Compute the deformation polytope of C, i.e., the convex hull of all homogeneous (i.e., degree(FirstOrderDeformation) zero) deformations associated to C, considering them as lattice monomials (i.e., their preimages under C.grading).
i1 : R=QQ[x_0..x_3] o1 = R o1 : PolynomialRing |
i2 : I=ideal(x_0*x_1,x_2*x_3) o2 = ideal (x x , x x ) 0 1 2 3 o2 : Ideal of R |
i3 : C=idealToComplex I o3 = 1: x x x x x x x x 0 2 1 2 0 3 1 3 o3 : complex of dim 1 embedded in dim 3 (printing facets) equidimensional, simplicial, F-vector {1, 4, 4, 0, 0}, Euler = -1 |
i4 : PT1C=PT1 C o4 = 3: y y y y y y y y 0 1 2 3 4 5 6 7 o4 : complex of dim 3 embedded in dim 3 (printing facets) equidimensional, non-simplicial, F-vector {1, 8, 14, 8, 1}, Euler = 0 |