i1 : TEX ///A formula: $a \times \ {b\over c^3}$/// o1 = A formula: $a \times \ {b\over c^3}$ o1 : TEX |
i2 : html oo o2 = A formula: <i>a × b/c<sup>3</sup></i> |
Here is the way the TeX above appears if used in documentation: A formula: a × b/c3.
Here are some examples designed to illustrate each feature of TeX we've implemented. (This documentation page should be viewed in its html form.)
TEX ///A formula: $a\times \ {b\over c^3}$///
will display as
A formula: a× b/c3
TEX ///A ``formula'' {\bf can be} `printed'. ///
will display as
A “formula” can be ‘printed’.
TEX ///A formula, $$\{x_1^2,\dots,x_n^2\},$$ can be displayed.///
will display as
A formula,
{x12,…,xn2},
can be displayed.TEX ///Matrices can be displayed if there is only one of them in the string: $$\begin{pmatrix}3&4&x^2+1\\5&6&7\end{pmatrix}.$$///
will display as
Matrices can be displayed if there is only one of them in the string:
.3 4 x2+1 5 6 7
TEX ///${\mathbf a+b+c} \in {\mathbb R}, {\mathcal 1234}, 1234$///
will display as
a+b+c ∈ℝ, 1234, 1234
TEX ///{\tt res(Module)} is the {\cal method} for {\em making} {\it resolutions}.///
will display as
res(Module) is the method for making resolutions.
TEX ///\url{http://www.math.uiuc.edu/Macaulay2/}///
will display as
TEX ///$\frac x4 + \frac{x^2+1}{y+3} + {3\over 4}$///
will display as
x/4 + (x2+1)/(y+3) + 3/4
TEX ///$R^\times, x_{i,j}$///
will display as
R×, xi,j
TEX ///\"a \"o \"u \# \& \'e $x\,\,\,y$ \^a \^e \`e \NN \QQ \RR \ZZ \PP \Gamma \Lambda \Omega \Psi \Theta \aleph \alpha///
will display as
ä ö ü # & é x y â ê è ℕℚℝℤℙΓΛΩΨΘℵα
TEX ///\backslash \beta \beth \bullet \cap \cdots a \cong b \cos x + a \cup b, \daleth \delta \ell \emptyset///
will display as
\βℶ•∩…a ≅b cosx + a ∪b, ℸδlØ
TEX ///\epsilon \equiv \exists \forall \gamma \ge \gimel \ge \infty \in \int x \lambda \ldots \leftarrow a \le b \leq c///
will display as
ε≡∃∀γ≥ℷ≥∞∈∫x λ...←a ≤b ≤c
TEX ///$4 < 5 < 6 > 3 > 2, \mu \mapsto \mu^2, \{x \mid x \in \ZZ, x \ne 0, x \cong{} 3 \mod\ 11\}$///
will display as
4 < 5 < 6 > 3 > 2, μ→μ2, {x | x ∈ℤ, x ≠0, x ≅ 3 mod 11}
TEX ///\par 1 2\break 3 4 5\break 6 7 \nu \omega \oplus \otimes \partial \phi \break \pi x\prime///
will display as
1 2
3 4 5
6 7 νω⊕⊗∂φ
πx′
TEX ///\prod_{i \in \ZZ} x_i///
will display as
∏i ∈ℤ xi
TEX ///$\psi + \rho \rightarrow A\setminus B, \sigma, \sin 1.1, A \subset B, C \subseteq D, E \supset F, G \supseteq H$///
will display as
ψ+ ρ→A\B, σ, sin1.1, A ⊂B, C ⊆D, E ⊃F, G ⊇H
TEX ///\sum_{i=1}^n y_i///
will display as
∑i=1n yi
TEX ///\tau{} + \theta{} \to{} x \wedge{} \wp{} + \xi{} - \lbrace\zeta\rbrace///
will display as
τ + θ → x ∧ ℘ + ξ - {ζ}