Partial specialization of p-adic based solver with Wiedemann algorithm.
More...
#include <rational-solver.h>
|
| RationalSolver (const Ring &r=Ring(), const RandomPrime &rp=RandomPrime(20), const WiedemannTraits &traits=WiedemannTraits()) |
| Constructor.
|
|
| RationalSolver (const Prime &p, const Ring &r=Ring(), const RandomPrime &rp=RandomPrime(20), const WiedemannTraits &traits=WiedemannTraits()) |
| Constructor with a prime.
|
|
template<class Ring, class Field, class RandomPrime>
class LinBox::RationalSolver< Ring, Field, RandomPrime, WiedemannTraits >
Partial specialization of p-adic based solver with Wiedemann algorithm.
See the following reference for details on this algorithm:
- Bibliography:
- Douglas H. Wiedemann Solving sparse linear equations over finite fields. IEEE Transaction on Information Theory, 32(1), pages 54-62, 1986.
- Erich Kaltofen and B. David Saunders On Wiedemann's method of solving sparse linear systems. In Applied Algebra, Algebraic Algorithms and Error Correcting Codes - AAECC'91, volume 539 of Lecture Notes in Computer Sciences, pages 29-38, 1991.
RationalSolver |
( |
const Ring & |
r = Ring() , |
|
|
const RandomPrime & |
rp = RandomPrime( 20 ) , |
|
|
const WiedemannTraits & |
traits = WiedemannTraits() |
|
) |
| |
|
inline |
Constructor.
- Parameters
-
r | a Ring, set by default |
rp | a RandomPrime generator, set by default |
traits | |
RationalSolver |
( |
const Prime & |
p, |
|
|
const Ring & |
r = Ring() , |
|
|
const RandomPrime & |
rp = RandomPrime( 20 ) , |
|
|
const WiedemannTraits & |
traits = WiedemannTraits() |
|
) |
| |
|
inline |
Constructor with a prime.
- Parameters
-
p | a Prime |
r | a Ring, set by default |
rp | a RandomPrime generator, set by default |
traits | |
The documentation for this class was generated from the following files: