next | previous | forward | backward | up | top | index | toc | Macaulay2 web site

Hom(ChainComplex,ChainComplex) -- Create the homomorphism complex of a pair of chain complexes.

Synopsis

Description

i1 : R = ZZ/101[a,b,c]

o1 = R

o1 : PolynomialRing
i2 : kRes = res coker vars R

      1      3      3      1
o2 = R  <-- R  <-- R  <-- R  <-- 0
                                  
     0      1      2      3      4

o2 : ChainComplex
i3 : Hom(kRes,kRes)

                                                                                                                                                                                                                                                      1
o3 = 0  <-- image {-3} | 1 | <-- image {-2} | 1 0 0 0 0 0 | <-- image {-1} | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <-- image | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <-- image {1} | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <-- image {2} | 1 0 0 0 0 0 | <-- R  <-- 0
                                       {-2} | 0 1 0 0 0 0 |           {-1} | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 |           | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 |           {2} | 0 1 0 0 0 0 |             
     -4     -3                         {-2} | 0 0 1 0 0 0 |           {-1} | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 |           | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 |           {2} | 0 0 1 0 0 0 |     3      4
                                       {-2} | 0 0 0 1 0 0 |           {-1} | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 |           | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 |           {2} | 0 0 0 1 0 0 |
                                       {-2} | 0 0 0 0 1 0 |           {-1} | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 |           | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 |           {2} | 0 0 0 0 1 0 |
                                       {-2} | 0 0 0 0 0 1 |           {-1} | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 |           | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 |           {2} | 0 0 0 0 0 1 |
                                                                      {-1} | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 |           | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 |      
                                 -2                                   {-1} | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 |           | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 |     2
                                                                      {-1} | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 |           | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 |
                                                                      {-1} | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |           | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
                                                                      {-1} | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 |           | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 |
                                                                      {-1} | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 |           | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 |
                                                                      {-1} | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 |           | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 |
                                                                      {-1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 |           | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 |
                                                                      {-1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |           {1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 |      
                                                                -1                                                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 |     1
                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 |
                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 |
                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
                                                                                                                  
                                                                                                                 0

o3 : ChainComplex