Give a list of vertices (perhaps in some specified order), this function returns the graph of the cycle on those vertices, using the order given or the internal ordering of the
vertices. Unspecified vertices are treated as isolated vertices.
i1 : R = QQ[a,b,c,d,e];
|
i2 : cycle R
o2 = Graph{edges => {{a, b}, {b, c}, {c, d}, {d, e}, {a, e}}}
ring => R
vertices => {a, b, c, d, e}
o2 : Graph
|
i3 : cycle(R,3)
o3 = Graph{edges => {{a, b}, {b, c}, {a, c}}}
ring => R
vertices => {a, b, c, d, e}
o3 : Graph
|
i4 : cycle {e,c,d,b}
o4 = Graph{edges => {{c, e}, {c, d}, {b, d}, {b, e}}}
ring => R
vertices => {a, b, c, d, e}
o4 : Graph
|
i5 : R = QQ[a,c,d,b,e];-- variables given different order
|
i6 : cycle R
o6 = Graph{edges => {{a, c}, {c, d}, {d, b}, {b, e}, {a, e}}}
ring => R
vertices => {a, c, d, b, e}
o6 : Graph
|