
Biopython Tutorial and Cookbook

Je� Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck,

Contents

1 Introduction 9
1.1 What is Biopython? . 9
1.2 What can I �nd in the Biopython package . 9
1.3 Installing Biopython . 10
1.4 Frequently Asked Questions (FAQ) . 11

2 Quick Start { What can you do with Biopython? Qs49 0 0 r .. . 10 .. . 9

4.3.1 SeqFeature objects . 39

7 BLAST 94
7.1 Running BLAST over the Internet . 94

11.8.2 Downloading the entire PDB . 177

23.7 Contributing Code . 326

24 Appendix: Useful stu� about Python 327
24.1 What the heck is a handle? . 327

24.1.1 Creating a handle from a string . 328

8

Chapter 1

Introduction

1.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (

http://www.python.org
http://www.python.org
http://www.biopython.org

�

http://biopython.org/wiki/Download
http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.html

1.4 Frequently Asked Questions (FAQ)

1. How do I cite Biopython in a scienti�c publication?

http://biopython.org/DIST/docs/tutorial/Tutorial.html
http://biopython.org/DIST/docs/tutorial/Tutorial.pdf
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO

14. Why doesn’t Bio.Entrez.parse()

28. Why doesn’t Bio.Fasta work?
We deprecated the Bio.Fasta module in Biopython 1.51 (August 2009) and removed it in Biopython
1.55 (August 2010). There is a brief example showing how to convert old code to use Bio.SeqIO
instead in the DEPRECATED �le.

For more general questions, the Python FAQ pages http://www.python.org/doc/faq/ may be useful.

14

http://biopython.org/SRC/biopython/DEPRECATED
http://www.python.org/doc/faq/

Chapter 2

Quick Start { What can you do with
Biopython?

http://www.python.org/doc/
http://biopython.org/DIST/docs/api/

followed by what you would type in:

>>> from Bio.Seq import Seq
>>> my_seq = Seq�kAGTACACTGGT"q�q
>>> my_seq

http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://images.google.com/images?q=lady%20slipper%20orchid

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.gbk
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta

2.4.2 Simple GenBank parsing example

Now let’s load the GenBank �le ls orchid.gbk instead - notice that the code to do this is almost identical

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO
http://biopython.org/wiki/AlignIO
http://www.ncbi.nlm.nih.gov/Entrez/
http://www.ncbi.nlm.nih.gov/PubMed/
http://www.expasy.org/
http://scop.mrc-lmb.cam.ac.uk/scop/

2.6 What to do next

Now that you’ve made it this far, you hopefully have a good understanding of the basics of Biopython and
are ready to start using it for doing useful work. The best thing to do now is �nish reading this tutorial,
and then if you want start snooping around in the source code, and looking at the automatically generated
documentation.

http://biopython.org/wiki/Mailing_lists

Chapter 3

Sequence objects

http://www.chem.qmw.ac.uk/iupac/

>>> my_seq = Seq("AGTACACTGGT")
>>> my_seq
Seq(’AGTACACTGGT’, Alphabet())
>>> my_seq.alphabet
Alphabet()

The Seq object has a .count()

The second thing to notice is that the slice is performed on the sequence data string, but the new object
produced is another Seq object which retains the alphabet information from the original Seq object.

Also like a Python string, you can do slices with a start, stop and stride (the step size, which defaults to
one). For example, we can get the �rst, second and third codon positions of this DNA sequence:

>>> my_seq[0::3]
Seq(’GCTGTAGTAAG’, IUPACUnambiguousDNA())
>>> my_seq[1::3]
Seq(’AGGCATGCATCTAAG’, IUPACUnambiguousDNA())

>>> from Bio.Alphabet import IUPAC
>>> from Bio.Seq import Seq

In all of these operations, the alphabet property is maintained. This is very useful in case you accidentally

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

In the bacterial genetic code GTG is a valid start codon, and while it does normally encode Valine, if used as

ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

--+---------+---------+---------+---------+--
G | GTT V | GCT A | GAT D | GGT G | T
G | GTC V | GCC A | GAC D | GGC G | C
G | GTA V | GCA A | GAA E | GGA G | A
G | GTG V | GCG A | GAG E | GGG G | G
--+---------+---------+---------+---------+--

and:

>>> print(mito_table)
Table 2 Vertebrate Mitochondrial, SGC1

| T | C | A | G |
--+---------+---------+---------+---------+--
T | TTT F | TCT S | TAT Y | TGT C | T
T | TTC F | TCC S | TAC Y | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA W | A
T | TTG L | TCG S | TAG Stop| TGG W | G
--+---------+---------+---------+---------+--
C | CTT L | CCT P | CAT H | CGT R | T
C | CTC L | CCC P | CAC H | CGC R | C
C | CTA L | CCA P | CAA Q | CGA R | A
C | CTG L | CCG P | CAG Q | CGG R | G
--+---------+---------+---------+---------+--
A | ATT I(s)| ACT T | AAT N | AGT S | T
A | ATC I(s)| ACC T | AAC N | AGC S | C
A | ATA M(s)| ACA T | AAA K | AGA Stop| A
A | ATG M(s)| ACC52525(T)-1575(|)-525(AAA)-525(S)-1575(|)-525GAGA Stop| G
--+---------+---------+---------+----6----+--
G | GTT V | GCT A | GAT D | GGT G | T
G | GTC V | GCC A | GAC D | GGC G | C
G | GTA V | GCA A | GAA E | GGA G | A

For example, you might argue that the two DNA

3.13 UnknownSeq objects

The UnknownSeq object is a subclass of the basic Seq object and its purpose is to represent a sequence where
we know the length, but not the actual letters making it up. You could of course use a normal Seq object

3.14 Working with strings directly

Chapter 4

Sequence annotation objects

Chapter 3 introduced the sequence classes. Immediately \above" the Seq class is the Sequence Record or
SeqRecord class, de�ned in the

http://biopython.org/wiki/SeqRecord
http://biopython.org/DIST/docs/api/Bio.SeqRecord.SeqRecord-class.html
http://biopython.org/DIST/docs/api/Bio.SeqFeature.SeqFeature-class.html

.annotations { A dictionary of additional information about the sequence. The keys are the name of

Working with per-letter-annotations is similar, letter_annotations is a dictionary like attribute which

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.fna

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.gb

>>> record.seq

>>> my_location.start
AfterPosition(5)
>>> print(my_location.start)

>>> for feature in record.features:
... if my_snp in feature:
... print("%s %s" % (feature.type, feature.qualifiers.get(’db_xref’)))
...
source [’taxon:229193’]
gene [’GeneID:2767712’]
CDS [’GI:45478716’, ’GeneID:2767712’]

Note that gene and CDS features from GenBank or EMBL �les de�ned with joins are the union of the
exons { they do not cover any introns.

4.3.3 Sequen [(.7(Seqt%crib(.71(ed)-3(Seb)71(y)-3(Sea)-3(Sefeature)-3(Seor)-3(Selo(.71(cation)]TJ/F8 9.9626 Tf 0 -18.389 Td [(A)]TJ/F29 9.9626 Tf 10.402 0 Td [(SeqFeature)]TJ/F8 9.9626 Tf 55.234 0 Td [(or)-294elo(.28(cation)-294eob(.56(j)1(e)-1(ct)-294edo)-27(es)-1(n)1(’t)-29Seqirectly)-294econ)28(tain)-294ea)-294esequen [,)-302(instead)-294ethe)-294elo(.28(cation)-294e(see)-29SeSection)]TJ
1 0 0 rg 1 0 0 RG
 [-294e4.3.2)

4.4 Comparison

The SeqRecord objects can be very complex, but here’s a simple example:

>>> from Bio.Seq import Seq

4.6 The format method

The format() method of the SeqRecord class gives a string containing your record formatted using one of
the output �le formats supported by

For this example we’re going to focus in on the pim gene, YP_pPCP05. If you have a look at the GenBank

>>> from Bio import SeqIO
>>> record = next(SeqIO.parse("example.fastq", "fastq"))
>>> len(record)
25
>>> print(record.seq)
CCCTTCTTGTCTTCAGCGTTTCTCC

>>> print(record.letter_annotations["phred_quality"])
[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26,
26, 26, 26, 23, 23]

Let’s suppose this was Roche 454 data, and that from other information you think the TTT

'accessions','data_file_division','date','organism','gi']

9609

[]

Chapter 5

Sequence Input/Output

In this chapter we’ll discuss in more detail the Bio.SeqIO module, which was brie
y introduced in Chapter

http://biopython.org/wiki/SeqIO
http://biopython.org/DIST/docs/api/Bio.SeqIO-module.html
http://biopython.org/wiki/SeqIO

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO
http://biopython.org/DIST/docs/api/Bio.SeqIO-module.html

Note that if you try to use next() and there are no more results, you’ll get the special StopIteration
exception.

One special case to consider is when your sequence �les have multiple records, but you only want the
�rst one. In this situation the following code is very concise:

from Bio import SeqIO
first_record = next(SeqIO.parse("ls_orchid.gbk", "genbank"))

A word of warning here { using the next() function like this will silently ignore any additional records

5.1.4 Extractinh7375(data)]TJ/F8 9.96F26 Tf0 -18.3897 Td [The

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.gbk
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.gbk

In general, ‘organism’ is used for the scienti�c name (in Latin, e.g. Arabidopsis thaliana), while ‘source’
will often be the common name (e.g. thale cress). In this example, as is often the case, the two �elds are
identical.

Now let’s go through all the records, building up a list of the species each orchid sequence is from:

from Bio import SeqIO
all_species = []
for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank"):

all_species.append(seq_record.annotations["organism"])
print(all_species)

Another way of writing this code is to use a list comprehension:

from Bio import SeqIO
all_species = [seq_record.annotations["organism"] for seq_record in \

SeqIO.parse("ls_orchid.gbk", "genbank")]
print(all_species)

In either case, the result is:

[’Cypripedium irapeanum’, ’Cypripedium californicum’, ..., ’Paphiopedilum barbatum’]

Great. That was pretty easy because GenBank �les are annotated in a standardised way.
Now, let’s suppose you wanted to extract a list of the species from a FASTA �le, rather than the

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta

5.2 Parsing sequences from compressed �les

In the previous section, we looked at parsing sequence data from a �le. Instead of using a �lename, you
can give Bio.SeqIO a handle (see Section 24.1), and in this section we’ll use handles to parse sequence from
compressed �les.

As you’ll have seen above, we can use Bio.SeqIO.read() or Bio.SeqIO.parse() with a �lename - for

http://bugs.python.org/issue3860

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html

handle = Entrez.efetch(db="nucleotide", rettype="gb", retmode="text",
id="6273291,6273290,6273289")

� Bio.SeqIO.to_dict() is the most
exible but also the most memory demanding option (see Sec-
tion 5.4.1

5.4.1.1 Specifying the dictionary keys

Using the same code as above, but for the FASTA �le instead:

from Bio import SeqIO
orchid_dict = SeqIO.to_dict(SeqIO.parse("ls_orchid.fasta", "fasta"))
print(orchid_dict.keys())

This time the keys are:

[’gi|2765596|emb|Z78471.1|PDZ78471’, ’gi|2765646|emb|Z78521.1|CCZ78521’, ...
..., ’gi|2765613|emb|Z78488.1|PTZ78488’, ’gi|2765583|emb|Z78458.1|PHZ78458’]

You should recognise these strings from when we parsed the FASTA �le earlier in Section 2.4.1. Suppose

This should give:

Z78533.1 JUEoWn6DPhgZ9nAyowsgtoD9TTo
Z78532.1 MN/s0q9zDoCVEEc+k/IFwCNF2pY
...
Z78439.1 H+JfaShya/4yyAj7IbMqgNkxdxQ

>>> from Bio import SeqIO

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz

ftp://ftp.ncbi.nih.gov/genbank/
ftp://ftp.ncbi.nih.gov/genbank/

>>> print(gb_vrl[‘‘AB811634.1’’].description)

http://samtools.sourceforge.net/
http://samtools.sourceforge.net/tabix.shtml

5.4.5 Discussion

So, which of these methods should you use and why? It depends on what you are trying to do (and how much
data you are dealing with). However, in general picking Bio.SeqIO.index()

+"SSAC", generic_protein),
id="gi|14150838|gb|AAK54648.1|AF376133_1",
description="chalcone synthase [Cucumis sativus]")

rec2 = SeqRecord(Seq("YPDYYFRITNREHKAELKEKFQRMCDKSMIKKRYMYLTEEILKENPSMCEYMAPSLDARQ" \
+"DMVVVEIPKLGKEAAVKAIKEWGQ", generic_protein),

id="gi|13919613|gb|AAK33142.1|",
description="chalcone synthase [Fragaria vesca subsp. bracteata]")

rec3 = SeqRecord(Seq("MVTVEEFRRAQCAEGPATVMAIGTATPSNCVDQSTYPDYYFRITNSEHKVELKEKFKRMC" \
+"EKSMIKKRYMHLTEEILKENPNICAYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP" \
+"KSKITHLVFCTTSGVDMPGCDYQLTKLLGLRPSVKRFMMYQQGCFAGGTVLRMAKDLAEN" \
+"NKGARVLVVCSEITAVTFRGPNDTHLDSLVGQALFGDGAAAVIIGSDPIPEVERPLFELV" \
+"SAAQTLLPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKSLVEAFQPLGISDWNSLFW" \
+"IAHPGGPAILDQVELKLGLKQEKLKATRKVLSNYGNMSSACVLFILDEMRKASAKEGLGT" \
+"TGEGLEWGVLFGFGPGLTVETVVLHSVAT", generic_protein),

id="gi|13925890|gb|AAK49457.1|",
description="chalcone synthase [Nicotiana tabacum]")

my_records = [rec1, rec2, rec3]

Now we have a list of SeqRecord objects, we’ll write them to a FASTA format �le:

from Bio import SeqIO
SeqIO.write(my_records, "my_example.faa", "fasta")

5.5.1 Round trips

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.gbk

Chapter 6

Multiple Sequence Alignment objects

http://biopython.org/wiki/AlignIO

6.1.1 Single Alignments

As an example, consider the following annotation rich protein alignment in the PFAM or Stockholm �le

http://pfam.sanger.ac.uk/

>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Alignment length %i" % alignment.get_alignment_length())
Alignment length 52
>>> for record in alignment:
... print("%s - %s" % (record.seq, record.id))
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BNmE/30-851
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVKRLFKKVSRKA - 52

http://pfam.sanger.ac.uk/family?acc=PF05371

http://biopython.org/wiki/AlignIO
http://biopython.org/wiki/AlignIO
http://biopython.org/DIST/docs/api/Bio.AlignIO-module.html

>YYY
ACTACGGCAAGCACAGG
>Alpha
--ACTACGAC--TAGCTCAGG
>ZZZ
GGACTACGACAATAGCTCAGG

In this third example, because of the di�ering lengths, this cannot be treated as a single alignment containing

6.2 Writing Alignments

We’ve talked about using Bio.AlignIO.read() and Bio.AlignIO.parse() for alignment input (reading
�les), and now we’ll look at Bio.AlignIO.write()

Its more common to want to load an existing alignment, and save that, perhaps after some simple

Q9T0Q8_BPIKE/1-52 RA
COATB_BPI22/32-83 KA
COATB_BPM13/24-72 KA
COATB_BPZJ2/1-49 KA
Q9T0Q9_BPFD/1-49 KA
COATB_BPIF1/22-73 RA

KA
KA
KA
KA
RA

If you have to work with the original strict PHYLIP format, then you may need to compress the identifers

from Bio import AlignIO
alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
print(alignment.format("clustal"))

As described in Section 4.6, the SeqRecord object has a similar method using output formats supported
by Bio.SeqIO.

Internally the format() method is using the StringIO string based handle and calling Bio.AlignIO.write().

>>> print(alignment[:, 6:9])
SingleLetterAlphabet() alignment with 7 rows and 3 columns

6.3.2 Alignments as arrays

Depending on what you are doing, it can be more useful to turn the alignment object into an array of letters
{ and you can do this with NumPy:

>>> import numpy as np
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

http://emboss.sourceforge.net/

6.4.1 ClustalW

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta

>>> from Bio.Align.Applications import MuscleCommandline
>>> help(MuscleCommandline)
...

For the most basic usage, all you need is to have a FASTA input �le, such as opuntia.fasta (available
online or in the Doc/examples subdirectory of the Biopython source code). You can then tell MUSCLE to
read in this FASTA �le, and write the alignment to an output �le:

>>> from Bio.Align.Applications import MuscleCommandline
>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.txt")
>>> print(cline)
muscle -in opuntia.fasta -out opuntia.txt

Note that MUSCLE uses \-in" and \-out" but in Biopython we have to use \input" and \out" as the
keyword arguments

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta

>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")
>>> stdout, stderr = muscle_cline()
>>> from StringIO import StringIO
>>> from Bio import AlignIO
>>> align = AlignIO.read(StringIO(stdout), "fasta")

>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(clwstrict=True)
>>> print(muscle_cline)
muscle -clwstrict

Now for the �ddly bits using the subprocess module, stdin and stdout:

>>> import subprocess
>>> import sys
>>> child = subprocess.Popen(str(cline),
... stdin=subprocess.PIPE,
... stdout=subprocess.PIPE,
... stderr=subprocess.PIPE,
... universal_newlines=True,
... shell=(sys.platform!="win32"))

>>> handle = StringIO()
>>> SeqIO.write(records, handle, "fasta")
6
>>> data = handle.getvalue()

You can then run the tool and parse the alignment as follows:

>>> stdout, stderr = muscle_cline(stdin=data)
>>> from Bio import AlignIO
>>> align = AlignIO.read(StringIO(stdout), "clustal")
>>> print(align)
SingleLetterAlphabet() alignment with 6 rows and 900 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF19166
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF19166
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF19165
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF19165

You might �nd this easier, but it does require more memory (RAM) for the strings used for the input
FASTA and output Clustal formatted data.

6.4.5 EMBOSS needle and water

The EMBOSS suite includes the water and needle tools for Smith-Waterman algorithm local alignment,

http://emboss.sourceforge.net/

Why not try running this by hand at the command prompt? You should see it does a pairwise comparisonand records the output in the �leneedle.txt(in the default EMBOSS alignment �le format).

In this example, we told EMBOSS to write the output to a �le, but you can tell it to write the output to
stdout instead (useful ian

http://emboss.sourceforge.net/
http://biopython.org/DIST/docs/api/Bio.pairwise2-module.html

>>> from Bio import pairwise2
>>> from Bio import SeqIO
>>> from Bio.SubsMat.MatrixInfo import blosum62
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> alignments = pairwise2.align.globalds(seq1.seq, seq2.seq, blosum62, -10, -0.5)
>>> len(alignments)

http://biopython.org/DIST/docs/api/Bio.pairwise2-module.html

Chapter 7

BLAST

Hey, everybody loves BLAST right? I mean, geez, how can it get any easier to do comparisons between one
of your sequences and every other sequence in the known world? But, of course, this section isn’t about how

http://www.ncbi.nlm.nih.gov/BLAST/blast_program.shtml
http://www.ncbi.nlm.nih.gov/BLAST/blast_program.shtml
http://www.ncbi.nlm.nih.gov/BLAST/blast_databases.shtml

� The argument url_base sets the base URL for running BLAST over the internet. By default it
connects to the NCBI, but one can use this to connect to an instance of NCBI BLAST running in the
cloud. Please refer to the documentation for the qblast function for further details.

� The

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download

http://blast.wustl.edu/
http://blast.advbiocomp.com
http://blast.advbiocomp.com

�

Or, you can use a for-loop:

>>> for blast_record in blast_records:
... # Do something with blast_record

Note though that you can step through the BLAST records only once. Usually, from each BLAST record
you would save the information that you are interested in. If you want to save all returned BLAST records,
you can convert the iterator into a list:

>>> blast_records = list(blast_records)

Now you can access each BLAST record in the list with an index as usual. If your BLAST �le is huge
though, you may run into memory problems trying to save them all in a list.

length: 783
e value: 0.034
tacttgttgatattggatcgaacaaactggagaaccaacatgctcacgtcacttttagtcccttacatattcctc...
||||||||| | ||||||||||| || |||| || || |||||||| |||||| | | |||||||| ||| ||...
tacttgttggtgttggatcgaaccaattggaagacgaatatgctcacatcacttctcattccttacatcttcttc...

Basically, you can do anything you want to with the info in the BLAST report once you have parsed it.
This will, of course, depend on what you want to use it for, but hopefully this helps you get started on doing
what you need to do!

Figure 7.2: Class diagram for the PSIBlast Record class.

102

7.5.3 Finding a bad record somewhere in a huge plain-text BLAST �le

One really ugly problem that happens to me is that I’ll be parsing a huge blast �le for a while, and the
parser will bomb out with a ValueError. This is a serious problem, since you can’t tell if the ValueError is
due to a parser problem, or a problem with the BLAST. To make it even worse, you have no idea where the
parse failed, so you can’t just ignore the error, since this could be ignoring an important data point.

{

Chapter 8

http://biopython.org/SRC/biopython/Doc/examples/my_blast.xml
http://biopython.org/SRC/biopython/Doc/examples/my_blat.psl

8.1 The SearchIO object model

Now let’s check our BLAT results using the same procedure as above:

http://biopython.org/DIST/docs/api/Bio.SearchIO.BlastIO-module.html
http://biopython.org/DIST/docs/api/Bio.SearchIO.BlatIO-module.html

Sometimes, knowing whether a hit is present is not enough; you also want to know the rank of the hit.
Here, the index

mystery_seq
Hit: gi|301171322|ref|NR_035857.1| (86)

Pan troglodytes microRNA mir-520c (MIR520C), microRNA
HSPs: ---- -------- --------- ------ --------------- ---------------------

E-value Bit score Span Query range Hit range
---- -------- --------- ------ --------------- ---------------------

0 8.9e-20 100.47 60 [1:61] [13:73]

8.1.3 HSP

HSP (high-scoring pair) represents region(s) in the hit sequence that contains signi�cant alignment(s) to
the query sequence. It contains the actual match between your query sequence and a database entry. As
this match is determined by the sequence search tool’s algorithms, the HSP object contains the bulk of the
statistics computed by the search tool. This also makes the distinction between HSP objects from di�erent

Check out the HSP documentation for a full list of these prede�ned properties.
Furthermore, each sequence search tool usually computes its own statistics / details for its HSP objects.

For example, an XML BLAST search also outputs the number of gaps and identical residues. These attributes
can be accessed like so:

>>> blast_hsp.gap_num # number of gaps
0
>>> blast_hsp.ident_num # number of identical residues
61

These details are format-speci�c; they may not be present in other formats. To see which details are
(tica755(taiabl(e)-633(for)-633ar)-633givk)28(nr)-633(sequence)-633(searc)28(h)-633(to)-28(oe,)-708(y-28(ue)-633(houlde)-633ac)27(hec)28(k)-633(the)-633(forma’se)-633(do)-28(cumen)28(tation)-633ins

http://biopython.org/DIST/docs/api/Bio.SearchIO._model.hsp-module.html

>>> blat_hsp.hit is None
True
>>> blat_hsp.query is None
True
>>> blat_hsp.aln is None
True

This does not a�ect other attributes, though. For example, you can still access the length of the query
or hit alignment. Despite not displaying any attributes, the PSL format still have this information so
Bio.SearchIO can extract them:

>>> blat_hsp.query_span # length of query match
61
>>> blat_hsp.hit_span # length of hit match
61

Other format-speci�c attributes are still present as well:

>>> blat_hsp.score # PSL score
61
>>> blat_hsp.mismatch_num # the mismatch column
0

http://biopython.org/DIST/docs/api/Bio.SearchIO._model.hsp-module.html

Query range: [0:61] (1)
Hit range: [0:61] (1)
Fragments: 1 (61 columns)

Query - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG
|||

Hit - CCCTCTACAGGGAAGCGCTTTCTGTTGTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGG

At this level, the BLAT fragment looks quite similar to the BLAST fragment, save for the query and hit
sequences which are not present:

>>> blat_qresult = SearchIO.read(’my_blat.psl’, ’blat-psl’)
>>> blat_frag = blat_qresult[0][0][0] # first hit, first hsp, first fragment
>>> print(blat_frag)

Query: mystery_seq <unknown description>
Hit: chr19 <unknown description>

Query range: [0:61] (1)
Hit range: [54204480:54204541] (1)
Fragments: 1 (? columns)

In all cases, these attributes are accessible using our favorite dot notation. Some examples:

>>> blast_frag.query_start # query start coordinate
0
>>> blast_frag.hit_strand # hit sequence strand
1
>>> blast_frag.hit # hit sequence, as a SeqRecord object

� The last one is on strand and reading frame values. For strands, there are only four valid choices: 1
(plus strand), -1 (minus strand), 0 (protein sequences), and None

need to access only a few of the queries. This is because parse will parse all queries it sees before it fetches
your query of interest.

In this case, the ideal choice would be to index the �le using Bio.SearchIO.index or Bio.SearchIO.index_db.
If the names sound familiar, it’s because you’ve seen them before in Section 5.4.2. These functions also behave
similarly to their Bio.SeqIO counterparts, with the addition of format-speci�c keyword arguments.

Here are some examples. You can use index with just the �lename and format name:

>>> from Bio import SearchIO
>>> idx = SearchIO.index(’tab_2226_tblastn_001.txt’, ’blast-tab’)
>>> sorted(idx.keys())
[’gi|11464971:4-101’, ’gi|16080617|ref|NP_391444.1|’]
>>> idx[’gi|16080617|ref|NP_391444.1|’]
QueryResult(id=’gi|16080617|ref|NP_391444.1|’, 3 hits)
>>> idx.close()

Or also with the format-speci�c keyword argument:

>>> idx = SearchIO.index(’tab_2226_tblastn_005.txt’, ’blast-tab’, comments=True)
>>> sorted(idx.keys())
[’gi|11464971:4-101’, ’gi|16080617|ref|NP_391444.1|’, ’random_s00’]
>>> idx[’gi|16080617|ref|NP_391444.1|’]
QueryResult(id=’gi|16080617|ref|NP_391444.1|’, 3 hits)
>>> idx.close()

Or with the key_function 80617|ref|NF8 925(’of)4(their)]TJ/F29 9.91.206f 76.768 0 Td [(Bio.SeqIO)]TJ/F8 9.6260 Tf 29.473334(name:)]TJ
0 g 0 G
0 g 0 G
/F29 9.969621 -212.343 -21.364 Td [(> 0 Td [(key_f525(idx)-525lambdaTd [(>>>:Td [(>>>.upperdx.close�00(#st-tab’apitaliz-238525(of)-3 [(> 0 sSearchIO)]TJ 0 -11.955 Td [(>>>)-525(idx)-525(=)-525(SearchIO.index(’tab_2226_tblastn_001.txt’,)-525(’bl,Td [(> 0 Td [(key_= 0 Td [(key_nts=True))]TJ 0 -11.955 Td [(>>>)-525(sorted(idx.keys()))]TJ 0 -11.955GId [([’gi|11464971:4-101’GId id=’gi|1REF0617|ref|NP_391444.1|’])]TJ 0 -11.955 Td [(>>>)-5GId id=’gi|1REF0617|ref|NP_391444.1|’])]TJ 5 -11.956 Td [(QueryResult(id=’gi|16080617|ref|NP_391444.1|’,)-525(3)-525(hits))]TJ 0 -11.955 Td [(>>>)-525(idx.close(.9626 Tf 14.944 -21.3 0 Td [(Bio.SearchIO.index_db)]TJ/F8 9.913.599f 29.473 k)27(ek8 9278(lik)28(ou’278(as)4(their)]TJ/F29 9.6021 1 167.926 0 Td [(index)]TJ/F8 9.96.15Tf 54.8227|re891(s)-32577ore)-378(writ)-3257[(If)-2378(ur)-333(78(o)-23set-3257[(i3(arguo3257[(u)-3378(SQLit)3257[(da(’ban)-333f 14626 651)]TJ 0 -11.9(e)-33.)4(thei6.96234628 9.05132.8Tf -11.98.5)ts.)5(W)94(rit)-222575ame)-337ab’,n)318(e318ert)-222575as [(B)32(h22575aoutput22575a(e)-33s [(index)]TJ/F8 9.0f 14.82f -11.9It22562his)-362ho-1(atc(foris)ey_se)333(61can)ful)-362huo3256ould)-222(b56ouab)-3le)-362huo3256oumanipulate)-362hs [(B)25(f)-362hr[(Ques)-362h>>)-5256ouan33(61coutput2256(the)-222(56ouand2(56ouwrit)22562hit33(61cagain)-362huo3256ouahits))]TJ 0 -11.9na)-32959(e)-33.)4(their)]TJ/F29 9.3]TJf 11.098 0 Td [(Bio.function)]TJ/F8 9.95.706f 76.768pro)-28(he)func96uahitsheir

be able to write the results to a PSL �le as PSL �les require attributes not calculated by BLAST (e.g. the
number of repeat matches). You can always set these attributes manually, if you really want to write to
PSL, though.

Like read, parse, index, and index_db, write also accepts format-speci�c keyword arguments. Check
out the documentation for a complete list of formats Bio.SearchIO can write to and their arguments.

Finally, Bio.SearchIO also provides a convert function, which is simply a shortcut for Bio.SearchIO.parse
and Bio.SearchIO.write. Using the convert function, our example above would be:

Chapter 9

Accessing NCBI’s Entrez databases

Entrez (http://www.ncbi.nlm.nih.gov/Entrez) is a data retrieval system that provides users access to

http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/entrez/utils/
http://www.ncbi.nlm.nih.gov/entrez/utils/

http://www.ncbi.nlm.nih.gov/books/NBK25497/#chapter2.Usage_Guidelines_and_Requiremen
http://eutils.ncbi.nlm.nih.gov

9.2 EInfo: Obtaining information about the Entrez databases

<DbName>unigene</DbName>
<DbName>unists</DbName>

</DbList>
</eInfoResult>

Since this is a fairly simple XML �le, we could extract the information it contains simply by string

9.3 ESearch: Searching the Entrez databases

https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch
http://www.ncbi.nlm.nih.gov/entrez/query/static/epost_help.html

list of IDs, the database etc, are all turned into a long URL sent to the server. If your list of IDs is long,
this URL gets long, and long URLs can break (e.g. some proxies don’t cope well).

Instead, you can break this up into two steps, �rst uploading the list of IDs using EPost (this uses an
\HTML post" internally, rather than an \HTML get", getting round the long URL problem). With the
history support, you can then refer to this long list of IDs, and download the associated data with EFetch.

http://www.ncbi.nlm.nih.gov/entrez/query/static/esummary_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/efetchlit_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/efetchseq_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/efetchtax_help.html

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html

Note that a more typical use would be to save the sequence data to a local �le, and then parse it with
Bio.SeqIO. This can save you having to re-download the same �le repeatedly while working on your script,
and places less load on the NCBI’s servers. For example:

import os
from Bio import SeqIO
from Bio import Entrez
Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
filename = "gi_186972394.gbk"
if not os.path.isfile(filename):

Downloading...

The record variable consists of a Python list, one for each database in which we searched. Since we
speci�ed only one PubMed ID to search for, record contains only one item. This item is a dictionary
containing information about our search term, as well as all the related items that were found:

>>> record[0]["DbFrom"]
’pubmed’
>>> record[0]["IdList"]
[’19304878’]

The "LinkSetDb"

http://www.ncbi.nlm.nih.gov/entrez/query/static/elink_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/entrezlinks.html

9.8 EGQuery: Global Query - counts for search terms

EGQuery provides counts for a search term in each of the Entrez databases (i.e. a global query). This

http://www.ncbi.nlm.nih.gov/entrez/query/static/egquery_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/espell_help.html

The resulting XML �le has a size of 6.1 GB. Attempting Entrez.read

...
</Field>

</FieldList>
<DocsumList>

<Docsum><sName>PubDate</<sName>>
<sType>4</<sType>>
<<Docsum>
<Docsum>...

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html

9.12.1 Parsing Medline records

You can �nd the Medline parser in Bio.Medline. Suppose we want to parse the �le pubmed_result1.txt,

...
A high level interface to SCOP and ASTRAL implemented in python.
GenomeDiagram: a python package for the visualization of large-scale genomic data.
Open source clustering software.
PDB file parser and structure class implemented in Python.

Instead of parsing Medline records stored in �les, you can also parse Medline records downloaded by
Bio.Entrez.efetch. For example, let’s look at all Medline records in PubMed related to Biopython:

>>> from Bio import Entrez

9.12.2 Parsing GEO records

GEO (

http://www.ncbi.nlm.nih.gov/geo/
ftp://ftp.ncbi.nih.gov/pub/geo/
ftp://ftp.ncbi.nih.gov/pub/geo/
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SOFT/by_series/GSE16/GSE16_family.soft.gz
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SOFT/by_series/GSE16/GSE16_family.soft.gz

9.13 Using a proxy

http://www.python.org/doc/lib/module-urllib.html
http://www.ncbi.nlm.nih.gov/PubMed/

... if row["DbName"]=="nuccore":

... print(row["Count"])
814

So, we expect to �nd 814 Entrez Nucleotide records (this is the number I obtained in 2008; it is likely to
increase in the future). If you �nd some ridiculously high number of hits, you may want to reconsider if you
really want to download all of them, which is our next step:

>>]8ytep:handle8ytep:=8ytep:Entrez.esearch(db="nucleotide",8ytep:term="Cypripedioideae",8ytep:retmax=814)
>>]8ytep:record8ytep:=8ytep:Entrez.read(handle)

Here,

http://www.ncbi.nlm.nih.gov/

>>> text = handle.read()
>>> print(text)

>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> handle = Entrez.esearch(db="Taxonomy", term="Cypripedioideae")
>>> record = Entrez.read(handle)
>>> record["IdList"]
[’158330’]
>>> record["IdList"][0]
’158330’

Now, we use efetch to download this entry in the Taxonomy database, and then parse it:

>>> handle = Entrez.efetch(db="Taxonomy", id="158330", retmode="xml")
>>> records = Entrez.read(handle)

When you get the XML output back, it will still include the usual search results:

>>> gi_list = search_results["IdList"]
>>> count = int(search_results["Count"])
>>> assert count == len(gi_list)

>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com"
>>> pmid = "14630660"

Chapter 10

Swiss-Prot and ExPASy

10.1 Parsing Swiss-Prot �les

http://www.expasy.org/sprot

>>> from Bio import SwissProt
>>> record = SwissProt.read(handle)

This function should be used if the handle points to exactly one Swiss-Prot record. It raises a ValueError
if no Swiss-Prot record was found, and also if more than one record was found.

We can now print out some information about this record:

>>> print(record.description)
’RecName: Full=Chalcone synthase 3; EC=2.3.1.74; AltName: Full=Naringenin-chalcone synthase 3;’
>>> for ref in record.references:
... print("authors:", ref.authors)
... print("title:", ref.title)
...
authors: Liew C.F., Lim S.H., Loh C.S., Goh C.J.;
title: "Molecular cloning and sequence analysis of chalcone synthase cDNAs of
Bromheadia finlaysoniana.";
>>> print(record.organism_classification)
[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ’Embryophyta’, ..., ’Bromheadia’]

ftp://ftp.expasy.org/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz

>>> from Bio import SwissProt
>>> descriptions = []
>>> handle = open("uniprot_sprot.dat")
>>> for record in SwissProt.parse(handle):
... descriptions.append(record.description)
...
>>> len(descriptions)
468851

>>> from Bio.SwissProt import KeyWList
>>> handle = open("keywlist.txt")
>>> records = KeyWList.parse(handle)
>>> for record in records:
... print(record[’ID’])
... print(record[’DE’])

This prints

2Fe-2S.
Protein which contains at least one 2Fe-2S iron-sulfur cluster: 2 iron atoms

ftp://ftp.expasy.org/databases/prosite/prosite.dat

>>> record.name

CC -!- Also hydrolyzes diacylglycerol.
PR PROSITE; PDOC00110;
DR P11151, LIPL_BOVIN ; P11153, LIPL_CAVPO ; P11602, LIPL_CHICK ;
DR P55031, LIPL_FELCA ; P06858, LIPL_HUMAN ; P11152, LIPL_MOUSE ;
DR O46647, LIPL_MUSVI ; P49060, LIPL_PAPAN ; P49923, LIPL_PIG ;
DR Q06000, LIPL_RAT ; Q29524, LIPL_SHEEP ;
//

In this example, the �rst line shows the EC (Enzyme Commission) number of lipoprotein lipase (sec-
ond line). Alternative names of lipoprotein lipase are "clearing factor lipase", "diacylglycerol lipase", and
"diglyceride lipase" (lines 3 through 5). The line starting with "CA" shows the catalytic activity of this
enzyme. Comment lines start with "CC". The "PR" line shows references to the Prosite Documentation
records, and the "DR" lines show references to Swiss-Prot records. Not of these entries are necessarily
present in an Enzyme record.

In Biopython, an Enzyme record is represented by the Bio.ExPASy.Enzyme.Record class. This record
derives from a Python dictionary and has keys corresponding to the two-letter codes used in Enzyme �les.
To read an Enzyme �le containing one Enzyme record, use the read function in Bio.ExPASy.Enzyme:

>>> from Bio.ExPASy import Enzyme
>>> with open("lipoprotein.txt") as handle:
... record = Enzyme.read(handle)
...
>>> record["ID"]

ftp://ftp.expasy.org/databases/enzyme/enzyme.dat
ftp://ftp.expasy.org/databases/enzyme/enzyme.dat

http://www.expasy.org

10.5.2 Searching Swiss-Prot

Now, you may remark that I knew the records’ accession numbers beforehand. Indeed, get_sprot_raw()

http://www.expasy.org/cgi-bin/sprot-search-de
http://www.expasy.org/cgi-bin/sprot-search-ful
http://www.expasy.org/cgi-bin/sprot-search-ful

http://www.expasy.org/tools/scanprosite/
http://www.expasy.org/tools/scanprosite/scanprosite-doc.html
http://www.expasy.org/tools/scanprosite/ScanPrositeREST.html

6
>>> result[0]
{’signature_ac’: u’PS50948’, ’level’: u’0’, ’stop’: 98, ’sequence_ac’: u’USERSEQ1’, ’start’: 16, ’score’: u’8.873’}
>>> result[1]
{’start’: 37, ’stop’: 39, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00005’}
>>> result[2]
{’start’: 45, ’stop’: 48, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00006’}
>>> result[3]
{’start’: 60, ’stop’: 62, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00005’}
>>> result[4]
{’start’: 80, ’stop’: 83, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00004’}
>>> result[5]
{’start’: 106, ’stop’: 111, ’sequence_ac’: u’USERSEQ1’, ’signature_ac’: u’PS00008’}

http://www.expasy.org/tools/scanprosite/ScanPrositeREST.html
http://www.expasy.org/tools/scanprosite/ScanPrositeREST.html

The available keys are name, head, deposition_date, release_date, structure_method

11.1.4 Reading �les in the PDB XML format

That’s not yet supported, but we are de�nitely planning to support that in the future (it’s not a lot of work).
Contact the Biopython developers (

This is the way many structural biologists/bioinformaticians think about structure, and provides a simple
but e�cient way to deal with structure. Additional stu� is essentially added when needed. A UML diagram
of the Structure object (forget about the Disordered classes for now) is shown in Fig. 11.1. Such a data

>>> child_entity = parent_entity[child_id]

You can also get a list of all child Entities of a parent Entity object. Note that this list is sorted in a
speci�c way (e.g. according to chain identi�er for Chain objects in a Model object).

>>> child_list = parent_entity.get_list()

You can also get the parent from a child:

>>> parent_entity = child_entity.get_parent()

11.2.2 Model

The id of the Model object is an integer, which is derived from the position of the model in the parsed �le
(they are automatically numbered starting from 0). Crystal structures generally have only one model (with

The reason for the hetero-
ag is that many, many PDB �les use the same sequence identi�er for an amino
acid and a hetero-residue or a water, which would create obvious problems if the hetero-
ag was not used.

Unsurprisingly, a Residue object stores a set of Atom children. It also contains a string that speci�es the

11.3 Disorder

DisorderedResidue

... for residue in chain:

... for atom in residue:

... print(atom)

...

There is a shortcut if you want to iterate over all atoms in a structure:

>>> atoms = structure.get_atoms()
>>> for atom in atoms:
... print(atom)
...

Similarly, to iterate over all atoms in a chain, use

>>> atoms = chain.get_atoms()
>>> for atom in atoms:
... print(atom)
...

Iterating over all residues of a model

or if you want to iterate over all residues in a model:

>>> residues = model.get_residues()
>>> for residue in residues:
... print(residue)
...

You can also use the Selection.unfold_entities function to get all residues from a structure:

>>> res_list = Selection.unfold_entities(structure, ’R’)

or to get all atoms from a chain:

>>> atom_list = Selection.unfold_entities(chain, ’A’)

Obviously, A=atom, R=residue, C=chain, M=model, S=structure. You can use this to go up in the
hierarchy, e.g. to get a list of (unique) Residue or Chain

Print out the coordinates of all CA atoms in a structure with B factor greater than 50

>>> for model in structure.get_list():
... for chain in model.get_list():
... for residue in chain.get_list():
... if residue.has_id("CA"):
... ca = residue["CA"]
... if ca.get_bfactor() > 50.0:

http://www.cmbi.kun.nl/gv/dssp/
http://www.cmbi.kun.nl/gv/dssp/
http://www.scripps.edu/pub/olson-web/people/sanner/html/msms_home.html
http://www.scripps.edu/pub/olson-web/people/sanner/html/msms_home.html

11.7 Common problems in PDB �les

It is well known that many PDB �les contain semantic errors (not the structures themselves, but their

that this atom is probably shared by Ser and Pro 22, as Ser 22 misses the N atom. Again, this points to
a problem in the �le: the N atom should be present in both the Ser and the Pro residue, in both cases
associated with a suitable altloc identi�er.

11.7.2 Automatic correction

Some errors are quite common and can be easily corrected without much risk of making a wrong interpre-
tation. These cases are listed below.

11.7.2.1 A blank altloc for a disordered atom

11.8 Accessing the Protein Data Bank

11.8.1 Downloading structures from the Protein Data Bank

Structures can be downloaded from the PDB (Protein Data Bank) by using the retrieve

ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/pdb/

11.9 General questions

11.9.1 How well tested is Bio.PDB?

Pretty well, actually. Bio.PDB has been extensively tested on nearly 5500 structures from the PDB - all
structures seemed to be parsed correctly. More details can be found in the Bio.PDB Bioinformatics article.
Bio.PDB has been used/is being used in many research projects as a reliable tool. In fact, I’m using Bio.PDB
almost daily for research purposes and continue working on improving it and adding new features.

11.9.2 How fast is it?

The PDBParser performance was tested on about 800 structures (each belonging to a unique SCOP super-
family). This takes about 20 minutes, or on average 1.5 seconds per structure. Parsing the structure of the
large ribosomal subunit (1FKK), which contains about 64000 atoms, takes 10 seconds on a 1000 MHz PC.
In short: it’s more than fast enough for many applications.

http://pymol.sourceforge.net/
http://www.cgl.ucsf.edu/chimera/
http://www.scripps.edu/~sanner/python/
http://www.ysbl.york.ac.uk/~emsley/coot/
http://www.ysbl.york.ac.uk/~lizp/molgraphics.html
http://pymmlib.sourceforge.net/
http://www.ks.uiuc.edu/Research/vmd/
http://starship.python.net/crew/hinsen/MMTK/
http://dis.embl.de/
http://www.columba-db.de/
http://www.columba-db.de/

Chapter 12

Bio.PopGen: Population genetics

http://genepop.curtin.edu.au/

[
(’Other1’, [(1, 1), (4, 3), (200, 200)],

]
]

Chapter 13

Phylogenetics with Bio.Phylo

http://biopython.org/SRC/biopython/Doc/examples/simple.dnd

Clade(name=’C’)
Clade(name=’D’)

Clade()
Clade(name=’E’)
Clade(name=’F’)
Clade(name=’G’)

The

Figure 13.1: A rooted tree drawn with Phylo.draw.

Note that the �le formats Newick and Nexus don’t support branch colors or widths, so if you use these

http://biopython.org/wiki/Phylo_cookbook

13.3 View and export treesThe simplest way to get an overview of aTreeobject is toprintit:>>> from Bio import Phylo>>> tree = Phylo.read("PhyloXML/example.xml", "phyloxml")>>> print(tree)Phylogeny(description=’phyloXML allows to use either a "branch_length" attribute...’, name=’example from Prof. Joe Felsenstein’s book "Inferring Phyl...’, rooted=True)Clade()Clade(branch_length=G
06)Clade(branch_length=G
102, name=’A’)Clade(branch_length=G
23, name=’B’)Clade(branch_length=G
4, name=’C’)This is essentially an outline of the object hierarchy Biopython uses to represent a tree. But more likely,you’d want to see a drawing of the tree. There are three functions to do this.As we saw in the demo,draw_asciiprints an ascii-art drawing of the tree (a rooted phylogram) tostandard output, or an open �le handle if given. Not all of the available information about the tree is shown,but it provides a way to quickly view the tree without relying on any external dependencies.>>> tree = Phylo.read("example.xml", "phyloxml")>>> Phylo.draw_ascii(tree)__________________ A__________|_| |___ B||___ CThedrawfunction draws a more attractive image using the matplotlib library. See the API documentationfor details on the arguments it accepts to customize the output.>>> tree = Phylo.read("example.xml", "phyloxml")>>> Phylo.draw(tree, branch_labels=lambda c: c.branch_length)draw_graphviz

Figure 13.3: A simple rooted tree plotted with the draw function.

Figure 13.4
/Im8 Do
Q
Q
0 g 0 G
1 0 0 1 -189 -166.6(8eeted)-3 [()1 -wnted wihe

Figure 13.7: A larger tree, using neato

Note that branch lengths are not displayed accurately, because Graphviz ignores them when creating
the node layouts. The branch lengths are retained when exporting a tree as a NetworkX graph object
(to_networkx), however.

See the Phylo page on the Biopython wiki (

http://biopython.org/wiki/Phylo

Since
oating-point arithmetic can produce some strange behavior, we don’t support matching

13.4.2 Information methods

These methods provide information about the whole tree (or any clade).

common ancestor Find the most recent common ancestor of all the given targets. (This will be a Clade

prune Prunes a terminal clade from the tree. If taxon is from a bifurcation, the connecting node will
be collapsed and its branch length added to remaining terminal node. This might no longer be a
meaningful value.

root with outgroup Reroot this tree with the outgroup clade containing the given targets, i.e. the common

http://biopython.org/wiki/Phylo
http://biopython.org/wiki/PhyloXML
http://www.atgc-montpellier.fr/phyml/
http://sco.h-its.org/exelixis/software.html
http://www.microbesonline.org/fasttree/

13.6 PAML integration

http://abacus.gene.ucl.ac.uk/software/paml.html
http://biopython.org/wiki/PAML
http://biopython.org/wiki/PAML
http://biopython.org/wiki/Phylo_cookbook

Bio.Nexus port Much of this module was written during Google Summer of Code 2009, under the auspices
of NESCent, as a project to implement Python support for the phyloXML data format (see 13.4.4).

http://pythonhosted.org/DendroPy/
http://pythonhosted.org/DendroPy/
http://pycogent.org/

Chapter 14

Sequence motif analysis using
Bio.motifs

http://fraenkel.mit.edu/TAMO/

then we can create a Motif object as follows:

>>> m = motifs.create(instances)

The instances are saved in an attribute m.instances, which is essentially a Python list with some added

>>> m.alphabet
IUPACUnambiguousDNA()
>>> m.alphabet.letters
’GATC’
>>> sorted(m.alphabet.letters)
[’A’, ’C’, ’G’, ’T’]
>>> m.counts[’A’,:]
(3, 7, 0, 2, 1)
>>> m.counts[0,:]
(3, 7, 0, 2, 1)

The motif has an associated consensus sequence, de�ned as the sequence of letters along the positions of the
motif for which the largest value in the corresponding columns of the .counts matrix is obtained:

>>> m.consensus
Seq(’TACGC’, IUPACUnambiguousDNA())

as well as an an84ers1(nsensus)-383(sequence,40333(corresp)-28(onding)-38toas)-383(the)-38smallrgest val(as)-384(in)-383(the)-833(columns)-384(of)-383(the)]TJ/F29 9.9626 T431.
matred:

http://weblogo.berkeley.edu

14.2 Reading motifs

http://jaspar.genereg.net
http://pazar.info

http://jaspar.genereg.net

>>> from Bio.motifs.jaspar.db import JASPAR5
>>>
>>> JASPAR_DB_HOST = <hostname>
>>> JASPAR_DB_NAME = <db_name>
>>> JASPAR_DB_USER = <user>
>>> JASPAR_DB_PASS = <passord>
>>>
>>> jdb = JASPAR5(
... host=JASPAR_DB_HOST,
... name=JASPAR_DB_NAME,
... user=JASPAR_DB_USER,

http://tfbs.genereg.net/

>>> motif.pseudocounts = motifs.jaspar.calculate_pseudocounts(motif)

**
MEME - Motif discovery tool
**

12

To parse a TRANSFAC �le, use

Table 14.2: Fields used to store references in TRANSFAC �les
RN Reference number
RA Reference authors
RL Reference data
RT Reference title
RX PubMed ID

07 46 0 0 0 A
08 1 0 0 45 T

A: 0.40 0.84 0.07 0.29 0.18
C: 0.04 0.04 0.60 0.27 0.71
G: 0.04 0.04 0.04 0.38 0.04
T: 0.51 0.07 0.29 0.07 0.07
<BLANKLINE>

>>> background = {’A’:0.3,’C’:0.2,’G’:0.2,’T’:0.3}

>>> for pos, seq in r.instances.search(test_seq):
... print("%i %s" % (pos, seq))
...
6 GCATT
20 GCATT

>>> distribution = pssm.distribution(background=background, precision=10**4)

The distribution object can be used to determine a number of di�erent thresholds. We can specify the
requested false-positive rate (probability of \�nding" a motif instance in background generated sequence):

>>> threshold = distribution.threshold_fpr(0.01)
>>> print("%5.3f" % threshold)
4.009

or the false-negative rate (probability of \not �nding" an instance generated from the motif):

>>> threshold = distribution.threshold_fnr(0.1)
>>> print("%5.3f" % threshold)
-0.510

0 1 2 3 4 5
A: 4.00 19.00 0.00 0.00 0.00 0.00
C: 16.00 0.00 20.00 0.00 0.00 0.00
G: 0.00 1.00 0.00 20.00 0.00 20.00
T: 0.00 0.00 0.00 0.00 20.00 0.00
<BLANKLINE>
>>> print(motif.pwm)

0 1 2 3 4 5
A: 0.20 0.95 0.00 0.00 0.00 0.00
C: 0.80 0.00 1.00 0.00 0.00 0.00
G: 0.00 0.05 0.00 1.00 0.00 1.00
T: 0.00 0.00 0.00 0.00 1.00 0.00
<BLANKLINE>

>>> print(motif.pss=t1i2wm)

>>> print(motif.pssm)
0 1 2 3 4 5

A: -0.19 1.46 -1.42 -1.42 -1.42 -1.42
C: 1.25 -1.42 1.52 -1.42 -1.42 -1.42
G: -1.42 -1.00 -1.42 1.52 -1.42 1.52
T: -1.42 -1.42 -1.42 -1.42 1.52 -1.42
<BLANKLINE>

You can also set the .pseudocounts to a dictionary over the four nucleotides if you want to use di�erent
pseudocounts for them. Setting motif.pseudocounts to None resets it to its default value of zero.

The position-speci�c scoring matrix depends on the background distribution, which is uniform by default:

>>> for letter in "ACGT":
... print("%s: %4.2f" % (letter, motif.background[letter]))
...
A: 0.25
C: 0.25
G: 0.25
T: 0.25

Again, if you modify the background distribution, the position-speci�c scoring matrix is recalculated:

>>> m_reb1.pseudocounts = {’A’:0.6, ’C’: 0.4, ’G’: 0.4, ’T’: 0.6}
>>> m_reb1.background = {’A’:0.3,’C’:0.2,’G’:0.2,’T’:0.3}
>>> pssm_reb1 = m_reb1.pssm
>>> print(pssm_reb1)

0 1 2 3 4 5 6 7 8
A: 0.00 -5.67 -5.67 1.72 -5.67 -5.67 -5.67 -5.67 -0.97
C: -0.97 -5.67 -5.67 -5.67 2.30 2.30 2.30 -5.67 -0.41
G: 1.30 -5.67 -5.67 -5.67 -5.67 -5.67 -5.67 1.57 1.44
T: -1.53 1.72 1.72 -5.67 -5.67 -5.67 -5.67 0.41 -0.97
<BLANKLINE>

� .version

� .command

The motifs returned by the MEME Parser can be treated exactly like regular Motif objects (with in-
stances), they also provide some extra functionality, by adding additional information about the instances.

>>> motifsM[0].consensus
Seq(’CTCAATCGTA’, IUPACUnambiguousDNA())
>>> motifsM[0].instances[0].sequence_name
’SEQ10;’

http://en.wikipedia.org/wiki/Sequence_motif
http://en.wikipedia.org/wiki/Position_weight_matrix
http://en.wikipedia.org/wiki/Consensus_sequence
http://bio.cs.washington.edu/assessment/

linear congruential generators, two (integer) seeds are needed for initialization, for which we use the system-
supplied random number generator rand (in the C standard library). We initialize this generator by calling
srand with the epoch time in seconds, and use the �rst two random numbers generated by rand as seeds for
the uniform random number generator in Bio.Cluster.

15.1 Distance functions

In order to cluster items into groups based on their similarity, we should �rst de�ne what exactly we mean
by similar. Bio.Cluster provides eight distance functions, indicated by a single character, to measure
similarity, or conversely, distance:

� ’e’: Euclidean distance;

� ’b’: City-block distance.

� ’c’: Pearson correlation coe�cient;

� ’a’: Absolute value of the Pearson correlation coe�cient;

� ’u’

where

�(0)
x =

vuut 1
n

nX
i=1

x2
i ;

�(0)
y =

vuut 1
n

nX
i=1

y2
i :

>>> from Bio.Cluster import clustercentroids
>>> cdata, cmask = clustercentroids(data)

where the following arguments are de�ned:

� data (required)
Array containing the data for the items.

� mask (default: None)
Array of integers showing which data are missing. If mask[i,j]==0, then data[i,j] is missing. If
mask==None, then all data are present.

� clusterid (default: None)
Vector of integers showing to which cluster each item belongs. If clusterid is None, then all items are

�

� transpose (default:se

� In pairwise average-linkage clustering, the distance between two nodes is de�ned as the average over
all pairwise distances between the items of the two nodes.

� In pairwise centroid-linkage clustering, the distance between two nodes is de�ned as the distance

>>> node.right = 2
>>> node.distance = 0.73
>>> node
(6, 2): 0.73

An error is raised if

This guarantees that any Tree object is always well-formed.

In this case, the following arguments are de�ned:

� distancematrix
The distance matrix, which can be speci�ed in three ways:

{ as a 2D Numerical Python array (in which only the left-lower part of the array will be accessed):

distance = array([[0.0, 1.1, 2.3],
[1.1, 0.0, 4.5],

The parameter � is a parameter that decreases at each iteration step. We have used a simple linear function
of the iteration step:

� = �init �
�

1� i

n

�
;

�init is the initial value of � as speci�ed by the user, i is the number of the current iteration step, and n is
the total number of iteration steps to be performed. While changes are made rapidly in the beginning of the

� components
The principal components.

� eigenvalues
The eigenvalues corresponding to each of the principal components.

The original matrix data can be recreated by calculating

http://rana.lbl.gov
http://jtreeview.sourceforge.net/

appropriate gene and sample. The 5.8 in row 2 column 4 means that the observed value for gene YAL001C
at 2 hours was 5.8. Missing values are acceptable and are designated by empty cells (e.g. YAL004C at 2
hours).

The input �le may contain additional information. A maximal input �le would look like this:

Calculating the distance matrix

To calculate the distance matrix between the items stored in the record, use

>>> matrix = record.distancematrix()

where the following arguments are de�ned:

� transpose (default: 0)
Determines if the distances between the rows of data are to be calculated (transpose==0), or between
the columns of data (transpose==1).

� dist (default: ’e’, Euclidean distance)
De�nes the distance function to be used (see 15.1).

� transpose transposetranspose

Saving the clustering result

This will create the �les cyano_result_K_G2_A2.cdt, cyano_result_K_G2.kgg, and cyano_result_K_A2.kag.

15.9 Auxiliary functions

median(data) returns the median of the 1D array data.
mean(data) returns the mean of the 1D arraydata.

The logistic regression model gives us appropriate values for the parameters �0, �1, �2 using two sets of
example genes:

� OP: Adjacent genes, on the same strand of DNA, known to belong to the same operon;

� NOP: Adjacent genes, on the same strand of DNA, known to belong to di�erent operons.

In the logistic regression model, the probability of belonging to a class depends on the score via the
logistic function. For the two classes OP and NOP, we can write this as

Pr(OPjx1; x2) =
exp(�0 + �1x1 + �2x2)

1 + exp(�0 + �1x1 + �2x2)
(16.2)

Pr(NOPjx1; x2) =
1

1 + exp(�0 + �1x1 + �2x2)
(16.3)

Using a set of gene pairs for which it is known whether they belong to the same operon (class OP) or to
di�erentthigh2�2, �1, �1

[85, -193.94],
[16, -182.71],
[15, -180.41],
[-26, -181.73],
[58, -259.87],
[126, -414.53],
[191, -249.57],
[113, -265.28],
[145, -312.99],
[154, -213.83],
[147, -380.85],
[93, -291.13]]

Iteration: 2 Log-likelihood function: -5.76877209868
Iteration: 3 Log-likelihood function: -5.11362294338

0, corresponding to class OP and class NOP, respectively. For example, let’s consider the gene pairs yxcE,
yxcD and yxiB, yxiA:

Table 16.2: Adjacent gene pairs of unknown operon status.
Gene pair Intergene distance x1 Gene expression score x2

yxcE | yxcD 6 -173.143442352
yxiB | yxiA

6

showing that the prediction is correct for all but one of the gene pairs. A more reliable estimate of the
prediction accuracy can be found from a leave-one-out analysis, in whi72hout thnb8(delout)-330(in)-3coralcultimound from the

In Biopython, the k-nearest neighbors method is available in Bio.kNN. To illustrate the use of the k-
nearest neighbor method in Biopython, we will use the same operon data set as in section 16.1.

16.2.2 Initializing a k-nearest neighbors model

Using the data in Table 16.1, we create and initialize a k

...
>>> x = [6, -173.143442352]
>>> print("yxcE, yxcD:", kNN.classify(model, x, weight_fn = weight))
yxcE, yxcD: 1

print("True:", ys[i], "Predicted:", kNN.classify(model, xs[i]))

Chapter 17

Graphics including GenomeDiagram

The Bio.Graphics module depends on the third party Python library ReportLab. Although focused on

http://www.reportlab.org
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://biopython.org/DIST/docs/GenomeDiagram/userguide.pdf

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.gb

Figure 17.1: Simple linear diagram for Yersinia pestis biovar Microtus plasmid pPCP1.

Figure 17.2: Simple circular diagram for Yersinia pestis biovar Microtus plasmid pPCP1.

256

17.1.4 A bottom up example

Now let’s produce exactly the same �gures, but using the bottom up approach. This means we create the
di�erent objects directly (and this can be done in almost any order) and then combine them.

from reportlab.lib import colors
from reportlab.lib.units import cm
from Bio.Graphics import GenomeDiagram
from Bio import SeqIO
record = SeqIO.read("NC_005816.gb", "genbank")

#Create the feature set and its feature objects,
gd_feature_set = GenomeDiagram.FeatureSet()
for feature in record.features:

if feature.type != "gene":
#Exclude this feature
continue

if len(gd_feature_set) % 2 == 0:
color = colors.blue

else:
color = colors.lightblue

gd_feature_set.add_feature(feature, color=color, label=True)

gds_features = gdt_features.new_set()

#Add three features to show the strand options,
feature = SeqFeature(FeatureLocation(25, 125), strand=+1)
gds_features.add_feature(feature, name="Forward", label=Tn41)feature = SeqFeature(FeatureLocat150orward"2w_setU), Nonerand=+1)

17.1.7 Feature sigils

The examples above have all just used the default sigil for the feature, a plain box, which was all that was

Figure 17.5: Simple GenomeDiagram showing arrow shaft options (see Section 17.1.8)

262

gd_feature_set.add_feature(feature, sigil="BIGARROW")

All the shaft and arrow head options shown above for the

start=0, end=len(record))
gd_diagram.write("plasmid_linear_nice.pdf", "PDF")
gd_diagram.write("plasmid_linear_nice.eps", "EPS")
gd_diagram.write("plasmid_linear_nice.svg", "SVG")

gd_diagram.draw(format="circular", circular=True, pagesize=(20*cm,20*cm),
start=0, end=len(record), circle_core = 0.5)

gd_diagram.write("plasmid_circular_nice.pdf", "PDF")
gd_diagram.write("plasmid_circular_nice.eps", "EPS")
gd_diagram.write("plasmid_circular_nice.svg", "SVG")

The expected output is shown in Figures 17.7 and 17.8.

Figure 17.7: Linear diagram for Yersinia pestis biovar Microtus plasmid pPCP1 showing selected restriction
digest sites (see Section 17.1.9).

17.1.10 Multiple tracks

All the examples so far have used a single track, but you can have more than one track { for example show
the genes on one, and repeat regions on another. In this example we’re going to show three phage genomes
side by side to scale, inspired by Figure 6 in Proux et al. (2002) [5]. We’ll need the GenBank �les for the
following three phage:

� NC_002703 { Lactococcus phage Tuc2009, complete genome (38347 bp)

� AF323668 { Bacteriophage bIL285, complete genome (35538 bp)

� NC_003212 { Listeria innocua

Figure 17.8: Circular diagram for Yersinia pestis biovar Microtus plasmid pPCP1 showing selected restriction

You can download these using Entrez if you like, see Section

http://www.sanger.ac.uk/resources/software/artemis/

i+=1

gd_diagram.draw(format="linear", pagesize=’A4’, fragments=1,
start=0, end=max_len)

gd_diagram.write(name + ".pdf", "PDF")
gd_diagram.write(name + ".eps", "EPS")
gd_diagram.write(name + ".svg", "SVG")

The expected output is shown in Figure 17.9. I did wonder why in the original manuscript there were no

Figure 17.9: Linear diagram with three tracks for Lactococcus phage Tuc2009 (NC 002703), bacteriophage
bIL285 (AF323668), and prophage 5 from Listeria innocua Clip11262 (NC 003212) (see Section 17.1.10).

red or orange genes marked in the bottom phage. Another important point is here the phage are shown with
di�erent lengths - this is because they are all drawn to the same scale (they are di�erent lengths).

The key di�erence from the published �gure is they have color-coded links between similar proteins {
which is what we will do in the next section.

Continuing the example from the previous section inspired by Figure 6 from Proux et al. 2002 [5], we

(30, "orf53", "lin2567"),
(28, "orf54", "lin2566"),

]

http://biopython.org/SRC/biopython/Doc/examples/Proux_et_al_2002_Figure_6.py

Figure 17.10: Linear diagram with three tracks for Lactococcus phage Tuc2009 (NC 002703), bacteriophage
bIL285 (AF323668), and prophage 5 from Listeria innocua Clip11262 (NC 003212) plus basic cross-links
shaded by percentage identity (see Section 17.1.11).

271

is to allocate space for empty tracks. Furthermore, in cases like this where there are no large gene overlaps,
we can use the axis-straddling BIGARROW

http://biopython.org/SRC/biopython/Doc/examples/Proux_et_al_2002_Figure_6.py

http://biopython.org/DIST/docs/GenomeDiagram/userguide.pdf
ftp://ftp.ncbi.nlm.nih.gov/genomes/Arabidopsis_thaliana

Arabidopsis thaliana

Chr I Chr II Chr III Chr IV Chr V

Figure 17.12: Simple chromosome diagram for

chr_diagram.draw("simple_chrom.pdf", "Arabidopsis thaliana")

ftp://ftp.ncbi.nlm.nih.gov/genomes/Arabidopsis_thaliana

#Add a closing telomere
end = BasicChromosome.TelomereSegment(inverted=True)
end.scale = telomere_length
cur_chromosome.add(end)

#This chromosome is done

Chapter 18

KEGG

KEGG (http://www.kegg.jp/) is a database resource for understanding high-level functions and utilities
of the biological system, such as the cell, the organism and the ecosystem, from molecular-level informa-
tion, especially large-scale molecular datasets generated by genome sequencing and other high-throughput
experimental technologies.

http://www.kegg.jp/
http://rest.kegg.jp/get/ec:5.4.2.2
http://www.kegg.jp/kegg/rest/keggapi.html

>>> request = REST.kegg_get("ec:5.4.2.2")
>>> open("ec_5.4.2.2.txt", ’w’).write(request.read())
>>> records = Enzyme.parse(open("ec_5.4.2.2.txt"))
>>> record = list(records)[0]
>>> record.classname
[’Isomerases;’, ’Intramolecular transferases;’, ’Phosphotransferases (phosphomutases)’]
>>> record.entry
’5.4.2.2’

Now, here’s a more realistic example which shows a combination of querying the KEGG API. This will
demonstrate how to extract a unique set of all human pathway gene symbols which relate to DNA repair.

http://www.kegg.jp/kegg/docs/keggapi.html

https://en.wikipedia.org/wiki/Phenotype_microarray
https://en.wikipedia.org/wiki/Phenotype_microarray
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/JSON
https://www.dsmz.de/research/microorganisms/projects/analysis-of-omnilog-phenotype-microarray-data.html
http://combogenomics.github.io/DuctApe/
http://biopython.org/SRC/biopython/Doc/examples/Plates.csv

uppercase character from A to H, while columns are indicated by a two digit number, from 01 to 12. There

>>> for time, signal in well:
... print(time, signal)
...
(0.0, 12.0)
(0.25, 18.0)
(0.5, 27.0)
(0.75, 35.0)
(1.0, 37.0)
(1.25, 41.0)
(1.5, 44.0)
(1.75, 44.0)
(2.0, 44.0)
(2.25, 44.0)
[...]

This method, while providing a way to access the raw data, doesn’t allow a direct comparison between
di�erent WellRecord objects, which may have measurements at di�erent time points.

19.1.2.2 Accessing interpolated data

To make it easier to compare di�erent experiments and in general to allow a more intuitive handling of

>>> corrected = record.subtract_control(control=’A01’)
>>> record[’A01’][63]
336.0
>>> corrected[’A01’][63]
0.0

19.1.2.4 Parameters extraction

Those wells where metabolic activity is observed show a sigmoid behavior for the colorimetric data. To allow

http://www.scipy.org/
http://www.ncbi.nlm.nih.gov/pubmed/16348228

area 4414.38
average_height 61.58
lag 48.60
max 143.00
min 12.00
plateau 120.02
slope 4.99

19.1.3 Writing Phenotype Microarray data

PlateRecord objects can be written to �le in the form of JSON �les, a format compatible with other software
packages such as opm or DuctApe.

>>> phenotype.write(record, "out.json", "pm-json")
1

285

https://en.wikipedia.org/wiki/JSON
https://www.dsmz.de/research/microorganisms/projects/analysis-of-omnilog-phenotype-microarray-data.html
http://combogenomics.github.io/DuctApe/

Chapter 20

Cookbook { Cool things to do with it

http://biopython.org/wiki/Category:Cookbook

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.gb

Personally I prefer the following version using a function to shu�e the record and a generator expression

First we scan through the �le once usingBio.SeqIO.parse(), recording the record identi�ers and theirlengths in a list of tuples. We then sort this list to get them in length order, and discard the lengths. Usingthis sorted list of identi�ersBio.SeqIO.index()allows us to retrieve the records one by one, and we passthem toBio.SeqIO.write()for output.These examples all useBio.SeqIOto parse the records intoSeqRecordobjects which are output usingBio.SeqIO.write(). What if you want to sort a �le format whichBio.SeqIO.write()doesn't support,like the plain text SwissProt format? Here is an alternative solution using theget_raw()

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz
http://www.ebi.ac.uk/ena/data/view/SRS004476

if min(rec.letter_annotations["phred_quality"]) >= 20)
count = SeqIO.write(good_reads, "good_quality.fastq", "fastq")
print("Saved %i reads" % count)

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz

This takes longer, as this time the output �le contains all 41892 reads. Again, we’re used a generator

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz

trimmed_reads = trim_adaptors(original_reads, "GATGACGGTGT")
count = SeqIO.write(trimmed_reads, "trimmed.fastq", "fastq")
print("Saved %i reads" % count)

http://www.biopython.org/DIST/docs/api/Bio.SeqIO.QualityIO-module.html

20.1.10 Converting FASTA and QUAL �les into FASTQ �les

FASTQ �les hold both sequences and their quality strings. FASTA �les hold just sequences, while QUAL
�les hold just the qualities. Therefore a single FASTQ �le can be converted to or from paired FASTA and
QUAL �les.

Going from FASTQ to FASTA is easy:

from Bio import SeqIO
SeqIO.convert("example.fastq", "fastq", "example.fasta", "fasta")

Going from FASTQ to QUAL is also easy:

from Bio import SeqIO

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR020/SRR020192/SRR020192.fastq.gz

>>> fq_dict.keys()[:4]
[’SRR020192.38240’, ’SRR020192.23181’, ’SRR020192.40568’, ’SRR020192.23186’]
>>> fq_dict["SRR020192.23186"].seq
Seq(’GTCCCAGTATTCGGATTTGTCTGCCAAAACAATGAAATTGACACAGTTTACAAC...CCG’, SingleLetterAlphabet())

When testing this on a FASTQ �le with seven million reads, indexing took about a minute, but record
access was almost instant.

The example in Section 20.1.5 show how you can use the Bio.SeqIO.index() function to sort a large
FASTA �le { this could also be used on FASTQ �les.

20.1.13 Identifying open reading frames

A very simplistic �rst step at identifying possible genes is to look for open reading frames (ORFs). By this
we mean look in all six frames for long regions without stop codons { an ORF is just a region of nucleotides
with no in frame stop codons.

Of course, to �nd a gene you would also need to worry about locating a start codon, possible promoters
{ and in Eukaryotes there are introns to worry about too. However, this approach is still useful in viruses
and Prokaryotes.

To show how you might approach this with Biopython, we’ll need a sequence to search, and as an example
we’ll again use the bacterial plasmid { although this time we’ll start with a plain FASTA �le with no pre-
marked genes: NC 005816.fna. This is a bacterial sequence, so we’ll want to use NCBI codon table 11 (see
Section 3.9 about translation).

>>> from Bio import SeqIO
>>> record = SeqIO.read("NC_005816.fna", "fasta")
>>> table = 11
>>> min_pro_len = 100

Here is a neat trick using the Seq object’s split method to get a list of all the possible ORF translations
in the six reading frames:

>>> for strand, nuc in [(+1, record.seq), (-1, record.seq.reverse_complement())]:

http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.fna

table = 11
min_pro_len = 100

def find_orfs_with_trans(seq, trans_table, min_protein_length):
answer = []
seq_len = len(seq)

before, so you can check this is doing the same thing. Here we have sorted them by location to make it easier
to compare to the actual annotation in the GenBank �le (as visualised in Section 17.1.9).

If however all you want to �nd are the locations of the open reading frames, then it is a waste of time
to translate every possible codon, including doing the reverse complement to search the reverse strand too.
All you need to do is search for the possible stop codons (and their reverse complements). Using regular

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta

Figure 20.1: Histogram of orchid sequence lengths.

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta

Figure 20.3: Nucleotide dot plot of two orchid sequence lengths (using pylab’s imshow function).

Note that we have not checked for reverse com-rFiguecmatc42arhesFiguechegure1(.)-703 [(ho)28(w)-420(w)27’llFiguecusote otepllilab’t

dict_two = {}
for (seq, section_dict) in [(str(rec_one.seq).upper(), dict_one),

(str(rec_two.seq).upper(), dict_two)]:
for i in range(len(seq)-window):

section = seq[i:i+window]
try:

section_dict[section].append(i)
except KeyError:

section_dict[section] = [i]
#Now find any sub-sequences found in both sequences
#(Python 2.3 would require slightly different code here)
matches = set(dict_one).intersection(dict_two)
print("%i unique matches" % len(matches))

In order to use the pylab.scatter() we need separate lists for the x and y co-ordinates:

#Create lists of xr:
for Td [(section)-525(inen(myError:)]TJ 20.921 -11.955 Td [(for)-525(i)-525(inet(din_dict[seow):)]TJ 20.922 -11.955 Td [(forj-525(i)-525(inet(din_dict[seow):)]TJ 20.921 -11.955xction].append(i�])]TJ 0 -11.956yction].appejer()

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001666/SRR001666_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001666/SRR001666_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR001/SRR001666/SRR001666_2.fastq.gz
http://www.ebi.ac.uk/ena/data/view/SRR001666

consensus = summary_align.dumb_consensus()

As the name suggests, this is a really simple consensus calculator, and will just add up all of the residues

http://www.lecb.ncifcrf.gov/~toms/paper/primer/
http://www.lecb.ncifcrf.gov/~toms/paper/primer/

� Qi { The expected frequency of a letter i

20.4 Substitution Matrices

Substitution matrices are an extremely important part of everyday bioinformatics work. They provide the

file:examples/protein.aln
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/protein.aln

>>> from Bio import SubsMat
>>> my_arm = SubsMat.SeqMat(replace_info)

http://www.biosql.org/
http://open-bio.org/
http://biopython.org/wiki/BioSQL

Chapter 21

The Biopython testing framework

Biopython has a regression testing framework (the �le run_tests.py) based on unittest

http://docs.python.org/library/unittest.html

By default, run_tests.py runs all tests, including the docstring tests.
If an individual test is failing, you can also try running it directly, which may give you more information.

http://tox.readthedocs.org/en/latest/

1. test_Biospam.py { The actual test code for your module.

2. Biospam [optional]{ A directory where any necessary input �les will be located. If you have any output

(a) The long way:

�

online documentaion for unittest. If you are familiar with the unittest

http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html

to execute the tests when the script is run by itself (rather than imported from

$ python test_BiospamMyModule.py
An addition test ... ok
A second addition test ... ok
Now let’s check division ... ok
A second division test ... ok

--
Ran 4 tests in 0.001s

OK

If your module contains docstring tests (see section 21.3), you may want to include those in the tests to
be run. You can do so as follows by modifying the code under if __name__ == "__main__": to look like
this:

if __name__ == "__main__":
unittest_suite = unittest.TestLoader().loadTestsFromName("test_Biospam")
doctest_suite = doctest.DocTestSuite(Biospam)

http://docs.python.org/library/doctest.html
http://docs.python.org/library/doctest.html

Chapter 22

Advanced

22.1 Parser Design

Many of the older Biopython parsers were built around an event-oriented design that includes Scanner and

(a) __init__(self,data=None,alphabet=None, mat_name=’’, build_later=0):

i.

i. Full matrix size: N*N
ii. Half matrix size: N(N+1)/2

(a) acc_rep_mat: user provided accepted replacements matrix

(b) exp_freq_table: expected frequencies table. Used if provided, if not, generated from the
acc_rep_mat.

(c) logbase

Summing up to 1.

Chapter 23

Where to go from here { contributing
to Biopython

23.1 Bug Reports + Feature Requests

Getting feedback on the Biopython modules is very important to us. Open-source projects like this bene�t
greatly from feedback, bug-reports (and patches!) from a wide variety of contributors.

http://biopython.org/wiki/Mailing_lists
https://github.com/biopython/biopython/issues
https://github.com/biopython/biopython/issues
http://redmine.open-bio.org/projects/biopython
http://redmine.open-bio.org/projects/biopython
http://biopython.org/DIST/docs/api
http://biopython.org/wiki/Category:Cookbook

http://www.rpm.org

23.7 Contributing Code

There are no barriers to joining Biopython code development other than an interest in creating biology-
related code in Python. The best place to express an interest is on the Biopython mailing lists { just let us
know you are interested in coding and what kind of stu� you want to work on. Normally, we try to have

http://biopython.org/wiki/Contributing
http://biopython.org/wiki/Scriptcentral

Chapter 24

Appendix: Useful stu� about Python

https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/m_cold.fasta

Bibliography

[1]

http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btk021
http://dx.doi.org/10.1146/annurev.phyto.44.070505.143444
http://dx.doi.org/10.1007/s10482-009-9316-9
http://dx.doi.org/10.1128/JB.184.21.6026-6036.2002
http://dx.doi.org/10.1186/1471-2164-13-75
http://dx.doi.org/10.1093/nar/gkp1137
http://dx.doi.org/10.1038/4462
http://dx.doi.org/10.1186/1471-2105-13-209
http://dx.doi.org/10.1093/nar/13.9.3021
http://dx.doi.org/10.1093/nar/15.4.1353

[12] Timothy L. Bailey and Charles Elkan: \Fitting a mixture model by expectation maximization to discover
motifs in biopolymers",

http://dx.doi.org/10.1093/bioinformatics/bth078
http://dx.doi.org/10.1073/pnas.96.19.10943-c
http://dx.doi.org/10.1093/bioinformatics/btg299
http://dx.doi.org/10.1002/prot.10338
http://dx.doi.org/10.1002/prot.20379
http://dx.doi.org/10.1145/42372.42381
http://dx.doi.org/10.1145/62959.62969
http://dx.doi.org/10.1186/1471-2105-6-202
http://dx.doi.org/10.1093/nar/gkg108
http://dx.doi.org/10.1093/comjnl/16.1.30

[30] Pablo Tamayo, Donna Slonim, Jill Mesirov, Qing Zhu, Sutisak Kitareewan, Ethan Dmitrovsky, Eric S.
Lander, Todd R. Golub: \Interpreting patterns of gene expression with self-organizing maps: Methods
and application to hematopoietic di�erentiation". Proceedings of the National Academy of Science USA
96 (6): 2907{2912 (1999). doi:10.1073/pnas.96.6.2907

[31] Robert C. Tryon, Daniel E. Bailey: Cluster analysis. New York: McGraw-Hill (1970).

[32]

http://dx.doi.org/10.1073/pnas.96.6.2907
http://dx.doi.org/10.1093/bioinformatics/17.9.763
http://dx.doi.org/10.1093/bioinformatics/bth349

	Introduction
	What is Biopython?
	What can I find in the Biopython package
	Installing Biopython
	Frequently Asked Questions (FAQ)

	Quick Start -- What can you do with Biopython?
	General overview of what Biopython provides
	Working with sequences
	A usage example
	Parsing sequence file formats
	Simple FASTA parsing example
	Simple GenBank parsing example
	I love parsing -- please don't stop talking about it!

	Connecting with biological databases
	What to do next

	Sequence objects
	Sequences and Alphabets
	Sequences act like strings
	Slicing a sequence
	Turning Seq objects into strings
	Concatenating or adding sequences
	Changing case
	Nucleotide sequences and (reverse) complements
	Transcription
	Translation
	Translation Tables
	Comparing Seq objects
	MutableSeq objects
	UnknownSeq objects
	Working with strings directly

	Sequence annotation objects
	The SeqRecord object
	Creating a SeqRecord
	SeqRecord objects from scratch
	SeqRecord objects from FASTA files
	SeqRecord objects from GenBank files

	Feature, location and position objects
	SeqFeature objects
	Positions and locations
	Sequence described by a feature or location

	Comparison
	References
	The format method
	Slicing a SeqRecord
	Adding SeqRecord objects
	Reverse-complementing SeqRecord objects

	Sequence Input/Output
	Parsing or Reading Sequences
	Reading Sequence Files
	Iterating over the records in a sequence file
	Getting a list of the records in a sequence file
	Extracting data

	Parsing sequences from compressed files
	Parsing sequences from the net
	Parsing GenBank records from the net
	Parsing SwissProt sequences from the net

	Sequence files as Dictionaries
	Sequence files as Dictionaries -- In memory
	Sequence files as Dictionaries -- Indexed files
	Sequence files as Dictionaries -- Database indexed files
	Indexing compressed files
	Discussion

	Writing Sequence Files
	Round trips
	Converting between sequence file formats
	Converting a file of sequences to their reverse complements
	Getting your SeqRecord objects as formatted strings

	Multiple Sequence Alignment objects
	Parsing or Reading Sequence Alignments
	Single Alignments
	Multiple Alignments
	Ambiguous Alignments

	Writing Alignments
	Converting between sequence alignment file formats
	Getting your alignment objects as formatted strings

	Manipulating Alignments
	Slicing alignments
	Alignments as arrays

	Alignment Tools
	ClustalW
	MUSCLE
	MUSCLE using stdout
	MUSCLE using stdin and stdout
	EMBOSS needle and water
	Biopython's pairwise2

	BLAST
	Running BLAST over the Internet
	Running BLAST locally
	Introduction
	Standalone NCBI BLAST+
	Other versions of BLAST

	Parsing BLAST output
	The BLAST record class
	Deprecated BLAST parsers
	Parsing plain-text BLAST output
	Parsing a plain-text BLAST file full of BLAST runs
	Finding a bad record somewhere in a huge plain-text BLAST file

	Dealing with PSI-BLAST
	Dealing with RPS-BLAST

	BLAST and other sequence search tools (experimental code)
	The SearchIO object model
	QueryResult
	Hit
	HSP
	HSPFragment

	A note about standards and conventions
	Reading search output files
	Dealing with large search output files with indexing
	Writing and converting search output files

	Accessing NCBI's Entrez databases
	Entrez Guidelines
	EInfo: Obtaining information about the Entrez databases
	ESearch: Searching the Entrez databases
	EPost: Uploading a list of identifiers
	ESummary: Retrieving summaries from primary IDs
	EFetch: Downloading full records from Entrez
	ELink: Searching for related items in NCBI Entrez
	EGQuery: Global Query - counts for search terms
	ESpell: Obtaining spelling suggestions
	Parsing huge Entrez XML files
	Handling errors
	Specialized parsers
	Parsing Medline records
	Parsing GEO records
	Parsing UniGene records

	Using a proxy
	Examples
	PubMed and Medline
	Searching, downloading, and parsing Entrez Nucleotide records
	Searching, downloading, and parsing GenBank records
	Finding the lineage of an organism

	Using the history and WebEnv
	Searching for and downloading sequences using the history
	Searching for and downloading abstracts using the history
	Searching for citations

	Swiss-Prot and ExPASy
	Parsing Swiss-Prot files
	Parsing Swiss-Prot records
	Parsing the Swiss-Prot keyword and category list

	Parsing Prosite records
	Parsing Prosite documentation records
	Parsing Enzyme records
	Accessing the ExPASy server
	Retrieving a Swiss-Prot record
	Searching Swiss-Prot
	Retrieving Prosite and Prosite documentation records

	Scanning the Prosite database

	Going 3D: The PDB module
	Reading and writing crystal structure files
	Reading a PDB file
	Reading an mmCIF file
	Reading files in the MMTF format
	Reading files in the PDB XML format
	Writing PDB files

	Structure representation
	Structure
	Model
	Chain
	Residue
	Atom
	Extracting a specific Atom/Residue/Chain/Model from a Structure

	Disorder
	General approach
	Disordered atoms
	Disordered residues

	Hetero residues
	Associated problems
	Water residues
	Other hetero residues

	Navigating through a Structure object
	Analyzing structures
	Measuring distances
	Measuring angles
	Measuring torsion angles
	Determining atom-atom contacts
	Superimposing two structures
	Mapping the residues of two related structures onto each other
	Calculating the Half Sphere Exposure
	Determining the secondary structure
	Calculating the residue depth

	Common problems in PDB files
	Examples
	Automatic correction
	Fatal errors

	Accessing the Protein Data Bank
	Downloading structures from the Protein Data Bank
	Downloading the entire PDB
	Keeping a local copy of the PDB up to date

	General questions
	How well tested is Bio.PDB?
	How fast is it?
	Is there support for molecular graphics?
	Who's using Bio.PDB?

	Bio.PopGen: Population genetics
	GenePop

	Phylogenetics with Bio.Phylo
	Demo: What's in a Tree?
	Coloring branches within a tree

	I/O functions
	View and export trees
	Using Tree and Clade objects
	Search and traversal methods
	Information methods
	Modification methods
	Features of PhyloXML trees

	Running external applications
	PAML integration
	Future plans

	Sequence motif analysis using Bio.motifs
	Motif objects
	Creating a motif from instances
	Creating a sequence logo

	Reading motifs
	JASPAR
	MEME
	TRANSFAC

	Writing motifs
	Position-Weight Matrices
	Position-Specific Scoring Matrices
	Searching for instances
	Searching for exact matches
	Searching for matches using the PSSM score
	Selecting a score threshold

	Each motif object has an associated Position-Specific Scoring Matrix
	Comparing motifs
	De novo motif finding
	MEME

	Useful links

	Cluster analysis
	Distance functions
	Calculating cluster properties
	Partitioning algorithms
	Hierarchical clustering
	Self-Organizing Maps
	Principal Component Analysis
	Handling Cluster/TreeView-type files
	Example calculation
	Auxiliary functions

	Supervised learning methods
	The Logistic Regression Model
	Background and Purpose
	Training the logistic regression model
	Using the logistic regression model for classification
	Logistic Regression, Linear Discriminant Analysis, and Support Vector Machines

	k-Nearest Neighbors
	Background and purpose
	Initializing a k-nearest neighbors model
	Using a k-nearest neighbors model for classification

	Naïve Bayes
	Maximum Entropy
	Markov Models

	Graphics including GenomeDiagram
	GenomeDiagram
	Introduction
	Diagrams, tracks, feature-sets and features
	A top down example
	A bottom up example
	Features without a SeqFeature
	Feature captions
	Feature sigils
	Arrow sigils
	A nice example
	Multiple tracks
	Cross-Links between tracks
	Further options
	Converting old code

	Chromosomes
	Simple Chromosomes
	Annotated Chromosomes

	KEGG
	Parsing KEGG records
	Querying the KEGG API

	Bio.phenotype: analyse phenotypic data
	Phenotype Microarrays
	Parsing Phenotype Microarray data
	Manipulating Phenotype Microarray data
	Writing Phenotype Microarray data

	Cookbook -- Cool things to do with it
	Working with sequence files
	Filtering a sequence file
	Producing randomised genomes
	Translating a FASTA file of CDS entries
	Making the sequences in a FASTA file upper case
	Sorting a sequence file
	Simple quality filtering for FASTQ files
	Trimming off primer sequences
	Trimming off adaptor sequences
	Converting FASTQ files
	Converting FASTA and QUAL files into FASTQ files
	Indexing a FASTQ file
	Converting SFF files
	Identifying open reading frames

	Sequence parsing plus simple plots
	Histogram of sequence lengths
	Plot of sequence GC%
	Nucleotide dot plots
	Plotting the quality scores of sequencing read data

	Dealing with alignments
	Calculating summary information
	Calculating a quick consensus sequence
	Position Specific Score Matrices
	Information Content

	Substitution Matrices
	Using common substitution matrices
	Creating your own substitution matrix from an alignment

	BioSQL -- storing sequences in a relational database

	The Biopython testing framework
	Running the tests
	Running the tests using Tox

	Writing tests
	Writing a print-and-compare test
	Writing a unittest-based test

	Writing doctests
	Writing doctests in the Tutorial

	Advanced
	Parser Design
	Substitution Matrices
	SubsMat
	FreqTable

	Where to go from here -- contributing to Biopython
	Bug Reports + Feature Requests
	Mailing lists and helping newcomers
	Contributing Documentation
	Contributing cookbook examples
	Maintaining a distribution for a platform
	Contributing Unit Tests
	Contributing Code

	Appendix: Useful stuff about Python
	What the heck is a handle?
	Creating a handle from a string

