i2 : k6 = completeGraph S -- complete graph on 6 vertices
o2 = Graph{edges => {{a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {b, c}, {b, d}, {b, e}, {b, f}, {c, d}, {c, e}, {c, f}, {d, e}, {d, f}, {e, f}}}
ring => S
vertices => {a, b, c, d, e, f}
o2 : Graph
|
i3 : coverIdeal k6 -- each generator corresponds to a minimal vertex of k6
o3 = monomialIdeal (a*b*c*d*e, a*b*c*d*f, a*b*c*e*f, a*b*d*e*f, a*c*d*e*f,
------------------------------------------------------------------------
b*c*d*e*f)
o3 : MonomialIdeal of S
|
i4 : h = hyperGraph {a*b*c,c*d,d*e*f}
o4 = HyperGraph{edges => {{a, b, c}, {c, d}, {d, e, f}}}
ring => S
vertices => {a, b, c, d, e, f}
o4 : HyperGraph
|