next | previous | forward | backward | up | top | index | toc | Macaulay2 web site

sheafHom(CoherentSheaf,CoherentSheaf) -- sheaf Hom

Synopsis

Description

If M or N is a sheaf of rings, it is regarded as a sheaf of modules in the evident way.

M and N must be coherent sheaves on the same projective variety or scheme X.

The result is the sheaf associated to the graded module Hom(module M, module N).

i1 : X = Proj(QQ[x,y])

o1 = X

o1 : ProjectiveVariety
i2 : sheafHom(OO_X^1(2),OO_X(11)^1)

o2 = image {-9} | 1 |

                                         1
o2 : coherent sheaf on X, subsheaf of OO  (9)
                                        X

See also