This function takes a (hyper)graph, and returns the edge set of the (hyper)graph.
i1 : S = QQ[a..d];
|
i2 : g = graph {a*b,b*c,c*d,d*a} -- the four cycle
o2 = Graph{edges => {{a, b}, {b, c}, {a, d}, {c, d}}}
ring => S
vertices => {a, b, c, d}
o2 : Graph
|
i3 : edges g
o3 = {{a, b}, {b, c}, {a, d}, {c, d}}
o3 : List
|
i4 : h = hyperGraph{a*b*c}
o4 = HyperGraph{edges => {{a, b, c}} }
ring => S
vertices => {a, b, c, d}
o4 : HyperGraph
|
i5 : edges h
o5 = {{a, b, c}}
o5 : List
|
i6 : k4 = completeGraph S
o6 = Graph{edges => {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}}
ring => S
vertices => {a, b, c, d}
o6 : Graph
|
i7 : edges k4
o7 = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}
o7 : List
|