Z3
Public Member Functions
AlgebraicNumRef Class Reference
+ Inheritance diagram for AlgebraicNumRef:

Public Member Functions

def approx (self, precision=10)
 
def as_decimal (self, prec)
 
- Public Member Functions inherited from ArithRef
def sort (self)
 
def is_int (self)
 
def is_real (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __pow__ (self, other)
 
def __rpow__ (self, other)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __neg__ (self)
 
def __pos__ (self)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __ne__ (self, other)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __str__ (self)
 
def __repr__ (self)
 
def sexpr (self)
 
def as_ast (self)
 
def get_id (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Algebraic irrational values.

Definition at line 2604 of file z3py.py.

Member Function Documentation

def approx (   self,
  precision = 10 
)
Return a Z3 rational number that approximates the algebraic number `self`. 
The result `r` is such that |r - self| <= 1/10^precision 

>>> x = simplify(Sqrt(2))
>>> x.approx(20)
6838717160008073720548335/4835703278458516698824704
>>> x.approx(5)
2965821/2097152

Definition at line 2607 of file z3py.py.

2607  def approx(self, precision=10):
2608  """Return a Z3 rational number that approximates the algebraic number `self`.
2609  The result `r` is such that |r - self| <= 1/10^precision
2610 
2611  >>> x = simplify(Sqrt(2))
2612  >>> x.approx(20)
2613  6838717160008073720548335/4835703278458516698824704
2614  >>> x.approx(5)
2615  2965821/2097152
2616  """
2617  return RatNumRef(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)
def as_ast(self)
Definition: z3py.py:296
def approx(self, precision=10)
Definition: z3py.py:2607
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision)
Return a upper bound for the given real algebraic number. The interval isolating the number is smalle...
def ctx_ref(self)
Definition: z3py.py:304
def as_decimal (   self,
  prec 
)
Return a string representation of the algebraic number `self` in decimal notation using `prec` decimal places

>>> x = simplify(Sqrt(2))
>>> x.as_decimal(10)
'1.4142135623?'
>>> x.as_decimal(20)
'1.41421356237309504880?'

Definition at line 2618 of file z3py.py.

2618  def as_decimal(self, prec):
2619  """Return a string representation of the algebraic number `self` in decimal notation using `prec` decimal places
2620 
2621  >>> x = simplify(Sqrt(2))
2622  >>> x.as_decimal(10)
2623  '1.4142135623?'
2624  >>> x.as_decimal(20)
2625  '1.41421356237309504880?'
2626  """
2627  return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
2628 
def as_ast(self)
Definition: z3py.py:296
def as_decimal(self, prec)
Definition: z3py.py:2618
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places...
def ctx_ref(self)
Definition: z3py.py:304