next | previous | forward | backward | up | top | index | toc | Macaulay2 web site

gin -- the generic initial ideal

Synopsis

Description

Example: a complete intersection of type (3,3) in P^3

i1 : R = QQ[a..d];
i2 : I = ideal(a^3+c^2*d, b^3-a*d^2);

o2 : Ideal of R
i3 : gin(I)

             3   2      3   5
o3 = ideal (a , a b, a*b , b )

o3 : Ideal of R

The Stanley-Reisner ideal of RP^2

i4 : loadPackage "GenericInitialIdeal"

o4 = GenericInitialIdeal

o4 : Package
i5 : R = QQ[x0,x1,x2,x3,x4,x5]

o5 = R

o5 : PolynomialRing
i6 : M = matrix {{x1*x3*x4, x0*x3*x4, x1*x2*x4, x0*x2*x3, x0*x1*x2, x2*x4*x5, x0*x4*x5, x2*x3*x5, x1*x3*x5, x0*x1*x5}} --Stanley-Reisner ideal of RP^2

o6 = | x1x3x4 x0x3x4 x1x2x4 x0x2x3 x0x1x2 x2x4x5 x0x4x5 x2x3x5 x1x3x5 x0x1x5
     ------------------------------------------------------------------------
     |

             1       10
o6 : Matrix R  <--- R
i7 : I=ideal flatten entries M

o7 = ideal (x1*x3*x4, x0*x3*x4, x1*x2*x4, x0*x2*x3, x0*x1*x2, x2*x4*x5,
     ------------------------------------------------------------------------
     x0*x4*x5, x2*x3*x5, x1*x3*x5, x0*x1*x5)

o7 : Ideal of R
i8 : J=(ideal{x0,x1,x2})^3

              3    2      2         2                 2    3    2         2 
o8 = ideal (x0 , x0 x1, x0 x2, x0*x1 , x0*x1*x2, x0*x2 , x1 , x1 x2, x1*x2 ,
     ------------------------------------------------------------------------
       3
     x2 )

o8 : Ideal of R
i9 : assert(gin(I)==J)

This symbol is provided by the package GenericInitialIdeal.

Caveat

The method gin uses a probabilistic algorithm. The returned answer is correct with high probability in characteristic zero and large positive characteristic, but might be wrong in small positive characteristic. For details in this situation it is recommended to use the Verbose option.

See also

Ways to use gin :