Constructs the map between M and N specified by the function F.
i1 : n = 4; --j-th differential of the Koszul Complex on the variables of R
|
i2 : j = 2;
|
i3 : mu1=apply(j,j->1)
o3 = {1, 1}
o3 : List
|
i4 : mu2=apply(j+1,j->1)
o4 = {1, 1, 1}
o4 : List
|
i5 : R = QQ[x_1..x_n];
|
i6 : M=schurModule(mu1,R^n);
|
i7 : N=schurModule(mu2,R^n);
|
i8 : F = T -> apply(numgens R, j -> (R_j, augmentFilling(T,0,j)))
o8 = F
o8 : FunctionClosure
|
i9 : schurModulesMap(N,M,F)
o9 = | x_3 -x_2 x_1 0 0 0 |
| x_4 0 0 -x_2 x_1 0 |
| 0 x_4 0 -x_3 0 x_1 |
| 0 0 x_4 0 -x_3 x_2 |
4 6
o9 : Matrix R <--- R
|