by a string str such as "�le.pdb" or "path/�le.pdb" and returns a 3-

dimensional pure cubical complex K. Each line of the �le should contain the coordinates of a point in

R3 and the complex K should represent a knot determined by the sequence of points, though the latter

is not guaranteed. A useful check in this direction is to test that K has the homotopy type of a circle.

If the test fails then try the function again with an integer r � 2 entered as the optional second argu-

ment. The integer determines the resolution with which the knot is constructed.

The function can also read in a list L of strings identifying CSV �les for several knots. In this case a

list R of integer resolutions can also be entered. The lists L and R must be of equal length.

ReadImageAsPureCubicalComplex(str,t):: String, Int �> PureCubicalComplex

Reads an image �le identi�ed by a string str such as "�le.bmp", "�le.eps", "�le.jpg", "path/�le.png"

etc., together with an integer t between 0 and 765. It returns a 2-dimensional pure cubical complex

corresponding to a black/white version of the image determined by the threshold t. The 2-cells of the

pure cubical complex correspond to pixels with RGB value R+G+B� t.

ReadImageAsFilteredPureCubicalComplex(str,n):: String, Int �>

FilteredPureCubicalComplex

Reads an image �le identi�ed by a string str such as "�le.bmp", "�le.eps", "�le.jpg", "path/�le.png"

etc., together with a positive integer n. It returns a 2-dimensional �ltered pure cubical complex of �l-

tration length n. The kth term in the �ltration is a pure cubical complex corresponding to a black/white

version of the image determined by the threshold tk = k� 765=n. The 2-cells of the kth term corre-

spond to pixels with RGB value R+G+B� tk.

ReadImageAsWeightFunction(str,t):: String, Int �> RegCWComplex, Function

Reads an image �le identi�ed by a string str such as "�le.bmp", "�le.eps", "�le.jpg", "path/�le.png"

etc., together with an integer t. It constructs a 2-dimensional regular CW-complex Y from the image,

together with a weight function w:Y ! Z corresponding to a �ltration on Y of �ltration length t. The

pair [Y;w] is returned.

ReadPDBfileAsPureCubicalComplex(str):: String �> PureCubicalComplex

ReadPDBfileAsPureCubicalComplex(str,r):: String, Int �> PureCubicalComplex

Reads a PDB (Protein Database) �le identi�ed by a string str such as "�le.pdb" or "path/�le.pdb"

and returns a 3-dimensional pure cubical complex K. The complex K should represent a (protein

backbone) knot but this is not guaranteed. A useful check in this direction is to test that K has the

homotopy type of a circle.

If the test fails then try the function again with an integer r � 2 entered as the optional second argu-

ment. The integer determines the resolution with which the knot is constructed.

ReadPDBfileAsPurepermutahedralComplex(str):: String �> PurePermComplex

ReadPDBfileAsPurePermutahedralComplex(str,r):: String, Int �> PurePermComplex

Reads a PDB (Protein Database) �le identi�ed by a string str such as "�le.pdb" or "path/�le.pdb" and

returns a 3-dimensional pure permutahedral complex K. The complex K should represent a (protein

backbone) knot but this is not guaranteed. A useful check in this direction is to test that K has the

homotopy type of a circle.

If the test fails then try the function again with an integer r � 2 entered as the optional second argu-

ment. The integer determines the resolution with which the knot is constructed.

RegularCWPolytope(L):: List �> RegCWComplex RegularCWPolytope(G,v)::

PermGroup, List �> RegCWComplex

Inputs a list L of vectors in Rn and outputs their convex hull as a regular CW-complex.

Inputs a permutation group G of degree d and vector v 2 Rd , and outputs the convex hull of the orbit

fvg : g 2 Gg as a regular CW-complex.

SimplicialComplex(L):: List �> SimplicialComplex

Inputs a list L whose entries are lists of vertices representing the maximal simplices of a simplicial

complex, and returns the simplicial complex. Here a "vertex" is a GAP object such as an integer or a

subgroup. The list L can also contain non-maximal simplices.

SymmetricMatrixToFilteredGraph(A,m,s):: Mat, Int, Rat �> FilteredGraph

SymmetricMatrixToFilteredGraph(A,m):: Mat, Int �> FilteredGraph

Inputs an n�n symmetric matrix A, a positive integer m and a positive rational s. The function returns

a �ltered graph of �ltration length m. The t-th term of the �ltration is a graph with n vertices and an

edge between the i-th and j-th vertices if the (i; j) entry of A is less than or equal to t� s=m.
If the optional input s is omitted then it is set equal to the largest entry in the matrix A.

SymmetricMatrixToGraph(A,t):: Mat, Rat �> Graph

Inputs an n� n symmetric matrix A over the rationals and a rational number t � 0, and returns the

graph on the vertices 1;2; : : : ;n with an edge between distinct vertices i and j precisely when the (i; j)
entry of A is � t.



5

Metric Spaces

CayleyMetric(g,h):: Permutation, Permutation �> Int

Inputs two permutations g;h and optionally the degree N of a symmetric group containing them. It

returns the minimum number of transpositions needed to express g�h�1 as a product of transpositions.

EuclideanMetric(g,h):: List, List �> Rat

Inputs two vectors v;w 2 Rn and returns a rational number approximating the Euclidean distance

between them.

EuclideanSquaredMetric(g,h):: List, List �> Rat

Inputs two vectors v;w 2 Rn and returns the square of the Euclidean distance between them.

HammingMetric(g,h):: Permutation, Permutation �> Int

Inputs two permutations g;h and optionally the degree N of a symmetric group containing them. It

returns the minimum number of integers moved by the permutation g�h�1.

KendallMetric(g,h):: Permutation, Permutation �> Int

Inputs two permutations g;h and optionally the degree N of a symmetric group containing them. It

returns the minimum number of adjacent transpositions needed to express g � h�1 as a product of

adjacent transpositions. An {\em adjacent} transposition is of the form (i; i+1).

ManhattanMetric(g,h):: List, List �> Rat

Inputs two vectors v;w 2 Rn and returns the Manhattan distance between them.

VectorsToSymmetricMatrix(V):: List �> Matrix VectorsToSymmetricMatrix(V,d)::

List, Function �> Matrix

Inputs a list V = fv1; : : : ;vkg 2 R
n and returns the k� k symmetric matrix of Euclidean distances

d(vi;v j). When these distances are irrational they are approximated by a rational number.

As an optional second argument any rational valued function d(x;y) can be entered.

Cellular Complexes �! Cellular Complexes



6

BoundaryMap(K):: RegCWComplex �> RegCWMap

Inputs a pure regular CW-complex K and returns the regular CW-inclusion map i :¶K ,! K from the

boundary ¶K into the complex K.

CliqueComplex(G,n):: Graph, Int �> SimplicialComplex CliqueComplex(F,n)::

FilteredGraph, Int �> FilteredSimplicialComplex CliqueComplex(K,n)::

SimplicialComplex, Int �> SimplicialComplex

Inputs a graph G and integer n � 1. It returns the n-skeleton of a simplicial complex K with one

k-simplex for each complete subgraph of G on k+1 vertices.

Inputs a �tered graph F and integer n� 1. It returns the n-skeleton of a �ltered simplicial complex K

whose t-term has one k-simplex for each complete subgraph of the t-th term of G on k+1 vertices.

Inputs a simplicial complex of dimension d = 1 or d = 2. If d = 1 then the clique complex of a graph

returned. If d = 2 then the clique complex of a $2$-complex is returned.

ConcentricFiltration(K,n):: PureCubicalComplex, Int �>

FilteredPureCubicalComplex

Inputs a pure cubical complex K and integer n � 1, and returns a �ltered pure cubical complex of

�ltration length n. The t-th term of the �ltration is the intersection of K with the ball of radius rt
centred on the centre of gravity of K, where 0 = r1 � r2 � r3 � �� � � rn are equally spaced rational

numbers. The complex K is contained in the ball of radius rn. (At present, this is implemented only

for 2- and 3-dimensional complexes.)

DirectProduct(M,N):: RegCWComplex, RegCWComplex �> RegCWComplex

DirectProduct(M,N):: PureCubicalComplex, PureCubicalComplex �>

PureCubicalComplex

Inputs two or more regular CW-complexes or two or more pure cubical complexes and returns their

direct product.

FiltrationTerm(K,t):: FilteredPureCubicalComplex, Int �> PureCubicalComplex

FiltrationTerm(K,t):: FilteredRegCWComplex, Int �> RegCWComplex

Inputs a �ltered regular CW-complex or a �ltered pure cubical complex K together with an integer

t � 1. The t-th term of the �ltration is returned.

Graph(K):: RegCWComplex �> Graph Graph(K):: SimplicialComplex �> Graph

Inputs a regular CW-complex or a simplicial complex K and returns its $1$-skeleton as a graph.

HomotopyGraph(Y):: RegCWComplex �> Graph

Inputs a regular CW-complexY and returns a subgraphM�Y 1 of the 1-skeleton for which the induced

homology homomorphisms H1(M;Z)! H1(Y;Z) and H1(Y
1;Z)! H1(Y;Z) have identical images.

The construction tries to include as few edges inM as possible, though a minimum is not guaranteed.

Nerve(M):: PureCubicalComplex �> SimplicialComplex Nerve(M)::

PurePermComplex �> SimplicialComplex Nerve(M,n):: PureCubicalComplex, Int

�> SimplicialComplex Nerve(M,n):: PurePermComplex, Int �> SimplicialComplex

Inputs a pure cubical complex or pure permutahedral complex M and returns the simplicial complex

K obtained by taking the nerve of an open cover of jMj, the open sets in the cover being suf�ciently

small neighbourhoods of the top-dimensional cells of jMj. The spaces jMj and jKj are homotopy

equivalent by the Nerve Theorem. If an integer n � 0 is supplied as the second argument then only

the n-skeleton of K is returned.

RegularCWComplex(K):: SimplicialComplex �> RegCWComplex RegularCWComplex(K)::

PureCubicalComplex �> RegCWComplex RegularCWComplex(K):: CubicalComplex

�> RegCWComplex RegularCWComplex(K):: PurePermComplex �> RegCWComplex

RegularCWComplex(L):: List �> RegCWComplex RegularCWComplex(L,M):: List,List

�> RegCWComplex

Inputs a simplicial, pure cubical, cubical or pure permutahedral complex K and returns the corre-

sponding regular CW-complex. Inputs a list L = Y !:boundaries of boundary incidences of a regular

CW-complex Y and returns Y . Inputs a list L = Y !:boundaries of boundary incidences of a regular

CW-complex Y together with a list M = Y !:orientation of incidence numbers and returns a regular

CW-complex Y . The availability of precomputed incidence numbers saves recalculating them.

RegularCWMap(M,A):: PureCubicalComplex, PureCubicalComplex �> RegCWMap

Inputs a pure cubical complexM and a subcomplex A and returns the inclusion map A!M as a map

of regular CW complexes.

ThickeningFiltration(K,n):: PureCubicalComplex, Int �>

FilteredPureCubicalComplex ThickeningFiltration(K,n,s):: PureCubicalComplex,

Int, Int �> FilteredPureCubicalComplex

Inputs a pure cubical complex K and integer n � 1, and returns a �ltered pure cubical complex of

�ltration length n. The t-th term of the �ltration is the t-fold thickening of K. If an integer s � 1 is

entered as the optional third argument then the t-th term of the �ltration is the ts-fold thickening of K.



7

Cellular Complexes �! Cellular Complexes (Preserving Data Types)



8

ContractedComplex(K):: RegularCWComplex �> RegularCWComplex

ContractedComplex(K):: FilteredRegularCWComplex �> FilteredRegularCWComplex

ContractedComplex(K):: CubicalComplex �> CubicalComplex

ContractedComplex(K):: PureCubicalComplex �> PureCubicalComplex

ContractedComplex(K,S):: PureCubicalComplex, PureCubicalComplex �>

PureCubicalComplex ContractedComplex(K):: FilteredPureCubicalComplex �>

FilteredPureCubicalComplex ContractedComplex(K):: PurePermComplex �>

PurePermComplex ContractedComplex(K,S):: PurePermComplex, PurePermComplex �>

PurePermComplex ContractedComplex(K):: SimplicialComplex �> SimplicialComplex

ContractedComplex(G):: Graph �> Graph

Inputs a complex (regular CW, Filtered regular CW, pure cubical etc.) and returns a homotopy equiv-

alent subcomplex.

Inputs a pure cubical complex or pure permutahedral complex K and a subcomplex S. It returns a

homotopy equivalent subcomplex of K that contains S.

Inputs a graph G and returns a subgraph S such that the clique complexes of G and S are homotopy

equivalent.

ContractibleSubcomplex(K):: PureCubicalComplex �> PureCubicalComplex

ContractibleSubcomplex(K):: PurePermComplex �> PurePermComplex

ContractibleSubcomplex(K):: SimplicialComplex �> SimplicialComplex

Inputs a non-empty pure cubical, pure permutahedral or simplicial complex K and returns a con-

tractible subcomplex.

KnotReflection(K):: PureCubicalComplex �> PureCubicalComplex

Inputs a pure cubical knot and returns the re�ected knot.

KnotSum(K,L):: PureCubicalComplex, PureCubicalComplex �> PureCubicalComplex

Inputs two pure cubical knots and returns their sum.

OrientRegularCWComplex(Y):: RegCWComplex �> Void

Inputs a regular CW-complex Y and computes and stores incidence numbers for Y . If Y already has

incidence numbers then the function does nothing.

PathComponent(K,n):: SimplicialComplex, Int �> SimplicialComplex

PathComponent(K,n):: PureCubicalComplex, Int �> PureCubicalComplex

PathComponent(K,n):: PurePermComplex, Int �> PurePermComplex

Inputs a simplicial, pure cubical or pure permutahedral complex K together with an integer 1 � n �
b0(K). The n-th path component of K is returned.

PureComplexBoundary(M):: PureCubicalComplex �> PureCubicalComplex

PureComplexBoundary(M):: PurePermComplex �> PurePermComplex

Inputs a d-dimensional pure cubical or pure permutahedral complex M and returns a d-dimensional

complex consisting of the closure of those d-cells whose boundaries contains some cell with cobound-

ary of size less than the maximal possible size.

PureComplexComplement(M):: PureCubicalComplex �> PureCubicalComplex

PureComplexComplement(M):: PurePermComplex �> PurePermComplex

Inputs a pure cubical complex or a pure permutahedral complex and returns its complement.

PureComplexDifference(M,N):: PureCubicalComplex, PureCubicalComplex

�> PureCubicalComplex PureComplexDifference(M,N):: PurePermComplex,

PurePermComplex �> PurePermComplex

Inputs two pure cubical complexes or two pure permutahedral complexes and returns the difference

M�N.

PureComplexInterstection(M,N):: PureCubicalComplex, PureCubicalComplex

�> PureCubicalComplex PureComplexIntersection(M,N):: PurePermComplex,

PurePermComplex �> PurePermComplex

Inputs two pure cubical complexes or two pure permutahedral complexes and returns their intersec-

tion.

PureComplexThickened(M):: PureCubicalComplex �> PureCubicalComplex

PureComplexThickened(M):: PurePermComplex �> PurePermComplex

Inputs a pure cubical complex or a pure permutahedral complex and returns the a thickened complex.

PureComplexUnion(M,N):: PureCubicalComplex, PureCubicalComplex �>

PureCubicalComplex PureComplexUnion(M,N):: PurePermComplex, PurePermComplex

�> PurePermComplex

Inputs two pure cubical complexes or two pure permutahedral complexes and returns their union.

SimplifiedComplex(K):: RegularCWComplex �> RegularCWComplex

SimplifiedComplex(K):: PurePermComplex �> PurePermComplex

SimplifiedComplex(R):: FreeResolution �> FreeResolution

SimplifiedComplex(C):: ChainComplex �> ChainComplex

Inputs a regular CW-complex or a pure permutahedral complex K and returns a homeomorphic com-

plex with possibly fewer cells and certainly no more cells.

Inputs a free ZG-resolution R of Z and returns a ZG-resolution S with potentially fewer free genera-

tors.

Inputs a chain complexC of free abelian groups and returns a chain homotopic chain complex D with

potentially fewer free generators.

ZigZagContractedComplex(K):: PureCubicalComplex �> PureCubicalComplex

ZigZagContractedComplex(K):: FilteredPureCubicalComplex �>

FilteredPureCubicalComplex ZigZagContractedComplex(K):: PurePermComplex �>

PurePermComplex

Inputs a pure cubical, �ltered pure cubical or pure permutahedral complex and returns a homotopy

equivalent complex. In the �ltered case, the t-th term of the output is homotopy equivalent to the t-th

term of the input for all t.



9

Cellular Complexes �! Homotopy Invariants



10

AlexanderPolynomial(K):: PureCubicalComplex �> Polynomial

AlexanderPolynomial(K):: PurePermComplex �> Polynomial

AlexanderPolynomial(G):: FpGroup �> Polynomial

Inputs a 3-dimensional pure cubical or pure permutahdral complex K representing a knot and returns

the Alexander polynomial of the fundamental group G= p1(R
3 nK).

Inputs a �nitely presented group G with in�nite cyclic abelianization and returns its Alexander poly-

nomial.

BettiNumber(K,n):: SimplicialComplex, Int �> Int BettiNumber(K,n)::

PureCubicalComplex, Int �> Int BettiNumber(K,n):: CubicalComplex, Int

�> Int BettiNumber(K,n):: PurePermComplex, Int �> Int BettiNumber(K,n)::

RegCWComplex, Int �> Int BettiNumber(K,n):: ChainComplex, Int �> Int

BettiNumber(K,n):: SparseChainComplex, Int �> Int BettiNumber(K,n,p)::

SimplicialComplex, Int, Int �> Int BettiNumber(K,n,p):: PureCubicalComplex,

Int, Int �> Int BettiNumber(K,n,p):: CubicalComplex, Int, Int �> Int

BettiNumber(K,n,p):: PurePermComplex, Int, Int �> Int BettiNumber(K,n,p)::

RegCWComplex, Int, Int �> Int

Inputs a simplicial, cubical, pure cubical, pure permutahedral, regular CW, chain or sparse chain

complex K together with an integer n� 0 and returns the nth Betti number of K.

Inputs a simplicial, cubical, pure cubical, pure permutahedral or regular CW-complex K together with

an integer n � 0 and a prime p � 0 or p = 0. In this case the nth Betti number of K over a �eld of

characteristic p is returned.

EulerCharacteristic(C):: ChainComplex �> Int EulerCharacteristic(K)::

CubicalComplex �> Int EulerCharacteristic(K):: PureCubicalComplex �> Int

EulerCharacteristic(K):: PurePermComplex �> Int EulerCharacteristic(K)::

RegCWComplex �> Int EulerCharacteristic(K):: SimplicialComplex �> Int

Inputs a chain complexC and returns its Euler characteristic.

Inputs a cubical, or pure cubical, or pure permutahedral or regular CW-, or simplicial complex K and

returns its Euler characteristic.

EulerIntegral(Y,w):: RegCWComplex, Int �> Int

Inputs a regular CW-complexY and a weight functionw:Y!Z, and returns the Euler integral
R
Y wdc .

FundamentalGroup(K):: RegCWComplex �> FpGroup FundamentalGroup(K,n)::

RegCWComplex, Int �> FpGroup FundamentalGroup(K):: SimplicialComplex

�> FpGroup FundamentalGroup(K):: PureCubicalComplex �> FpGroup

FundamentalGroup(K):: PurePermComplex �> FpGroup

FundamentalGroup(F):: RegCWMap �> GroupHomomorphism FundamentalGroup(F,n)::

RegCWMap, Int �> GroupHomomorphism

Inputs a regular CW, simplicial, pure cubical or pure permutahedral complex K and returns the fun-

damental group.

Inputs a regular CW complex K and the number n of some zero cell. It returns the fundamental group

of K based at the n-th zero cell.

Inputs a regular CW map F and returns the induced homomorphism of fundamental groups. If the

number of some zero cell in the domain of F is entered as an optional second variable then the

fundamental group is based at this zero cell.

FundamentalGroupOfQuotient(Y):: EquivariantRegCWComplex �> Group

Inputs a G-equivariant regular CW complex Y and returns the group G.

IsAspherical(F,R):: FreeGroup, List �> Boolean

Inputs a free group F and a list R of words in F . The function attempts to test if the quotient group

G= F=hRiF is aspherical. If it succeeds it returns true. Otherwise the test is inconclusive and f ail is

returned.

KnotGroup(K):: PureCubicalComplex �> FpGroup KnotGroup(K)::

PureCubicalComplex �> FpGroup

Inputs a pure cubical or pure permutahedral complex K and returns the fundamental group of its

complement. If the complement is path-connected then this fundamental group is unique up to iso-

morphism. Otherwise it will depend on the path-component in which the randomly chosen base-point

lies.

PiZero(Y):: RegCWComplex �> List PiZero(Y):: Graph �> List PiZero(Y)::

SimplicialComplex �> List

Inputs a regular CW-complexY , or graphY , or simplicial complexY and returns a pair [cells;r]where:
cells is a list of vertices of $Y$ representing the distinct path-components; r(v) is a function which,

for each vertex v of Y returns the representative vertex r(v) 2 cells.

PersistentBettiNumbers(K,n):: FilteredSimplicialComplex, Int �>

List PersistentBettiNumbers(K,n):: FilteredPureCubicalComplex, Int

�> List PersistentBettiNumbers(K,n):: FilteredRegCWComplex, Int �>

List PersistentBettiNumbers(K,n):: FilteredChainComplex, Int �> List

PersistentBettiNumbers(K,n):: FilteredSparseChainComplex, Int �> List

PersistentBettiNumbers(K,n,p):: FilteredSimplicialComplex, Int, Int �>

List PersistentBettiNumbers(K,n,p):: FilteredPureCubicalComplex, Int, Int

�> List PersistentBettiNumbers(K,n,p):: FilteredRegCWComplex, Int, Int �>

List PersistentBettiNumbers(K,n,p):: FilteredChainComplex, Int, Int �> List

PersistentBettiNumbers(K,n,p):: FilteredSparseChainComplex, Int, Int �> List

Inputs a �ltered simplicial, �ltered pure cubical, �ltered regular CW, �ltered chain or �ltered sparse

chain complex K together with an integer n� 0 and returns the nth PersistentBetti numbers of K as a

list of lists of integers.

Inputs a �ltered simplicial, �ltered pure cubical, �ltered regular CW, �ltered chain or �ltered sparse

chain complex K together with an integer n � 0 and a prime p � 0 or p = 0. In this case the nth

PersistentBetti numbers of K over a �eld of characteristic p are returned.



11

Data �! Homotopy Invariants

DendrogramMat(A,t,s):: Mat, Rat, Int �> List

Inputs an n� n symmetric matrix A over the rationals, a rational t � 0 and an integer s � 1. A list

[v1; : : : ;vt+1] is returned with each vk a list of positive integers. Let tk = (k�1)s. Let G(A; tk) denote
the graph with vertices 1; : : : ;n and with distinct vertices i and j connected by an edge when the (i; j)
entry of A is � tk. The i-th path component of G(A; tk) is included in the vk[i]-th path component of

G(A; tk+1). This de�nes the integer vector vk. The vector vk has length equal to the number of path

components of G(A; tk).

Cellular Complexes �! Non Homotopy Invariants



12

ChainComplex(K):: CubicalComplex �> ChainComplex ChainComplex(K)::

PureCubicalComplex �> ChainComplex ChainComplex(K):: PurePermComplex �>

ChainComplex ChainComplex(Y):: RegCWComplex �> ChainComplex ChainComplex(K)::

SimplicialComplex �> ChainComplex

Inputs a cubical, or pure cubical, or pure permutahedral or simplicial complex K and returns its chain

complex of free abelian groups. In degree n this chain complex has one free generator for each n-

dimensional cell of K.

Inputs a regular CW-complex Y and returns a chain complex C which is chain homotopy equivalent

to the cellular chain complex of Y . In degree n the free abelian chain group Cn has one free generator

for each critical n-dimensional cell of Y with respect to some discrete vector �eld on Y .

ChainComplexEquivalence(X):: RegCWComplex �> List

Inputs a regular CW-complex X and returns a pair [ f�;g�] of chain maps f�:C�(X) ! D�(X),
g�:D�(X)! C�(X). Here C�(X) is the standard cellular chain complex of X with one free gener-

ator for each cell in X . The chain complex D�(X) is a typically smaller chain complex arising from a

discrete vector �eld on X . The chain maps f�;g� are chain homotopy equivalences.

ChainComplexOfQuotient(Y):: EquivariantRegCWComplex �> ChainComplex

Inputs a G-equivariant regular CW-complex Y and returns the cellular chain complex of the quotient

space Y=G.

ChainMap(X,A,Y,B):: PureCubicalComplex, PureCubicalComplex,

PureCubicalComplex, PureCubicalComplex �> ChainMap ChainMap(f):: RegCWMap

�> ChainMap ChainMap(f):: SimplicialMap �> ChainComplex

Inputs a pure cubical complex Y and pure cubical sucomplexes X � Y , B � Y ,A � B. It returns the

induced chain map f�:C�(X=A)!C�(Y=B) of cellular chain complexes of pairs. (Typlically one takes

A and B to be empty or contractible subspaces, in which case C�(X=A)'C�(X),C�(Y=B)'C�(Y ).)
Inputs a map f :X ! Y between two regular CW-complexes X ;Y and returns an induced chain map

f�:C�(X)!C�(Y ) whereC�(X),C�(Y ) are chain homotopic to (but usually smaller than) the cellular

chain complexes of X , Y .

Inputs a map f :X ! Y between two simplicial complexes X ;Y and returns the induced chain map

f�:C�(X)!C�(Y ) of cellular chain complexes.

CochainComplex(K):: CubicalComplex �> CochainComplex CochainComplex(K)::

PureCubicalComplex �> CochainComplex CochainComplex(K):: PurePermComplex

�> CochainComplex CochainComplex(Y):: RegCWComplex �> CochainComplex

CochainComplex(K):: SimplicialComplex �> CohainComplex

Inputs a cubical, or pure cubical, or pure permutahedral or simplicial complex K and returns its

cochain complex of free abelian groups. In degree n this cochain complex has one free generator

for each n-dimensional cell of K.

Inputs a regular CW-complex Y and returns a cochain complexC which is chain homotopy equivalent

to the cellular cochain complex of Y . In degree n the free abelian cochain group Cn has one free

generator for each critical n-dimensional cell of Y with respect to some discrete vector �eld on Y .

CriticalCells(K):: RegCWComplex �> List

Inputs a regular CW-complex K and returns its critical cells with respect to some discrete vector �eld

on K. If no discrete vector �eld on K is available then one will be computed and stored.

DiagonalApproximation(X):: RegCWComplex �> RegCWMap, RegCWMap

Inputs a regular CW-complex X and outputs a pair [p; i ] of maps of CW-complexes. The map p:XD!
X will often be a homotopy equivalence. This is always the case if X is the CW-space of any pure

cubical complex. In general, one can test to see if the induced chain map p�:C�(X
D)!C�(X) is an

isomorphism on integral homology. The second map i :XD ,! X �X is an inclusion into the direct

product. If p� induces an isomorphism on homology then the chain map i�:C�(X
D)!C�(X�X) can

be used to compute the cup product.

Size(Y):: RegCWComplex �> Int Size(Y):: SimplicialComplex �> Int Size(K)::

PureCubicalComplex �> Int Size(K):: PurePermComplex �> Int

Inputs a regular CW complex or a simplicial complexY and returns the number of cells in the complex.

Inputs a d-dimensional pure cubical or pure permutahedral complex K and returns the number of

d-dimensional cells in the complex.



13

(Co)chain Complexes �! (Co)chain Complexes

FilteredTensorWithIntegers(R):: FreeResolution, Int �> FilteredChainComplex

Inputs a free ZG-resolution R for which � f ilteredDimension� lies in NAMESOFCOMPONENTS(R).

(Such a resolution can be produced using TWISTERTENSORPRODUCT(), RESOLUTIONNORMAL-

SUBGROUPS() or FREEGRESOLUTION().) It returns the �ltered chain complex obtained by tensoring

with the trivial module $\mathbb Z$.

FilteredTensorWithIntegersModP(R,p):: FreeResolution, Int �>

FilteredChainComplex

Inputs a free ZG-resolution R for which � f ilteredDimension� lies in NAMESOFCOMPONENTS(R),

together with a prime p. (Such a resolution can be produced using TWISTERTENSORPRODUCT(),

RESOLUTIONNORMALSUBGROUPS() or FREEGRESOLUTION().) It returns the �ltered chain com-

plex obtained by tensoring with the trivial module $\mathbb F$, the �eld of p elements.

HomToIntegers(C):: ChainComplex �> CochainComplex HomToIntegers(R)::

FreeResolution �> CochainComplex HomToIntegers(F):: EquiChainMap �>

CochainMap

Inputs a chain complexC of free abelian groups and returns the cochain complex HomZ(C;Z).
Inputs a free ZG-resolution R in characteristic 0 and returns the cochain complex HomZG(R;Z).
Inputs an equivariant chain map F :R ! S of resolutions and returns the induced cochain map

HomZG(S;Z)�! HomZG(R;Z).

TensorWithIntegersModP(C,p):: ChainComplex, Int �> ChainComplex

TensorWithIntegersModP(R,p):: FreeResolution, Int �> ChainComplex

TensorWithIntegersModP(F,p):: EquiChainMap, Int �> ChainMap

Inputs a chain complex C of characteristic 0 and a prime integer p. It returns the chain complex

C
ZZp of characteristic p.

Inputs a free ZG-resolution R of characteristic 0 and a prime integer p. It returns the chain complex

R
ZGZp of characteristic p.

Inputs an equivariant chain map F :R! S in characteristic 0 a prime integer p. It returns the induced

chain map F
ZGZp:R
ZGZp �! S
ZGZp.

(Co)chain Complexes �! Homotopy Invariants



14

Cohomology(C,n):: CochainComplex, Int �> List Cohomology(F,n):: CochainMap,

Int �> GroupHomomorphism Cohomology(K,n):: CubicalComplex, Int �> List

Cohomology(K,n):: PureCubicalComplex, Int �> List Cohomology(K,n)::

PurePermComplex, Int �> List Cohomology(K,n):: RegCWComplex, Int �> List

Cohomology(K,n):: SimplicialComplex, Int �> List

Inputs a cochain complexC and integer n� 0 and returns the n-th cohomology group ofC as a list of

its abelian invariants.

Inputs a chain map F and integer n� 0. It returns the induced cohomology homomorphism Hn(F) as
a homomorphism of �nitely presented groups.

Inputs a cubical, or pure cubical, or pure permutahedral or regular CW or simplicial complex K

together with an integer n � 0. It returns the n-th integral cohomology group of K as a list of its

abelian invariants.

CupProduct(Y):: RegCWComplex �> Function CupProduct(R,p,q,P,Q):: FreeRes,

Int, Int, List, List �> List

Inputs a regular CW-complex Y and returns a function f (p;q;P;Q). This function f inputs two

integers p;q � 0 and two integer lists P = [p1; : : : ; pm], Q = [q1; : : : ;qn] representing elements

P 2 H p(Y;Z) and Q 2 Hq(Y;Z). The function f returns a list P[Q representing the cup product

P[Q 2 H p+q(Y;Z).
Inputs a free ZG resolution R of Z for some group G, together with integers p;q� 0 and integer lists

P;Q representing cohomology classes P 2 H p(G;Z), Q 2 Hq(G;Z). An integer list representing the

cup product P[Q 2 H p+q(G;Z) is returned.

Homology(C,n):: ChainComplex, Int �> List Homology(F,n):: ChainMap, Int �>

GroupHomomorphism Homology(K,n):: CubicalComplex, Int �> List Homology(K,n)::

PureCubicalComplex, Int �> List Homology(K,n):: PurePermComplex, Int �> List

Homology(K,n):: RegCWComplex, Int �> List Homology(K,n):: SimplicialComplex,

Int �> List

Inputs a chain complex C and integer n � 0 and returns the n-th homology group of C as a list of its

abelian invariants.

Inputs a chain map F and integer n� 0. It returns the induced homology homomorphism Hn(F) as a
homomorphism of �nitely presented groups.

Inputs a cubical, or pure cubical, or pure permutahedral or regular CW or simplicial complex K

together with an integer n� 0. It returns the n-th integral homology group of K as a list of its abelian

invariants.

Visualization



15

BarCodeDisplay(L) :: List �> void

Displays a barcode L=PERSITENTBETTINUMBERS(X,N).

BarCodeCompactDisplay(L) :: List �> void

Displays a barcode L=PERSITENTBETTINUMBERS(X,N) in compact form.

CayleyGraphOfGroup(G,L):: Group, List �> Void

Inputs a �nite groupG and a list L of elements inG.It displays the Cayley graph of the group generated

by L where edge colours correspond to generators.

Display(G) :: Graph �> void Display(M) :: PureCubicalComplex �> void

Display(M) :: PurePermutahedralComplex �> void

Displays a graph G; a $2$- or $3$-dimensional pure cubical complex M; a $3$-dimensional pure

permutahedral complexM.

DisplayArcPresentation(K) :: PureCubicalComplex �> void

Displays a 3-dimensional pure cubical knot K=PURECUBICALKNOT(L) in the form of an arc pre-

sentation.

DisplayCSVKnotFile(str) :: String �> void

Inputs a string str that identi�es a csv �le containing the points on a piecewise linear knot in R3. It

displays the knot.

DisplayDendrogram(L):: List �> Void

Displays the dendrogram L:=DENDROGRAMMAT(A,T,S).

DisplayDendrogramMat(A,t,s):: Mat, Rat, Int �> Void

Inputs an n� n symmetric matrix A over the rationals, a rational t � 0 and an integer s � 1. The

dendrogram de�ned by DENDROGRAMMAT(A,T,S) is displayed.

DisplayPDBfile(str):: String �> Void

Displays the protein backone described in a PDB (Protein Database) �le identi�ed by a string str such

as "�le.pdb" or "path/�le.pdb".

OrbitPolytope(G,v,L) :: PermGroup, List, List �> void

Inputs a permutation group or �nite matrix group G of degree d and a rational vector v 2 Rd . In

both cases there is a natural action of G on Rd . Let P(G;v) be the convex hull of the orbit of v

under the action of G. The function also inputs a sublist L of the following list of strings: ["dimen-

sion","vertex\_degree", "visual\_graph", "schlegel", "visual"]

Depending on L, the function displays the following information:\\ the dimension of the orbit poly-

tope P(G;v);\\ the degree of a vertex in the graph of P(G;v);\\ a visualization of the graph of

P(G;v);\\ a visualization of the Schlegel diagram of P(G;v);\\ a visualization of the polytope P(G;v)
if d = 2;3.
The function requires Polymake software.

ScatterPlot(L):: List �> Void

Inputs a list L = [[x1;y1]; : : : ; [xn;yn]] of pairs of rational numbers and displays a scatter plot of the

points in the x-y-plane.



Chapter 2

ZG-Resolutions and Group Cohomology

Resolutions

16



17

EquivariantChainMap(R,S,f):: FreeResolution, FreeResolution,

GroupHomomorphisms �> EquiChainMap

Inputs a freeZG-resolution R ofZ, a freeZQ-resolution S ofZ, and a group homomorphism f :G!Q.

It returns the induced f -equivariant chain map F :R! S.

FreeGResolution(P,n):: NonFreeResolution, Int �> FreeResolution

Inputs a non-free $\mathbb ZG$-resolution $P_\ast$ and a positive integer n. It attempts to return n

terms of a free ZG-resolution of Z. However, the stabilizer groups in the non-free resolution must be

such that HAP can construct free resolutions with contracting homotopies for them.

The contracting homotopy on the resolution was implemented by Bui Anh Tuan.

ResolutionBieberbachGroup(G):: MatrixGroup �> FreeResolution

ResolutionBieberbachGroup(G,v):: MatrixGroup, List �> FreeResolution

Inputs a torsion free crystallographic group G, also known as a Bieberbach group, represented using

AFFINECRYSTGROUPONRIGHT as in the GAP package Cryst. It also optionally inputs a choice

of vector v in the Euclidean space Rn on which G acts freely. The function returns n+ 1 terms of

the free ZG-resolution of Z arising as the cellular chain complex of the tessellation of Rn by the

Dirichlet-Voronoi fundamental domain determined by v. No contracting homotopy is returned with

the resolution.

This function is part of the HAPcryst package written by Marc Roeder and thus requires the HAPcryst

package to be loaded.

The function requires the use of Polymake software.

ResolutionCubicalCrustGroup(G,k):: MatrixGroup, Int �> FreeResolution

Inputs a crystallographic group G represented using AFFINECRYSTGROUPONRIGHT as in the GAP

packageCryst together with an integer k� 1. The function tries to �nd a cubical fundamental domain

in the Euclidean space Rn on which G acts. If it succeeds it uses this domain to return k+1 terms of

a free ZG-resolution of Z.

This function was written by Bui Anh Tuan.

ResolutionFiniteGroup(G,k):: Group, Int �> FreeResolution

Inputs a �nite group G and an integer k � 1. It returns k+1 terms of a free ZG-resolution of Z.

ResolutionNilpotentGroup(G,k):: Group, Int �> FreeResolution

Inputs a nilpotent group G (which can be in�nite) and an integer k� 1. It returns k+1 terms of a free

ZG-resolution of Z.

ResolutionNormalSeries(L,k):: List, Int �> FreeResolution

Inputs a a list L consisting of a chain $1=N1 �N2 � �� � �Nn =G of normal subgroups ofG, together

with an integer k � 1. It returns k+1 terms of a free ZG-resolution of Z.

ResolutionPrimePowerGroup(G,k):: Group, Int �> FreeResolution

Inputs a �nite p-group G and an integer k � 1. It returns k+1 terms of a minimal free FG-resolution

of the �eld F of p elements.

ResolutionSL2Z(m,k):: Int, Int �> FreeResolution Inputs positive integers m;n and re-

turns n terms of a free ZG-resolution of Z for the group G= SL2(Z[1=m]).
This function is joint work with Bui Anh Tuan.

ResolutionSmallGroup(G,k):: Group, Int �> FreeResolution

ResolutionSmallGroup(G,k):: FpGroup, Int �> FreeResolution

Inputs a small group G and an integer k � 1. It returns k+1 terms of a free ZG-resolution of Z.

If G is a �nitely presented group then up to degree $2$ the resolution coincides with cellular chain

complex of the universal cover of the 2 complex associated to the presentation of G. Thus the bound-

aries of the generators in degree 3 provide a generating set for the module of identities of the presen-

tation.

This function was written by Irina Kholodna.

ResolutionSubgroup(R,H):: FreeResolution, Group �> FreeResolution

Inputs a free ZG-resolution of Z and a �nite index subgroup H �G. It returns a free ZH-resolution of

Z.



18

Algebras �! (Co)chain Complexes

LeibnizComplex(g,n):: LeibnizAlgebra, Int �> ChainComplex

Inputs a Leibniz algebra, or Lie algebra, g over a ring K together with an integer n� 0. It returns the

�rst n terms of the Leibniz chain complex overK. The complex was implemented by Pablo Fernandez

Ascariz.

Resolutions �! (Co)chain Complexes

HomToIntegers(C):: ChainComplex �> CochainComplex HomToIntegers(R)::

FreeResolution �> CochainComplex HomToIntegers(F):: EquiChainMap �>

CochainMap

Inputs a chain complexC of free abelian groups and returns the cochain complex HomZ(C;Z).
Inputs a free ZG-resolution R in characteristic 0 and returns the cochain complex HomZG(R;Z).
Inputs an equivariant chain map F :R ! S of resolutions and returns the induced cochain map

HomZG(S;Z)�! HomZG(R;Z).

HomToIntegralModule(R,A):: FreeResolution, GroupHomomorphism �>

CochainComplex

Inputs a free ZG-resolution R in characteristic 0 and a group homomorphism A:G! GLn(Z). The
homomorphism A can be viewed as the ZG-module with underlying abelian group Zn on which G

acts via the homomorphism A. It returns the cochain complex HomZG(R;A).

TensorWithIntegers(R):: FreeResolution �> ChainComplex

TensorWithIntegers(F):: EquiChainMap �> ChainMap

Inputs a free ZG-resolution R of characteristic 0 and returns the chain complex R
ZGZ.
Inputs an equivariant chain map F :R! S in characteristic 0 and returns the induced chain map F
ZG
Z:R
ZGZ�! S
ZGZ.

TensorWithIntegersModP(C,p):: ChainComplex, Int �> ChainComplex

TensorWithIntegersModP(R,p):: FreeResolution, Int �> ChainComplex

TensorWithIntegersModP(F,p):: EquiChainMap, Int �> ChainMap

Inputs a chain complex C of characteristic 0 and a prime integer p. It returns the chain complex

C
ZZp of characteristic p.

Inputs a free ZG-resolution R of characteristic 0 and a prime integer p. It returns the chain complex

R
ZGZp of characteristic p.

Inputs an equivariant chain map F :R! S in characteristic 0 a prime integer p. It returns the induced

chain map F
ZGZp:R
ZGZp �! S
ZGZp.

Cohomology rings



19

AreIsomorphicGradedAlgebras(A,B):: PresentedGradedAlgebra,

PresentedGradedAlgebra �> Boolean

Inputs two freely presented graded algebras A = F[x1; : : : ;xm]=I and B = F[y1; : : : ;yn]=J and returns

TRUE if they are isomorphic, and FALSE otherwise. This function was implemented by Paul Smith.

HAPDerivation(R,I,L):: PolynomialRing, List, List �> Derivation

Inputs a polynomial ring R = F[x1; : : : ;xm] over a �eld F together with a list I of generators for an

ideal in R and a list L = [y1; : : : ;ym] � R. It returns the derivation d:E ! E for E = R=I de�ned
by d(xi) = yi. This function was written by Paul Smith. It uses the Singular commutative algebra

package.

HilbertPoincareSeries::PresentedGradedAlgebra �> RationalFunction Inputs a presen-

tation E = F[x1; : : : ;xm]=I of a graded algebra and returns its Hilbert-Poincar\'e series. This function
was written by Paul Smith and uses the Singular commutative algebra package. It is essentially a

wrapper for Singular's Hilbert-Poincare series.

HomologyOfDerivation(d):: Derivation �> List

Inputs a derivation d:E ! E on a quotient E = R=I of a polynomial ring R = F[x1; : : : ;xm] over a
�eld F. It returns a list [S;J;h] where S is a polynomial ring and J is a list of generators for an

ideal in $S$ such that there is an isomorphism a:S=J ! kerd=im d. This isomorphism lifts to the

ring homomorphism h:S! kerd. This function was written by Paul Smith. It uses the Singular

commutative algebra package.

IntegralCohomologyGenerators(R,n):: FreeResolution, Int �> List

Inputs at least n+ 1 terms of a free ZG-resolution of Z and the integer n � 1. It returns a minimal

list of cohomology classes in Hn(G;Z) which, together with all cup products of lower degree classes,
generate the group Hn(G;Z) . (Let ai be the i-th canonical generator of the d-generator abelian group
Hn(G;Z). The cohomology class n1a1+ :::+ndad is represented by the integer vector u= (n1; :::;nd).
)

LHSSpectralSequence(G,N,r):: Group, Int, Int �> List

Inputs a �nite 2-group G, and normal subgroup N and an integer r. It returns a list of length r whose

i-th term is a presentation for the i-th page of the Lyndon-Hochschild-Serre spectral sequence. This

function was written by Paul Smith. It uses the Singular commutative algebra package.

LHSSpectralSequenceLastSheet(G,N):: Group, Int �> List

Inputs a �nite 2-group G and normal subgroup N. It returns presentation for the E¥ page of the

Lyndon-Hochschild-Serre spectral sequence. This function was written by Paul Smith. It uses the

Singular commutative algebra package.

ModPCohomologyGenerators(G,n):: Group, Int �> List ModPCohomologyGenerators(R)::

FreeResolution �> List

Inputs either a p-group G and positive integer n, or else n+ 1 terms of a minimal FG-resolution R

of the �eld F of p elements. It returns a pair whose �rst entry is a minimal list of homogeneous

generators for the cohomology ring A= H�(G;F) modulo all elements in degree greater than n. The

second entry of the pair is a function DEG which, when applied to a minimal generator, yields its

degree. WARNING: the following rule must be applied when multiplying generators xi together.

Only products of the form x1 � (x2 � (x3 � (x4 � :::))) with deg(xi) � deg(xi+1) should be computed

(since the xi belong to a structure constant algebra with only a partially de�ned structure constants

table).

ModPCohomologyRing(R):: FreeResolution �> SCAlgebra ModPCohomologyRing(R,level)::

FreeResolution, String �> SCAlgebra ModPCohomologyRing(G,n):: Group, Int �>

SCAlgebra ModPCohomologyRing(G,n,level):: Group, Int, String �> SCAlgebra

Inputs either a p-group G and positive integer n, or else n terms of a minimal FG-resolution R of the

�eld F of p elements. It returns the cohomology ring A = H�(G;F) modulo all elements in degree

greater than n. The ring is returned as a structure constant algebra A. The ring A is graded. It has a

component A!.DEGREE(X) which is a function returning the degree of each (homogeneous) element x

in GENERATORSOFALGEBRA(A). An optional input variable �level� can be set to one of the strings

�medium� or �high�. These settings determine parameters in the algorithm. The default setting is

�medium�. When �level� is set to �high� the ring A is returned with a component A!.NICEBASIS.

This component is a pair [Coe f f ;Bas]. Here Bas is a list of integer lists; a "nice" basis for the vector
space A can be constructed using the command LIST(BAS,X->PRODUCT(LIST(X,I->BASIS(A)[I])).

The coef�cients of the canonical basis element BASIS(A)[I] are stored as COEFF[I]. If the ring A is

computed using the setting �level�= �medium� then the component A!.NICEBASIS can be added to

A using the command A:=MODPCOHOMOLOGYRING\_PART\_2(A).

Mod2CohomologyRingPresentation(G):: Group �> PresentedGradedAlgebra

Mod2CohomologyRingPresentation(G,n):: Group �> PresentedGradedAlgebra

Mod2CohomologyRingPresentation(A):: Group �> PresentedGradedAlgebra

Mod2CohomologyRingPresentation(R):: Group �> PresentedGradedAlgebra

When applied to a �nite 2-group G this function returns a presentation for the mod-2 cohomology

ring H�(G;F). The Lyndon-Hochschild-Serre spectral sequence is used to prove that the presentation
is complete. When the function is applied to a 2-group G and positive integer n the function �rst

constructs n+1 terms of a free FG-resolution R, then constructs the �nite-dimensional graded algebra

A = H(��n)(G;F), and �nally uses A to approximate a presentation for H�(G;F). For "suf�ciently

large" n the approximation will be a correct presentation for H�(G;F). Alternatively, the function

can be applied directly to either the resolution R or graded algebra A. This function was written by

Paul Smith. It uses the Singular commutative algebra package to handle the Lyndon-Hochschild-Serre

spectral sequence.



20

Group Invariants



21

GroupCohomology(G,k):: Group, Int �> List GroupCohomology(G,k,p):: Group,

Int, Int �> List

Inputs a group G and integer k� 0. The group G should either be �nite or else lie in one of a range of

classes of in�nite groups (such as nilpotent, crystallographic, Artin etc.). The function returns the list

of abelian invariants of Hk(G;Z).
If a prime p is given as an optional third input variable then the function returns the list of abelian

invariants of Hk(G;Zp). In this case each abelian invariant will be equal to p and the length of the list

will be the dimension of the vector space Hk(G;Zp).

GroupHomology(G,k):: Group, Int �> List GroupHomology(G,k,p):: Group, Int,

Int �> List

Inputs a group G and integer k� 0. The group G should either be �nite or else lie in one of a range of

classes of in�nite groups (such as nilpotent, crystallographic, Artin etc.). The function returns the list

of abelian invariants of Hk(G;Z).
If a prime p is given as an optional third input variable then the function returns the list of abelian

invariants of Hk(G;Zp). In this case each abelian invariant will be equal to p and the length of the list

will be the dimension of the vector space Hk(G;Zp).

PrimePartDerivedFunctor(G,R,A,k):: Group, FreeResolution, Function, Int �>

List

Inputs a group G, an integer k � 0, at least k+1 terms of a free ZP-resolution of Z for P a Sylow p-

subgroup ofG. A function such as A=TENSORWITHINTEGERS is also entered. The abelian invariants

of the p-primary part Hk(G;A)(p) of the homology with coef�cients in A is returned.

PoincareSeries(G,n):: Group, Int �> RationalFunction PoincareSeries(G)::

Group �> RationalFunction PoincareSeries(R,n):: Group, Int �>

RationalFunction PoincareSeries(L,n):: Group, Int �> RationalFunction

Inputs a �nite p-group G and a positive integer n. It returns a quotient of polynomials f (x) =
P(x)=Q(x) whose expansion has coef�cient of xk equal to the rank of the vector space Hk(G;Fp)
for all k in the range 1� k� n. (The second input variable can be omitted, in which case the function

tries to choose a `reasonable' value for n. For 2-groups the function POINCARESERIESLHS(G) can

be used to produce an f (x) that is correct in all degrees.) In place of the group G the function can also

input (at least n terms of) a minimal mod-p resolution R for G. Alternatively, the �rst input variable

can be a list L of integers. In this case the coef�cient of xk in f (x) is equal to the (k+1)st term in the

list.

PoincareSeries(G,n):: Group, Int �> RationalFunction PoincareSeries(G)::

Group �> RationalFunction PoincareSeries(R,n):: Group, Int �>

RationalFunction PoincareSeries(L,n):: Group, Int �> RationalFunction

Inputs a �nite p-group G and a positive integer n. It returns a quotient of polynomials f (x) =
P(x)=Q(x) whose expansion has coef�cient of xk equal to the rank of the vector space Hk(G;Fp)
for all k in the range 1� k� n. (The second input variable can be omitted, in which case the function

tries to choose a `reasonable' value for n. For 2-groups the function POINCARESERIESLHS(G) can

be used to produce an f (x) that is correct in all degrees.) In place of the group G the function can also

input (at least n terms of) a minimal mod-p resolution R for G. Alternatively, the �rst input variable

can be a list L of integers. In this case the coef�cient of xk in f (x) is equal to the (k+1)st term in the

list.

RankHomologyPGroup(G,P,n):: Group, RationalFunction, Int �> Int

Inputs a p-group G, a rational function P representing the Poincar\'e series of the mod-p cohomology

of G and a positive integer n. It returns the minimum number of generators for the �nite abelian p-

group Hn(G;Z).



22

Fp-modules

GroupAlgebraAsFpGModule:: Group �> FpGModule

Inputs a �nite p-group G and returns the modular group algebra FpG in the form of an FpG-module.

Radical:: FpGModule �> FpGModule

Inputs an FpG-module and returns its radical.

RadicalSeries(M):: FpGModule �> List RadicalSeries(R):: Resolution �>

FilteredSparseChainComplex

Inputs an FpG-module M and returns its radical series as a list of FpG-modules.

Inputs a free FpG-resolution R and returns the �ltered chain complex � � �Rad2(FpG)R �
Rad1(FpG)R� R.



Chapter 3

Homological Group Theory

Cocycles

CcGroup(N,f):: GOuterGroup, StandardCocycle �> CcGroup

Inputs a G-outer group N with nonabelian cocycle describing some extension N� E � G together

with standard 2-cocycle f :G�G! A where A= Z(N). It returns the extension group determined by

the cocycle f . The group is returned as a cocyclic group.

This function is part of the HAPcocyclic package of functions implemented by Robert F. Morse.

CocycleCondition(R,n):: FreeRes, Int �> IntMat

Inputs a free ZG-resolution R of Z and an integer n � 1. It returns an integer matrix M with the

following property. Let d be the ZG-rank of Rn. An integer vector f = [ f1; :::; fd ] then represents a

ZG-homomorphism Rn! Zq which sends the ith generator of Rn to the integer fi in the trivial ZG-

module Zq = Z=qZ (where possibly q= 0). The homomorphism f is a cocycle if and only ifMt f = 0

mod q.

StandardCocycle(R,f,n):: FreeRes, List, Int �> Function

StandardCocycle(R,f,n,q):: FreeRes, List, Int �> Function

Inputs a free ZG-resolution R (with contracting homotopy), a positive integer n and an integer vector

f representing an n-cocycle Rn! Zq = Z=qZ where G acts trivially on Zq. It is assumed q= 0 unless

a value for q is entered. The command returns a function F(g1; :::;gn) which is the standard cocycle

Gn! Zq corresponding to f . At present the command is implemented only for n= 2 or 3.

G-Outer Groups

23



24

ActedGroup(M):: GOuterGroup �> Group

Inputs a G-outer group M corresponding to a homomorphism a:G! Out(N) and returns the group

$N$.

ActingGroup(M):: GOuterGroup �> Group

Inputs a G-outer group M corresponding to a homomorphism a:G! Out(N) and returns the group

$G$.

Centre(M):: GOuterGroup �> GOuterGroup

Inputs a G-outer group M and returns its group-theoretic centre as a G-outer group.

GOuterGroup(E,N):: Group, Subgroup �> GOuterGroup GOuterGroup():: Group,

Subgroup �> GOuterGroup

Inputs a group E and normal subgroup N. It returns N as a G-outer group where G = E=N. A

nonabelian cocycle f :G�G! N is attached as a component of the G-Outer group.

The function can be used without an argument. In this case an empty outer group C is returned. The

components must be set using SETACTINGGROUP(C,G), SETACTEDGROUP(C,N) and SETOUTER-

ACTION(C,ALPHA).

G-cocomplexes

CohomologyModule(C,n):: GCocomplex, Int �> GOuterGroup

Inputs a G-cocomplex C together with a non-negative integer n. It returns the cohomology Hn(C)
as a G-outer group. If C was constructed from a ZG-resolution R by homing to an abelian

G-outer group A then, for each x in H := CohomologyModule(C;n), there is a function f :=
H!:representativeCocycle(x) which is a standard n-cocycle corresponding to the cohomology class x.

(At present this is implemented only for n= 1;2;3.)

HomToGModule(R,A):: FreeRes, GOuterGroup �> GCocomplex

Inputs a ZG-resolution R and an abelian G-outer group A. It returns the G-cocomplex obtained by

applying HomZG(_;A). (At present this function does not handle equivariant chain maps.)



Chapter 4

Parallel Computation

Six Core Functions

ChildCreate():: Void �> Child process ChildProcess("computer.address.ie")::

String �> Child process ChildProcess(["-m", "100000M", "-T"]):: List �> Child

process ChildProcess("computer.ac.wales", ["-m", "100000M", "-T"]):: String,

List �> Child process

Starts a GAP session as a child process and returns a stream to the child process. If no argument is

given then the child process is created on the local machine; otherwise the argument should be: (1)

the address of a remote computer for which ssh has been con�gured to require no password from the

user; (2) or a list of GAP command line options; (3) or the address of a computer followed by a list of

command line options.

ChildCreate():: Void �> Child process ChildProcess("computer.address.ie")::

String �> Child process ChildProcess(["-m", "100000M", "-T"]):: List �> Child

process ChildProcess("computer.ac.wales", ["-m", "100000M", "-T"]):: String,

List �> Child process

Starts a GAP session as a child process and returns a stream to the child process. If no argument is

given then the child process is created on the local machine; otherwise the argument should be: (1)

the address of a remote computer for which ssh has been con�gured to require no password from the

user; (2) or a list of GAP command line options; (3) or the address of a computer followed by a list of

command line options.

25



Chapter 5

Resolutions of the ground ring

26



27

TietzeReducedResolution(R)

Inputs a ZG-resolution R and returns a ZG-resolution S which is obtained from R by applying "Tietze

like operations" in each dimension. The hope is that S has fewer free generators than R.

ResolutionArithmeticGroup("PSL(4,Z)",n)

Inputs a positive integer n and one of the following strings:

"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" , "PSL(4,Z)" , "PSL(4,Z)_b" ,

"PSL(4,Z)_c" , "PSL(4,Z)_d" , "Sp(4,Z)"

or the string

"GL(2,O(-d))"

for d=1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43

or the string

"SL(2,O(-d))"

for d=2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43, 67, 163

or the string

"SL(2,O(-d))_a"

for d=2, 7, 11, 19.

It returns n terms of a free ZG-resolution for the group G described by the string. Here O(-d) denotes

the ring of integers of Q(sqrt(-d)) and subscripts _a, _b , _c , _d denote alternative non-free ZG-

resolutions for a given group G.

Data for the �rst list of resolutions was provided provided by MATHIEU DUTOUR. Data for

GL(2,O(-d)) was provided by SEBASTIAN SCHOENENNBECK. Data for SL(2,O(-d)) was provided

bySEBASTIAN SCHOENNENBECK for d <= 26 and by ALEXANDER RAHM for d>26 and for the

alternative complexes.

FreeGResolution(P,n) FreeGResolution(P,n,p)

Inputs a non-free ZG-resolution P with �nite stabilizer groups, and a positive integer n. It returns a

free ZG-resolution of length equal to the minimum of n and the length of P. If one requires only a

mod p resolution then the prime p can be entered as an optional third argument.

The free resolution is returned without a contracting homotopy.

ResolutionGTree(P,n)

Inputs a non-free ZG-resolution P of dimension 1 (i.e. a G-tree) with �nite stabilizer groups, and a

positive integer n. It returns a free ZG-resolution of length equal to n.

If P has a contracting homotopy then the free resolution is returned with a contracting homotopy.

This function was written by BUI ANH TUAN.

ResolutionSL2Z(p,n)

Inputs positive integers m;n and returns n terms of a ZG-resolution for the group G= SL(2;Z[1=m]) .
This function is joint work with BUI ANH TUAN.

ResolutionAbelianGroup(L,n) ResolutionAbelianGroup(G,n)

Inputs a list L := [m1;m2; :::;md ] of nonnegative integers, and a positive integer n. It returns n terms

of a ZG-resolution for the abelian group G= ZL[1]+ZL[2]+ � � �+ZL[d] .
If G is �nite then the �rst argument can also be the abelian group G itself.

ResolutionAlmostCrystalGroup(G,n)

Inputs a positive integer n and an almost crystallographic pcp group G. It returns n terms of a free

ZG-resolution. (A group is almost crystallographic if it is nilpotent-by-�nite and has no non-trivial

�nite normal subgroup. Such groups can be constructed using the ACLIB package.)

ResolutionAlmostCrystalQuotient(G,n,c) ResolutionAlmostCrystalQuotient(G,n,c,false)

An almost crystallographic group G is an extension of a �nite group P by a nilpotent group T , and

has no non-trivial �nite normal subgroup. We de�ne the relative lower central series by setting T1 = T

and Ti+1 = [Ti;G].
This function inputs an almost crystallographic group G together with positive integers n and c. It

returns n terms of a free ZQ-resolution R for the group Q= G=Tc .
In addition to the usual components, the resolution R has the component R:quotientHomomorphism
which gives the quotient homomorphism G�! Q.

If a fourth optional variable is set equal to "false" then the function omits to test whether Q is �nite

and a "more canonical" resolution is constructed.

ResolutionArtinGroup(D,n)

Inputs a Coxeter diagram D and an integer n > 1. It returns n terms of a free ZG-resolution R where

G is the Artin monoid associated to D. It is conjectured that R is also a free resolution for the Artin

group G. The conjecture is known to hold in certain cases.

G= R:group is in�nite and returned as a �nitely presented group. The list R:elts is a partial listing of
the elements of G which grows as R is used. Initially R:elts is empty and then, any time the boundary

of a resolution generator is called, R:elts is updated to include elements ofG involved in the boundary.

The contracting homotopy on R has not yet been implemented! Furthermore, the group G is currently

returned only as a �nitely presented group (without any method for solving the word problem).

ResolutionAsphericalPresentation(F,R,n)

Inputs a free group F , a set R of words in F which constitute an aspherical presentation for a

group G, and a positive integer n. (Asphericity can be a dif�cult property to verify. The function

IsAspherical(F;R) could be of help.)
The function returns n terms of a free ZG-resolution R which has generators in dimensions < 3 only.

No contracting homotopy on R will be returned.

ResolutionBieberbachGroup( G ) ResolutionBieberbachGroup( G, v )

Inputs a torsion free crystallographic group G, also known as a Bieberbach group, represented using

Af�neCrystGroupOnRight as in the GAP package Cryst. It also optionally inputs a choice of vector

v in the euclidean space Rn on which G acts freely. The function returns n+1 terms of the free ZG-

resolution of Z arising as the cellular chain complex of the tesselation of Rn by the Dirichlet-Voronoi

fundamental domain determined by v.

This function is part of the HAPcryst package written by MARC ROEDER and thus requires the

HAPcryst package to be loaded.

The function requires the use of Polymake software.

ResolutionCoxeterGroup(D,n)

Inputs a Coxeter diagram D and an integer n > 1. It returns k terms of a free ZG-resolution R where

G is the Coxeter group associated to D. Here k is the maximum of n and the number of vertices in the

Coxeter diagram. At present the implementation is only for �nite Coxeter groups and the group G is

returned as a permutation group. The contracting homotopy on R has not yet been implemented!

ResolutionDirectProduct(R,S) ResolutionDirectProduct(R,S,"internal")

Inputs a ZG-resolution R and ZH-resolution S. It outputs a ZD-resolution for the direct product

D= GxH.

If G and H lie in a common group K, and if they commute and have trivial intersection, then an

optional third variable "internal" can be used. This will force D to be the subgroup GH in K.

ResolutionExtension(g,R,S) ResolutionExtension(g,R, S,"TestFiniteness")

ResolutionExtension(g,R,S,"NoTest",GmapE)

Inputs a surjective group homomorphism g : E �! G with kernel N. It also inputs a ZN-resolution R

and a ZG-resolution S. It returns a ZE-resolution. The groups E and G can be in�nite.

If an optional fourth argument is set equal to "TestFiniteness" then the groups N and G will be tested

to see if they are �nite. If they are �nite then some speed saving routines will be invoked.

If the homomorphism g is such that the GAP function PreImagesElement(g;x) doesn't work, then a

function GmapE() should be included as a �fth input. For any x in G this function should return an

element GmapE(x) in E which gets mapped onto x by g.

The contracting homotopy on the ZE-resolution has not yet been fully implemented for in�nite

groups!

ResolutionFiniteDirectProduct(R,S) ResolutionFiniteDirectProduct(R,S,

"internal")

Inputs a ZG-resolution R and ZH-resolution S where G and H are �nite groups. It outputs a ZD-

resolution for the direct product D= G�H.

If G and H lie in a common group K, and if they commute and have trivial intersection, then an

optional third variable "internal" can be used. This will force D to be the subgroup GH in K.

ResolutionFiniteExtension(gensE,gensG,R,n) ResolutionFiniteExtension(gensE,gensG,R,n,true)

ResolutionFiniteExtension(gensE,gensG,R,n,false,S)

Inputs: a set gensE of generators for a �nite group E; a set gensG equal to the image of gensE in a

quotient group G of E; a ZG-resolution R up to dimension at least n; a positive integer n. It uses the

TwistedTensorProduct() construction to return n terms of a ZE-resolution.

The function has an optional fourth argument which, when set equal to "true", invokes tietze reduc-

tions in the construction of a resolution for the kernel of E �! G.

If a ZN-resolution S is available, where N is the kernel of the quotient E �! G, then this can be

incorporated into the computations using an optional �fth argument.

ResolutionFiniteGroup(gens,n) ResolutionFiniteGroup(gens,n,true)

ResolutionFiniteGroup(gens,n,false,p) ResolutionFiniteGroup(gens,n,false,0,"extendible")

Inputs a set gens of generators for a �nite group G and a positive integer n. It outputs n terms of a

ZG-resolution.

The function has an optional third argument which, when set equal to true, invokes tietze reductions

in the construction of the resolution.

The function has an optional fourth argument which, when set equal to a prime p, records the fact that

the resolution will only be used for mod p calculations. This could speed up subsequent constructions.

The function has an optional �fth argument which, when set equal to "extendible", returns a resolution

whose length can be increased using the command R!.extend() .

ResolutionFiniteSubgroup(R,K) ResolutionFiniteSubgroup(R,gensG,gensK)

Inputs a ZG-resolution for a �nite group G and a subgroup K of index jG : Kj. It returns a free

ZK-resolution whose ZK-rank is jG : Kj times the ZG-rank in each dimension.

Generating sets gensG, gensK for G and K can also be input to the function (though the method does

not depend on a choice of generators).

This ZK-resolution is not reduced. ie. it has more than one generator in dimension 0.

ResolutionGraphOfGroups(D,n) ResolutionGraphOfGroups(D,n,L)

Inputs a graph of groups D and a positive integer n. It returns n terms of a free ZG-resolution for the

fundamental group G of D.

An optional third argument L = [R1; : : : ;Rt ] can be used to list (in any order) free resolutions for

some/all of the vertex and edge groups in D. If for some vertex or edge group no resolution is listed

in L then the function ResolutionFiniteGroup() will be used to try to construct the resolution.
The ZG-resolution is usually not reduced. i.e. it has more than one generator in dimension 0.

The contracting homotopy on the ZG-resolution has not yet been implemented! Furthermore, the

group G is currently returned only as a �nitely presented group (without any method for solving the

word problem).

ResolutionNilpotentGroup(G,n) ResolutionNilpotentGroup(G,n,"TestFiniteness")

Inputs a nilpotent group G and positive integer n. It returns n terms of a free ZG-resolution. The

resolution is computed using a divide-and-conquer technique involving the lower central series.

This function can be applied to in�nite groups G. For �nite groups the function

ResolutionNormalSeries() probably gives better results.
If an optional third argument is set equal to "TestFiniteness" then the groups N and G will be tested to

see if they are �nite. If they are �nite then some speed saving routines will be invoked.

The contracting homotopy on the ZE-resolution has not yet been fully implemented for in�nite groups.

ResolutionNormalSeries(L,n) ResolutionNormalSeries(L,n,true)

ResolutionNormalSeries(L,n,false,p)

Inputs a positive integer n and a list L = [L1; :::;Lk] of normal subgroups Li of a �nite group G sat-

isfying G = L1 > L2 >: : : >Lk. Alternatively, L = [gensL1; :::gensLk] can be a list of generating sets

for the Li (and these particular generators will be used in the construction of resolutions). It returns a

ZG-resolution by repeatedly using the function ResolutionFiniteExtension().
The function has an optional third argument which, if set equal to true, invokes tietze reductions in

the construction of resolutions.

The function has an optional fourth argument which, if set equal to p > 0, produces a resolution which

is only valid for mod p calculations.

ResolutionPrimePowerGroup(P,n) ResolutionPrimePowerGroup(G,n,p)

Inputs a p-group P and integer n>0. It uses GAP's standard linear algebra functions over the �eld F

of p elements to construct a free FP-resolution for mod p calculations only. The resolution is minimal

- meaning that the number of generators of Rn equals the rank of Hn(P;F).
The function can also be used to obtain a free non-minimal FG-resolution of a small group G of

non-prime-power order. In this case the prime p must be entered as the third input variable. (In the

non-prime-power case the algorithm is naive and not very good.)

ResolutionSmallFpGroup(G,n) ResolutionSmallFpGroup(G,n,p)

Inputs a small �nitely presented group G and an integer n>0. It returns n terms of a ZG-resolution

which, in dimensions 1 and 2, corresponds to the given presentation for G. The method returns no

contracting homotopy for the resolution.

The function has an optional fourth argument which, when set equal to a prime p, records the fact that

the resolution will only be used for mod p calculations. This could speed up subsequent constructions.

This function was written by Irina Kholodna.

ResolutionSubgroup(R,K)

Inputs a ZG-resolution for an (in�nite) group G and a subgroup K of �nite index jG : Kj. It returns a
free ZK-resolution whose ZK-rank is jG : Kj times the ZG-rank in each dimension.

If G is �nite then the function ResolutionFiniteSubgroup(R;G;K) will probably work bet-

ter. In particular, resolutions from this function probably won't work with the function

EquivariantChainMap(). This ZK-resolution is not reduced. i.e. it has more than one generator

in dimension 0.

ResolutionSubnormalSeries(L,n)

Inputs a positive integer n and a list L= [L1; : : : ;Lk] of subgroups Li of a �nite group G= L1 such that

L1 > L2 : : : > Lk is a subnormal series in G (meaning that each Li+1 must be normal in Li). It returns a

ZG-resolution by repeatedly using the function ResolutionFiniteExtension().
If L is a series of normal subgroups inG then the function ResolutionNormalSeries(L;n)will possibly
work more ef�ciently.

TwistedTensorProduct(R,S,EhomG,GmapE,NhomE,NEhomN,EltsE,Mult,InvE)

Inputs a ZG-resolution R, a ZN-resolution S, and other data relating to a short exact sequence 1 �!
N �! E �! G �! 1. It uses a perturbation technique of CTC Wall to construct a ZE-resolution F .

Both G and N could be in�nite. The "length" of F is equal to the minimum of the "length"s of R and

S. The resolution R needs no contracting homotopy if no such homotopy is requied for F .

ConjugatedResolution(R,x)

Inputs a ZG-resoluton R and an element x from some group containing G. It returns a ZGx-resolution

S where the group Gx is the conjugate of G by x. (The component S!:elts will be a pseudolist rather
than a list.)

RecalculateIncidenceNumbers(R)

Inputs a ZG-resoluton R which arises as the cellular chain complex of a regular CW-complex. (Thus

the boundary of any cell is a list of distinct cells.) It recalculates the incidence numbers for R. If it is

applied to a resolution that is not regular then a wrong answer may be returned.

../www/SideLinks/About/aboutArtinGroups.html


Chapter 6

Resolutions of modules

ResolutionFpGModule(M,n)

Inputs an FpG-moduleM and a positive integer n. It returns n terms of a minimal free FG-resolution

of the module M (where G is a �nite group and F the �eld of p elements).

28



Chapter 7

Induced equivariant chain maps

EquivariantChainMap(R,S,f)

Inputs a ZG-resolution R, a ZG0-resolution S, and a group homomorphism f : G �! G0. It outputs a

component object M with the following components.

� M!:source is the resolution R.

� M!:target is the resolution S.

� M!:mapping(w;n) is a function which gives the image in Sn, under a chain map induced by f ,

of a word w in Rn. (Here Rn and Sn are the n-th modules in the resolutions R and S.)

� F!:properties is a list of pairs such as ["type", "equivariantChainMap"].

The resolution S must have a contracting homotopy.

29



Chapter 8

Functors

30



31

ExtendScalars(R,G,EltsG)

Inputs a ZH-resolution R, a group G containing H as a subgroup, and a list EltsG of elements of G.

It returns the free ZG-resolution (R
ZH ZG). The returned resolution S has S!.elts:=EltsG. This is a

resolution of the ZG-module (Z
ZH ZG). (Here 
ZH means tensor over ZH.)

HomToIntegers(X)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R �! S). It returns the
cochain complex or cochain map obtained by applying HomZG(

;
Z) where Z is the trivial module of

integers (characteristic 0).

HomToIntegersModP(R)

Inputs a ZG-resolution R and returns the cochain complex obtained by applying HomZG(
;
Zp) where

Zp is the trivial module of integers mod p. (At present this functor does not handle equivariant chain

maps.)

HomToIntegralModule(R,f)

Inputs a ZG-resolution R and a group homomorphism f :G�!GLn(Z) to the group of n�n invertible
integer matrices. Here Z must have characteristic 0. It returns the cochain complex obtained by

applying HomZG(
;
A) where A is the ZG-module Zn with G action via f . (At present this function

does not handle equivariant chain maps.)

TensorWithIntegralModule(R,f)

Inputs a ZG-resolution R and a group homomorphism f :G�!GLn(Z) to the group of n�n invertible
integer matrices. Here Z must have characteristic 0. It returns the chain complex obtained by tensoring

over ZG with the ZG-module A = Zn with G action via f . (At present this function does not handle

equivariant chain maps.)

HomToGModule(R,A)

Inputs a ZG-resolution R and an abelian G-outer group A. It returns the G-cocomplex obtained by

applying HomZG(
;
A). (At present this function does not handle equivariant chain maps.)

InduceScalars(R,hom)

Inputs a ZQ-resolution R and a surjective group homomorphism hom : G! Q. It returns the unduced

non-free ZG-resolution.

LowerCentralSeriesLieAlgebra(G) LowerCentralSeriesLieAlgebra(f)

Inputs a pcp group G. If each quotient Gc=Gc+1 of the lower central series is free abelian or p-

elementary abelian (for �xed prime p) then a Lie algebra L(G) is returned. The abelian group under-
lying L(G) is the direct sum of the quotients Gc=Gc+1 . The Lie bracket on L(G) is induced by the

commutator in G. (Here G1 = G, Gc+1 = [Gc;G] .)
The function can also be applied to a group homomorphism f : G �! G0 . In this case the induced

homomorphism of Lie algebras L( f ) : L(G)�! L(G0) is returned.
If the quotients of the lower central series are not all free or p-elementary abelian then the function

returns fail.

This function was written by Pablo Fernandez Ascariz

TensorWithIntegers(X)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R �! S). It returns the
chain complex or chain map obtained by tensoring with the trivial module of integers (characteristic

0).

FilteredTensorWithIntegers(R)

Inputs a ZG-resolution R for which "�lteredDimension" lies in NamesOfComponents(R). (Such a

resolution can be produced using TwisterTensorProduct(), ResolutionNormalSubgroups() or Free-

GResolution().) It returns the �ltered chain complex obtained by tensoring with the trivial module of

integers (characteristic 0).

TensorWithTwistedIntegers(X,rho)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R �! S). It also inputs

a function rho:G! Z where the action of g 2 G on Z is such that g:1 = rho(g). It returns the chain
complex or chain map obtained by tensoring with the (twisted) module of integers (characteristic 0).

TensorWithIntegersModP(X,p)

Inputs either a ZG-resolution X = R, or a characteristics 0 chain complex, or an equivariant chain map

X = (F : R �! S), or a chain map between characteristic 0 chain complexes, together with a prime

p. It returns the chain complex or chain map obtained by tensoring with the trivial module of integers

modulo p.

TensorWithTwistedIntegersModP(X,p,rho)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R�! S), and a prime p. It

also inputs a function rho:G! Z where the action of g 2 G on Z is such that g:1= rho(g). It returns
the chain complex or chain map obtained by tensoring with the trivial module of integers modulo p.

TensorWithRationals(R)

Inputs a ZG-resolution R and returns the chain complex obtained by tensoring with the trivial module

of rational numbers.



Chapter 9

Chain complexes

32



33

ChainComplex(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns the (often

very large) cellular chain complex of T .

ChainComplexOfPair(T,S)

Inputs a pure cubical complex or cubical complex T and contractible subcomplex S. It returns the

quotient C(T )=C(S) of cellular chain complexes.

ChevalleyEilenbergComplex(X,n)

Inputs either a Lie algebra X = A (over the ring of integers Z or over a �eld K) or a homomorphism of

Lie algebras X = ( f : A�! B), together with a positive integer n. It returns either the �rst n terms of

the Chevalley-Eilenberg chain complex C(A), or the induced map of Chevalley-Eilenberg complexes

C( f ) :C(A)�!C(B).
(The homology of the Chevalley-Eilenberg complex C(A) is by de�nition the homology of the Lie

algebra A with trivial coef�cients in Z or K).

This function was written by PABLO FERNANDEZ ASCARIZ

LeibnizComplex(X,n)

Inputs either a Lie or Leibniz algebra X = A (over the ring of integers Z or over a �eld K) or a

homomorphism of Lie or Leibniz algebras X = ( f : A �! B), together with a positive integer n. It

returns either the �rst n terms of the Leibniz chain complex C(A), or the induced map of Leibniz

complexes C( f ) :C(A)�!C(B).
(The Leibniz complex C(A) was de�ned by J.-L.Loday. Its homology is by de�nition the Leibniz

homology of the algebra A).

This function was written by PABLO FERNANDEZ ASCARIZ

SuspendedChainComplex(C)

Inputs a chain complex C and returns the chain complex S de�ned by applying the degree shift Sn =
Cn�1 to chain groups and boundary homomorphisms.

ReducedSuspendedChainComplex(C)

Inputs a chain complex C and returns the chain complex S de�ned by applying the degree shift Sn =
Cn�1 to chain groups and boundary homomorphisms for all n > 0. The chain complex S has trivial

homology in degree 0 and S0 = Z.

CoreducedChainComplex(C) CoreducedChainComplex(C,2)

Inputs a chain complexC and returns a quasi-isomorphic chain complexD. In many cases the complex

D should be smaller than C. If an optional second input argument is set equal to 2 then an alternative

method is used for reducing the size of the chain complex.

TensorProductOfChainComplexes(C,D)

Inputs two chain complexes C and D of the same characteristic and returns their tensor product as a

chain complex.

This function was written by LE VAN LUYEN.

LefschetzNumber(F)

Inputs a chain map F :C!C with common source and target. It returns the Lefschetz number of the

map (that is, the alternating sum of the traces of the homology maps in each degree).



Chapter 10

Sparse Chain complexes

34



35

SparseMat(A)

Inputs a matrix A and returns the matrix in sparse format.

TransposeOfSparseMat(A)

Inputs a sparse matrix A and returns its transpose sparse format.

ReverseSparseMat(A)

Inputs a sparse matrix A and modi�es it by reversing the order of the columns. This function modi�es

A and returns no value.

SparseRowMult(A,i,k)

Multiplies the i-th row of a sparse matrix A by k. The sparse matrix A is modi�ed but nothing is

returned.

SparseRowInterchange(A,i,k)

Interchanges the i-th and j-th rows of a sparse matrix A by k. The sparse matrix A is modi�ed but

nothing is returned.

SparseRowAdd(A,i,j,k)

Adds k times the j-th row to the i-th row of a sparse matrix A. The sparse matrix A is modi�ed but

nothing is returned.

SparseSemiEchelon(A)

Converts a sparse matrix A to semi-echelon form (which means echelon form up to a permutation of

rows). The sparse matrix A is modi�ed but nothing is returned.

RankMatDestructive(A)

Returns the rank of a sparse matrix A. The sparse matrix A is modi�ed during the calculation.

RankMat(A)

Returns the rank of a sparse matrix A.

SparseChainComplex(Y)

Inputs a regular CW-complex Y and returns a sparse chain complex which is chain homotopy equiva-

lent to the cellular chain complex of Y . The function uses discrete vector �elds to calculate a smallish

chain complex.

SparseChainComplexOfRegularCWComplex(Y)

Inputs a regular CW-complex Y and returns its cellular chain complex as a sparse chain complex. The

function SparseChainComplex(Y) will usually return a smaller chain complex.

SparseBoundaryMatrix(C,n)

Inputs a sparse chain complexC and integer n. Returns the n-th boundary matrix of the chain complex

in sparse format.

Bettinumbers(C,n)

Inputs a sparse chain complexC and integer n. Returns the n-th Netti number of the chain complex.



Chapter 11

Homology and cohomology groups

36



37

Cohomology(X,n)

Inputs either a cochain complex X = C (or G-cocomplex C) or a cochain map X = (C �! D) in
characteristic p together with a non-negative intereg n.

� If X =C and p= 0 then the torsion coef�cients of Hn(C) are retuned. If X =C and p is prime

then the dimension of Hn(C) are retuned.

� If X = (C �! D) then the induced homomorphism Hn(C) �! Hn(D) is returned as a homo-

morphism of �nitely presented groups.

A G-cocomplex C can also be input. The cohomology groups of such a complex may not be abelian.

WARNING: in this case Cohomology(C,n) returns the abelian invariants of the n-th cohomology group

ofC.

CohomologyModule(C,n)

Inputs a G-cocomplex C together with a non-negative integer n. It returns the cohomology Hn(C) as
a G-outer group. If C was constructed from a resolution R by homing to an abelian G-outer group A

then, for each x in H:=CohomologyModule(C,n), there is a function f:=H!.representativeCocycle(x)

which is a standard n-cocycle corresponding to the cohomology class x. (At present this works only

for n=1,2,3.)

CohomologyPrimePart(C,n,p)

Inputs a cochain complex C in characteristic 0, a positive integer n, and a prime p. It returns a list of

those torsion coef�cients ofHn(C) that are positive powers of p. The function uses the EDIM package

by Frank Luebeck.

GroupCohomology(X,n) GroupCohomology(X,n,p)

Inputs a positive integer n and either

� a �nite group X = G

� or a nilpotent Pcp-group X = G

� or a space group X = G

� or a list X = D representing a graph of groups

� or a pair X = [�Artin�;D] where D is a Coxeter diagram representing an in�nite Artin group G.

� or a pair X = [�Coxeter�;D] where D is a Coxeter diagram representing a �nite Coxeter group

G.

It returns the torsion coef�cients of the integral cohomology Hn(G;Z).
There is an optional third argument which, when set equal to a prime p, causes the function to return

the the mod p cohomology Hn(G;Zp) as a list of length equal to its rank.
This function is a composite of more basic functions, and makes choices for a number of parameters.

For a particular group you would almost certainly be better using the more basic functions and making

the choices yourself!

GroupHomology(X,n) GroupHomology(X,n,p)

Inputs a positive integer n and either

� a �nite group X = G

� or a nilpotent Pcp-group X = G

� or a space group X = G

� or a list X = D representing a graph of groups

� or a pair X = [�Artin�;D] where D is a Coxeter diagram representing an in�nite Artin group G.

� or a pair X = [�Coxeter�;D] where D is a Coxeter diagram representing a �nite Coxeter group

G.

It returns the torsion coef�cients of the integral homology Hn(G;Z).
There is an optional third argument which, when set equal to a prime p, causes the function to return

the mod p homology Hn(G;Zp) as a list of lenth equal to its rank.
This function is a composite of more basic functions, and makes choices for a number of parameters.

For a particular group you would almost certainly be better using the more basic functions and making

the choices yourself!

PersistentHomologyOfQuotientGroupSeries(S,n) PersistentHomologyOfQuotientGroupSeries(S,n,p,Resolution_Algorithm)

Inputs a positive integer n and a decreasing chain S = [S1;S2; :::;Sk] of normal subgroups in a �nite

p-group G= S1. It returns the bar code of the persistent mod p homology in degree n of the sequence

of quotient homomorphismsG!G=Sk!G=Sk�1! :::!G=S2. The bar code is returned as a matrix

containing the dimensions of the images of the induced homology maps.

If one sets p = 0 then the integral persitent homology bar code is returned. This is a matrix whose

entries are pairs of the lists: the list of abelian invariants of the images of the induced homology maps

and the cokernels of the induced homology maps. (The matrix probably does not uniquely determine

the induced homology maps.)

Non prime-power (and possibly in�nite) groups G can also be handled; in this case the prime must

be entered as a third argument, and the resolution algorithm (e.g. ResolutionNilpotentGroup) can

be entered as a fourth argument. (The default algorithm is ResolutionFiniteGroup, so this must be

changed for in�nite groups.)

PersistentCohomologyOfQuotientGroupSeries(S,n) PersistentCohomologyOfQuotientGroupSeries(S,n,p,Resolution_Algorithm)

Inputs a positive integer n and a decreasing chain S= [S1;S2; :::;Sk] of normal subgroups in a �nite p-

group G= S1. It returns the bar code of the persistent mod p cohomology in degree n of the sequence

of quotient homomorphismsG!G=Sk!G=Sk�1! :::!G=S2. The bar code is returned as a matrix

containing the dimensions of the images of the induced homology maps.

If one sets p= 0 then the integral persitent cohomology bar code is returned. This is a matrix whose

entries are pairs of the lists: the list of abelian invariants of the images of the induced cohomology

maps and the cokernels of the induced cohomology maps. (The matrix probably does not uniquely

determine the induced homology maps.)

Non prime-power (and possibly in�nite) groups G can also be handled; in this case the prime must

be entered as a third argument, and the resolution algorithm (e.g. ResolutionNilpotentGroup) can

be entered as a fourth argument. (The default algorithm is ResolutionFiniteGroup, so this must be

changed for in�nite groups.)

(The implementation is possibly a little less ef�cient than that of the corresponding persistent homol-

ogy function.)

UniversalBarCode("UpperCentralSeries",n,d) UniversalBarCode("UpperCentralSeries",n,d,k)

Inputs integers n;d that identify a prime power group G=SmallGroup(n,d), together with one of the

strings "UpperCentralSeries", LowerCentralSeries", "DerivedSeries", "UpperPCentralSeries", "Low-

erPCentralSeries". The function returns a matrix of rational functions; the coef�cients of xk in their

expansions yield the persistence matrix for the degree k homology with trivial mod p coef�cients

associated to the quotients of G by the terms of the given series.

If the additional integer argument k is supplied then the function returns the degree k homology per-

sistence matrix.

PersistentHomologyOfSubGroupSeries(S,n) PersistentHomologyOfSubGroupSeries(S,n,p,Resolution_Algorithm)

Inputs a positive integer n and a decreasing chain S = [S1;S2; :::;Sk] of subgroups in a �nite p-group

G = S1. It returns the bar code of the persistent mod p homology in degree n of the sequence of

inclusion homomorphisms Sk! Sk�1! :::! S1 = G. The bar code is returned as a binary matrix.

Non prime-power (and possibly in�nite) groups G can also be handled; in this case the prime must

be entered as a third argument, and the resolution algorithm (e.g. ResolutionNilpotentGroup) must be

entered as a fourth argument.

PersistentHomologyOfFilteredChainComplex(C,n,p)

Inputs a �ltered chain complexC (of characteristic 0 or p) together with a positive integer n and prime

p. It returns the bar code of the persistent mod p homology in degree n of the �ltered chain complex

C. (This function needs a more ef�cient implementation. Its �ne as it stands for investigation in

group homology, but not suf�ciently ef�cient for the homology of large complexes arising in applied

topology.)

PersistentHomologyOfCommutativeDiagramOfPGroups(D,n)

Inputs a commutative diagramD of �nite p-groups and a positive integer n. It returns a list containing,

for each homomorphism in the nerve of D, a triple [k; l;m] where k is the dimension of the source of

the induced mod p homology map in degree n, l is the dimension of the image, and m is the dimension

of the cokernel.

PersistentHomologyOfFilteredPureCubicalComplex(M,n)

Inputs a �ltered pure cubical complexM and a non-negative integer n. It returns the degree n persistent

homology of M with rational coef�cients.

PersistentHomologyOfPureCubicalComplex(L,n,p)

Inputs a positive integer n, a prime p and an increasing chain L = [L1;L2; :::;Lk] of subcomplexes in

a pure cubical complex Lk. It returns the bar code of the persistent mod p homology in degree n of

the sequence of inclusion maps. The bar code is returned as a matrix. (This function is extremely

inef�cient and it is better to use PersistentHomologyOFilteredfPureCubicalComplex.

ZZPersistentHomologyOfPureCubicalComplex(L,n,p)

Inputs a positive integer n, a prime p and any sequence L = [L1;L2; :::;Lk] of subcomplexes of some

pure cubical complex. It returns the bar code of the zig-zag persistent mod p homology in degree n of

the sequence of maps L1! L1[L2 L2! L2[L3 L4! ::: Lk. The bar code is returned as a

matrix.

RipsHomology(G,n) RipsHomology(G,n,p)

Inputs a graph G, a non-negative integer n (and optionally a prime number p). It returns the integral

homology (or mod p homology) in degree n of the Rips complex of G.

BarCode(P)

Inputs an integer persistence matrix P and returns the same information in the form of a binary matrix

(corresponding to the usual bar code).

BarCodeDisplay(P) BarCodeDisplay(P,"mozilla") BarCodeCompactDisplay(P)

BarCodeCompactDisplay(P,"mozilla")

Inputs an integer persistence matrix P, and an optional string specifying a viewer/browser. It displays

a picture of the bar code (using GraphViz software). The compact display is better for large bar codes.

Homology(X,n)

Inputs either a chain complex X =C or a chain map X = (C �! D).

� If X =C then the torsion coef�cients of Hn(C) are retuned.

� If X = (C �! D) then the induced homomorphism Hn(C) �! Hn(D) is returned as a homo-

morphism of �nitely presented groups.

A G-complex C can also be input. The homology groups of such a complex may not be abelian.

WARNING: in this case Homology(C,n) returns the abelian invariants of the n-th homology group of

C.

HomologyPb(C,n)

This is a back-up function which might work in some instances where Homology(C;n) fails. It is

most useful for chain complexes whose boundary homomorphisms are sparse.

It inputs a chain complex C in characteristic 0 and returns the torsion coef�cients of Hn(C) . There
is a small probability that an incorrect answer could be returned. The computation relies on proba-

bilistic Smith Normal Form algorithms implemented in the Simplicial Homology GAP package. This

package therefore needs to be loaded. The computation is stored as a component ofC so, when called

a second time for a givenC and n, the calculation is recalled without rerunning the algorithm.

The choice of probabalistic algorithm can be changed using the command

SetHomologyAlgorithm(HomologyAlgorithm[i]);

where i = 1,2,3 or 4. The upper limit for the probability of an incorrect answer can be set to any

rational number 0<e<= 1 using the following command.

SetUncertaintyTolerence(e);

See the Simplicial Homology package manual for further details.

HomologyVectorSpace(X,n)

Inputs either a chain complex X =C or a chain map X = (C �! D) in prime characteristic.

� If X =C then Hn(C) is retuned as a vector space.

� If X = (C �! D) then the induced homomorphism Hn(C) �! Hn(D) is returned as a homo-

morphism of vector spaces.

HomologyPrimePart(C,n,p)

Inputs a chain complex C in characteristic 0, a positive integer n, and a prime p. It returns a list of

those torsion coef�cients of Hn(C) that are positive powers of p. The function uses the EDIM GAP

package by Frank Luebeck.

LeibnizAlgebraHomology(A,n)

Inputs a Lie or Leibniz algebra X = A (over the ring of integers Z or over a �eld K), together with a

positive integer n. It returns the n-dimensional Leibniz homology of A.

LieAlgebraHomology(A,n)

Inputs a Lie algebra A (over the integers or a �eld) and a positive integer n. It returns the homology

Hn(A;k) where k denotes the ground ring.

PrimePartDerivedFunctor(G,R,F,n)

Inputs a �nite group G, a positive integer n, at least n+ 1 terms of a ZP-resolution for a Sylow sub-

group P<G and a "mathematically suitable" covariant additive functor F such as TensorWithIntegers

. It returns the abelian invariants of the p-component of the homology Hn(F(R)) .
Warning: All calculations are assumed to be in characteristic 0. The function should not be used if

the coef�cient module is over the �eld of p elements.

"Mathematically suitable" means that the Cartan-Eilenberg double coset formula must hold.

RankHomologyPGroup(G,n) RankHomologyPGroup(R,n) RankHomologyPGroup(G,n,"empirical")

Inputs a (smallish) p-groupG, or n terms of a minimal ZpG-resolution R of Zp , together with a positive

integer n. It returns the minimal number of generators of the integral homology group Hn(G;Z).
If an option third string argument "empirical" is included then an empirical algorithm will be used.

This is one which always seems to yield the right answer but which we can't prove yields the correct

answer.

RankPrimeHomology(G,n)

Inputs a (smallish) p-group G together with a positive integer n. It returns a function dim(k) which
gives the rank of the vector space Hk(G;Zp) for all 0 <= k <= n.



Chapter 12

Poincare series

38



39

EfficientNormalSubgroups(G) EfficientNormalSubgroups(G,k)

Inputs a prime-power group G and, optionally, a positive integer k. The default is k= 4. The function

returns a list of normal subgroups N in G such that the Poincare series for G equals the Poincare series

for the direct product (N� (G=N)) up to degree k.

ExpansionOfRationalFunction(f,n)

Inputs a positive integer n and a rational function f (x)= p(x)=q(x)where the degree of the polynomial

p(x) is less than that of q(x). It returns a list [a0;a1;a2;a3; : : : ;an] of the �rst n+1 coef�cients of the

in�nite expansion

f (x) = a0+a1x+a2x
2+a3x

3+ : : : .

PoincareSeries(G,n) PoincareSeries(R,n) PoincareSeries(L,n)

PoincareSeries(G)

Inputs a �nite p-group G and a positive integer n. It returns a quotient of polynomials f (x) =
P(x)=Q(x) whose coef�cient of xk equals the rank of the vector space Hk(G;Zp) for all k in the range
k = 1 to k = n. (The second input variable can be omitted, in which case the function tries to choose

a "reasonable" value for n. For 2-groups the function PoincareSeriesLHS(G) can be used to produce

an f (x) that is correct in all degrees.)
In place of the group G the function can also input (at least n terms of) a minimal mod p resolution R

for G.

Alternatively, the �rst input variable can be a list L of integers. In this case the coef�cient of xk in f (x)
is equal to the (k+1)st term in the list.

PoincareSeriesPrimePart(G,p,n)

Inputs a �nite group G, a prime p, and a positive integer n. It returns a quotient of polynomials

f (x) = P(x)=Q(x) whose coef�cient of xk equals the rank of the vector space Hk(G;Zp) for all k in
the range k = 1 to k = n.

The ef�ciency of this function needs to be improved.

PoincareSeriesLHS(G)

Inputs a �nite 2-group G and returns a quotient of polynomials f (x) = P(x)=Q(x) whose coef�cient
of xk equals the rank of the vector space Hk(G;Z2) for all k.
This function was written by PAUL SMITH. It use the Singular system for commutative algebra.

Prank(G)

Inputs a p-group G and returns the rank of the largest elementary abelian subgroup.



Chapter 13

Cohomology ring structure

40



41

IntegralCupProduct(R,u,v,p,q) IntegralCupProduct(R,u,v,p,q,P,Q,N)

(Various functions used to construct the cup product are also available.)

Inputs a ZG-resolution R, a vector u representing an element in H p(G;Z), a vector v representing

an element in Hq(G;Z) and the two integers p;q >0. It returns a vector w representing the cup

product u � v in H p+q(G;Z). This product is associative and u � v= (�1)pqv �u . It provides H�(G;Z)
with the structure of an anti-commutative graded ring. This function implements the cup product for

characteristic 0 only.

The resolution R needs a contracting homotopy.

To save the function from having to calculate the abelian groups Hn(G;Z) additional input variables
can be used in the form IntegralCupProduct(R;u;v; p;q;P;Q;N) , where

� P is the output of the commandCRCocyclesAndCoboundaries(R; p; true)

� Q is the output of the commandCRCocyclesAndCoboundaries(R;q; true)

� N is the output of the commandCRCocyclesAndCoboundaries(R; p+q; true) .

IntegralRingGenerators(R,n)

Inputs at least n+1 terms of a ZG-resolution and integer n> 0. It returns a minimal list of cohomology

classes in Hn(G;Z) which, together with all cup products of lower degree classes, generate the group
Hn(G;Z) .
(Let ai be the i-th canonical generator of the d-generator abelian group Hn(G;Z). The cohomology

class n1a1+ :::+ndad is represented by the integer vector u= (n1; :::;nd). )

ModPCohomologyGenerators(G,n) ModPCohomologyGenerators(R)

Inputs either a p-group G and positive integer n, or else n terms of a minimal ZpG-resolution R of

Zp. It returns a pair whose �rst entry is a minimal set of homogeneous generators for the cohomology

ring A = H�(G;Zp) modulo all elements in degree greater than n. The second entry of the pair is a

function deg which, when applied to a minimal generator, yields its degree.

WARNING: the following rule must be applied when multiplying generators xi together. Only prod-

ucts of the form x1 � (x2 � (x3 � (x4 � :::))) with deg(xi) � deg(xi+1) should be computed (since the xi
belong to a structure constant algebra with only a partially de�ned structure constants table).

ModPCohomologyRing(G,n) ModPCohomologyRing(G,n,level) ModPCohomologyRing(R)

ModPCohomologyRing(R,level)

Inputs either a p-group G and positive integer n, or else n terms of a minimal ZpG-resolution R of Zp.

It returns the cohomology ring A= H�(G;Zp) modulo all elements in degree greater than n.

The ring is returned as a structure constant algebra A.

The ring A is graded. It has a component A!:degree(x) which is a function returning the degree of

each (homogeneous) element x in GeneratorsO fAlgebra(A).
An optional input variable "level" can be set to one of the strings "medium" or "high". These settings

determine parameters in the algorithm. The default setting is "medium".

When "level" is set to "high" the ring A is returned with a component A!:niceBasis. This component

is a pair [Coe f f ;Bas]. Here Bas is a list of integer lists; a "nice" basis for the vector space A can be

constructed using the command List(Bas;x� > Product(List(x; i� > Basis(A)[i])). The coef�cients
of the canonical basis element Basis(A)[i] are stored as Coe f f [i].
If the ring A is computed using the setting "level"="medium" then the component A!:niceBasis can be
added to A using the command A :=ModPCohomologyRingpart2(A).

ModPRingGenerators(A)

Inputs a mod p cohomology ring A (created using the preceeding function). It returns a minimal

generating set for the ring A. Each generator is homogeneous.

Mod2CohomologyRingPresentation(G) Mod2CohomologyRingPresentation(G,n)

Mod2CohomologyRingPresentation(A) Mod2CohomologyRingPresentation(R)

When applied to a �nite 2-group G this function returns a presentation for the mod 2 cohomology ring

H�(G;Z2). The Lyndon-Hochschild-Serre spectral sequence is used to prove that the presentation is

correct.

When the function is applied to a 2-group G and positive integer n the function �rst constructs n

terms of a free Z2G-resolution R, then constructs the �nite-dimensional graded algebra A = H(� �
n)(G;Z2), and �nally uses A to approximate a presentation for H�(G;Z2). For "suf�ciently large" the
approximation will be a correct presentation for H�(G;Z2).
Alternatively, the function can be applied directly to either the resolution R or graded algebra A.

This function was written by PAUL SMITH. It uses the Singular commutative algebra package to

handle the Lyndon-Hochschild-Serre spectral sequence.

 CR_functions.html


Chapter 14

Cohomology rings of p-groups (mainly

p= 2)

The functions on this page were written by PAUL SMITH. (They are included in HAP but they are also

independently included in Paul Smiths HAPprime package.)

Mod2CohomologyRingPresentation(G) Mod2CohomologyRingPresentation(G,n)

Mod2CohomologyRingPresentation(A) Mod2CohomologyRingPresentation(R)

When applied to a �nite 2-group G this function returns a presentation for the mod 2 cohomology ring

H�(G;Z2). The Lyndon-Hochschild-Serre spectral sequence is used to prove that the presentation is

correct.

When the function is applied to a 2-group G and positive integer n the function �rst constructs n

terms of a free Z2G-resolution R, then constructs the �nite-dimensional graded algebra A = H(� �
n)(G;Z2), and �nally uses A to approximate a presentation for H�(G;Z2). For "suf�ciently large" the
approximation will be a correct presentation for H�(G;Z2).
Alternatively, the function can be applied directly to either the resolution R or graded algebra A.

This function was written by PAUL SMITH. It uses the Singular commutative algebra package to

handle the Lyndon-Hochschild-Serre spectral sequence.

PoincareSeriesLHS(G)

Inputs a �nite 2-group G and returns a quotient of polynomials f (x) = P(x)=Q(x) whose coef�cient
of xk equals the rank of the vector space Hk(G;Z2) for all k.
This function was written by PAUL SMITH. It use the Singular system for commutative algebra.

42



Chapter 15

Commutator and nonabelian tensor

computations

43



44

BaerInvariant(G,c)

Inputs a nilpotent group G and integer c>0. It returns the Baer invariant M(c)(G) de�ned as follows.

For an arbitrary group G let L�c+1
(G) be the (c+ 1)-st term of the upper central series of the group

U = F=[[[R;F ];F ]:::] (with c copies of F in the denominator) where F=R is any free presentation of

G. This is an invariant of G and we de�ne M(c)(G) to be the kernel of the canonical homomorphism

M(c)(G)�! G. For c= 1 the Baer invariant M(1)(G) is isomorphic to the second integral homology

H2(G;Z).
This function requires the NQ package.

BogomolovMultiplier(G)

BogomolovMultiplier(G, "standard") BogomolovMultiplier(G, "homology")

BogomolovMultiplier(G, "tensor")

Inputs a �nite group G and returns the quotient H2(G;Z)=K(G) of the second integral homology of G

where K(G) is the subgroup of H2(G;Z) generated by the images of all homomorphisms H2(A;Z)!
H2(G;Z) induced from abelian subgroups of G.

Three slight variants of the implementation are available. The defaults "standard" implementation

seems to work best on average. But for some groups the "homology" implementation or the "tensor"

implementation will be faster. The variants are called by including the appropriate string as the second

argument.

Bogomology(G,n)

Inputs a �nite group G and positive integer n, and returns the quotient Hn(G;Z)=K(G) of the degree
n integral homology of G where K(G) is the subgroup of Hn(G;Z) generated by the images of all

homomorphisms Hn(A;Z)! Hn(G;Z) induced from abelian subgroups of G.

Coclass(G)

Inputs a group G of prime-power order pn and nilpotency class c say. It returns the integer r = n� c .

EpiCentre(G,N) EpiCentre(G)

Inputs a �nite group G and normal subgroup N and returns a subgroup Z�(G;N) of the centre of N.
The group Z�(G;N) is trivial if and only if there is a crossed module d : E �! G with N = Image(d)
and with Ker(d) equal to the subgroup of E consisting of those elements on which G acts trivially.

If no value for N is entered then it is assumed that N = G. In this case the group Z�(G;G) is trivial if
and only if G is isomorphic to a quotient G= E=Z(E) of some group E by the centre of E. (See also

the commandUpperEpicentralSeries(G;c). )

NonabelianExteriorProduct(G,N)

Inputs a �nite group G and normal subgroup N. It returns a record E with the following components.

� E:homomorphism is a group homomorphism m : (G^N) �! G from the nonabelian exterior

product (G^N) to G. The kernel of m is the relative Schur multiplier.

� E:pairing(x;y) is a function which inputs an element x in G and an element y in N and returns

(x^ y) in the exterior product (G^N) .

This function should work for reasonably small nilpotent groups or extremely small non-nilpotent

groups.

NonabelianSymmetricKernel(G) NonabelianSymmetricKernel(G,m)

Inputs a �nite or nilpotent in�nite group G and returns the abelian invariants of the Fourth homotopy

group SG of the double suspension SSK(G;1) of the Eilenberg-Mac Lane space K(G;1).
For non-nilpotent groups the implementation of the function NonabelianSymmetricKernel(G) is far
from optimal and will soon be improved. As a temporary solution to this problem, an optional second

variable m can be set equal to 0, and then the function ef�ciently returns the abelian invariants of

groups A and B such that there is an exact sequence 0�! B�! SG�! A�! 0.

Alternatively, the optional second varible m can be set equal to a positive multiple of the order of the

symmetric square (G �
G). In this case the function returns the abelian invariants of SG. This might

help when G is solvable but not nilpotent (especially if the estimated upper bound m is reasonable

accurate).

NonabelianSymmetricSquare(G) NonabelianSymmetricSquare(G,m)

Inputs a �nite or nilpotent in�nite group G and returns a record T with the following components.

� T:homomorphism is a group homomorphism m : (G �
G)�!G from the nonabelian symmetric

square of G to G. The kernel of m is isomorphic to the fourth homotopy group of the double

suspension SSK(G;1) of an Eilenberg-Mac Lane space.

� T:pairing(x;y) is a function which inputs two elements x;y in G and returns the tensor (x
 y)
in the symmetric square (G
G) .

An optional second varible m can be set equal to a multiple of the order of the symmetric square

(G �
G). This might help when G is solvable but not nilpotent (especially if the estimated upper bound

m is reasonable accurate) as the bound is used in the solvable quotient algorithm.

The optional second variable m can also be set equal to 0. In this case the Todd-Coxeter procedure

will be used to enumerate the symmetric square even when G is solvable.

This function should work for reasonably small solvable groups or extremely small non-solvable

groups.

NonabelianTensorProduct(G,N)

Inputs a �nite group G and normal subgroup N. It returns a record E with the following components.

� E:homomorphism is a group homomorphism m : (G
N) �! G from the nonabelian exterior

product (G
N) to G.

� E:pairing(x;y) is a function which inputs an element x in G and an element y in N and returns

(x
 y) in the tensor product (G
N) .

This function should work for reasonably small nilpotent groups or extremely small non-nilpotent

groups.

NonabelianTensorSquare(G) NonabelianTensorSquare(G,m)

Inputs a �nite or nilpotent in�nite group G and returns a record T with the following components.

� T:homomorphism is a group homomorphism m : (G
G) �! G from the nonabelian tensor

square of G to G. The kernel of m is isomorphic to the third homotopy group of the suspension

SK(G;1) of an Eilenberg-Mac Lane space.

� T:pairing(x;y) is a function which inputs two elements x;y in G and returns the tensor (x
 y)
in the tensor square (G
G) .

An optional second varible m can be set equal to a multiple of the order of the tensor square (G
G).
This might help when G is solvable but not nilpotent (especially if the estimated upper bound m is

reasonable accurate) as the bound is used in the solvable quotient algorithm.

The optional second variable m can also be set equal to 0. In this case the Todd-Coxeter procedure

will be used to enumerate the tensor square even when G is solvable.

This function should work for reasonably small solvable groups or extremely small non-solvable

groups.

RelativeSchurMultiplier(G,N)

Inputs a �nite group G and normal subgroup N. It returns the homology group H2(G;N;Z) that �ts
into the exact sequence

: : :�! H3(G;Z)�! H3(G=N;Z)�! H2(G;N;Z)�! H3(G;Z)�! H3(G=N;Z)�! : : : :
This function should work for reasonably small nilpotent groups G or extremely small non-nilpotent

groups.

TensorCentre(G)

Inputs a group G and returns the largest central subgroup N such that the induced homomorphism

of nonabelian tensor squares (G
G) �! (G=N
G=N) is an isomorphism. Equivalently, N is the

largest central subgroup such that p3(SK(G;1))�! p3(SK(G=N;1)) is injective.

ThirdHomotopyGroupOfSuspensionB(G) ThirdHomotopyGroupOfSuspensionB(G,m)

Inputs a �nite or nilpotent in�nite group G and returns the abelian invariants of the third homotopy

group JG of the suspension SK(G;1) of the Eilenberg-Mac Lane space K(G;1).
For non-nilpotent groups the implementation of the function

ThirdHomotopyGroupO f SuspensionB(G) is far from optimal and will soon be improved. As

a temporary solution to this problem, an optional second variable m can be set equal to 0, and then

the function ef�ciently returns the abelian invariants of groups A and B such that there is an exact

sequence 0�! B�! JG�! A�! 0.

Alternatively, the optional second varible m can be set equal to a positive multiple of the order of

the tensor square (G
G). In this case the function returns the abelian invariants of JG. This might

help when G is solvable but not nilpotent (especially if the estimated upper bound m is reasonable

accurate).

UpperEpicentralSeries(G,c)

Inputs a nilpotent group G and an integer c. It returns the c-th term of the upper epicentral series 1 <

Z�
1
(G) < Z�

2
(G) < : : :.

The upper epicentral series is de�ned for an arbitrary group G. The group Z�c (G) is the image in G of

the c-th term Zc(U) of the upper central series of the groupU = F=[[[R;F ];F ] : : :] (with c copies of F
in the denominator) where F=R is any free presentation of G.

This functions requires the NQ package.



Chapter 16

Lie commutators and nonabelian Lie

tensors

45



46

Functions on this page are joint work with HAMID MOHAMMADZADEH, and implemented by him.

LieCoveringHomomorphism(L)

Inputs a �nite dimensional Lie algebra L over a �eld, and returns a surjective Lie homomorphism

phi :C! L where:

� the kernel of phi lies in both the centre ofC and the derived subalgebra ofC,

� the kernel of phi is a vector space of rank equal to the rank of the second Chevalley-Eilenberg

homology of L.

LeibnizQuasiCoveringHomomorphism(L)

Inputs a �nite dimensional Lie algebra L over a �eld, and returns a surjective homomorphism phi :

C! L of Leibniz algebras where:

� the kernel of phi lies in both the centre ofC and the derived subalgebra ofC,

� the kernel of phi is a vector space of rank equal to the rank of the kernel J of the homomorphism

L
L! L from the tensor square to L. (We note that, in general, J is NOT equal to the second

Leibniz homology of L.)

LieEpiCentre(L)

Inputs a �nite dimensional Lie algebra L over a �eld, and returns an ideal Z�(L) of the centre of L.
The ideal Z�(L) is trivial if and only if L is isomorphic to a quotient L= E=Z(E) of some Lie algebra

E by the centre of E.

LieExteriorSquare(L)

Inputs a �nite dimensional Lie algebra L over a �eld. It returns a record E with the following compo-

nents.

� E:homomorphism is a Lie homomorphism m : (L^L)�! L from the nonabelian exterior square

(L^L) to L. The kernel of m is the Lie multiplier.

� E:pairing(x;y) is a function which inputs elements x;y in L and returns (x^ y) in the exterior

square (L^L) .

LieTensorSquare(L)

Inputs a �nite dimensional Lie algebra L over a �eld and returns a record T with the following com-

ponents.

� T:homomorphism is a Lie homomorphism m : (L
L)�! L from the nonabelian tensor square

of L to L.

� T:pairing(x;y) is a function which inputs two elements x;y in L and returns the tensor (x
 y)
in the tensor square (L
L) .

LieTensorCentre(L)

Inputs a �nite dimensional Lie algebra L over a �eld and returns the largest ideal N such that the

induced homomorphism of nonabelian tensor squares (L
L)�! (L=N
L=N) is an isomorphism.



Chapter 17

Generators and relators of groups

47



48

CayleyGraphOfGroupDisplay(G,X) CayleyGraphOfGroupDisplay(G,X,"mozilla")

Inputs a �nite group G together with a subset X of G. It displays the corresponding Cayley graph as a

.gif �le. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can

be set using a second argument.

The argument G can also be a �nite set of elements in a (possibly in�nite) group containing X . The

edges of the graph are coloured according to which element of X they are labelled by. The list X

corresponds to the list of colours [blue, red, green, yellow, brown, black] in that order.

This function requires Graphviz software.

IdentityAmongRelatorsDisplay(R,n) IdentityAmongRelatorsDisplay(R,n,"mozilla")

Inputs a free ZG-resolution R and an integer n. It displays the boundary R!.boundary(3,n) as a tessella-

tion of a sphere. It displays the tessellation as a .gif �le and uses the Mozilla web browser as a default

display mechanism. An alternative browser can be set using a second argument. (The resolution R

should be reduced and, preferably, in dimension 1 it should correspond to a Cayley graph for G. )

This function uses GraphViz software.

IsAspherical(F,R)

Inputs a free group F and a set R of words in F . It performs a test on the 2-dimensional CW-space K

associated to this presentation for the group G= F=<R>F .
The function returns "true" if K has trivial second homotopy group. In this case it prints: Presentation

is aspherical.

Otherwise it returns "fail" and prints: Presentation is NOT piece-wise Euclidean non-positively

curved. (In this case K may or may not have trivial second homotopy group. But it is NOT pos-

sible to impose a metric on K which restricts to a Euclidean metric on each 2-cell.)

The function uses Polymake software.

PresentationOfResolution(R)

Inputs at least two terms of a reduced ZG-resolution R and returns a record P with components

� P: f reeGroup is a free group F ,

� P:relators is a list S of words in F ,

� P:gens is a list of positive integers such that the i-th generator of the presentation corresponds

to the group element R!.elts[P[i]] .

where G is isomorphic to F modulo the normal closure of S. This presentation for G corresponds to

the 2-skeleton of the classifying CW-space from which R was constructed. The resolution R requires

no contracting homotopy.

TorsionGeneratorsAbelianGroup(G)

Inputs an abelian group G and returns a generating set [x1; : : : ;xn] where no pair of generators have

coprime orders.



Chapter 18

Orbit polytopes and fundamental

domains

49



50

CoxeterComplex(D) CoxeterComplex(D,n)

Inputs a Coxeter diagram D of �nite type. It returns a non-free ZW-resolution for the associated

Coxeter groupW . The non-free resolution is obtained from the permutahedron of typeW . A positive

integer n can be entered as an optional second variable; just the �rst n terms of the non-free resolution

are then returned.

ContractibleGcomplex("PSL(4,Z)")

Inputs one of the following strings:

"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" , "PSL(4,Z)" , "PSL(4,Z)_b" ,

"PSL(4,Z)_c" , "PSL(4,Z)_d" , "Sp(4,Z)"

or one of the following strings

"SL(2,O-2)" , "SL(2,O-7)" , "SL(2,O-11)" , "SL(2,O-19)" , "SL(2,O-43)" , "SL(2,O-67)" , "SL(2,O-

163)"

It returns a non-free ZG-resolution for the group G described by the string. The stabilizer groups of

cells are �nite. (Subscripts _b , _c , _d denote alternative non-free ZG-resolutions for a given group

G.)

Data for the �rst list of non-free resolutions was provided provided by MATHIEU DUTOUR. Data for

the second list was provided by ALEXANDER RAHM.

QuotientOfContractibleGcomplex(C,D)

Inputs a non-free ZG-resolution C and a �nite subgroup D of G which is a subgroup of each cell

stabilizer group for C. Each element of D must preserves the orientation of any cell stabilized by

it. It returns the corresponding non-free Z(G=D)-resolution. (So, for instance, from the SL(2;O)
complex C =ContractibleGcomplex(�SL(2;O� 2)�); we can construct a PSL(2;O)-complex using

this function.)

TruncatedGComplex(R,m,n)

Inputs a non-free ZG-resolution R and two positive integers m and n. It returns the non-free ZG-

resolution consisting of those modules in R of degree at least m and at most n.

FundamentalDomainStandardSpaceGroup(v,G)

Inputs a crystallographic group G (represented using Af�neCrystGroupOnRight as in the GAP pack-

age Cryst). It also inputs a choice of vector v in the euclidean space Rn on which G acts. It returns the

Dirichlet-Voronoi fundamental cell for the action of G on euclidean space corresponding to the vector

v. The fundamental cell is a fundamental domain if G is Bieberbach. The fundamental cell/domain

is returned as a �Polymake object�. Currently the function only applies to certain crystallographic

groups. See the manuals to HAPcryst and HAPpolymake for full details.

This function is part of the HAPcryst package written by MARC ROEDER and is thus only available

if HAPcryst is loaded.

The function requires the use of Polymake software.

OrbitPolytope(G,v,L)

Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In both

cases there is a natural action of G on v. Let P(G;v) be the convex polytope arising as the convex hull
of the Euclidean points in the orbit of v under the action of G. The function also inputs a sublist L of

the following list of strings:

["dimension","vertex_degree", "visual_graph", "schlegel","visual"]

Depending on the sublist, the function:

� prints the dimension of the orbit polytope P(G;v);

� prints the degree of a vertex in the graph of P(G;v);

� visualizes the graph of P(G;v);

� visualizes the Schlegel diagram of P(G;v);

� visualizes P(G;v) if the polytope is of dimension 2 or 3.

The function uses Polymake software.

PolytopalComplex(G,v) PolytopalComplex(G,v,n)

Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In

both cases there is a natural action of G on v. Let P(G;v) be the convex polytope arising as the

convex hull of the Euclidean points in the orbit of v under the action of G. The cellular chain complex

C� =C�(P(G;v)) is an exact sequence of (not necessarily free) ZG-modules. The function returns a

component object R with components:

� R!:dimension(k) is a function which returns the number of G-orbits of the k-dimensional faces

in P(G;v). If each k-face has trivial stabilizer subgroup in G then Ck is a free ZG-module of

rank R:dimension(k).

� R!:stabilizer(k;n) is a function which returns the stabilizer subgroup for a face in the n-th orbit
of k-faces.

� If all faces of dimension <k+1 have trivial stabilizer group then the �rst k terms ofC� constitute

part of a free ZG-resolution. The boundary map is described by the function boundary(k;n) .
(If some faces have non-trivial stabilizer group then C� is not free and no attempt is made to

determine signs for the boundary map.)

� R!:elements, R!:group, R!:properties are as in a ZG-resolution.

If an optional third input variable n is used, then only the �rst n terms of the resolution C� will be

computed.

The function uses Polymake software.

PolytopalGenerators(G,v)

Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In both

cases there is a natural action of G on v, and the vector v must be chosen so that it has trivial stabilizer

subgroup in G. Let P(G;v) be the convex polytope arising as the convex hull of the Euclidean points
in the orbit of v under the action of G. The function returns a record P with components:

� P:generators is a list of all those elements g in G such that g � v has an edge in common with v.

The list is a generating set for G.

� P:vector is the vector v.

� P:hasseDiagram is the Hasse diagram of the cone at v.

The function uses Polymake software. The function is joint work with Seamus Kelly.

VectorStabilizer(G,v)

Inputs a permutation group or matrix group G of degree n and a rational vector of degree n. In both

cases there is a natural action of G on v and the function returns the group of elements in G that �x v.



Chapter 19

Cocycles

CcGroup(A,f)

Inputs a G-module A (i.e. an abelian G-outer group) and a standard 2-cocycle f GxG��� > A. It

returns the extension group determined by the cocycle. The group is returned as a CcGroup.

This is a HAPcocyclic function and thus only works when HAPcocyclic is loaded.

CocycleCondition(R,n)

Inputs a resolution R and an integer n>0. It returns an integer matrix M with the following property.

Suppose d = R:dimension(n). An integer vector f = [ f1; : : : ; fd ] then represents a ZG-homomorphism

Rn �! Zq which sends the ith generator of Rn to the integer fi in the trivial ZG-module Zq (where

possibly q= 0 ). The homomorphism f is a cocycle if and only ifMt f = 0 mod q.

StandardCocycle(R,f,n)

StandardCocycle(R,f,n,q)

Inputs a ZG-resolution R (with contracting homotopy), a positive integer n and an integer vector f

representing an n-cocycle Rn �! Zq where G acts trivially on Zq. It is assumed q = 0 unless a value

for q is entered. The command returns a function F(g1; :::;gn)which is the standard cocycleGn�! Zq
corresponding to f . At present the command is implemented only for n= 2 or 3.

Syzygy(R,g)

Inputs a ZG-resolution R (with contracting homotopy) and a list g = [g[1]; :::;g[n]] of elements in G.

It returns a word w in Rn. The word w is the image of the n-simplex in the standard bar resolution

corresponding to the n-tuple g. This function can be used to construct explicit standard n-cocycles.

(Currently implemented only for n<4.)

51



Chapter 20

Words in free ZG-modules

52



53

AddFreeWords(v,w)

Inputs two words v;w in a free ZG-module and returns their sum v+w. If the characteristic of Z is

greater than 0 then the next function might be more ef�cient.

AddFreeWordsModP(v,w,p)

Inputs two words v;w in a free ZG-module and the characteristic p of Z. It returns the sum v+w. If

p= 0 the previous function might be fractionally quicker.

AlgebraicReduction(w)

AlgebraicReduction(w,p)

Inputs a word w in a free ZG-module and returns a reduced version of the word in which all pairs

of mutually inverse letters have been cancelled. The reduction is performed in a free abelian group

unless the characteristic p of Z is entered.

Multiply Word(n,w)

Inputs a word w and integer n. It returns the scalar multiple n �w.

Negate([i,j])

Inputs a pair [i; j] of integers and returns [�i; j].

NegateWord(w)

Inputs a word w in a free ZG-module and returns the negated word �w.

PrintZGword(w,elts)

Inputs a word w in a free ZG-module and a (possibly partial but suf�cient) listing elts of the elements

of G. The function prints the word w to the screen in the form

r1E1+ : : :+ rnEn

where ri are elements in the group ring ZG, and Ei denotes the i-th free generator of the module.

TietzeReduction(S,w)

Inputs a set S of words in a free ZG-module, and a word w in the module. The function returns a word

w0 such that {S;w0} generates the same abelian group as {S;w}. The word w0 is possibly shorter (and

certainly no longer) than w. This function needs to be improved!

ResolutionBoundaryOfWord(R,n,w)

Inputs a resolution R, a positive integer n and a list w representing a word in the free module Rn. It

returns the image of w under the n-th boundary homomorphism.



Chapter 21

FpG-modules

54



55

CompositionSeriesOfFpGModules(M)

Inputs an FpG-module M and returns a list of FpG-modules that constitute a composition series for

M.

DirectSumOfFpGModules(M,N) DirectSumOfFpGModules([ M[1], M[2], ..., M[k] ]))

Inputs two FpG-modules M and N with common group and characteristic. It returns the direct sum

of M and N as an FpG-Module.

Alternatively, the function can input a list of FpG-modules with common group G. It returns the

direct sum of the list.

FpGModule(A,P) FpGModule(A,G,p)

Inputs a p-group P and a matrix A whose rows have length a multiple of the order of G. It returns the

�canonical� FpG-module generated by the rows of A.

A small non-prime-power group G can also be input, provided the characteristic p is entered as a third

input variable.

FpGModuleDualBasis(M)

Inputs an FpG-module M. It returns a record R with two components:

� R: f reeModule is the free module FG of rank one.

� R:basis is a list representing an F-basis for the module HomFG(M;FG). Each term in the list

is a matrix A whose rows are vectors in FG such that M!:generators[i] �! A[i] extends to a

module homomorphism M �! FG.

FpGModuleHomomorphism(M,N,A) FpGModuleHomomorphismNC(M,N,A)

Inputs FpG-modulesM and N over a common p-group G. Also inputs a list A of vectors in the vector

space spanned by N!:matrix. It tests that the function
M!:generators[i]�! A[i]
extends to a homomorphism of FpG-modules and, if the test is passed, returns the corresponding

FpG-module homomorphism. If the test is failed it returns fail.

The "NC" version of the function assumes that the input de�nes a homomorphism and simply returns

the FpG-module homomorphism.

DesuspensionFpGModule(M,n) DesuspensionFpGModule(R,n)

Inputs a positive integer n and and FpG-module M. It returns an FpG-module DnM which is mathe-

matically related to M via an exact sequence 0 �! DnM �! Rn �! : : : �! R0 �!M �! 0 where

R� is a free resolution. (If G= Group(M) is of prime-power order then the resolution is minimal.)

Alternatively, the function can input a positive integer n and at least n terms of a free resolution R of

M.

RadicalOfFpGModule(M)

Inputs an FpG-module M with G a p-group, and returns the Radical of M as an FpG-module. (Ig G

is not a p-group then a submodule of the radical is returned.

RadicalSeriesOfFpGModule(M)

Inputs an FpG-module M and returns a list of FpG-modules that constitute the radical series for M.

GeneratorsOfFpGModule(M)

Inputs an FpG-module M and returns a matrix whose rows correspond to a minimal generating set

for M.

ImageOfFpGModuleHomomorphism(f)

Inputs an FpG-module homomorphism f :M �! N and returns its image f (M) as an FpG-module.

GroupAlgebraAsFpGModule(G)

Inputs a p-group G and returns its mod p group algebra as an FpG-module.

IntersectionOfFpGModules(M,N)

Inputs two FpG-modules M;N arising as submodules in a common free module (FG)n where G is a

�nite group and F the �eld of p-elements. It returns the FpG-module arising as the intersection ofM

and N.

IsFpGModuleHomomorphismData(M,N,A)

Inputs FpG-modulesM and N over a common p-group G. Also inputs a list A of vectors in the vector

space spanned by N!:matrix. It returns true if the function
M!:generators[i]�! A[i]
extends to a homomorphism of FpG-modules. Otherwise it returns false.

MaximalSubmoduleOfFpGModule(M)

Inputs an FpG-module M and returns one maximal FpG-submodule of M.

MaximalSubmodulesOfFpGModule(M)

Inputs an FpG-module M and returns the list of maximal FpG-submodules of M.

MultipleOfFpGModule(w,M)

Inputs an FpG-module M and a list w := [g1; :::;gt ] of elements in the group G=M!:group. The list
w can be thought of as representing the element w = g1+ : : :+ gt in the group algebra FG, and the

function returns a semi-echelon matrix B which is a basis for the vector subspace wM .

ProjectedFpGModule(M,k)

Inputs an FpG-module M of ambient dimension njGj, and an integer k between 1 and n. The module

M is a submodule of the free module (FG)n . Let Mk denote the intersection of M with the last k

summands of (FG)n . The function returns the image of the projection of Mk onto the k-th summand

of (FG)n . This image is returned an FpG-module with ambient dimension jGj.

RandomHomomorphismOfFpGModules(M,N)

Inputs two FpG-modulesM and N over a common group G. It returns a random matrix A whose rows

are vectors in N such that the function

M!:generators[i]�! A[i]
extends to a homomorphism M �! N of FpG-modules. (There is a problem with this function at

present.)

Rank(f)

Inputs an FpG-module homomorphism f :M �! N and returns the dimension of the image of f as a

vector space over the �eld F of p elements.

SumOfFpGModules(M,N)

Inputs two FpG-modules M;N arising as submodules in a common free module (FG)n where G is a

�nite group and F the �eld of p-elements. It returns the FpG-Module arising as the sum ofM and N.

SumOp(f,g)

Inputs two FpG-module homomorphisms f ;g :M �! N with common sorce and common target. It

returns the sum f +g :M �! N . (This operation is also available using "+".

VectorsToFpGModuleWords(M,L)

Inputs an FpG-module M and a list L = [v1; : : : ;vk] of vectors in M. It returns a list L0 = [x1; :::;xk] .
Each x j = [[W1;G1]; :::; [Wt ;Gt ]] is a list of integer pairs corresponding to an expression of v j as a word
v j = g1 �w1+g2 �w1+ :::+gt �wt

where

gi = Elements(M!:group)[Gi]
wi = GeneratorsO fF pGModule(M)[Wi] .



Chapter 22

Meataxe modules

DesuspensionMtxModule(M)

Inputs a meataxe module M over the �eld of p elements and returns an FpG-module DM. The two

modules are related mathematically by the existence of a short exact sequence DM �! FM �! M

with FM a free module. Thus the homological properties of DM are equal to those of M with a

dimension shift.

(If G := Group(M:generators) is a p-group then FM is a projective cover of M in the sense that the

homomorphism FM �!M does not factor as FM �! P�!M for any projective module P.)

FpG_to_MtxModule(M)

Inputs an FpG-module M and returns an isomorphic meataxe module.

GeneratorsOfMtxModule(M)

Inputs a meataxe module M acting on, say, the vector space V . The function returns a minimal list of

row vectors in V which generate V as a G-module (where G=Group(M.generators) ).

56



Chapter 23

G-Outer Groups

GOuterGroup(E,N) GOuterGroup()

Inputs a group E and normal subgroup N. It returns N as a G-outer group where G= E=N.
The function can be used without an argument. In this case an empty outer group C is returned.

The components must be set using SetActingGroup(C,G), SetActedGroup(C,N) and SetOuterAc-

tion(C,alpha).

GOuterGroupHomomorphismNC(A,B,phi) GOuterGroupHomomorphismNC()

Inputs G-outer groups A and B with common acting group, and a group homomorphism

phi:ActedGroup(A) �> ActedGroup(B). It returns the corresponding G-outer homomorphism PHI:A�

> B. No check is made to verify that phi is actually a group homomorphism which preserves the

G-action.

The function can be used without an argument. In this case an empty outer group homomorphism

PHI is returned. The components must then be set.

GOuterHomomorphismTester(A,B,phi)

Inputs G-outer groups A and B with common acting group, and a group homomorphism

phi:ActedGroup(A) �> ActedGroup(B). It tests whether phi is a group homomorphism which pre-

serves the G-action.

The function can be used without an argument. In this case an empty outer group homomorphism

PHI is returned. The components must then be set.

Centre(A)

Inputs G-outer group A and returns the group theoretic centre of ActedGroup(A) as a G-outer group.

DirectProductGog(A,B) DirectProductGog(Lst)

Inputs G-outer groups A and B with common acting group, and returns their group-theoretic direct

product as a G-outer group. The outer action on the direct product is the diagonal one.

The function also applies to a list Lst of G-outer groups with common acting group.

For a direct product D constructed using this function, the embeddings and projections can be obtained

(as G-outer group homomorphisms) using the functions Embedding(D,i) and Projection(D,i).

57



Chapter 24

Cat-1-groups

AutomorphismGroupAsCatOneGroup(G)

Inputs a group G and returns the Cat-1-groupC corresponding to the crossed module G! Aut(G).

HomotopyGroup(C,n)

Inputs a cat-1-groupC and an integer n. It returns the nth homotopy group ofC.

HomotopyModule(C,2)

Inputs a cat-1-group C and an integer n=2. It returns the second homotopy group of C as a G-module

(i.e. abelian G-outer group) where G is the fundamental group of C.

QuasiIsomorph(C)

Inputs a cat-1-groupC and returns a cat-1-groupD for which there exists some homomorphismC!D

that induces isomorphisms on homotopy groups.

This function was implemented by LE VAN LUYEN.

ModuleAsCatOneGroup(G,alpha,M)

Inputs a group G, an abelian group M and a homomorphism a:G! Aut(M). It returns the Cat-1-

group C corresponding th the zero crossed module 0:M! G.

MooreComplex(C)

Inputs a cat-1-group C and returns its Moore complex as a G-complex (i.e. as a complex of groups

considered as 1-outer groups).

NormalSubgroupAsCatOneGroup(G,N)

Inputs a group G with normal subgroup N. It returns the Cat-1-groupC corresponding th the inclusion

crossed module N! G.

XmodToHAP(C)

Inputs a cat-1-groupC obtained from the Xmod package and returns a cat-1-groupD for which IsHap-

CatOneGroup(D) returns true.

It returns "fail" id C has not been produced by the Xmod package.

58



Chapter 25

Simplicial groups

59



60

NerveOfCatOneGroup(G,n)

Inputs a cat-1-group G and a positive integer n. It returns the low-dimensional part of the nerve of G

as a simplicial group of length n.

This function applies both to cat-1-groups for which IsHapCatOneGroup(G) is true, and to cat-1-

groups produced using the Xmod package.

This function was implemented by VAN LUYEN LE.

EilenbergMacLaneSimplicialGroup(G,n,dim)

Inputs a group G, a positive integer n, and a positive integer dim. The function returns the �rst 1+dim

terms of a simplicial group with n� 1st homotopy group equal to G and all other homotopy groups

equal to zero.

This function was implemented by VAN LUYEN LE.

EilenbergMacLaneSimplicialGroupMap(f,n,dim)

Inputs a group homomorphism f : G! Q, a positive integer n, and a positive integer dim. The

function returns the �rst 1+ dim terms of a simplicial group homomorphism f : K(G;n)! K(Q;n)
of Eilenberg-MacLane simplicial groups.

This function was implemented by VAN LUYEN LE.

MooreComplex(G)

Inputs a simplicial group G and returns its Moore complex as a G-complex.

This function was implemented by VAN LUYEN LE.

ChainComplexOfSimplicialGroup(G)

Inputs a simplicial group G and returns the cellular chain complexC of a CW-space X represented by

the homotopy type of the simplicial group. Thus the homology groups ofC are the integral homology

groups of X .

This function was implemented by VAN LUYEN LE.

SimplicialGroupMap(f)

Inputs a homomorphism f : G! Q of simplicial groups. The function returns an induced map f :

C(G)!C(Q) of chain complexes whose homology is the integral homology of the simplicial group

G and Q respectively.

This function was implemented by VAN LUYEN LE.

HomotopyGroup(G,n)

Inputs a simplicial group G and a positive integer n. The integer n must be less than the length of G.

It returns, as a group, the (n)-th homology group of its Moore complex. Thus HomotopyGroup(G,0)

returns the "fundamental group" of G.

Representation of elements in the bar resolution

For a group G we denote by Bn(G) the free ZG-module with basis the lists [g1jg2j:::jgn] where the gi
range over G.

We represent a word

w= h1:[g11jg12j:::jg1n]�h2:[g21jg22j:::jg2n]+ :::+hk:[gk1jgk2j:::jgkn]

in Bn(G) as a list of lists:

[[+1;h1;g11;g12; :::;g1n]; [�1;h2;g21;g22; :::jg2n]+ :::+[+1;hk;gk1;gk2; :::;gkn].

BarResolutionBoundary(w)

This function inputs a word w in the bar resolution module Bn(G) and returns its image under the

boundary homomorphism dn:Bn(G)! Bn�1(G) in the bar resolution.

This function was implemented by VAN LUYEN LE.

BarResolutionHomotopy(w)

This function inputs a word w in the bar resolution module Bn(G) and returns its image under the

contracting homotopy hn:Bn(G)! Bn+1(G) in the bar resolution.

This function is currently being implemented by VAN LUYEN LE.

Representation of elements in the bar complex

For a group G we denote by BCn(G) the free abelian group with basis the lists [g1jg2j:::jgn] where the
gi range over G.

We represent a word

w= [g11jg12j:::jg1n]� [g21jg22j:::jg2n]+ :::+[gk1jgk2j:::jgkn]

in BCn(G) as a list of lists:

[[+1;g11;g12; :::;g1n]; [�1;g21;g22; :::jg2n]+ :::+[+1;gk1;gk2; :::;gkn].

BarComplexBoundary(w)

This function inputs a word w in the n-th term of the bar complex BCn(G) and returns its image under

the boundary homomorphism dn:BCn(G)! BCn�1(G) in the bar complex.

This function was implemented by VAN LUYEN LE.

BarResolutionEquivalence(R)

This function inputs a free ZG-resolution R. It returns a component object HE with components

� HE!.phi(n,w) is a function which inputs a non-negative integer n and a word w in Bn(G). It

returns the image of w in Rn under a chain equivalence f :Bn(G)! Rn.

� HE!.psi(n,w) is a function which inputs a non-negative integer n and a word w in Rn. It returns

the image of w in Bn(G) under a chain equivalence y:Rn! Bn(G).

� HE!.equiv(n,w) is a function which inputs a non-negative integer n and a word w in Bn(G). It
returns the image of w in Bn+1(G) under a ZG-equivariant homomorphism

equiv(n;�):Bn(G)! Bn+1(G)

satisfying

w�y(f(w)) = d(n+1;equiv(n;w))+ equiv(n�1;d(n;w)):

where d(n;�):Bn(G)! Bn�1(G) is the boundary homomorphism in the bar resolution.

This function was implemented by VAN LUYEN LE.

BarComplexEquivalence(R)

This function inputs a free ZG-resolution R. It �rst constructs the chain complex T =
TensorWithIntegerts(R). The function returns a component object HE with components

� HE!.phi(n,w) is a function which inputs a non-negative integer n and a word w in BCn(G). It
returns the image of w in Tn under a chain equivalence f :BCn(G)! Tn.

� HE!.psi(n,w) is a function which inputs a non-negative integer n and an element w in Tn. It

returns the image of w in BCn(G) under a chain equivalence y:Tn! BCn(G).

� HE!.equiv(n,w) is a function which inputs a non-negative integer n and a word w in BCn(G). It
returns the image of w in BCn+1(G) under a homomorphism

equiv(n;�):BCn(G)! BCn+1(G)

satisfying

w�y(f(w)) = d(n+1;equiv(n;w))+ equiv(n�1;d(n;w)):

where d(n;�):BCn(G)! BCn�1(G) is the boundary homomorphism in the bar complex.

This function was implemented by VAN LUYEN LE.

Representation of elements in the bar cocomplex

For a group G we denote by BCn(G) the free abelian group with basis the lists [g1jg2j:::jgn] where the
gi range over G.

We represent a word

w= [g11jg12j:::jg1n]� [g21jg22j:::jg2n]+ :::+[gk1jgk2j:::jgkn]

in BCn(G) as a list of lists:

[[+1;g11;g12; :::;g1n]; [�1;g21;g22; :::jg2n]+ :::+[+1;gk1;gk2; :::;gkn].

BarCocomplexCoboundary(w)

This function inputs a word w in the n-th term of the bar cocomplex BCn(G) and returns its image

under the coboundary homomorphism dn:BCn(G)! BCn+1(G) in the bar cocomplex.

This function was implemented by VAN LUYEN LE.



Chapter 26

Coxeter diagrams and graphs of groups

61



62

CoxeterDiagramComponents(D)

Inputs a Coxeter diagram D and returns a list [D1; :::;Dd ] of the maximal connected subgraphs Di.

CoxeterDiagramDegree(D,v)

Inputs a Coxeter diagram D and vertex v. It returns the degree of v (i.e. the number of edges incident

with v).

CoxeterDiagramDisplay(D) CoxeterDiagramDisplay(D,"web browser")

Inputs a Coxeter diagram D and displays it as a .gif �le. It uses the Mozilla web browser as a default

to view the diagram. An alternative browser can be set using a second argument.

This function requires Graphviz software.

CoxeterDiagramFpArtinGroup(D)

Inputs a Coxeter diagram D and returns the corresponding �nitely presented Artin group.

CoxeterDiagramFpCoxeterGroup(D)

Inputs a Coxeter diagram D and returns the corresponding �nitely presented Coxeter group.

CoxeterDiagramIsSpherical(D)

Inputs a Coxeter diagram D and returns "true" if the associated Coxeter groups is �nite, and returns

"false" otherwise.

CoxeterDiagramMatrix(D)

Inputs a Coxeter diagram D and returns a matrix representation of it. The matrix is given as a function

DiagramMatrix(D)(i; j) where i; j can range over the vertices.

CoxeterSubDiagram(D,V)

Inputs a Coxeter diagram D and a subset V of its vertices. It returns the full sub-diagram of D with

vertex set V .

CoxeterDiagramVertices(D)

Inputs a Coxeter diagram D and returns its set of vertices.

EvenSubgroup(G)

Inputs a group G and returns a subgroup G+. The subgroup is that generated by all products xy where

x and y range over the generating set for G stored by GAP. The subgroup is probably only meaningful

when G is an Artin or Coxeter group.

GraphOfGroupsDisplay(D) GraphOfGroupsDisplay(D,"web browser")

Inputs a graph of groups D and displays it as a .gif �le. It uses the Mozilla web browser as a default

to view the diagram. An alternative browser can be set using a second argument.

This function requires Graphviz software.

GraphOfResolutions(D,n)

Inputs a graph of groups D and a positive integer n. It returns a graph of resolutions, each resolution

being of length n. It uses the function ResolutionGenericGroup() to produce the resolutions.

GraphOfGroups(D)

Inputs a graph of resolutions D and returns the corresponding graph of groups.

GraphOfResolutionsDisplay(D)

Inputs a graph of resolutions D and displays it as a .gif �le. It uses the Mozilla web browser as a

default to view the diagram.

This function requires Graphviz software.

GraphOfGroupsTest(D)

Inputs an object D and itries to test whether it is a Graph of Groups. However, it DOES NOT test the

injectivity of any homomorphisms. It returns true if D passes the test, and false otherwise.

Note that there is no function IsHapGraphO fGroups() because no special data type has been created
for these graphs.

TreeOfGroupsToContractibleGcomplex(D,G)

Inputs a graph of groups D which is a tree, and also inputs the fundamental group G of the tree

in a form which contains each of the groups in the graph as subgroups. It returns a corresponding

contractible G-complex.

TreeOfResolutionsToContractibleGcomplex(D,G)

Inputs a graph of resolutions D which is a tree, and also inputs the fundamental group G of the tree

in a form which contains each of the groups in the graph as subgroups. It returns a corresponding

contractible G-complex. The resolutions are stored as a component of the contractible G-complex.



63

#



Chapter 27

Torsion Subcomplexes

64



65

The Torsion Subcomplex subpackage has been conceived and implemented by BUI ANH TUAN and

ALEXANDER D. RAHM

RigidFacetsSubdivision( X )

It inputs an n-dimensional G-equivariant CW-complex X on which all the cell stabilizer subgroups

in G are �nite. It returns an n-dimensional G-equivariant CW-complex Y which is topologically the

same as X , but equipped with a G-CW-structure which is rigid.

IsPNormal( G, p)

Inputs a �nite group G and a prime p. Checks if the group G is p-normal for the prime p. Zassenhaus

de�nes a �nite group to be p-normal if the center of one of its Sylow p-groups is the center of every

Sylow p-group in which it is contained.

TorsionSubcomplex( C, p)

Inputs either a cell complex with action of a group as a variable or a group name. In HAP, presently

the following cell complexes with stabilisers �xing their cells pointwise are available, speci�ed by the

following "groupName" strings:

"SL(2,O-2)" , "SL(2,O-7)" , "SL(2,O-11)" , "SL(2,O-19)" , "SL(2,O-43)" , "SL(2,O-67)" , "SL(2,O-

163)",

where the symbol O[-m] stands for the ring of integers in the imaginary quadratic number �eld

Q(sqrt(-m)), the latter being the extension of the �eld of rational numbers by the square root of minus

the square-free positive integer m. The additive structure of this ring O[-m] is given as the module

Z[omega] over the natural integers Z with basis {1, omega}, and omega being the square root of mi-

nus m if m is congruent to 1 or 2 modulo four; else, in the case m congruent 3 modulo 4, the element

omega is the arithmetic mean with 1, namely (1+ sqrt(�m))=2.

The function TorsionSubcomplex prints the cells with p-torsion in their stabilizer on the screen and

returns the incidence matrix of the 1-skeleton of this cellular subcomplex, as well as a Boolean value

on whether the cell complex has its cell stabilisers �xing their cells pointwise.

It is also possible to input the cell complexes

"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" , "PSL(4,Z)" , "PSL(4,Z)_b" ,

"PSL(4,Z)_c" , "PSL(4,Z)_d" , "Sp(4,Z)"

provided by MATHIEU DUTOUR.

DisplayAvailableCellComplexes();

Displays the cell complexes that are available in HAP.

VisualizeTorsionSkeleton( groupName, p)

Executes the function TorsionSubcomplex( groupName, p) and visualizes its output, namely the inci-

dence matrix of the 1-skeleton of the p-torsion subcomplex, as a graph.

ReduceTorsionSubcomplex( C, p)

This function start with the same operations as the function TorsionSubcomplex( C, p), and if the cell

stabilisers are �xing their cells pointwise, it continues as follows.

It prints on the screen which cells to merge and which edges to cut off in order to reduce the p-torsion

subcomplex without changing the equivariant Farrell cohomology. Finally, it prints the representative

cells, their stabilizers and the Abelianization of the latter.

EquivariantEulerCharacteristic( X )

It inputs an n-dimensional G-equivariant CW-complex X all the cell stabilizer subgroups in G are �nite.

It returns the equivariant euler characteristic obtained by using mass formula ås (�1)
dims 1

card(Gs )

CountingCellsOfACellComplex( X )

It inputs an n-dimensional G-equivariant CW-complex X on which all the cell stabilizer subgroups in

G are �nite. It returns the number of cells in X

CountingControlledSubdividedCells( X )

It inputs an n-dimensional G-equivariant CW-complex X on which all the cell stabilizer subgroups

in G are �nite. It returns the number of cells in X appear during the subdivision process using the

RigidFacetsSubdivision.

CountingBaryCentricSubdividedCells( X )

It inputs an n-dimensional G-equivariant CW-complex X on which all the cell stabilizer subgroups

in G are �nite. It returns the number of cells in X appear during the subdivision process using the

barycentric subdivision.

EquivariantSpectralSequencePage( C, m, n)

It inputs a triple (C,m,n) where C is either a groupName explained as in TorsionSubcomplex, m is

the dimension of the reduced torsion subcomplex, and n is the highest vertical degree in the spectral

sequence page. At the moment, the function works only when m=1,i.e, after reduction the torsion sub-

complex has degree 1. It returns a component object R consists of the �rst page of spectral sequence,

and i-th cohomology groups for i less than n.

ExportHapCellcomplexToDisk( C, groupName)

It inputs a cell complex C which is stored as a variable in the memory, together with a user's desire

name. In case, the input is a torsion cell complex then the user's desire name should be in the form

"group_ptorsion" in order to use the function EquivariantSpectralSequencePage. The function will

export C to the hard disk.



Chapter 28

Simplicial Complexes

66



67

Homology(T,n) Homology(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and a non-negative integer

n. It returns the n-th integral homology of T as a list of torsion integers. If no value of n is input then

the list of all homologies of T in dimensions 0 to Dimension(T) is returned .

RipsHomology(G,n) RipsHomology(G,n,p)

Inputs a graph G, a non-negative integer n (and optionally a prime number p). It returns the integral

homology (or mod p homology) in degree n of the Rips complex of G.

Bettinumbers(T,n) Bettinumbers(T)

Inputs a pure cubical complex, or cubical complex, simplicial complex or chain complex T and a non-

negative integer n. The rank of the n-th rational homology group Hn(T;Q) is returned. If no value for
n is input then the list of Betti numbers in dimensions 0 to Dimension(T) is returned .

ChainComplex(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns the (often

very large) cellular chain complex of T .

CechComplexOfPureCubicalComplex(T)

Inputs a d-dimensional pure cubical complex T and returns a simplicial complex S. The simplicial

complex S has one vertex for each d-cube in T , and an n-simplex for each collection of n+1 d-cubes

with non-trivial common intersection. The homotopy types of T and S are equal.

PureComplexToSimplicialComplex(T,k)

Inputs either a d-dimensional pure cubical complex T or a d-dimensional pure permutahedral complex

T together with a non-negative integer k. It returns the �rst k dimensions of a simplicial complex S.

The simplicial complex S has one vertex for each d-cell in T , and an n-simplex for each collection of

n+1 d-cells with non-trivial common intersection. The homotopy types of T and S are equal.

For a pure cubical complex T this uses a slightly different algorithm to the function CechComplexOf-

PureCubicalComplex(T) but constructs the same simplicial complex.

RipsChainComplex(G,n)

Inputs a graph G and a non-negative integer n. It returns n+ 1 terms of a chain complex whose

homology is that of the nerve (or Rips complex) of the graph in degrees up to n.

VectorsToSymmetricMatrix(M) VectorsToSymmetricMatrix(M,distance)

Inputs a matrix M of rational numbers and returns a symmetric matrix S whose (i; j) entry is the

distance between the i-th row and j-th rows of M where distance is given by the sum of the absolute

values of the coordinate differences.

Optionally, a function distance(v,w) can be entered as a second argument. This function has to return

a rational number for each pair of rational vectors v;w of length Length(M[1]).

EulerCharacteristic(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns its Euler

characteristic.

MaximalSimplicesToSimplicialComplex(L)

Inputs a list L whose entries are lists of vertices representing the maximal simplices of a simplicial

complex. The simplicial complex is returned. Here a "vertex" is a GAP object such as an integer or a

subgroup.

SkeletonOfSimplicialComplex(S,k)

Inputs a simplicial complex S and a positive integer k less than or equal to the dimension of S. It

returns the truncated k-dimensional simplicial complex Sk (and leaves S unchanged).

GraphOfSimplicialComplex(S)

Inputs a simplicial complex S and returns the graph of S.

ContractibleSubcomplexOfSimplicialComplex(S)

Inputs a simplicial complex S and returns a (probably maximal) contractible subcomplex of S.

PathComponentsOfSimplicialComplex(S,n)

Inputs a simplicial complex S and a nonnegative integer n. If n = 0 the number of path components

of S is returned. Otherwise the n-th path component is returned (as a simplicial complex).

QuillenComplex(G)

Inputs a �nite group G and returns, as a simplicial complex, the order complex of the poset of non-

trivial elementary abelian subgroups of G.

SymmetricMatrixToIncidenceMatrix(S,t) SymmetricMatrixToIncidenceMatrix(S,t,d)

Inputs a symmetric integer matrix S and an integer t. It returns the matrixM withMi j = 1 if Ii j is less

than t and Ii j = 1 otherwise.

An optional integer d can be given as a third argument. In this case the incidence matrix should have

roughly at most d entries in each row (corresponding to the $d$ smallest entries in each row of S).

IncidenceMatrixToGraph(M)

Inputs a symmetric 0/1 matrix M. It returns the graph with one vertex for each row ofM and an edges

between vertices i and j if the (i; j) entry in M equals 1.

CayleyGraphOfGroup(G,A)

Inputs a group G and a set A of generators. It returns the Cayley graph.

PathComponentsOfGraph(G,n)

Inputs a graph G and a nonnegative integer n. If n = 0 the number of path components is returned.

Otherwise the n-th path component is returned (as a graph).

ContractGraph(G)

Inputs a graph G and tries to remove vertices and edges to produce a smaller graph G0 such that the

indlusion G0! G induces a homotopy equivalence RG! RG0 of Rips complexes. If the graph G is

modi�ed the function returns true, and otherwise returns false.

GraphDisplay(G)

This function uses GraphViz software to display a graph G.

SimplicialMap(K,L,f) SimplicialMapNC(K,L,f)

Inputs simplicial complexes K , L and a function f :K!:vertices! L!:vertices representing a simplicial

map. It returns a simplicial map K ! L. If f does not happen to represent a simplicial map then

SimplicialMap(K,L,f) will return fail; SimplicialMapNC(K,L,f) will not do any check and always

return something of the data type "simplicial map".

ChainMapOfSimplicialMap(f)

Inputs a simplicial map f :K! L and returns the corresponding chain map C�( f ):C�(K)!C�(L) of
the simplicial chain complexes..

SimplicialNerveOfGraph(G,d)

Inputs a graph G and returns a d-dimensional simplicial complex K whose 1-skeleton is equal to G.

There is a simplicial inclusion K! RG where: (i) the inclusion induces isomorphisms on homotopy

groups in dimensions less than d; (ii) the complex RG is the Rips complex (with one n-simplex for

each complete subgraph of G on n+1 vertices).



Chapter 29

Cubical Complexes

68



69

ArrayToPureCubicalComplexA,n)

Inputs an integer array A of dimension d and an integer n. It returns a d-dimensional pure cubical

complex corresponding to the black/white "image" determined by the threshold n and the values of the

entries in A. (Integers below the threshold correspond to a black pixel, and higher integers correspond

to a white pixel.)

PureCubicalComplexA,n)

Inputs a binary array A of dimension d. It returns the corresponding d-dimensional pure cubical

complex.

FramedPureCubicalComplex(M)

Inputs a pure cubical complexM and returns the pure cubical complex with a border of zeros attached

the each face of the boundary array M!.boundaryArray. This function just adds a bit of space for

performing operations such as thickenings to M.

RandomCubeOfPureCubicalComplex(M)

Inputs a pure cubical complex M and returns a pure cubical complex R with precisely the same di-

mensions as M. The complex R consist of one cube selected at random from M.

PureCubicalComplexIntersection(S,T)

Inputs two pure cubical complexes with common dimension and array size. It returns the intersection

of the two complexes. (An entry in the binary array of the intersection has value 1 if and only if the

corresponding entries in the binary arrays of S and T both have value 1.)

PureCubicalComplexUnion(S,T)

Inputs two pure cubical complexes with common dimension and array size. It returns the union of the

two complexes. (An entry in the binary array of the union has value 1 if and only if at least one of the

corresponding entries in the binary arrays of S and T has value 1.)

PureCubicalComplexDifference(S,T)

Inputs two pure cubical complexes with common dimension and array size. It returns the difference

S-T. (An entry in the binary array of the difference has value 1 if and only if the corresponding entry

in the binary array of S is 1 and the corresponding entry in the binary array of T is 0.)

ReadImageAsPureCubicalComplex("file.png",n)

Reads an image �le ("�le.png", "�le.eps", "�le.bmp" etc) and an integer n between 0 and 765. It re-

turns a 2-dimensional pure cubical complex based on the black/white version of the image determined

by the threshold n.

ReadLinkImageAsPureCubicalComplex("file.png") ReadLinkImageAsPureCubicalComplex("file.png",n)

Reads an image �le ("�le.png", "�le.eps", "�le.bmp" etc) containing a knot or link diagram, and

optionally a positive integer n. The integer n should be a little larger than the line thickness in the link

diagram, and if not provided then n is set equal to 10. The function tries to output the corresponding

knot or link as a 3-dimensional pure cubical complex. Ideally the link diagram should be produced

with line thickness 6 in X�g, and the under-crossing spaces should not be too large or too small or too

near one another. The function does not always succeed: it applies several checks, and if one of these

checks fails then the function returns "fail".

ReadImageSequenceAsPureCubicalComplex("directory",n)

Reads the name of a directory containing a sequence of image �les (ordered alphanumerically), and an

integer n between 0 and 765. It returns a 3-dimensional pure cubical complex based on the black/white

version of the images determined by the threshold n.

Size(T)

This returns the number of non-zero entries in the binary array of the cubical complex, or pure cubical

complex T.

Dimension(T)

This returns the dimension of the cubical complex, or pure cubical complex T.

WritePureCubicalComplexAsImage(T,"filename","ext")

Inputs a 2-dimensional pure cubical complex T, and a �lename followed by its extension (e.g. "my�le"

followed by "png"). A black/white image is saved to the �le.

ViewPureCubicalComplex(T) ViewPureCubicalComplex(T,"mozilla")

Inputs a 2-dimensional pure cubical complex T, and optionally a command such as "mozilla" for

viewing image �les. A black/white image is displayed.

Homology(T,n) Homology(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and a non-negative integer

n. It returns the n-th integral homology of T as a list of torsion integers. If no value of n is input then

the list of all homologies of T in dimensions 0 to Dimension(T) is returned .

Bettinumbers(T,n) Bettinumbers(T)

Inputs a pure cubical complex, or cubical complex, simplicial complex or chain complex T and a non-

negative integer n. The rank of the n-th rational homology group Hn(T;Q) is returned. If no value for
n is input then the list of Betti numbers in dimensions 0 to Dimension(T) is returned .

DirectProductOfPureCubicalComplexes(M,N)

Inputs two pure cubical complexesM;N and returns their direct product D as a pure cubical complex.

The dimension of D is the sum of the dimensions ofM and N.

SuspensionOfPureCubicalComplex(M)

Inputs a pure cubical complex M and returns a pure cubical complex with the homotopy type of the

suspension of M.

EulerCharacteristic(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns its Euler

characteristic.

PathComponentOfPureCubicalComplex(T,n)

Inputs a pure cubical complex T and an integer n in the rane 1, ..., Bettinumbers(T)[1] . It returns the

n-th path component of T as a pure cubical complex. The value n= 0 is also allowed, in which case

the number of path components is returned.

ChainComplex(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns the (often

very large) cellular chain complex of T .

ChainComplexOfPair(T,S)

Inputs a pure cubical complex or cubical complex T and subcomplex S. It returns the quotient

C(T )=C(S) of cellular chain complexes.

ExcisedPureCubicalPair(T,S)

Inputs a pure cubical complex T and subcomplex S. It returns the pair [T n intS;S n intS]) of pure
cubical complexes where intS is the pure cubical complex obtained from S by removing its boundary.

ChainInclusionOfPureCubicalPair(S,T)

Inputs a pure cubical complex T and subcomplex S. It returns the chain inclusion C(S)! C(T ) of
cellular chain complexes.

ChainMapOfPureCubicalPairs(M,S,N,T)

Inputs a pure cubical complex N and subcomplexes M, T and S in T . It returns the chain map

C(M=S)!C(N=T ) of quotient cellular chain complexes.

ContractPureCubicalComplex(T)

Inputs a pure cubical complex T of dimension d and removes d-dimensional cells from T without

changing the homotopy type of T . When the function has been applied, no further d-cells can be

removed from T without changing its homotopy type. This function modi�es T .

ContractedComplex(T)

Inputs a pure cubical complex T and returns a structural copy of the complex obtained from T by

applying the function ContractPureCubicalComplex(T).

ZigZagContractedPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a homotopy equivalent pure cubical complex S. The aim

is for S to involve fewer cells than T and certainly to involve no more cells than T .

ContractCubicalComplex(T)

Inputs a cubical complex T and removes cells without changing the homotopy type of T . It changes

T . In particular, it adds the components T.vectors and T.rewrite of a discrete vector �eld.

At present this function only works for cubical complexes of dimension 2 or 3.

DVFReducedCubicalComplex(T)

Inputs a cubical complex T and returns a non-regular cubical complex R by constructing a discrete

vector �eld. The vector �eld is designed to minimize the number of critical cells in R at the cost of

allowing cell attaching maps that are not homeomorphisms on boundaries.

At present this function works only for 2- and 3-dimensional cubical complexes.

The function ChainComplex(R) can be used to obtain the cellular chain complex of R.

SkeletonOfCubicalComplex(T,n)

Inputs a cubical complex, or pure cubical complex T and positive integer n. It returns the n-skeleton

of T as a cubical complex.

ContractibleSubomplexOfPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a maximal contractible pure cubical subcomplex.

AcyclicSubomplexOfPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a (not necessarily connected) pure cubical subcomplex

having trivial homology in all degrees greater than 0.

HomotopyEquivalentMaximalPureCubicalSubcomplex(T,S)

Inputs a pure cubical complex T together with a pure cubical subcomplex S. It returns a pure cubical

subcomplex H of T which contains S and is maximal with respect to the property that it is homotopy

equivalent to S.

HomotopyEquivalentMinimalPureCubicalSubcomplex(T,S)

Inputs a pure cubical complex T together with a pure cubical subcomplex S. It returns a pure cubical

subcomplex H of T which contains S and is minimal with respect to the property that it is homotopy

equivalent to T .

BoundaryOfPureCubicalComplex(T)

Inputs a pure cubical complex T and returns its boundary as a pure cubical complex. The boundary

consists of all cubes which have one or more facets that lie in just the one cube.

SingularitiesOfPureCubicalComplex(T,radius,tolerance)

Inputs a pure cubical complex T together with a positive integer "radius" and an integer "tolerance"

in the range 1..100. It returns the pure cubical subcomplex of those cells in the boundary where the

boundary is not differentiable. (The method for deciding differentiability at a point is crude/discrete,

prone to errors and depends on the radius and tolerance.)

ThickenedPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a pure cubical complex S. If a euclidean cube is in T

then this cube and all its neighbouring cubes are included in S.

CropPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a pure cubical complex S obtained from T by removing

any "zero boundary sheets" of the binary array. Thus S and T are isometric as euclidean spaces but

there may be fewer zero entries in the binary array for S.

BoundingPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a contractible pure cubical complex S containing T .

MorseFiltration(M,i,t,bool) MorseFiltration(M,i,t)

Inputs a pure cubical complexM of dimension d, an integer i between 1 and d, a positive integer t and

a boolean value True or False. The function returns a list [M1;M2; :::;Mt ] of pure cubical complexes

with Mk a subcomplex of Mk+1. The list is constructed by setting all slices of M perpendicular to

the i-th axis equal to zero if they meet the ith axis at a suf�ciently high coordinate (if bool=True) or

suf�ciently low coordinate (if bool=False).

If the variable bool is not speci�ed then it is assumed to have the value True.

ComplementOfPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a pure cubical complex S. A euclidean cube is in S

precisely when the cube is not in T .

PureCubicalComplexToTextFile(file,M)

Inputs a pure cubical complexM and a string containing the address of a �le. A representation of this

complex is written to the �le in a format that can be read by the CAPD (Computer Assisted Proofs in

Dynamics) software developed by Marian Mrozek and others.

ThickeningFiltration(M,n) ThickeningFiltration(M,n,k)

Inputs a pure cubical complex M and a positive integer n. It returns a �ltered pure cubical complex

constructed frim n thickenings of M. If a positive integer k is supplied as an optional third argument,

then each step of the �ltration is obtained from a k-fold thickening.

Dendrogram(M)

Inputs a �ltered pure cubical complex M and returns data that speci�es the dendrogram (or phyloge-

netic tree) describing how path components are born and then merge during the �ltration.

DendrogramDisplay(M)

Inputs a �ltered pure cubical complex M, or alternatively inputs the out from the command Dendro-

gram(M), and then uses GraphViz software to display the path component dendrogram of M.

DendrogramToPersistenceMat(D)

Inputs the output of the function Dendrogram(M) and returns the corresponding degree 0 Betti bar

code.

ReadImageAsFilteredPureCubicalComplex(file,n)

Inputs a string containing the path to an image �le, together with a positive integer n. It returns a

�ltered pure cubical complex of �ltration length n.

ComplementOfFilteredPureCubicalComplex(M)

Inputs a �ltered pure cubical complex M and returns the complement as a �ltered pure cubical com-

plex.

PersistentHomologyOfFilteredPureCubicalComplex(M,n)

Inputs a �ltered pure cubical complexM and a non-negative integer n. It returns the degree n persistent

homology of M with rational coef�cients.



Chapter 30

Regular CW-Complexes

SimplicialComplexToRegularCWComplex(K)

Inputs a simplicial complex K and returns the corresponding regular CW-complex.

CubicalComplexToRegularCWComplex(K) CubicalComplexToRegularCWComplex(K,n)

Inputs a pure cubical complex (or cubical complex) K and returns the corresponding regular CW-

complex. If a positive integer n is entered as an optional second argument, then just the n-skeleton of

K is returned.

CriticalCellsOfRegularCWComplex(Y) CriticalCellsOfRegularCWComplex(Y,n)

Inputs a regular CW-complex Y and returns the critical cells of Y with respect to some discrete vector

�eld. If Y does not initially have a discrete vector �eld then one is constructed.

If a positive integer n is given as a second optional input, then just the critical cells in dimensions up

to and including n are returned.

The function CriticalCellsO fRegularCWComplex(Y ) works by homotopy reducing cells starting at

the top dimension. The functionCriticalCellsO fRegularCWComplex(Y;n)works by homotopy core-

ducing cells starting at dimension 0. The two methods may well return different numbers of cells.

ChainComplex(Y)

Inputs a regular CW-complex Y and returns the cellular chain complex of a CW-complex W whose

cells correspond to the critical cells of Y with respect to some discrete vector �eld. If Y does not

initially have a discrete vector �eld then one is constructed.

ChainComplexOfRegularCWComplex(Y)

Inputs a regular CW-complex Y and returns the cellular chain complex of Y .

FundamentalGroup(Y) FundamentalGroup(Y,n)

Inputs a regular CW-complex Y and, optionally, the number of some 0-cell. It returns the fundamental

group of Y based at the 0-cell n. The group is returned as a �nitely presented group. If n is not

speci�ed then it is set n= 1. The algorithm requires a discrete vector �eld on Y . If Y does not initially

have a discrete vector �eld then one is constructed.

70



Chapter 31

Knots and Links

71



72

PureCubicalKnot(L) PureCubicalKnot(n,i)

Inputs a list L = [[m1;n1]; [m2;n2]; :::; [mk;nk]] of pairs of integers describing a cubical arc presen-

tation of a link with all vertical lines at the front and all horizontal lines at the back. The bottom

horizontal line extends from the m1-th column to the n1-th column. The second to bottom horizon-

tal line extends from the m2-th column to the n2-th column. And so on. The link is returned as a

3-dimensional pure cubical complex.

Alternatively the function inputs two integers n, i and returns the i-th prime knot on n crossings.

ViewPureCubicalKnot(L)

Inputs a pure cubical link L and displays it.

KnotSum(K,L)

Inputs two pure cubical knots K, L and returns their sum as a pure cubical knot. This function is not

de�ned for links with more than one component.

KnotGroup(K)

Inputs a pure cubical link K and returns the fundamental group of its complement. The group is

returned as a �nitely presented group.

AlexanderMatrix(G)

Inputs a �nitely presented group G whose abelianization is in�nite cyclic. It returns the Alexander

matrix of the presentation.

AlexanderPolynomial(K) AlexanderPolynomial(G)

Inputs either a pure cubical knot K or a �nitely presented group G whose abelianization is in�nite

cyclic. The Alexander Polynomial is returned.

ProjectionOfPureCubicalComplex(K)

Inputs an $n$-dimensional pure cubical complex K and returns an n-1-dimensional pure cubical com-

plex K'. The returned complex is obtained by projecting Euclidean n-space onto Euclidean n-1-space.

ReadPDBfileAsPureCubicalComplex(file) ReadPDBfileAsPureCubicalComplex(file,m

,c)

Inputs a protein database �le describing a protein, and optionally inputs a positive integer m and

character string c. The default values for the optional inputs are m=5 and c="A". It loads the chain of

amino acids labelled by c in the �le as a 3-dimensional pure cubical complex of the homotopy type of

a circle.

It might happen that the function fails to construct a pure cubical complex of the homotopy type of a

circle. In this case retry with a larger integer m.



Chapter 32

Finite metric spaces and their �ltered

complexes

73



74

CayleyMetric(g,h,N) CayleyMetric(g,h)

Inputs two permutations g;h and optionally the degree N of a symmetric group containing them. It

returns the minimum number of transpositions needed to express g�h�1 as a product of transpositions.

HammingMetric(g,h,N) HammingMetric(g,h)

Inputs two permutations g;h and optionally the degree N of a symmetric group containing them. It

returns the number of integers moved by the permutation g�h�1.

KendallMetric(g,h,N) KendallMetric(g,h)

Inputs two permutations g;h and optionally the degree N of a symmetric group containing them. It

returns the minimum number of adjacent transpositions needed to express g � h�1 as a product of

adjacent transpositions. An adjacent transposition has the for (i; i+1).

EuclideanSquaredMetric(v,w)

Inputs two vectors v;w of equal length and returns the sum of the squares of the components of v�w.
In other words, it returns the square of the Euclidean distance between v and w.

EuclideanApproximatedMetric(v,w)

Inputs two vectors v;w of equal length and returns a rational approximation to the square root of the

sum of the squares of the components of v�w. In other words, it returns an approximation to the

Euclidean distance between v and w.

ManhattanMetric(v,w)

Inputs two vectors v;w of equal length and returns the sum of the absolute values of the components

of v�w. This is often referred to as the taxi-cab distance between v and w.

VectorsToSymmetricMatrix(L) VectorsToSymmetricMatrix(L,D)

Inputs a list L of vectors and optionally a metric D. The default is D =ManhattanMetric. It returns

the symmetric matrix whose i-j-entry is S[i][ j] = D(L[i];L[ j]).

SymmetricMatDisplay(S) SymmetricMatDisplay(L,V)

Inputs an n�n symmetric matrix S of non-negative integers and an integer t in [0::100]. Optionally it
inputs a list V = [V1; :::;Vk] of disjoint subsets of [1::n]. It displays the graph with vertex set [1::n] and
with an edge between i and j if S[i][ j]< t. If the optional list V is input then the vertices in Vi will be

given a common colour distinct from other vertices.

SymmetricMatrixToFilteredGraph(S,t,m)

Inputs an integer symmetric matrix S, a positive integer t and a positive integerm. The function returns

a �ltered graph of �ltration length t. The k-th term of the �ltration is a graph with one vertex for each

row of S. There is an edge in this graph between the i-th and j-th vertices if the entry S[i][ j] is less
than or equal to k �m=t.

PermGroupToFilteredGraph(S,D)

Inputs a permutation group G and a metric D de�ned on permutations. The function returns a �ltered

graph. The k-th term of the �ltration is a graph with one vertex for each element of the groupG. There

is an edge in this graph between vertices g and h if D(g;h) is less than some integer threshold tk. The

thresholds t1 < t2 < ::: < tN are chosen to form as long a sequence as possible subject to each term of

the �ltration being a distinct graph.



Chapter 33

Commutative diagrams and abstract

categories

HomomorphismChainToCommutativeDiagram(H)

Inputs a list H = [h1;h2; :::;hn] of mappings such that the composite h1h2:::hn is de�ned. It returns the
list of composable homomorphism as a commutative diagram.

NormalSeriesToQuotientDiagram(L) NormalSeriesToQuotientDiagram(L,M)

Inputs an increasing (or decreasing) list L = [L1;L2; :::;Ln] of normal subgroups of a group G with

G= Ln. It returns the chain of quotient homomorphisms G=Li! G=Li+1 as a commutative diagram.

Optionally a subseries M of L can be entered as a second variable. Then the resulting diagram of

quotient groups has two rows of horizontal arrows and one row of vertical arrows.

NerveOfCommutativeDiagram(D)

Inputs a commutative diagram D and returns the commutative diagram ND consisting of all possible

composites of the arrows in D.

GroupHomologyOfCommutativeDiagram(D,n) GroupHomologyOfCommutativeDiagram(D,n,prime)

GroupHomologyOfCommutativeDiagram(D,n,prime,Resolution_Algorithm)

Inputs a commutative diagram D of p-groups and positive integer n. It returns the commutative

diagram of vector spaces obtained by applying mod p homology.

Non-prime power groups can also be handled if a prime p is entered as the third argument. Integral

homology can be obtained by setting p= 0. For p= 0 the result is a diagram of groups.

A particular resolution algorithm, such as ResolutionNilpotentGroup, can be entered as a fourth argu-

ment. For positive p the default is ResolutionPrimePowerGroup. For p= 0 the default is Resolution-

FiniteGroup.

PersistentHomologyOfCommutativeDiagramOfPGroups(D,n)

Inputs a commutative diagramD of �nite p-groups and a positive integer n. It returns a list containing,

for each homomorphism in the nerve of D, a triple [k; l;m] where k is the dimension of the source of

the induced mod p homology map in degree n, l is the dimension of the image, and m is the dimension

of the cokernel.

Table: COMMUTATIVE DIAGRAMS

ABSTRACT CATEGORIES

75



76



77

CategoricalEnrichment(X,Name)

Inputs a structure X such as a group or group homomorphism, together with the name of some ex-

isting category such as Name:=Category_of_Groups or Category_of_Abelian_Groups. It returns, as

appropriate, an object or arrow in the named category.

IdentityArrow(X)

Inputs an object X in some category, and returns the identity arrow on the object X .

InitialArrow(X)

Inputs an object X in some category, and returns the arrow from the initial object in the category to X .

TerminalArrow(X)

Inputs an object X in some category, and returns the arrow from X to the terminal object in the

category.

HasInitialObject(Name)

Inputs the name of a category and returns true or false depending on whether the category has an

initial object.

HasTerminalObject(Name)

Inputs the name of a category and returns true or false depending on whether the category has a

terminal object.

Source(f)

Inputs an arrow f in some category, and returns its source.

Target(f)

Inputs an arrow f in some category, and returns its target.

CategoryName(X)

Inputs an object or arrow X in some category, and returns the name of the category.

"*", "=", "+", "-"

Composition of suitable arrows f ;g is given by f � g when the source of f equals the target of g.

(Warning: this differes to the standard GAP convention.)

Equality is tested using f = g.

In an additive category the sum and difference of suitable arrows is given by f +g and f �g.

Object(X)

Inputs an object X in some category, and returns the GAP structure Y such that X =
CategoricalEnrichment(Y;CategoryName(X)).

Mapping(X)

Inputs an arrow f in some category, and returns the GAP structure Y such that f =
CategoricalEnrichment(Y;CategoryName(X)).

IsCategoryObject(X)

Inputs X and returns true if X is an object in some category.

IsCategoryArrow(X)

Inputs X and returns true if X is an arrow in some category.



Chapter 34

Arrays and Pseudo lists

78



79

Array(A,f)

Inputs an array A and a function f . It returns the the array obtained by applying f to each entry of A

(and leaves A unchanged).

PermuteArray(A,f)

Inputs an array A of dimension d and a permutation f of degree at most d. It returns the array B

de�ned by B[i1][i2]:::[id] = A[ f (i1)][ f (i2)]:::A[ f (id)] (and leaves A unchanged).

ArrayDimension(A)

Inputs an array A and returns its dimension.

ArrayDimensions(A)

Inputs an array A and returns its dimensions.

ArraySum(A)

Inputs an array A and returns the sum of its entries.

ArrayValue(A,x)

Inputs an array A and a coordinate vector x. It returns the value of the entry in A with coordinate x.

ArrayValueFunctions(d)

Inputs a positive integer d and returns an ef�cient version of the function ArrayValue for arrays of

dimension d.

ArrayAssign(A,x,n)

Inputs an array A and a coordinate vector x and an integer n. It sets the entry of A with coordinate x

equal to n.

ArrayAssignFunctions(d)

Inputs a positive integer d and returns an ef�cient version of the function ArrayAssign for arrays of

dimension d.

ArrayIterate(d)

Inputs a positive integer d and returns a function ArrayIt(Dimensions,f). This function inputs a list

Dimensions of d positive integers and also a function f (x). It applies the function f (x) to each integer
list x of length d with entries x[i] in the range [1..Dimension[i]].

BinaryArrayToTextFile(file,A)

Inputs a string containing the address of a �le, and an array A of 0s and 1s. The array represents a

pure cubical complex. A representation of this complex is written to the �le in a format that can be

read by the CAPD (Computer Assisted Proofs in Dynamics) software developed by Marian Mrozek

and others.

The second input A can also be a pure cubical complex.

FrameArray(A)

Inputs an array A and returns the array obtained by appending a 0 to the beginning and end of each

"row" of the array.

UnframeArray(A)

Inputs an array A and returns the array obtained by removing the �rst and last entry in each "row" of

the array.

Add(L,x)

Let L be a pseudo list of length n, and x an object compatible with the entries in L. If x is not in L then

this operation converts L into a pseudo list of length n+1 by adding x as the �nal entry. If x is in L the

operation has no effect on L.

Append(L,K)

Let L be a pseudo list and K a list whose objects are compatible with those in L. This operation applies

Add(L,x) for each x in K.

ListToPseudoList(L)

Inputs a list L and returns the pseudo list representation of L.



Chapter 35

Parallel Computation - Core Functions

80



81

ChildProcess() ChildProcess("computer.ac.wales") ChildProcess(["-m", "100000M",

"-T"]) ChildProcess("computer.ac.wales", ["-m", "100000M", "-T"])

This starts a GAP session as a child process and returns a stream to the child process. If no argument

is given then the child process is created on the local machine; otherwise the argument should be: 1)

the address of a remote computer for which ssh has been con�gured to require no password from the

user; (2) or a list of GAP command line options; (3) or the address of a computer followed by a list of

command line options.

(To con�gure ssh so that the user can login without a password prompt from "thishost" to "remotehost"

either consult "man ssh" or

- open a shell on thishost

- cd .ssh

- ls

-> if id_dsa, id_rsa etc exists, skip the next two steps!

- ssh-keygen -t rsa

- ssh-keygen -t dsa

- scp *.pub user@remotehost:~/

- ssh remotehost -l user

- cat id_rsa.pub >> .ssh/authorized_keys

- cat id_dsa.pub >> .ssh/authorized_keys

- rm id_rsa.pub id_dsa.pub

- exit

You should now be able to connect from "thishost" to "remotehost" without a password prompt.)

ChildClose(s)

This closes the stream s to a child GAP process.

ChildCommand("cmd;",s)

This runs a GAP command "cmd;" on the child process accessed by the stream s. Here "cmd;" is a

string representing the command.

NextAvailableChild(L)

Inputs a list L of child processes and returns a child in L which is ready for computation (as soon as

such a child is available).

IsAvailableChild(s)

Inputs a child process s and returns true if s is currently available for computations, and false other-

wise.

ChildPut(A,"B",s)

This copies a GAP object A on the parent process to an object B on the child process s. (The copying

relies on the function PrintObj(A); )

ChildGet("A",s)

This functions copies a GAP object A on the child process s and returns it on the parent process. (The

copying relies on the function PrintObj(A); )

HAPPrintTo("file",R)

Inputs a name "�le" of a new text �le and a HAP object R. It writes the object R to "�le". Currently

this is only implemented for R equal to a resolution.

HAPRead("file",R)

Inputs a name "�le" containing a HAP object R and returns the object. Currently this is only imple-

mented for R equal to a resolution.



Chapter 36

Parallel Computation - Extra Functions

ChildFunction("function(arg);",s)

This runs the GAP function "function(arg);" on a child process accessed by the stream s. The output

from "func;" can be accessed via the stream.

ChildRead(s)

This returns, as a string, the output of the last application ofChildFunction(� f unction(arg); �;s).

ChildReadEval(s)

This returns, as an evaluated string, the output of the last application of

ChildFunction(� f unction(arg); �;s).

ParallelList(I,fn,L)

Inputs a list I, a function f n such that f n(x) is de�ned for all x in I, and a list of children L. It uses

the children in L to compute List(I;x� > f n(x)). (Obviously the function f n must be de�ned on all

child processes in L.)

82



Chapter 37

Some functions for accessing basic data

BoundaryMap(C)

Inputs a resolution, chain complex or cochain complex C and returns the functionC!:boundary.

BoundaryMatrix(C,n)

Inputs a chain or cochain complex C and integer n>0. It returns the n-th boundary map of C as a

matrix.

Dimension(C)

Dimension(M)

Inputs a resolution, chain complex or cochain complex C and returns the functionC!:dimension .
Alternatively, inputs an FpG-module M and returns its dimension as a vector space over the �eld of

p elements.

EvaluateProperty(X,"name")

Inputs a component object X (such as a ZG-resolution or chain map) and a string "name" (such as

"characteristic" or "type"). It searches X :property for the pair ["name",value] and returns value. If

X :property does not exist, or if ["name",value] does not exist, it returns fail.

GroupOfResolution(R)

Inputs a ZG-resolution R and returns the group G.

Length(R)

Inputs a resolution R and returns its length (i.e. the number of terms of R that HAP has computed).

Map(f)

Inputs a chain map, or cochain map or equivariant chain map f and returns the mapping function (as

opposed to the target or the source of f ) .

Source(f)

Inputs a chain map, or cochain map, or equivariant chain map, or FpG-module homomorphism f and

returns it source.

Target(f)

Inputs a chain map, or cochain map, or equivariant chain map, or FpG-module homomorphism f and

returns its target.

83



Chapter 38

Miscellaneous

84



85

SL2Z(p) SL2Z(1/m)

Inputs a prime p or the reciprocal 1=m of a square free integer m. In the �rst case the function returns

the conjugate SL(2;Z)P of the special linear group SL(2;Z) by the matrix P = [[1;0]; [0; p]]. In the

second case it returns the group SL(2;Z[1=m]).

BigStepLCS(G,n)

Inputs a group G and a positive integer n. It returns a subseries G = L1>L2>: : :Lk = 1 of the lower

central series of G such that Li=Li+1 has order greater than n.

Classify(L,Inv)

Inputs a list of objects L and a function Inv which computes an invariant of each object. It returns a

list of lists which classi�es the objects of L according to the invariant..

RefineClassification(C,Inv)

Inputs a list C := Classi f y(L;OldInv) and returns a re�ned classi�cation according to the invariant

Inv.

Compose(f,g)

Inputs two FpG-module homomorphisms f :M �! N and g : L�!M with Source( f ) = Target(g)
. It returns the composite homomorphism f g : L�! N .

This also applies to group homomorphisms f ;g.

HAPcopyright()

This function provides details of HAP'S GNU public copyright licence.

IsLieAlgebraHomomorphism(f)

Inputs an object f and returns true if f is a homomorphism f : A �! B of Lie algebras (preserving

the Lie bracket).

IsSuperperfect(G)

Inputs a group G and returns "true" if both the �rst and second integral homology of G is trivial.

Otherwise, it returns "false".

MakeHAPManual()

This function creates the manual for HAP from an XML �le.

PermToMatrixGroup(G,n)

Inputs a permutation group G and its degree n. Returns a bijective homomorphism f :G�!M where

M is a group of permutation matrices.

SolutionsMatDestructive(M,B)

Inputs anm�nmatrixM and a k�nmatrix B over a �eld. It returns a k�mmatrix S satisfying SM=B.

The function will leave matrixM unchanged but will probably change matrix B.

(This is a trivial rewrite of the standard GAP function SolutionMatDestructive(<mat>,<vec>) .)

LinearHomomorphismsPersistenceMat(L)

Inputs a composable sequence L of vector space homomorphisms. It returns an integer matrix con-

taining the dimensions of the images of the various composites. The sequence L is determined up to

isomorphism by this matrix.

NormalSeriesToQuotientHomomorphisms(L)

Inputs an (increasing or decreasing) chain L of normal subgroups in some group G. This G is the

largest group in the chain. It returns the sequence of composable group homomorphisms G=L[i]!
G=L[i+=�1].

TestHap()

This runs a representative sample of HAP functions and checks to see that they produce the correct

output.



Index

ActedGRoup, 24

ActingGRoup, 24

AcyclicSubomplexOfPureCubicalComplex, 69

Add, 79

AddFreeWords, 53

AddFreeWordsModP, 53

AlexanderMatrix, 72

AlexanderPolynomial, 10, 72

AlgebraicReduction, 53

Append, 79

AreIsomorphicGradedAlgebras, 19

Array, 79

ArrayAssign, 79

ArrayAssignFunctions, 79

ArrayDimension, 79

ArrayDimensions, 79

ArrayIterate, 79

ArraySum, 79

ArrayToPureCubicalComplex, 69

ArrayValue, 79

ArrayValueFunctions, 79

AutomorphismGroupAsCatOneGroup, 58

BaerInvariant, 44

Bar Cocomplex, 60

Bar Complex, 60

Bar Resolution, 60

BarCocomplexCoboundary, 60

BarCode, 37

BarCodeCompactDisplay, 15, 37

BarCodeDisplay, 15, 37

BarComplexBoundary, 60

BarComplexEquivalence, 60

BarResolutionBoundary, 60

BarResolutionEquivalence, 60

BarResolutionHomotopy, 60

BettiNumber, 10

Bettinumbers, 35, 67, 69

BigStepLCS, 85

BinaryArrayToTextFile, 79

Bogomology, 44

BogomolovMultiplier, 44

BoundaryMap, 6, 83

BoundaryMatrix, 83

BoundaryOfPureCubicalComplex, 69

BoundingPureCubicalComplex, 69

CategoricalEnrichment, 77

CategoryName, 77

CayleyGraphOfGroup, 4, 67

CayleyGraphOfGroupDisplay, 15, 48

CayleyMetric, 5, 74

CcGroup, 23

CcGroup (HAPcocyclic), 51

CechComplexOfPureCubicalComplex, 67

Centre, 24, 57

ChainComplex, 12, 33, 70

ChainComplexEquivalence, 12

ChainComplexOfPair, 33

ChainComplexOfQuotient, 12

ChainComplexOfRegularCWComplex, 70

ChainComplexOfSimplicialGroup, 60

ChainInclusionOfPureCubicalPair, 69

ChainMap, 12

ChainMapOfPureCubicalPairs, 69

ChainMapOfSimplicialMap, 67

ChevalleyEilenbergComplex, 33

ChildClose, 81

ChildCommand, 81

ChildCreate, 25

ChildFunction, 82

ChildGet, 81

ChildKill, 25

ChildProcess, 81

ChildPut, 81

ChildRead, 82

ChildReadEval, 82

Classify, 85

86



87

CliqueComplex, 6

CochainComplex, 12

Coclass, 44

CocycleCondition, 23, 51

Cohomology, 14, 37

CohomologyModule, 24, 37

CohomologyPrimePart, 37

ComplementOfFilteredPureCubicalComplex, 69

ComplementOfPureCubicalComplex, 69

Compose(f,g), 85

CompositionSeriesOfFpGModules, 55

ConcentricFiltration, 6

ConjugatedResolution, 27

ContractCubicalComplex, 69

ContractedComplex, 8, 69

ContractGraph, 67

ContractibleGcomplex, 50

ContractibleSubcomplex, 8

ContractibleSubcomplexOfSimplicialComplex,

67

ContractibleSubomplexOfPureCubicalComplex,

69

ContractPureCubicalComplex, 69

CoreducedChainComplex, 33

CountingBaryCentricSubdividedCells, 65

CountingCellsOfACellComplex, 65

CountingControlledSubdividedCells, 65

CoxeterComplex, 50

CoxeterDiagramComponents, 62

CoxeterDiagramDegree, 62

CoxeterDiagramDisplay, 62

CoxeterDiagramFpArtinGroup, 62

CoxeterDiagramFpCoxeterGroup, 62

CoxeterDiagramIsSpherical, 62

CoxeterDiagramMatrix, 62

CoxeterDiagramVertices, 62

CoxeterSubDiagram, 62

CriticalCells, 12

CriticalCellsOfRegularCWComplex, 70

CropPureCubicalComplex, 69

CubicalComplex, 4

CubicalComplexToRegularCWComplex, 70

CupProduct, 14

Dendrogram, 69

DendrogramDisplay, 69

DendrogramMat, 11

DendrogramToPersistenceMat, 69

DesuspensionFpGModule, 55

DesuspensionMtxModule, 56

DiagonalApproximation, 12

Dimension, 83

DirectProduct, 6

DirectProductGog, 57

DirectProductOfPureCubicalComplexes, 69

DirectSumOfFpGModules, 55

Display, 15

DisplayArcPresentation, 15

DisplayAvailableCellComplexes, 65

DisplayCSVknotFile, 15

DisplayDendrogram, 15

DisplayDendrogramMat, 15

DisplayPDB�le, 15

DVFReducedCubicalComplex, 69

EilenbergMacLaneSimplicialGroup, 60

EilenbergMacLaneSimplicialGroupMap, 60

EpiCentre, 44

EquivariantChainMap, 17, 29

EquivariantEuclideanSpace, 4

EquivariantEulerCharacteristic, 65

EquivariantOrbitPolytope, 4

EquivariantSpectralSequencePage, 65

EquivariantTwoComplex, 4

EuclideanApproximatedMetric, 74

EuclideanMetric, 5

EuclideanSquaredMetric, 5, 74

EulerCharacteristic, 10, 67

EulerIntegral, 10

EvaluateProperty, 83

EvenSubgroup, 62

ExpansionOfRationalFunction, 39

ExportHapCellcomplexToDisk, 65

ExtendScalars, 31

FilteredTensorWithIntegers, 31

FilteredTensorWithInteres, 13

FilteredTensorWithInteresModP, 13

FiltrationTerm, 6

FpGModule, 55

FpGModuleDualBasis, 55

FpGModuleHomomorphism, 55

FpG_to_MtxModule, 56

FrameArray, 79



88

FramedPureCubicalComplex, 69

FreeGResolution, 17, 27

FundamentalDomainStandardSpaceGroup

(HAPcryst), 50

FundamentalGroup, 10, 70

FundamentalGroupOfQuotient, 10

FundamentalGroupOfRegularCWComplex, 70

GeneratorsOfFpGModule, 55

GeneratorsOfMtxModule, 56

GOuterGroup, 24, 57

GOuterGroupHomomorphismNC, 57

GOuterHomomorphismTester, 57

Graph, 6

GraphDisplay, 67

GraphOfGroups, 62

GraphOfGroupsDisplay, 62

GraphOfGroupsTest, 62

GraphOfResolutions, 62

GraphOfResolutionsDisplay, 62

GraphOfSimplicialComplex, 67

GroupAlgebraAsFpGModule, 22, 55

GroupCohomology, 21, 37

GroupHomology, 21, 37

GroupHomologyOfCommutativeDiagram, 75

GroupOfResolution, 83

HammingMetric, 5, 74

HAPcopyright, 85

HAPDerivation, 19

HAPPrintTo, 81

HAPRead, 81

HasInitialObject, 77

HasTerminalObject, 77

HenonOrbit, 4

HilbertPoincareSeries, 19

Homology, 14, 37, 69

HomologyOfDerivation, 19

HomologyPb, 37

HomologyPrimePart, 37

HomologyVectorSpace, 37

HomomorphismChainToCommutativeDiagram,

75

HomotopyEquivalentMaximalPureCubicalSubcomplex,

69

HomotopyEquivalentMinimalPureCubicalSubcomplex,

69

HomotopyGraph, 6

HomotopyGroup, 58, 60

HomotopyModule, 58

HomToGModule, 24, 31

HomToIntegers, 13, 18, 31

HomToIntegersModP, 31

HomToIntegralModule, 18, 31

IdentityAmongRelatorsDisplay, 48

IdentityArrow, 77

ImageOfFpGModuleHomomorphism, 55

IncidenceMatrixToGraph, 67

InduceScalars, 31

InitialArrow, 77

IntegralCohomologyGenerators, 19

IntegralCupProduct, 41

IntegralRingGenerators, 41

IntersectionOfFpGModules, 55

IsAspherical, 10, 48

IsAvailableChild, 81

IsCategoryArrow, 77

IsCategoryObject, 77

IsFpGModuleHomomorphismData, 55

IsLieAlgebraHomomorphism, 85

IsPNormal, 65

IsSuperperfect, 85

KendallMetric, 5, 74

KnotGroup, 10, 72

KnotRe�ection, 8

KnotSum, 8, 72

LefschetzNumber, 33

LeibnizAlgebraHomology, 37

LeibnizComplex, 18, 33

LeibnizQuasiCoveringHomomorphism, 46

Length, 83

LHSSpectralSequence, 19

LHSSpectralSequenceLastSheet, 19

LieAlgebraHomology, 37

LieCoveringHomomorphism, 46

LieEpiCentre, 46

LieExteriorSquare, 46

LieTensorCentre, 46

LieTensorSquare, 46

LinearHomomorphismsPersistenceMat, 85

ListToPseudoList, 79

LowerCentralSeriesLieAlgebra, 31



89

MakeHAPManual, 85

ManhattanMetric, 5, 74

Map, 83

Mapping, 77

MaximalSimplicesToSimplicialComplex, 67

MaximalSubmoduleOfFpGModule, 55

MaximalSubmodulesOfFpGModule, 55

Mod2CohomologyRingPresentation, 19

Mod2CohomologyRingPresentation (HAP-

prime), 42

ModPCohomologyGenerators, 19, 41

ModPCohomologyRing, 19, 41

ModPRingGenerators, 41

ModuleAsCatOneGroup, 58

MooreComplex, 58, 60

MorseFiltration, 69

MultipleOfFpGModule, 55

MultiplyWord, 53

Negate, 53

NegateWord, 53

Nerve, 6

NerveOfCatOneGroup, 60

NerveOfCommutativeDiagram, 75

NextAvailableChild, 81

NonabelianExteriorProduct, 44

NonabelianSymmetricKernel, 44

NonabelianSymmetricSquare, 44

NonabelianTensorProduct, 44

NonabelianTensorSquare, 44

NormalSeriesToQuotientDiagram, 75

NormalSeriesToQuotientHomomorphisms, 85

NormalSubgroupAsCatOneGroup, 58

Object, 77

OrbitPolytope, 15, 50

OrientRegularCWComplex, 8

ParallelList, 82

PathComponent, 8

PathComponentOfPureCubicalComplex, 69

PathComponentsOfGraph, 67

PathComponentsOfSimplicialComplex, 67

PermGroupToFilteredGraph, 74

PermToMatrixGroup, 85

PermuteArray, 79

PersistentBettiNumbers, 10

PersistentCohomologyOfQuotientGroupSeries,

37

PersistentHomologyOfCommutativeDiagramOfPGroups,

75

PersistentHomologyOfFilteredChainComplex,

37

PersistentHomologyOfFilteredPureCubicalComplex,

37, 69

PersistentHomologyOfPureCubicalComplex, 37

PersistentHomologyOfQuotientGroupSeries, 37

PersistentHomologyOfSubGroupSeries, 37

PiZero, 10

PoincareSeries, 21, 39

PoincareSeriesLHS (HAPprime), 42

PoincareSeriesPrimePart, 39

PolytopalComplex, 50

PolytopalGenerators, 50

Prank, 39

PresentationOfResolution, 48

PrimePartDerivedFunctor, 21, 37

PrintZGword, 53

ProjectedFpGModule, 55

ProjectionOfPureCubicalComplex, 72

PureComplexBoundary, 8

PureComplexComplement, 8

PureComplexDifference, 8

PureComplexIntersection, 8

PureComplexThickened, 8

PureComplexToSimplicialComplex, 67

PureComplexUnion, 8

PureCubicalComplex, 4, 69

PureCubicalComplexDifference, 69

PureCubicalComplexIntersection, 69

PureCubicalComplexToTextFile, 69

PureCubicalComplexUnion, 69

PureCubicalKnot, 4, 72

PurePermutahedralComplex, 4

PurePermutahedralKnot, 4

QuasiIsomorph, 58

QuillenComplex, 4, 67

QuotientOfContractibleGcomplex, 50

Radical, 22

RadicalOfFpGModule, 55

RadicalSeries, 22

RadicalSeriesOfFpGModule, 55



90

RandomCubeOfPureCubicalComplex, 69

RandomHomomorphismOfFpGModules, 55

RandomSimplicialGraph, 4

RandomSimplicialTwoComplex, 4

Rank, 55

RankHomologyPGroup, 21, 37

RankMat, 35

RankMatDestructive, 35

RankPrimeHomology, 37

ReadCSV�leAsPureCubicalKnot, 4

ReadImageAsFilteredPureCubicalComplex, 4,

69

ReadImageAsPureCubicalComplex, 4, 69

ReadImageAsWeightFunction, 4

ReadImageSequenceAsPureCubicalComplex, 69

ReadLinkImageAsPureCubicalComplex, 69

ReadPDB�leAsPureCubicalComplex, 4, 72

ReadPDB�leAsPurePermutahedralComplex, 4

RecalculateIncidenceNumbers, 27

ReducedSuspendedChainComplex, 33

ReduceTorsionSubcomplex, 65

Re�neClassi�cation, 85

RegularCWComplex, 6

RegularCWMap, 6

RegularCWPolytope, 4

RelativeSchurMultiplier, 44

ResolutionAbelianGroup, 27

ResolutionAlmostCrystalGroup, 27

ResolutionAlmostCrystalQuotient, 27

ResolutionArithmeticGroup, 27

ResolutionArtinGroup, 27

ResolutionAsphericalPresentation, 27

ResolutionBieberbachGroup, 17

ResolutionBieberbachGroup (HAPcryst), 27

ResolutionBoundaryOfWord, 53

ResolutionCoxeterGroup, 27

ResolutionCubicalCrystGroup, 17

ResolutionDirectProduct, 27

ResolutionExtension, 27

ResolutionFiniteDirectProduct, 27

ResolutionFiniteExtension, 27

ResolutionFiniteGroup, 17, 27

ResolutionFiniteSubgroup, 27

ResolutionFpGModule, 28

ResolutionGraphOfGroups, 27

ResolutionGTree, 27

ResolutionNilpotentGroup, 17, 27

ResolutionNormalSeries, 17, 27

ResolutionPrimePowerGroup, 17, 27

ResolutionSL2Z, 17, 27

ResolutionSmallFpGroup, 27

ResolutionSmallGroup, 17

ResolutionSubgroup, 17, 27

ResolutionSubnormalSeries, 27

RestrictedEquivariantCWComplex, 4

ReverseSparseMat, 35

RigidFacetsSubdivision, 65

RipsChainComplex, 67

RipsHomology, 37

ScatterPlot, 15

SimplicialComplex, 4

SimplicialComplexToRegularCWComplex, 70

SimplicialGroupMap, 60

SimplicialMap, 67

SimplicialMapNC, 67

SimplicialNerveOfGraph, 67

Simpli�edComplex, 8

SingularitiesOfPureCubicalComplex, 69

Size, 12

SkeletonOfCubicalComplex, 69

SkeletonOfSimplicialComplex, 67

SL2Z, 85

SolutionsMatDestructive, 85

Source, 77, 83

SparseBoundaryMatrix, 35

SparseChainComplex, 35

SparseChainComplexOfRegularCWComplex, 35

SparseMat, 35

SparseRowAdd, 35

SparseRowInterchange, 35

SparseRowMult, 35

SparseSemiEchelon, 35

StandardCocycle, 23, 51

SumOfFpGModules, 55

SumOp, 55

SuspendedChainComplex, 33

SuspensionOfPureCubicalComplex, 69

SymmetricMatDisplay, 74

SymmetricMatrixToFilteredGraph, 4, 74

SymmetricMatrixToGraph, 4

SymmetricMatrixToIncidenceMatrix, 67

Syzygy, 51



91

Target, 77, 83

TensorCentre, 44

TensorProductOfChainComplexes, 33

TensorWithIntegers, 18, 31

TensorWithIntegersModP, 13, 18, 31

TensorWithIntegralModule, 31

TensorWithRationals, 31

TensorWithTwistedIntegers, 31

TensorWithTwistedIntegersModP, 31

TerminalArrow, 77

TestHap, 85

ThickenedPureCubicalComplex, 69

ThickeningFiltration, 6, 69

ThirdHomotopyGroupOfSuspensionB, 44

TietzeReducedResolution, 27

TietzeReduction, 53

TorsionGeneratorsAbelianGroup, 48

TorsionSubcomplex, 65

TransposeOfSparseMat, 35

TreeOfGroupsToContractibleGcomplex, 62

TreeOfResolutionsToContractibleGcomplex, 62

TruncatedGComplex, 50

TwistedTensorProduct, 27

UnframeArray, 79

UniversalBarCode, 37

UpperEpicentralSeries, 44

VectorStabilizer, 50

VectorsToFpGModuleWords, 55

VectorsToSymmetricMatrix, 5, 67, 74

ViewPureCubicalComplex, 69

ViewPureCubicalKnot, 72

VisualizeTorsionSkeleton, 65

WritePureCubicalComplexAsImage, 69

XmodToHAP, 58

ZigZagContractedComplex, 8

ZigZagContractedPureCubicalComplex, 69

ZZPersistentHomologyOfPureCubicalComplex,

37


	Cellular complexes
	ZG-Resolutions and Group Cohomology
	Homological Group Theory
	Parallel Computation
	Resolutions of the ground ring
	 Resolutions of modules
	 Induced equivariant chain maps
	 Functors
	 Chain complexes
	 Sparse Chain complexes
	 Homology and cohomology groups
	 Poincare series
	 Cohomology ring structure
	 Cohomology rings of p-groups (mainly p=2)
	 Commutator and nonabelian tensor computations
	 Lie commutators and nonabelian Lie tensors
	 Generators and relators of groups
	 Orbit polytopes and fundamental domains
	 Cocycles
	 Words in free ZG-modules 
	 FpG-modules
	 Meataxe modules
	 G-Outer Groups
	 Cat-1-groups
	 Simplicial groups
	 Coxeter diagrams and graphs of groups
	Torsion Subcomplexes
	 Simplicial Complexes
	Cubical Complexes
	Regular CW-Complexes
	 Knots and Links
	 Finite metric spaces and their filtered complexes 
	 Commutative diagrams and abstract categories
	 Arrays and Pseudo lists
	 Parallel Computation - Core Functions
	 Parallel Computation - Extra Functions
	 Some functions for accessing basic data
	 Miscellaneous

