i1 : loadPackage "SimplicialComplexes";
|
i2 : R = QQ[a..d];
|
i3 : D = simplicialComplex monomialIdeal(a*b*c*d);
|
i4 : ring D
o4 = R
o4 : PolynomialRing
|
i5 : coefficientRing D
o5 = QQ
o5 : Ring
|
i6 : S = ZZ[w..z];
|
i7 : E = simplicialComplex monomialIdeal(w*x*y*z);
|
i8 : ring E
o8 = S
o8 : PolynomialRing
|
i9 : coefficientRing E
o9 = ZZ
o9 : Ring
|
Some computations depend on the choice of coefficient ring, for example, the boundary maps and the chain complex of D.
i10 : chainComplex D
1 4 6 4
o10 = QQ <-- QQ <-- QQ <-- QQ
-1 0 1 2
o10 : ChainComplex
|
i11 : chainComplex E
1 4 6 4
o11 = ZZ <-- ZZ <-- ZZ <-- ZZ
-1 0 1 2
o11 : ChainComplex
|