This abbreviation allows us to save a bit of typing, and in some cases, agrees with standard mathematical notation.
i1 : R = ZZ[a .. i]; |
i2 : f = genericMatrix(R,a,3,3) o2 = | a d g | | b e h | | c f i | 3 3 o2 : Matrix R <--- R |
i3 : exteriorPower(2,f) o3 = | -bd+ae -bg+ah -eg+dh | | -cd+af -cg+ai -fg+di | | -ce+bf -ch+bi -fh+ei | 3 3 o3 : Matrix R <--- R |
i4 : exteriorPower_2 f o4 = | -bd+ae -bg+ah -eg+dh | | -cd+af -cg+ai -fg+di | | -ce+bf -ch+bi -fh+ei | 3 3 o4 : Matrix R <--- R |
i5 : p = prepend_7 o5 = p o5 : FunctionClosure |
i6 : p {8,9,10} o6 = {7, 8, 9, 10} o6 : List |