i2 : h = hyperGraph {z_2*z_3*z_4,z_6*z_8,z_7*z_5,z_1*z_6*z_7,z_2*z_4*z_8}
o2 = HyperGraph{edges => {{z , z , z }, {z , z }, {z , z , z }, {z , z , z }, {z , z }}}
2 3 4 5 7 1 6 7 2 4 8 6 8
ring => S
vertices => {z , z , z , z , z , z , z , z }
1 2 3 4 5 6 7 8
o2 : HyperGraph
|
i3 : edges h
o3 = {{z , z , z }, {z , z }, {z , z , z }, {z , z , z }, {z , z }}
2 3 4 5 7 1 6 7 2 4 8 6 8
o3 : List
|
i4 : getEdgeIndex (h,{z_2,z_4,z_8}) -- although entered last, edge is internally stored in 4th spot (counting begins at 0)
o4 = 3
|