See
Gröbner bases for more information and examples.
The returned value is not the Gröbner basis itself. The matrix whose columns form a sorted, auto-reduced Gröbner basis are obtained by applying
generators (synonym:
gens) to the result of
gb.
i1 : R = QQ[a..d]
o1 = R
o1 : PolynomialRing
|
i2 : I = ideal(a^3-b^2*c, b*c^2-c*d^2, c^3)
3 2 2 2 3
o2 = ideal (a - b c, b*c - c*d , c )
o2 : Ideal of R
|
i3 : G = gens gb I
o3 = | c3 bc2-cd2 a3-b2c c2d2 cd4 |
1 5
o3 : Matrix R <--- R
|