next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                        2 2    2    2 2     2   2   2         2 2    2 
o2 = ideal (h*q*v - t, i x  - f g, g w x - k , b p*r  - s, d*o p  - t ,
     ------------------------------------------------------------------------
      2 2 2       2 2 2    2
     c g q  - u, a g h  - f )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 4 4 2 3    2   4   2   3 3 3 4 2 2    2 4 3 4   3 3 3 3 4 2  
o3 = ideal (a b f h r  - d n*u v*w , c e i n p s  - a f u x , b c e g r u  -
     ------------------------------------------------------------------------
      3 4 3 3   2 4     3 4 4    3 4 3
     a f l q , b c g*j*l m x  - d o t )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.