Contents

1 Introduction to Parrot 2
2 Overview 10
3 Submitting bug reports and patches 14
4 Parrot’s command line options 20
5 PIR Guide 25
5.1 Introduction. 25
5.2 Getting Started 27
5.3 Basic Syntaxo oo 28
5.4 Variables 31
5.5 Control Structures, 53
5.6 Subroutines 58
5.7 Classes and Objects, 74
5.8 T/O . o 79
5.9 Exceptions oo 84

Chapter 1

Introduction to Parrot

Welcome to Parrot

This document provides a gentle introduction to the Parrot virtual machine
for anyone considering writing code for Parrot by hand, writing a compiler
that targets Parrot, getting involved with Parrot development or simply
wondering what on earth Parrot is.

What is Parrot?

Virtual Machines

Parrot is a virtual machine. To understand what a virtual machine is,
consider what happens when you write a program in a language such as
Perl, then run it with the applicable interpreter (in the case of Perl, the perl
executable). First, the program you have written in a high level language is
turned into simple instructions, for example fetch the value of the variable
named x, add 2 to this value, store this value in the variable named y, etc.
A single line of code in a high level language may be converted into tens of
these simple instructions. This stage is called compilation.

The second stage involves executing these simple instructions. Some
languages (for example, C) are often compiled to instructions that are un-
derstood by the CPU and as such can be executed by the hardware. Other
languages, such as Perl, Python and Java, are usually compiled to CPU-
independent instructions. A wvirtual machine (sometimes known as an inter-
preter) is required to execute those instructions.

While the central role of a virtual machine is to efficiently execute in-
structions, it also performs a number of other functions. One of these is to
abstract away the details of the hardware and operating system that a pro-
gram is running on. Once a program has been compiled to run on a virtual
machine, it will run on any platform that the VM has been implemented

on. VMs may also provide security by allowing more fine-grained limita-
tions to be placed on a program, memory management functionality and
support for high level language features (such as objects, data structures,
types, subroutines, etc).

Design goals

Parrot is designed with the needs of dynamically typed languages (such as
Perl and Python) in mind, and should be able to run programs written in
these languages more efficiently than VMs developed with static languages
in mind (JVM, .NET). Parrot is also designed to provide interoperability
between languages that compile to it. In theory, you will be able to write a
class in Perl, subclass it in Python and then instantiate and use that subclass
in a Tcl program.

Historically, Parrot started out as the runtime for Perl 6. Unlike Perl 5,
the Perl 6 compiler and runtime (VM) are to be much more clearly separated.
The name Parrot was chosen after the 2001 April Fool’s Joke which had Perl
and Python collaborating on the next version of their languages. The name
reflects the intention to build a VM to run not just Perl 6, but also many
other languages.

Parrot concepts and jargon

Instruction formats

Parrot can currently accept instructions to execute in four forms. PIR (Par-
rot Intermediate Representation) is designed to be written by people and
generated by compilers. It hides away some low-level details, such as the
way parameters are passed to functions. PASM (Parrot Assembly) is a level
below PIR - it is still human readable/writable and can be generated by a
compiler, but the author has to take care of details such as calling conven-
tions and register allocation. PAST (Parrot Abstract Syntax Tree) enables
Parrot to accept an abstract syntax tree style input - useful for those writing
compilers.

All of the above forms of input are automatically converted inside Par-
rot to PBC (Parrot Bytecode). This is much like machine code, but under-
stood by the Parrot interpreter. It is not intended to be human-readable
or human-writable, but unlike the other forms execution can start immedi-
ately, without the need for an assembly phase. Parrot bytecode is platform
independent.

The instruction set

The Parrot instruction set includes arithmetic and logical operators, com-
pare and branch/jump (for implementing loops, if...then constructs, etc),
finding and storing global and lexical variables, working with classes and
objects, calling subroutines and methods along with their parameters, I/0,
threads and more.

Registers and fundamental data types

The Parrot VM is register based. This means that, like a hardware CPU,
it has a number of fast-access units of storage called registers. There are 4
types of register in Parrot: integers (I), numbers (N), strings (S) and PMCs
(P). There are N of each of these, named 10,I1,..NO.., etc. Integer registers
are the same size as a word on the machine Parrot is running on and number
registers also map to a native floating point type. The amount of registers
needed is determined per subroutine at compile-time.

PMCs

PMC stands for Polymorphic Container. PMCs represent any complex data
structure or type, including aggregate data types (arrays, hash tables, etc).
A PMC can implement its own behavior for arithmetic, logical and string
operations performed on it, allowing for language-specific behavior to be
introduced. PMCs can be built in to the Parrot executable or dynamically
loaded when they are needed.

Garbage Collection

Parrot provides garbage collection, meaning that Parrot programs do not
need to free memory explicitly; it will be freed when it is no longer in use
(that is, no longer referenced) whenever the garbage collector runs.

Obtaining, building and testing Parrot

Where to get Parrot

See http://www.parrot.org/download for several ways to get a recent version
of parrot.

Building Parrot

The first step to building Parrot is to run the Configure.pl program, which
looks at your platform and decides how Parrot should be built. This is done
by typing:

perl Configure.pl

Once this is complete, run the make program Configure.pl prompts you
with. When this completes, you will have a working parrot executable.
Please report any problems that you encounter while building Parrot so
the developers can fix them. You can do this by creating a login and opening
a new ticket at https://trac.parrot.org. Please include the myconfig file that
was generated as part of the build process and any errors that you observed.

The Parrot test suite

Parrot has an extensive regression test suite. This can be run by typing:

make test

Substituting make for the name of the make program on your platform. The
output will look something like this:

C:\Perl\bin\perl.exe t\harness --gc-debug
t\library*.t t\op*.t t\pmc*.t t\run*.t t\native_pbc*.t
imcc\t**.t t\dynpmc*.t t\p6rules*.t t\src*.t t\perl\x.t
t\library\dumper............... ok
t\library\getopt_long.......... ok

Aii tests successful, 4 test and 71 subtests skipped.

Files=163, Tests=2719, 192 wallclock secs (0.00 cusr + 0.00 csys = 0.00 CPU)

It is possible that a number of tests may fail. If this is a small number, then
it is probably little to worry about, especially if you have the latest Parrot
sources from the SVN repository. However, please do not let this discourage
you from reporting test failures, using the same method as described for
reporting build problems.

Some simple Parrot programs

Hello world!

Create a file called hello.pir that contains the following code.

.sub main
say "Hello world!"
.end

Then run it by typing:

parrot hello.pir

As expected, this will display the text Hello world! on the console, fol-
lowed by a new line.

Let’s take the program apart. .sub main states that the instructions
that follow make up a subroutine named main, until a .end is encountered.
The second line contains the print instruction. In this case, we are calling
the variant of the instruction that accepts a constant string. The assembler
takes care of deciding which variant of the instruction to use for us.

Using registers

We can modify hello.pir to first store the string Hello world! in a register
and then use that register with the print instruction.

.sub main
$S0 = "Hello world!"
say $S0
.end
PIR does not allow us to set a register directly. We need to prefix the
register name with $ when referring to a register. The compiler will map
$S0 to one of the available string registers, for example S0, and set the value.
This example also uses the syntactic sugar provided by the = operator. = is
simply a more readable way of using the set opcode.
To make PIR even more readable, named registers can be used. These
are later mapped to real numbered registers.

.sub main
.local string hello
hello = "Hello world!"
say hello

.end

The .local directive indicates that the named register is only needed inside
the current subroutine (that is, between .sub and .end). Following .local
is a type. This can be int (for I registers), float (for N registers), string
(for S registers), pmc (for P registers) or the name of a PMC type.

PIR vs. PASM

PASM does not handle register allocation or provide support for named reg-
isters. It also does not have the .sub and .end directives, instead replacing
them with a label at the start of the instructions.

Summing squares

This example introduces some more instructions and PIR syntax. Lines
starting with a # are comments.

.sub main
State the number of squares to sum.
.local int maxnum
maxnum = 10

We’ll use some named registers. Note that we can declare many
registers of the same type on one line.

.local int i, total, temp

total = 0

Loop to do the sum.
i=1
loop:
temp = i * i
total += temp

inc i
if i <= maxnum goto loop
Output result.
print "The sum of the first "
print maxnum
print " squares is "
print total
print ".\n"
.end

PIR provides a bit of syntactic sugar that makes it look more high level than
assembly. For example:

.local pmc temp, i

temp = i * i
Is just another way of writing the more assembly-ish:

.local pmc temp, i
mul temp, i, i

And:

.local pmc i, maxnum

if i <= maxnum goto loop
...

loop:

Is the same as:

.local pmc i, maxnum
le i, maxnum, loop

...

loop:

And:

.local pmc temp, total
total += temp

Is the same as:

.local pmc temp, total

add total, temp
As a rule, whenever a Parrot instruction modifies the contents of a register,
that will be the first register when writing the instruction in assembly form.

As is usual in assembly languages, loops and selection are implemented

in terms of conditional branch statements and labels, as shown above. As-
sembly programming is one place where using goto is not bad form!

Recursively computing factorial

In this example we define a factorial function and recursively call it to com-
pute factorial.

.sub factorial
Get input parameter.
.param int n

return (n > 1 ? n * factorial(n - 1) : 1)
.local int result

if n > 1 goto recurse
result = 1
goto return

recurse:
$10 =n - 1
result = factorial($I0)
result *=n

return:
.return (result)
.end

.sub main :main
.local int f, i

We’ll do factorial O to 10.
i=0

loop:
f = factorial(i)

print "Factorial of "

print i

print " is "

print f

print ".\n"

inc i

if i <= 10 goto loop
.end

The first line, .param int n, specifies that this subroutine takes one integer
parameter and that we’d like to refer to the register it was passed in by the
name n for the rest of the sub.

Much of what follows has been seen in previous examples, apart from
the line reading:

.local int result
result = factorial($I0)

The last line of PIR actually represents a few lines of PASM. The assembler
builds a PMC that describes the signature, including which register the
arguments are held in. A similar process happens for providing the registers
that the return values should be placed in. Finally, the factorial sub is
invoked.

Right before the .end of the factorial sub, a .return directive is used
to specify that the value held in the register named result is to be copied
to the register that the caller is expecting the return value in.

The call to factorial in main works in just the same was as the recursive
call to factorial within the sub factorial itself. The only remaining bit of

new syntax is the :main, written after .sub main. By default, PIR assumes
that execution begins with the first sub in the file. This behavior can be
changed by marking the sub to start in with :main.

Compiling to PBC

To compile PIR to bytecode, use the -o flag and specify an output file with
the extension .pbc.

parrot -o factorial.pbc factorial.pir

Where next?

Documentation

What documentation you read next depends upon what you are looking
to do with Parrot. The opcodes reference and built-in PMCs reference are
useful to dip into for pretty much everyone. If you intend to write or compile
to PIR then there are a number of documents about PIR that are worth a
read. For compiler writers, the Compiler FAQ is essential reading. If you
want to get involved with Parrot development, the PDDs (Parrot Design
Documents) contain some details of the internals of Parrot; a few other
documents fill in the gaps. One way of helping Parrot development is to
write tests, and there is a document entitled Testing Parrot that will help
with this.

The Parrot Mailing List

Much Parrot development and discussion takes place on the parrot-dev mail-

ing list. You can subscribe by filling out the form at http://lists.parrot.org/mailman/listinfo/parrot-
dev or read the NNTP archive at http://groups.google.com/group/parrot-

dev/.

IRC

The Parrot IRC channel is hosted on irc.parrot.org and is named #parrot.
Alternative IRC servers are at irc.pobox.com and irc.rhizomatic.net.

Chapter 2

Overview

The Parrot Interpreter

This document is an introduction to the structure of and the concepts used
by the Parrot shared bytecode compiler/interpreter system. We will primar-
ily concern ourselves with the interpreter, since this is the target platform
for which all compiler frontends should compile their code.

The Software CPU

Like all interpreter systems of its kind, the Parrot interpreter is a virtual
machine; this is another way of saying that it is a software CPU. However,
unlike other VMs, the Parrot interpreter is designed to more closely mirror
hardware CPUs.

For instance, the Parrot VM will have a register architecture, rather
than a stack architecture. It will also have extremely low-level operations,
more similar to Java’s than the medium-level ops of Perl and Python and
the like.

The reasoning for this decision is primarily that by resembling the under-
lying hardware to some extent, it’s possible to compile down Parrot bytecode
to efficient native machine language.

Moreover, many programs in high-level languages consist of nested func-
tion and method calls, sometimes with lexical variables to hold intermediate
results. Under non-JIT settings, a stack-based VM will be popping and then
pushing the same operands many times, while a register-based VM will sim-
ply allocate the right amount of registers and operate on them, which can
significantly reduce the amount of operations and CPU time.

To be more specific about the software CPU, it will contain a large num-
ber of registers. The current design provides for four groups of N registers;
each group will hold a different data type: integers, floating-point numbers,
strings, and PMCs. (Polymorphic Containers, detailed below.)

10

Registers will be stored in register frames, which can be pushed and
popped onto the register stack. For instance, a subroutine or a block might
need its own register frame.

The Operations

The Parrot interpreter has a large number of very low level instructions, and
it is expected that high-level languages will compile down to a medium-level
language before outputting pure Parrot machine code.

Operations will be represented by several bytes of Parrot machine code;
the first INTVAL will specify the operation number, and the remaining ar-
guments will be operator-specific. Operations will usually be targeted at
a specific data type and register type; so, for instance, the dec_i_c takes
two INTVALs as arguments, and decrements contents of the integer register
designated by the first INTVAL by the value in the second INTVAL. Naturally,
operations which act on FLOATVAL registers will use FLOATVALSs for constants;
however, since the first argument is almost always a register number rather
than actual data, even operations on string and PMC registers will take an
INTVAL as the first argument.

As in Perl, Parrot ops will return the pointer to the next operation in
the bytecode stream. Although ops will have a predetermined number and
size of arguments, it’s cheaper to have the individual ops skip over their
arguments returning the next operation, rather than looking up in a table
the number of bytes to skip over for a given opcode.

There will be global and private opcode tables; that is to say, an area of
the bytecode can define a set of custom operations that it will use. These
areas will roughly map to the subroutines of the original source; each pre-
compiled module will have its own opcode table.

For a closer look at Parrot ops, see docs/pdds/pdd06_pasm.pod.

PMCs

PMCs are roughly equivalent to the SV, AV and HV (and more complex types)
defined in Perl 5, and almost exactly equivalent to PythonObject types in
Python. They are a completely abstracted data type; they may be string,
integer, code or anything else. As we will see shortly, they can be expected
to behave in certain ways when instructed to perform certain operations -
such as incrementing by one, converting their value to an integer, and so on.

The fact of their abstraction allows us to treat PMCs as, roughly speak-
ing, a standard API for dealing with data. If we’re executing Perl code, we
can manufacture PMCs that behave like Perl scalars, and the operations
we perform on them will do Perlish things; if we execute Python code, we

11

can manufacture PMCs with Python operations, and the same underlying
bytecode will now perform Pythonic activities.

For documentation on the specific PMCs that ship with Parrot, see the
docs/pme directory.

Vtables

The way we achieve this abstraction is to assign to each PMC a set of
function pointers that determine how it ought to behave when asked to
do various things. In a sense, you can regard a PMC as an object in an
abstract virtual class; the PMC needs a set of methods to be defined in
order to respond to method calls. These sets of methods are called vtables.

A vtable is, more strictly speaking, a structure which expects to be filled
with function pointers. The PMC contains a pointer to the vtable structure
which implements its behavior. Hence, when we ask a PMC for its length,
we're essentially calling the length method on the PMC; this is implemented
by looking up the length slot in the vtable that the PMC points to, and
calling the resulting function pointer with the PMC as argument: essentially,

(pmc->vtable->length) (pmc) ;

If our PMC is a string and has a vtable which implements Perl-like string
operations, this will return the length of the string. If, on the other hand,
the PMC is an array, we might get back the number of elements in the array.
(If that’s what we want it to do.)

Similarly, if we call the increment operator on a Perl string, we should
get the next string in alphabetic sequence; if we call it on a Python value, we
may well get an error to the effect that Python doesn’t have an increment
operator suggesting a bug in the compiler front-end. Or it might use a
“super-compatible Python vtable” doing the right thing anyway to allow
sharing data between Python programs and other languages more easily.

At any rate, the point is that vtables allow us to separate out the basic
operations common to all programming languages - addition, length, con-
catenation, and so on - from the specific behavior demanded by individual
languages. Perl 6 will be Perl by passing Parrot a set of Perlish vtables;
Parrot will equally be able to run Python, Tcl, Ruby or whatever by linking
in a set of vtables which implement the behaviors of values in those lan-
guages. Combining this with the custom opcode tables mentioned above,
you should be able to see how Parrot is essentially a language independent
base for building runtimes for bytecompiled languages.

One interesting thing about vtables is that you can construct them dy-
namically. You can find out more about vtables in docs/vtables.pod.

12

String Handling

Parrot provides a programmer-friendly view of strings. The Parrot string
handling subsection handles all the work of memory allocation, expansion,
and so on behind the scenes. It also deals with some of the encoding
headaches that can plague Unicode-aware languages.

This is done primarily by a similar vtable system to that used by PMCs;
each encoding will specify functions such as the maximum number of bytes
to allocate for a character, the length of a string in characters, the offset
of a given character in a string, and so on. They will, of course, provide
a transcoding function either to the other encodings or just to Unicode for
use as a pivot.

The string handling API is explained in docs/strings.pod.

Bytecode format

We have already explained the format of the main stream of bytecode; opera-
tions will be followed by arguments packed in such a format as the individual
operations require. This makes up the third section of a Parrot bytecode
file; frozen representations of Parrot programs have the following structure.

Firstly, a magic number is presented to identify the bytecode file as
Parrot code. Next comes the fixup segment, which contains pointers to
global variable storage and other memory locations required by the main
opcode segment. On disk, the actual pointers will be zeroed out, and the
bytecode loader will replace them by the memory addresses allocated by the
running instance of the interpreter.

Similarly, the next segment defines all string and PMC constants used
in the code. The loader will reconstruct these constants, fixing references
to the constants in the opcode segment with the addresses of the newly
reconstructed data.

As we know, the opcode segment is next. This is optionally followed by
a code segment for debugging purposes, which contains a munged form of
the original program file.

The bytecode format is fully documented in docs/parrotbyte.pod.

13

Chapter 3

Submitting bug reports and
patches

ABSTRACT

How to submit bug reports, patches and new files to Parrot.

How To Submit A Bug Report

If you encounter an error while working with Parrot and don’t understand
what is causing it, create a bug report using the parrotbug utility. The
simplest way to use it is to run

% ./parrotbug

in the distribution’s root directory, and follow the prompts.
However, if you do know how to fix the problem you encountered, then
think about submitting a patch, or (see below) getting commit privileges.

A Note on Random Failures

If you encounter errors that appear intermittently, it may be difficult or
impossible for Parrot developers to diagnose and solve the problem. It is
therefore recommended to control the sources of randomness in Parrot in an
attempt to eliminate the intermittency of the bug. There are three common
sources of randomness that should be considered.

Pseudo-Random Number Generator

Direct use of a PRNG from within Parrot programs will lead to in-
consistent results. If possible, isolate the bug from PRNG use, for
example, by logging the random values which trigger the error and
then hard coding them.

14

Address Space Layout Randomization

Several operating systems provide a security measure known as ad-
dress space layout randomization. In bugs involving stray pointers,
this can cause corruption in random Parrot subsystems. Temporarily
disabling this feature may make this problem consistent and therefore
debugable.

Hash Seed

Parrot’s hash implementation uses randomization of its seed as a pre-
caution against attacks based on hash collisions. The seed used can
be directly controlled using parrot’s ——hash-seed parameter. To de-
termine what seeds are causing the error, Parrot can be rebuilt with
DEBUG_HASH_SEED set to 1, which will cause parrot to output the hash
seed being used on every invocation.

How To Create A Patch

Try to keep your patches specific to a single change, and ensure that your
change does not break any tests. Do this by running make test. If there is
no test for the fixed bug, please provide one.

In the following examples, parrot contains the Parrot distribution, and
workingdir contains parrot. The name workingdir is just a placeholder for
whatever the distribution’s parent directory is called on your machine.

workingdir

git

|
+--> parrot
|
+--> LICENSE
|
+--> src

|
+--> tools

+-=> ...

If you are working with a git repository of parrot then please generate
your patch with git diff.

cd parrot
git diff > my_contribution.patch

Single diff

If you are working from a released distribution of Parrot and the
change you wish to make affects only one or two files, then you can
supply a diff for each file. The diff should be created in parrot.

Please be sure to create a unified diff, with diff -u.

cd parrot
diff -u docs/submissions.pod docs/submissions.new > submissions.patch

15

Win32 users will probably need to specify -ub.
Recursive diff

If the change is more wide-ranging, then create an identical copy of
parrot in workingdir and rename it parrot.new. Modify parrot.new
and run a recursive diff on the two directories to create your patch.
The diff should be created in workingdir.

cd workingdir
diff -ur --exclude=’.git’ parrot parrot.new > docs.patch

Mac OS X users should also specify --exclude=.DS_Store.
CREDITS

Each and every patch is an important contribution to Parrot and it’s
important that these efforts are recognized. To that end, the CRED-
ITS file contains an informal list of contributors and their contribu-
tions made to Parrot. Patch submitters are encouraged to include a
new or updated entry for themselves in CREDITS as part of their
patch.

The format for entries in CREDITS is defined at the top of the file.

How To Submit A Patch

1. Go to Parrot’s ticket tracking system at https: //trac.parrot.org/parrot/.
Log in, or create an account if you don’t have one yet.

2. If there is already a ticket for the bug or feature that your patch relates
to, just attach the patch directly to the ticket.

3. Otherwise select “New Ticket” at the top of the site. https://trac.parrot.org/parrot/newticket

4. Give a clear and concise Summary. You do NOT need to prefix the
Summary with a [PATCH] identifier. Instead, in the lower-right corner
of the newticket page, select status new in the Patch status drop-down
box.

5. The Description should contain an explanation of the purpose of the
patch, and a list of all files affected with summary of the changes made
in each file. Optionally, the output of the diffstat (1) utility when
run on your patch(s) may be included at the bottom of the message
body.

6. Set the Type of the ticket to “patch”. Set other relevant drop-down
menus, such as Version (the version of Parrot where you encountered
the problem), Platform, or Severity. As mentioned above, select status
new in the Patch status drop-down box.

7. Check the box for “I have files to attach to this ticket”. Double-check
that you’ve actually done this, because it’s easy to forget.

DO NOT paste the patch file content into the Description.

16

8. Click the “Create ticket” button. On the next page attach your patch
file(s).

Applying Patches

You may wish to apply a patch submitted by someone else before the patch
is incorporated into git

For single diff patches or git patches, copy the patch file to parrot, and
run:

cd parrot
git apply some.patch

For recursive diff patches, copy the patch file to workingdir, and run:

cd workingdir
git apply some.patch

In order to be on the safe side run 'make test’ before actually committing
the changes.

Configuration of files to ignore

Sometimes new files will be created in the configuration and build process
of Parrot. These files should not show up when checking the distribution
with

git status
or

perl tools/dev/manicheck.pl

In order to keep the two different checks synchronized, the MANIFEST and
MANIFEST.SKIP file should be regenerated with:

perl tools/dev/mk_manifest_and_skip.pl

How To Submit Something New

If you have a new feature to add to Parrot, such as a new test.

1. Add your new file path(s), relative to parrot, to the file MANIFEST.
Create a patch for the MANIFEST file according to the instructions
in How To Submit A Patch.

2. If you have a new test script ending in .t, some mailers may become
confused and consider it an application/x-troff. One way around this
(for *nix users) is to diff the file against /dev/null like this:

cd parrot
diff -u /dev/null newfile.t > newfile.patch

17

3. Go to Parrot’s ticket tracking system at https://trac.parrot.org/parrot/.
Log in, or create an account if you don’t have one yet.

4. Select “New Ticket” https://trac.parrot.org/parrot/newticket.
5. Give a clear and concise Summary.
Prefix it with a [NEW] identifier.

6. The Description should contain an explanation of the purpose of the
feature you are adding. Optionally, include the output of the diffstat (1)
utility when run on your patch(es).

7. Set the Type of the ticket to “patch”. Set other relevant drop-down
menus, such as Version, Platform, or Severity.

8. Check the box for “I have files to attach to this ticket”
Double-check that you’ve actually done this, because it’s easy to forget.

DO NOT paste the content of the new file or files into the body of
the message.

9. Click the “Create ticket” button. On the next page attach the patch
for MANIFEST and your new file(s).

What Happens Next?

If you created a new ticket for the submission, you will be taken to the
page for the new ticket and can check on the progress of your submission
there. This identifier should be used in all correspondence concerning the
submission.
Everyone on Trac sees the submission and can comment on it. A devel-
oper with git commit priveledges can commit it to git once it is clear that
it is the right thing to do.
However developers with commit priveledges may not commit your changes
immediately if they are large or complex, as we need time for peer review.
A list of active tickets can be found here: http://trac.parrot.org/parrot /report/1
A list of all the unresolved patches is at: http://trac.parrot.org/parrot/report/15

Patches for the Parrot website

The http://www.parrot.org website is hosted in a Drupal CMS. Submit
changes through the usual ticket interface in Trac.

Getting Commit Privileges

If you are interested in getting commit privileges to Parrot, here is the
procedure:

18

1. Submit several high quality patches (and have them committed) via
the process described in this document. This process may take weeks
or months.

2. Obtain a Trac account at https://trac.parrot.org/parrot

3. Submit a Parrot Contributor License Agreement; this document signifies
that you have the authority to license your work to Parrot Founda-
tion for inclusion in their projects. You may need to discuss this with
your employer if you contribute to Parrot on work time or with work
resources, or depending on your employment agreement.

http://www.parrot.org/files/parrot_cla.pdf

4. Request commit access via the parrot-dev mailing list, or via IRC
(#parrot on irc.parrot.org). The existing committers will discuss your
request in the next couple of weeks.

If approved, a metacommitter will update the permissions to allow you
to commit to Parrot; see RESPONSIBLE_PARTIES for the current list.
Welcome aboard!

Thanks for your help!

19

Chapter 4

Parrot’s command line
options

OVERVIEW

This document describes Parrot’s command line options.

SYNOPSIS

parrot [-options] <file> [arguments ...]

ENVIRONMENT
PARROT_RUNTIME

If this environment variable is set, parrot will use this path as its
runtime prefix instead of the compiled in path.

PARROT_GC_DEBUG
Turn on the —gc-debug flag.

OPTIONS

Assembler options
-a, —pasm
Assume PASM input on stdin.
-¢, —pbc

Assume PBC file on stdin, run it.

20

-d, -imcc-debug [hexbits]

The -d switch takes an optional argument which is considered to hold
a hex value of debug bits. Without a value, debug is set to 1.

The individual bits can be listed on the command line by use of the
—help-debug switch.

To produce really huge output on stderr run °‘parrot -d Offff
.22, Note: If the argument is separated by whitespace from the
-d switch, it has to start with a number.

-h, —help

Print command line option summary.

—help-debug

Print debugging and tracing flag bits summary.

-0 outputfile, —output=outputfile

Act like an assembler. Don’t run code, unless -r is given too. If the
outputfile ends with .pbe, a PBC file is written. If it ends with .pasm,
a PASM output is generated, even from PASM input. This can be
handy to check various optimizations, including -0p.

—output-pbc

Act like an assembler, but always output bytecode, even if the output
file does not end in .pbc

-r, —run-pbc

Only useful after —o or ——output-pbc. Run the program from the
compiled in-memory image. If two -r options are given, the .pbc file
is read from disc and run. This is mainly needed for tests.

-v, —verbose

One -v shows which files are worked on and prints a summary over
register usage and optimization stats per subroutine. With two -v
switches, parrot prints a line per individual processing step too.

-y, —yydebug

Turn on yydebug in yacc/bison.

-V, —version

-Ox

Print version information and exit.

Optimize

-00 no optimization (default)

-01 optimizations without life info (e.g. branches)
-0 same

-02 optimizations with life info

21

-0Op rewrite I and N PASM registers most used first
-0t select fastest runcore
-0c turns on the optional/experimental tail call optimizations

See docs/dev/optimizer.pod for more information on the optimizer.
Note that optimization is currently experimental and these options
are likely to change.

-E, —pre-process-only

Preprocess source file (expand macros) and print result to stdout:
$ parrot -E t/op/macro_10.pasm
$ parrot -E t/op/macro_10.pasm | parrot -- -

Runcore Options
These options select the runcore, which is useful for performance tuning and
debugging. See “About runcores“ for details.

-R, —runcore CORE

Select the runcore. The following cores are available in Parrot, but

not all may be available on your system:
slow, bounds bounds checking core (default)

gcdebug performs a full GC run before every op dispatch (good for
debugging GC problems)

trace bounds checking core w/ trace info (see ’parrot --help-debug’)

profiling see F<docs/dev/profilling.pod>

The jit, switch-jit, and cgp-jit options are currently aliases for
the fast, switch, and cgp options, respectively. We do not recom-
mend their use in new code; they will continue working for existing
code per our deprecation policy.

-p, —profile
Run with the slow core and print an execution profile.
-t, —trace

Run with the slow core and print trace information to stderr. See
parrot --help-debug for available flag bits.

VM Options
-w, —warnings
Turn on warnings. See parrot --help-debug for available flag bits.
-D, —parrot-debug

Turn on interpreter debug flag. See parrot --help-debug for avail-
able flag bits.

—hash-seed jhexnum,,

Sets the hash seed to the provided value. Only useful for debugging
intermittent failures, and harmful in production.

22

—gc-debug
Turn on GC (Garbage Collection) debugging. This imposes some
stress on the GC subsystem and can slow down execution consider-
ably.

-G, —no-gc
This turns off GC. This may be useful to find GC related bugs. Don’t

use this option for longer running programs: as memory is no longer
recycled, it may quickly become exhausted.

—leak-test, —destroy-at-end

Free all memory of the last interpreter. This is useful when running
leak checkers.

-., —wait

Read a keystroke before starting. This is useful when you want to
attach a debugger on platforms such as Windows.

—runtime-prefix

Print the runtime prefix path and exit.

ifile;,

If the file ends in .pbc it will be interpreted immediately.

If the file ends in .pasm, then it is parsed as PASM code. Otherwise, it
is parsed as PIR code. In both cases, it will then be run, unless the -o flag
was given.

If the file is a single dash, input from stdin is read.

[arguments ...]

Optional arguments passed to the running program as ARGV. The program
is assumed to know what to do with these.

Generated files

About runcores

The runcore (or runloop) tells Parrot how to find the C code that implements
each instruction. Parrot provides more than one way to do this, partly
because no single runcore will perform optimally on all architectures (or
even for all problems on a given architecture), and partly because some of
the runcores have specific debugging and tracing capabilities.

In the default “slow” runcore, each opcode is a separate C function.
That’s pretty easy in pseudocode:

23

slow_runcore(op):
while (op):
op = op_function(op)
check_for_events()

The GC debugging runcore is similar:

gcdebug_runcore(op):
while (op):
perform_full_gc_run()
op = op_function(op)
check_for_events()
Of course, this is much slower, but is extremely helpful for pinning memory
corruption problems that affect GC down to single-instruction resolution.
See http://www.oreillynet.com/onlamp /blog/2007/10/debugging_gc_problems_in_parro.html
for more information.
The trace and profile cores are also based on the “slow” core, doing full
bounds checking, and also printing runtime information to stderr.

Operation table

Command Line Action Output
parrot x.pir run

parrot x.pasm run

parrot x.pbc run

-0 X.pasm X.pir ass X.pasm
-0 X.pasm y.pasm ass X.pasm
-0 x.pbc x.pir ass X.pbc
-o x.pbc x.pasm ass x.pbc
-0 x.pbc -r x.pasm ass/run pasm x.pbc
-0 x.pbc -r -r x.pasm ass/run pbc x.pbc
-0 X.0 X.pbc obj

...where the possible actions are:

run ... yes, run the program
ass ... assemble sourcefile
obj .. produce native (ELF) object file for the EXEC subsystem

FILES

main.c

24

Chapter 5

PIR Guide

5.1 Introduction

Parrot is a language-neutral virtual machine for dynamic languages such
as Ruby, Python, PHP, and Perl. It hosts a powerful suite of compiler
tools tailored to dynamic languages and a next generation regular expression
engine. Its architecture differs from virtual machines such as the JVM or
CLR, with optimizations for dynamic languages, the use of registers instead
of stacks, and pervasive continuations used for all flow control.

The name “Parrot” was inspired by Monty Python’s Parrot sketch. As
an April Fools’ Day joke in 2001, Simon Cozens published “Programming
Parrot”, a fictional interview between Guido van Rossum and Larry Wall
detailing their plans to merge Python and Perl into a new language called
Parrot (http://www.perl.com/pub/a/2001/04,/01/parrot.htm).

Parrot Intermediate Representation (PIR) is Parrot’s native low-level
language. PIR is fundamentally an assembly language, but it has some
higher-level features such as operator syntax, syntactic sugar for subroutine
and method calls, automatic register allocation, and more friendly condi-
tional syntax. Parrot libraries—including most of Parrot’s compiler tools—
are often written in PIR. Even so, PIR is more rigid and “close to the
machine” than some higher-level languages like C, which makes it a good
window into the inner workings of the virtual machine.

Parrot Resources

The starting point for all things related to Parrot is the main website
http://www.parrot.org/. The site lists additional resources, well as recent
news and information about the project.

The Parrot Foundation holds the copyright over Parrot and helps sup-
port its development and community.

25

Documentation

Parrot includes extensive documentation in the distribution. The full docu-
mentation for the latest release is available online at http://docs.parrot.org/.

Mailing Lists

The primary mailing list for Parrot is parrot-dev.! If you're interested in de-
veloping Parrot, the parrot-commits and parrot-tickets lists are useful. More
information on the Parrot mailing lists, as well as subscription options, is
available on the mailing list info page http://lists.parrot.org/mailman/listinfo.
The archives for parrot-dev are available on Google Groups at http://groups.google.com/group/par
dev and as NNTP at nntp://news.gmane.org/gmane.comp.compilers.parrot.devel.

IRC

Parrot developers and users congregate on IRC at #parrot on the irc://irc.parrot.org
server. It’s a good place to ask questions or discuss Parrot in real time.

Issue Tracking & Wiki

Parrot developers track bugs, feature requests, and roadmap tasks at hitps://trac.parrot.org/,
the open source Trac issue tracker. Users can submit new tickets and track

the status of existing tickets. The site also includes a wiki used in project

development, a source code browser, and the project roadmap.

Parrot Development

Parrot’s first release occurred in September 2001. The 1.0 release took place
on March 17, 2009. The Parrot project makes releases on the third Tuesday
of each month. Two releases a year — occuring every January and July —
are “supported” releases intended for production use. The other ten releases
are development releases intended for language implementers and testers.

Development proceeds in cycles around releases. Activity just before
a release focuses on closing tickets, fixing bugs, reviewing documentation,
and preparing for the release. Immediately after the release, larger changes
occur: merging branches, adding large features, or removing deprecated fea-
tures. This allows developers to ensure that changes have sufficient testing
time before the next release. These regular releases also encourage feedback
from casual users and testers.

Licensing

The Parrot foundation supports the Parrot development community and
holds trademarks and copyrights to Parrot. The project is available under

Lparrot-dev@lists.parrot.org

26

the Artistic License 2.0, allowing free use in commercial and open source/free
software contexts.

5.2 Getting Started

The simplest way to install Parrot is to use a pre-compiled binary for your
operating system or distribution. Packages are available for many systems,
including Debian, Ubuntu, Fedora, Mandriva, FreeBSD, Cygwin, and Mac-
Ports. The Parrot website lists all known packages.? A binary installer for
Windows is also available from the Parrot Win32 project on SourceForge.? If
packages aren’t available on your system, you can download a source tarball
for the latest supported release from http://www.parrot.org/release/supported.

You need a C compiler and a make utility to build Parrot from source
code—usually gcc and make, but Parrot can build with standard compiler
toolchains on different operating systems. Perl 5.8 is also a prerequiste for
configuring and building Parrot.

If you have these dependencies installed, build the core virtual machine
and compiler toolkit and run the standard test suite with the commands:

$ perl Configure.pl
$ make
$ make test

By default, Parrot installs to directories bin/, lib/, and include/ under
/usr/local. If you have privileges to write to these directories, install Parrot
with:

$ make install

To install Parrot in a different location, use the ——prefix option to Configure.pl:
$ perl Configure.pl --prefix=/home/me/parrot

Setting the prefix to /home/me/parrot installs the Parrot executable in
/home/me/parrot/bin/parrot.

If you intend to develop a language on Parrot, install the Parrot devel-
oper tools as well:

$ make install-dev

Once you've installed Parrot, create a test file called news.pir.

.sub ’news’
say "Here is the news for Parrots."
.end

Now run this file with:

$ parrot news.pir

which will print:

Here is the news for Parrots.

2hitp: / /www.parrot.org/download
3http:/ /parrotwind2.sourceforge.net/
4Files containing PIR code use the .pir extension.

27

5.3 Basic Syntax

PIR has a relatively simple syntax. Every line is a comment, a label, a
statement, or a directive. Each statement or directive stands on its own
line. There is no end-of-line symbol (such as a semicolon in C).

Comments

A comment begins with the # symbol, and continues until the end of the
line. Comments can stand alone on a line or follow a statement or directive.
This is a regular comment. The PIR
interpreter ignores this.
PIR also treats inline documentation in Pod format as a comment. An
equals sign as the first character of a line marks the start of a Pod block. A
=cut marker signals the end of a Pod block.
=head2

This is Pod documentation, and is treated like a
comment. The PIR interpreter ignores this.

=cut

Labels

A label attaches a name to a line of code so other statements can refer to it.
Labels can contain letters, numbers, and underscores. By convention, labels
use all capital letters to stand out from the rest of the source code. It’s fine
to put a label on the same line as a statement or directive:

GREET: say "’Allo, ’allo, ’allo."

Labels on separate lines improve readability, especially when outdented:

GREET:
say "’Allo, ’allo, ’allo.”

Statements

A statement is either an opcode or syntactic sugar for one or more opcodes.
An opcode is a native instruction for the virtual machine; it consists of the
name of the instruction followed by zero or more arguments.

say "Norwegian Blue"
PIR also provides higher-level constructs, including symbolic operators:

$I11 =2 + 5
These special statement forms are just syntactic sugar for regular opcodes.
The + symbol corresponds to the add opcode, the - symbol to the sub

opcode, and so on. The previous example is equivalent to:
add $I1, 2, 5

28

Directives

Directives resemble opcodes, but they begin with a period (.). Some direc-
tives specify actions that occur at compile time. Other directives represent
complex operations that require the generation of multiple instructions. The

.local directive, for example, declares a named variable.
.local string hello

Literals

Integers and floating point numbers are numeric literals. They can be posi-
tive or negative.

$10
$11

42 # positive
-1 # negative

Integer literals can also be binary, octal, or hexadecimal:

$I1 = 0b01010 # binary
$I2 = 0072 # octal
$I3 = 0OxA5 # hexadecimal

Floating point number literals have a decimal point and can use scientific

notation:

$NO = 3.14
$N2 = -1.2e+4

String literals are enclosed in single or double-quotes.’

$S0 = "This is a valid literal string"
$S1 = ’This is also a valid literal string’
Variables

PIR variables can store four different kinds of values—integers, numbers
(floating point), strings, and objects. Parrot’s objects are called PMCs, for
“Poly Morphic Container”.

The simplest kind of variable is a register variable. The name of a register
variable always starts with a dollar sign ($), followed by a single character
which specifies the type of the variable—integer (I), number (N), string (8),
or PMC (P)—and ends with a unique number. You need not predeclare
register variables:

$S0 = "Who’s a pretty boy, then?"
say $S0

PIR also has named variables; the .local directive declares them. As with
register variables, there are four valid types: int, num, string, and pmc.
You must declare named variables; once declared, they behave exactly the

same as register variables.

.local string hello
hello = "’Allo, ’allo, ’allo."
say hello

®See the section on Strings in Chapter 4 for an explanation of the differences between
the quoting types.

29

Constants

The .const directive declares a named constant. Named constants are
similar to named variables, but the values set in the declaration may never
change. Like .local, .const takes a type and a name. It also requires a
literal argument to set the value of the constant.

.const int frog = 4 # integer
.const string name = "Superintendent Parrot" # string
.const num pi = 3.14159 # floating point

You may use a named constant anywhere you may use a literal, but you must
declare the named constant beforehand. This example declares a named
string constant hello and prints the value:

.const string hello = "Hello, Polly."
say hello

Keys

A key is a special kind of constant used for accessing elements in complex
variables (such as an array). A key is either an integer or a string; and it’s
always enclosed in square brackets ([and 1). You do not have to declare
literal keys. This code example stores the string “foo” in $P0 as element 5,
and then retrieves it.

$PO[5] = "foo"

$s1 = $PO[5]

PIR supports multi-part keys. Use a semicolon to separate each part.

$PO[’my’; key’] = 472
$I1 $PO[’my’; key’]

Control Structures

Rather than providing a pre-packaged set of control structures like if and
while, PIR gives you the building blocks to construct your own.® The most
basic of these building blocks is goto, which jumps to a named label.” In
this code example, the say statement will run immediately after the goto
statement:

goto GREET
... some skipped code ...
GREET:

say "’Allo, ’allo, ’allo."

Variations on the basic goto check whether a particular condition is true or
false before jumping:

if $I0 > 5 goto GREET
You can construct any traditional control structure from PIR’s built-in con-
trol structures.

SPIR has many advanced features, but at heart it is an assembly language.
"This is not your father’s goto. It can only jump inside a subroutine, and only to a
named label.

30

Subroutines

A PIR subroutine starts with the .sub directive and ends with the .end
directive. Parameter declarations use the .param directive; they resemble
named variable declarations. This example declares a subroutine named
greeting, that takes a single string parameter named hello:

.sub ’greeting’
.param string hello
say hello

.end

That’s All Folks

You now know everything you need to know about PIR. Everything else
you read or learn about PIR will use one of these fundamental language
structures. The rest is vocabulary.

Parrot Assembly Language

Parrot Assembly Language (PASM) is another low-
level language native to the virtual machine. PASM
is a pure assembly language, with none of the syn-
tactic sugar that makes PIR friendly for library de-
velopment. PASM’s primary purpose is to act as a
plain English representation of the bytecode format.
Its typical use is for debugging, rather than for writ-
ing libraries. Use PIR or a higher-level language for
development tasks.

PASM files use the .pasm file extension.

5.4 Variables

Parrot is a register-based virtual machine. It has four typed register sets—
integers, floating-point numbers, strings, and objects. All variables in PIR
are one of these four types. When you work with register variables or named
variables, you're actually working directly with register storage locations in
the virtual machine.

If you've ever worked with an assembly language before, you may im-
mediately jump to the conclusion that $I0 is the zeroth integer register in
the register set, but Parrot is a bit smarter than that. The number of a
register variable does not necessarily correspond to the register used inter-
nally; Parrot’s compiler maps registers as appropriate for speed and memory

31

considerations. The only guarantee Parrot gives you is that you’ll always
get the same storage location when you use $I0 in the same subroutine.

Assignment

The most basic operation on a variable is assignment using the = operator:

$I0 = 42 # set integer variable to the value 42
$N3 = 3.14159 # set number variable to approximation of pi
$I1 = $I0 # set $I1 to the value of $I0

The null opcode sets an integer or number variable to a zero value, and
undefines a string or object.

null $I0 # O

null $NO # 0.0
null $SO # NULL
null $PO # PMCNULL

Working with Numbers

PIR has an extensive set of instructions that work with integers, floating-
point numbers, and numeric PMCs. Many of these instructions have a
variant that modifies the result in place:

$I0 = $I1 + $I2

$I0 += $I1
The first form of + stores the sum of the two arguments in the result variable,
$10. The second variant, +=, adds the single argument to $I0 and stores
the sum back in $I0.

The arguments can be Parrot literals, variables, or constants. If the
result is an integer type, like $I0, the arguments must also be integers.
A number result, like $NO, usually requires number arguments, but many
numeric instructions also allow the final argument to be an integer. Instruc-
tions with a PMC result may accept an integer, floating-point, or PMC final

argument:
$PO = $P1 * $P2
$P0 = $P1 * $I2
$PO = $P1 * $N2
$PO *= $P1
$PO *= $I1
$PO *= $N1

Unary numeric opcodes

Unary opcodes have a single argument. They either return a result or modify
the argument in place. Some of the most common unary numeric opcodes
are inc (increment), dec (decrement), abs (absolute value), neg (negate):

$NO = abs -5.0 # the absolute value of -5.0 is 5.0
$I0 = 120
inc $I1 # 120 incremented by 1 is 121

32

Binary numeric opcodes

Binary opcodes have two arguments and a result. Parrot provides addition
(+ or add), subtraction (- or sub), multiplication (* or mul), division (/
or div), modulus (% or mod), and exponent (pow) opcodes, as well as gcd

(greatest common divisor) and lcm (least common multiple).
$10 = 12 / 5
$10 = 12 % 5

Floating-point operations

The most common floating-point operations are 1n (natural log), log2 (log
base 2), 1og10 (log base 10), and exp (ex), as well as a full set of trigono-
metric opcodes such as sin (sine), cos (cosine), tan (tangent), sec (se-
cant), sinh (hyperbolic sine), cosh (hyperbolic cosine), tanh (hyperbolic
tangent), sech (hyperbolic secant), asin (arc sine), acos (arc cosine), atan
(arc tangent), asec (arc secant), exsec (exsecant), hav (haversine), and
vers (versine). All angle arguments for the trigonometric opcodes are in

radians:
.loadlib ’trans_ops’

...
$NO = sin $N1
$NO = exp 2

The majority of the floating-point operations have a single argument and a
single result. The arguments can generally be either an integer or number,
but many of these opcodes require the result to be a number.

Logical and Bitwise Operations

The logical opcodes evaluate the truth of their arguments. They are most
useful to make decisions for control flow. Integers and numeric PMCs are
false if they’re 0 and true otherwise. Strings are false if they’re the empty
string or a single character “0”, and true otherwise. PMCs are true when
their get_bool vtable function returns a nonzero value.

The and opcode returns the first argument if it’s false and the second

argument otherwise:
$10
$10

and 0, 1 # returns O
and 1, 2 # returns 2

The or opcode returns the first argument if it’s true and the second argument

otherwise:
.loadlib ’bit_ops’

...

$I0 = or 1, O # returns 1
$I0 = or 0, 2 # returns 2
$PO = or $P1, $P2

33

Both and and or are short-circuiting ops. If they can determine what value
to return from the first argument, they’ll never evaluate the second. This is
significant only for PMCs, as they might have side effects on evaluation.

The xor opcode returns the first argument if it is the only true value,
returns the second argument if it is the only true value, and returns false if
both values are true or both are false:

$I0 = xor 1, 0O # returns 1
$I0 = xor 0, 1 # returns 1
$I0 = xor 1, 1 # returns O
$I0 = xor 0, O # returns O

The not opcode returns a true value when the argument is false and a false
value if the argument is true:

$I0 = not $I1
$PO0 = not $P1

The bitwise opcodes operate on their values a single bit at a time. band,
bor, and bxor return a value that is the logical AND, OR, or XOR of each
bit in the source arguments. They each take two arguments.

.loadlib ’bit_ops’

...
$I0 = bor $I1, $I2
$PO = bxor $P1, $I2

band, bor, and bxor also have variants that modify the result in place.

.loadlib ’bit_ops’

...
$I0 = band $I1
$PO = bor $P1

bnot is the logical NOT of each bit in the source argument.

.loadlib ’bit_ops’
...
$I0 = bnot $I1

The logical and arithmetic shift operations shift their values by a specified
number of bits:

.loadlib ’bit_ops’

...

$I0 = shl $I1, $I2 # shift $I1 left by count $I2
$I0 = shr $I1, $I2 # arithmetic shift right

$PO = 1sr $P1, $P2 # logical shift right

34

Working with Strings

Parrot strings are buffers of variable-sized data. The most common use of
strings is to store text data. Strings can also hold binary or other non-textual
data, though this is rare.® Parrot strings are flexible and powerful, to handle
the complexity of human-readable (and computer-representable) text data.
String operations work with string literals, variables, and constants, and

with string-like PMCs.

Escape Sequences

Strings in double-quotes allow escape sequences using backslashes. Strings
in single-quotes only allow escapes for nested quotes:

$s0
$s0

"This string is \n on two lines"
’This is a \n one-line string with a slash in it’

Table 4.1 shows the escape sequences Parrot supports in double-quoted

strings.

Table 5.1: String Escapes

Meaning

An ASCII alarm character

An ASCII backspace character

\t A tab

\n A newline

\v A vertical tab

\f A form feed

\r A carriage return
\e An escape

\\ A backslash

\??’ A quote

\xNN A character represented by 1-2 hexadecimal digits
\x{ NNNNNNNN} | A character represented by 1-8 hexadecimal digits
\oNNN A character represented by 1-3 octal digits
\uNNNN A character represented by 4 hexadecimal digits
\UNNNNNNNN A character represented by 8 hexadecimal digits
\cX A control character X

8In general, a custom PMC is more useful.

35

Heredocs

If you need more flexibility in defining a string, use a heredoc string literal.
The << operator starts a heredoc. The string terminator immediately fol-
lows. All text until the terminator is part of the string. The terminator
must appear on its own line, must appear at the beginning of the line, and
may not have any trailing whitespace.

$S2 = <<"End_Token"

This is a multi-line string literal. Notice that
it doesn’t use quotation marks.

End_Token

Concatenating strings

Use the . operator to concatenate strings. The following example concate-
nates the string “cd” onto the string “ab” and stores the result in $S1.

$50 = "ab"
$S1 = $SO . "cd" # concatenates $SO with "cd"
say $S1 # prints "abcd"

Concatenation has a .= variant to modify the result in place. In the next
example, the .= operation appends “xy” onto the string “abcd” in $S1.

$S1 .= "xy" # appends "xy" to $S1
say $S1 # prints "abcdxy"

Repeating strings

The repeat opcode repeats a string a specified number of times:

$50 = "a"
$S1 = repeat $S0, 5
say $S1 # prints "aaaaa"

In this example, repeat generates a new string with “a” repeated five times
and stores it in $S1.
Length of a string

The length opcode returns the length of a string in characters. This won’t
be the same as the length in bytes for multibyte encoded strings:

$S0 = "abcd"
$I0 = length $S0 # the length is 4
say $I0

length has no equivalent for PMC strings.

36

Substrings

The simplest version of the substr opcode takes three arguments: a source
string, an offset position, and a length. It returns a substring of the original
string, starting from the offset position (0 is the first character) and spanning

the length:
$S0 = substr "abcde", 1, 2 # $S0 is "bc"

This example extracts a two-character string from “abcde” at a one-character
offset from the beginning of the string (starting with the second character).
It generates a new string, “bc”, in the destination register $S0.

When the offset position is negative, it counts backward from the end of
the string. Thus an offset of -1 starts at the last character of the string.

substr no longer has a four-argument form, as in-place string operations
have been removed. There is a replace operator which will perform the re-
placement and return a new_string without modifying the old_string. The
arguments are new_string, old_string, offset, count and replacement _string.
The old_string is copied to the new_string with the replacement_string in-
serted from offset replacing the content for count characters.

This example replaces the substring “bc” in $S1 with the string “XYZ”,

and returns “aXYZde” in $30, $S1 is not changed:
$S1 = "abcde"
$S0 = replace $s1, 1, 2, "XYZ"
say $S0O # prints "aXYZde"
say $S1 # prints "abcde"

When the offset position in a replace is one character beyond the original
string length, replace appends the replacement string just like the concate-
nation operator. If the replacement string is an empty string, the opcode

removes the characters from the original string in the new string.
$S1 = "abcde"
$S1 = replace $s1, 1, 2, "XYZ"
say $S1 # prints "aXYZde"

Converting characters

The chr opcode takes an integer value and returns the corresponding char-
acter in the ASCII character set as a one-character string. The ord opcode
takes a single character string and returns the integer value of the character
at the first position in the string. The integer value of the character will

differ depending on the current encoding of the string:
$S0 = chr 65 # $S0 is "A"
$10 = ord $SO # $I0 is 65, if $SO is ASCII/UTF-8

ord has a two-argument variant that takes a character offset to select a
single character from a multicharacter string. The offset must be within the

length of the string;:
$10 = ord "ABC", 2 # $10 is 67

A negative offset counts backward from the end of the string, so -1 is the

last character.
$I0 = ord "ABC", -1 # $I0 is 67

37

Formatting strings

The sprintf opcode generates a formatted string from a series of values.
It takes two arguments: a string specifying the format, and an array PMC
containing the values to be formatted. The format string and the result can
be either strings or PMCs:

$s0
$PO

sprintf $S1, $P2
sprintf $P1, $P2

The format string is similar to C’s sprintf function with extensions for
Parrot data types. Each format field in the string starts with a % and ends
with a character specifying the output format. Table 4.2 lists the available
output format characters.

Table 5.2: Format characters

Format | Meaning

he A single character.

%d A decimal integer.

hi A decimal integer.

hu An unsigned integer.

ho An octal integer.

%hx A hex integer, preceded by 0x (when # is specified).

%X A hex integer with a capital X (when # is specified).
b A binary integer, preceded by Ob (when # is specified).
%B A binary integer with a capital B (when # is specified).
hp A pointer address in hex.

Wt A floating-point number.

he A floating-point number in scientific notation (displayed with a lowercase “e”).
%E The same as %e, but displayed with an uppercase E.

e The same as %e or %f, whichever fits best.

%G The same as %g, but displayed with an uppercase E.

hs A string.

Each format field supports several specifier options: flags, width, preci-
sion, and size. Table 4.3 lists the format flags.

The width is a number defining the minimum width of the output from
a field. The precision is the maximum width for strings or integers, and
the number of decimal places for floating-point fields. If either width or
precision is an asterisk (*), it takes its value from the next argument in the

PMC.

The size modifier defines the type of the argument the field takes. Table
4.4 lists the size flags. The values in the aggregate PMC must have a type

38

Table 5.3: Format flags

Flag Meaning

0 Pad with zeros.

ispace;, | Pad with spaces.

+ Prefix numbers with a sign.
- Align left.
Prefix a leading 0 for octal, Ox for hex, or force a decimal point.

compatible with the specified size.

Table 5.4: Size flags

Character | Meaning

short integer or single-precision float
long

huge value (long long or long double)
Parrot INTVAL or FLOATVAL
opcode_t pointer

PMC

String

0o ot | mi+HBs

$S0 = sprintf "int %#Px num %+2.3Pf\n", $P2

say $S0 # prints "int 0Ox2a num +10.000"
The format string of this sprintf example has two format fields. The first,
J#Px, extracts a PMC argument (P) from the aggregate $P2 and formats
it as a hexadecimal integer (x) with a leading Ox (#). The second format
field, %+2.3Pf, takes a PMC argument (P) and formats it as a floating-point
number (f) with a minimum of two whole digits and a maximum of three
decimal places (2.3) and a leading sign (+).

The test files t/op/string.t and t/op/sprintf.t have many more examples

of format strings.

Joining strings

The join opcode joins the elements of an array PMC into a single string.
The first argument separates the individual elements of the PMC in the final
string result.

$PO = new "ResizablePMCArray"
push $PO, "hi"

39

push $PO, O
push $PO, 1
push $PO, O
push $PO, "parrot"

$S0 = join "__", $PO

say $S0 # prints "hi__O__1__0O__parrot"

This example builds a Array in $PO with the values ‘‘hi’’, 0, 1, 0, and
¢ ‘parrot’’. It then joins those values (separated by the string “¢__’?) into
a single string stored in $S0.

Splitting strings

Splitting a string yields a new array containing the resulting substrings of
the original string.

This example splits the string “abc” into individual characters and stores
them in an array in $PO. It then prints out the first and third elements of
the array.

$PO = split "", "abc"

$P1 = $PO[0]

say $P1 # ’a’
$P1 = $PO[2]

say $P1 # °c’

Testing for substrings

The index opcode searches for a substring within a string. If it finds the
substring, it returns the position where the substring was found as a char-
acter offset from the beginning of the string. If it fails to find the substring,
it returns -1:

$I0 = index "Beeblebrox", "eb"

say $I0 # prints 2
$I0 = index "Beeblebrox", "Ford"
say $I0 # prints -1

index also has a three-argument version, where the final argument defines
an offset position for starting the search.

$I0 = index "Beeblebrox", "eb", 3

say $I0 # prints 5
This example finds the second “eb” in “Beeblebrox” instead of the first,
because the search skips the first three characters in the string.

Bitwise Operations

The numeric bitwise opcodes also have string variants for AND, OR, and
XOR: bors, bands, and bxors. These take string or string-like PMC ar-
guments and perform the logical operation on each byte of the strings to
produce the result string. Remember that in-place string operations are no
longer available.

40

.loadlib ’bit_ops’

...

$PO0 = bors $P1

$PO = bands $P1

$S0 = bors $S1, $S2
$PO0 = bxors $P1, $S2

The bitwise string opcodes produce meaningful results only when used with
simple ASCII strings, because Parrot performs bitwise operations per byte.

Copy-On-Write

Strings use copy-on-write (COW) optimizations. A call to $31 = $S0 doesn’t
immediately make a copy of $S0, it only makes both variables point to the
same string. Parrot doesn’t make a copy of the string until one of two strings
is modified.

$S0 = "Ford"

$S1 = $S0

$S1 = "Zaphod"

say $S0 # prints "Ford"
say $S1 # prints "Zaphod"

Modifying one of the two variables causes Parrot to create a new string.
This example preserves the existing value in $S0 and assigns the new value
to the new string in $S1. The benefit of copy-on-write is avoiding the cost
of copying strings until the copies are necessary.

Encodings and Charsets

Years ago, strings only needed to support the ASCII character set (or
charset), a mapping of 128 bit patterns to symbols and English-language
characters. This worked as long as everyone using a computer read and
wrote English and only used a small handful of punctuation symbols. In
other words, it was woefully insufficient. A modern string system must
manage charsets in order to make sense out of all the string data in the
world. A modern string system must also handle different encodings—ways
to represent various charsets in memory and on disk.

Every string in Parrot has an associated encoding and character set.
The default format is 8-bit ASCII, which is almost universally supported.
Double-quoted string constants can have an optional prefix specifying the
string’s format.? Parrot tracks information about encoding and charset in-
ternally, and automatically converts strings when necessary to preserve these
characteristics. Strings constants may have prefixes of the form format:.

$S0 = utf8:"Hello UTF-8 Unicode World!"

$S1 = utf16:"Hello UTF-16 Unicode World!"

$S2 = ascii:"This is 8-bit ASCII"

$S3 = binary:"This is raw, unformatted binary data"

9As you might suspect, single-quoted strings do not support this.

41

Parrot supports the formats ascii, binary, iso-8859-1 (Latin 1), utf8,
utf16, ucs2, and ucs4.

The binary format treats the string as a buffer of raw unformatted
binary data. It isn’t really a string per se, because binary data contains
no readable characters. This exists to support libraries which manipulate
binary data that doesn’t easily fit into any other primitive data type.

When Parrot operates on two strings (as in concatenation or compari-
son), they must both use the same character set and encoding. Parrot will
automatically upgrade one or both of the strings to the next highest com-
patible format as necessary. ASCII strings will automatically upgrade to
UTF-8 strings if needed, and UTF-8 will upgrade to UTF-16. All of these
conversions happen inside Parrot, so the programmer doesn’t need to worry
about the details.

Working with PMCs

Polymorphic Containers (PMCs) are the basis for complex data types and
object-oriented behavior in Parrot. In PIR, any variable that isn’t a low-
level integer, number, or string is a PMC. PMC variables act much like the
low-level variables, but you have to instantiate a new PMC object before
you use it. The new opcode creates a new PMC object of the specified type.

$PO = new ’String’
$P0 = "That’s a bollard and not a parrot"
say $PO

This example creates a String object, stores it in the PMC register variable
$PO, assigns it the value “That’s a bollard and not a parrot”, and prints it.

Every PMC has a type that indicates what data it can store and what
behavior it supports. The typeof opcode reports the type of a PMC. When
the result is a string variable, typeof returns the name of the type:

$PO = new "String"
$S0 = typeof $PO # $S0 is "String"
say $S0 # prints "String"

When the result is a PMC variable, typeof returns the Class PMC for that
object type.

Scalars

In most of the examples shown so far, PMCs duplicate the behavior of
integers, numbers, and strings. Parrot provides a set of PMCs for this exact
purpose. Integer, Float, and String are thin overlays on Parrot’s low-level
integers, numbers, and strings.

A previous example showed a string literal assigned to a PMC variable
of type String. Direct assignment of a literal to a PMC works for all the
low-level types and their PMC equivalents:

42

$PO
$PO

$P1
$P1

$P2

$P2 =
You may also assign non-constant low-level integer, number, or string
registers directly to a PMC. The PMC handles the conversion from the

low-level type to its own internal storage.!?
$I0 =

$PO =

$PO

$s1
$P1
$P1

$N2
$P2
$P2

The box opcode is a handy shortcut to create the appropriate PMC object
an integer, number, or string literal or variable.

from
$PO

$P1

$P2

In the

new ’Integer’

5

new ’String’

"5 birds"

new ’Float’

3.14

5

new ’Integer’

$10

"5 birds"

new ’String’

$s1

3.14

new ’Float’

$N2

box 3

$PO is an "Integer"

box $S1 # $P1 is a "String"

box 3.14 # $P2 is a "Float"

reverse situation, when assigning a PMC to an integer, number, or
string variable, the PMC also has the ability to convert its value to the

low-level type.!!

$PO
$s0

$NO =

$10

$P1
$s1
$11
$N1

$pP2
$s2
$12
$N2

This

example creates Integer, Float, and String PMCs, and shows the
effect of assigning each one back to a low-level type.

Converting a string to an integer or number only makes sense when the
The String PMC will attempt to

box 5
$PO
$PO
$PO

box "5 birds"

$P1
$P1
$P1

box 3.

$P2
$pP2
$pP2

14

#
#
#

the
the
the

the
the
the

the
the
the

string "5"
number 5.0
integer 5

string "5 birds"
integer 5
number 5.0

string "3.14"
integer 3
number 3.14

contents of the string are a number.

extract a number from the beginning of the string, but otherwise will return

a false value.

0This conversion of a simpler type to a more complex type is “boxing”.

"The reverse of “boxing” is “unboxing”.

43

Type Conversions

Parrot also handles conversions between the low-level
types where possible, converting integers to strings
($80 = $I1), numbers to strings ($S0 = $N1), num-
bers to integers ($I0 = $N1), integers to numbers
($NO = $I1), and even strings to integers or numbers
($10 = $S1 and $NO = $S1).

Aggregates

PMCs can define complex types that hold multiple values, commonly called
aggregates. Two basic aggregate types are ordered arrays and associative
arrays. The primary difference between these is that ordered arrays use
integer keys for indexes and associative arrays use string keys.

Aggregate PMCs support the use of numeric or string keys. PIR also
offers a extensive set of operations for manipulating aggregate data types.

Ordered Arrays

Parrot provides several ordered array PMCs, differentiated by whether the
array should store booleans, integers, numbers, strings, or other PMCs, and
whether the array should maintain a fixed size or dynamically resize for the
number of elements it stores.

The core array types are FixedPMCArray, ResizablePMCArray, FixedIntegerArray,

ResizableIntegerArray, FixedFloatArray, ResizableFloatArray, FixedStringArray,
ResizableStringArray, FixedBooleanArray, and ResizableBooleanArray.
The array types that start with “Fixed” have a fixed size and do not allow
elements to be added outside their allocated size. The “Resizable” vari-
ants automatically extend themselves as more elements are added.'? The
array types that include “String”, “Integer”, or “Boolean” in the name use
alternate packing methods for greater memory efficiency.

Parrot’s core ordered array PMCs all have zero-based integer keys. Ex-
tracting or inserting an element into the array uses PIR’s standard key
syntax, with the key in square brackets after the variable name. An lvalue
key sets the value for that key. An rvalue key extracts the value for that
key in the aggregate to use as the argument value:

$PO = new "ResizablePMCArray" # create a new array object
$P0O[0] = 10 # set first element to 10
$PO[1] = $I31 # set second element to $I31
$10 = $PO[0] # get the first element

12With some additional overhead for checking array bounds and reallocating array mem-
ory.

44

Setting the array to an integer value directly (without a key) sets the number
of elements of the array. Assigning an array directly to an integer retrieves
the number of elements of the array.

$PO
$11

2 # set array size
$PO # get array size

This is equivalent to using the elements opcode to retrieve the number of
items currently in an array:

elements $I0, $PO # get element count

Some other useful instructions for working with ordered arrays are push,
pop, shift, and unshift, to add or remove elements. push and pop work
on the end of the array, the highest numbered index. shift and unshift
work on the start of the array, adding or removing the zeroth element, and
renumbering all the following elements.

push $PO, ’banana’ # add to end
$S0 = pop $PO # fetch from end

unshift $PO, 74 # add to start
$I0 = shift $PO # fetch from start

Associative Arrays

An associative array is an unordered aggregate that uses string keys to
identify elements. You may know them as “hash tables”, “hashes”, “maps”,
or “dictionaries”. Parrot provides one core associative array PMC, called
Hash. String keys work very much like integer keys. An lvalue key sets the
value of an element, and an rvalue key extracts the value of an element. The
string in the key must always be in single or double quotes.

new $P1, "Hash" # create a new associative array
$P1["key"] = 10 # set key and value
$10 = $P1["key"] # get value for key

Assigning a Hash PMC (without a key) to an integer result fetches the
number of elements in the hash.'3

$I1 = $P1 # number of entries

The exists opcode tests whether a keyed value exists in an aggregate. It
returns 1 if it finds the key in the aggregate and 0 otherwise. It doesn’t care
if the value itself is true or false, only that an entry exists for that key:

new $PO, "Hash"

$PO["key"] = 0

exists $I0, $PO["key"] # does a value exist at "key"?
say $I0 # prints 1

The delete opcode removes an element from an associative array:

delete $PO["key"]

13You may not set a Hash PMC directly to an integer value.

45

Iterators

An iterator extracts values from an aggregate PMC one at a time. Iterators
are most useful in loops which perform an action on every element in an
aggregate. The iter opcode creates a new iterator from an aggregate PMC.
It takes one argument, the PMC over which to iterate:

$P1 = iter $P2

The shift opcode extracts the next value from the iterator.

$P5 = shift $P1

Evaluating the iterator PMC as a boolean returns whether the iterator has
reached the end of the aggregate:

if $P1 goto iter_repeat

Parrot provides predefined constants for working with iterators. . ITERATE_FROM_START
and .ITERATE FROM_END constants select whether an ordered array iterator
starts from the beginning or end of the array. These two constants have no
effect on associative array iterators, as their elements are unordered.
Load the iterator constants with the .include directive to include the
file iterator.pasm. To use them, set the iterator PMC to the value of the
constant:

.include "iterator.pasm"
...
$P1 = .ITERATE_FROM_START

With all of those separate pieces in one place, this example loads the iterator
constants, creates an ordered array of “a”, “b”, “c”, creates an iterator from
that array, and then loops over the iterator using a conditional goto to checks
the boolean value of the iterator and another unconditional goto:

.include "iterator.pasm"

$P2 = new "ResizablePMCArray"
push $P2, "a"

push $P2, "b"

push $P2, "c"

$P1
$P1

iter $P2
.ITERATE_FROM_START

iter_loop:
unless $P1 goto iter_end
$P5 = shift $P1
say $P5 # prints uau’ "b", nen
goto iter_loop
iter_end:

Associative array iterators work similarly to ordered array iterators. When
iterating over associative arrays, the shift opcode extracts keys instead of
values. The key looks up the value in the original hash PMC.

46

$P2 = new "Hash"
$pP2["a"] = 10
$P2["p"] = 20
$P2["c"] = 30
$P1 = iter $P2
iter_loop:
unless $P1 goto iter_end
$S5 = shift $P1 # the key "a", "b", or "c"
$I9 = $P2[$S5] # the value 10, 20, or 30
say $I9
goto iter_loop
iter_end:

This example creates an associative array $P2 that contains three keys “a”,
“b”, and “c”, assigning them the values 10, 20, and 30. It creates an iterator
($P1) from the associative array using the iter opcode, and then starts a
loop over the iterator. At the start of each loop, the unless instruction
checks whether the iterator has any more elements. If there are no more
elements, goto jumps to the end of the loop, marked by the label iter_end.
If there are more elements, the shift opcode extracts the next key. Keyed
assignment stores the integer value of the element indexed by the key in
$19. After printing the integer value, goto jumps back to the start of the
loop, marked by iter_loop.

Multi-level Keys

Aggregates can hold any data type, including other aggregates. Accessing
elements deep within nested data structures is a common operation, so PIR
provides a way to do it in a single instruction. Complex keys specify a series
of nested data structures, with each individual key separated by a semicolon.

$PO = new "Hash"

$P1 = new "ResizablePMCArray"
$P1[2] = 42

$PO["answer"] = $P1

$I1 = 2

$I0 = $PO["answer";$I1]

say $I0

This example builds up a data structure of an associative array containing

an ordered array. The complex key ["answer’’; $I1] retrieves an element

of the array within the hash. You can also set a value using a complex key:
$PO["answer";0] = 5

The individual keys are integer or string literals, or variables with integer
or string values.

Copying and Cloning

PMC registers don’t directly store the data for a PMC, they only store a
pointer to the structure that stores the data. As a result, the = operator

47

doesn’t copy the entire PMC, it only copies the pointer to the PMC data.
If you later modify the copy of the variable, it will also modify the original.

$PO = new "String"

$PO = "Ford"

$P1 = $PO

$P1 = "Zaphod"

say $PO # prints "Zaphod"
say $P1 # prints "Zaphod"

In this example, $P0 and $P1 are both pointers to the same internal data
structure. Setting $P1 to the string literal “Zaphod”, it overwrites the pre-
vious value “Ford”. Both $P0 and $P1 refer to the String PMC “Zaphod”.

The clone opcode makes a deep copy of a PMC, instead of copying the
pointer like = does.

$PO = new "String"

$PO = "Ford"

$P1 = clone $PO

$PO = "Zaphod"

say $PO # prints "Zaphod"
say $P1 # prints "Ford"

This example creates an identical, independent clone of the PMC in $P0 and
puts it in $P1. Later changes to $PO have no effect on the PMC in $P1.1

To assign the value of one PMC to another PMC that already exists,
use the assign opcode:

$PO = new "Integer"

$P1 = new "Integer"

$PO0 = 42

assign $P1, $PO # note: $P1 must exist already
inc $PO

say $PO # prints 43

say $P1 # prints 42

This example creates two Integer PMCs, $P1 and $P2, and gives the first
one the value 42. It then uses assign to pass the same integer value on to
$P1. Though $PO increments, $P1 doesn’t change. The result for assign
must have an existing object of the right type in it, because assign neither
creates a new duplicate object (as does clone) or reuses the source object
(as does =).

Properties

PMCs can have additional values attached to them as “properties” of the
PMC. Most properties hold extra metadata about the PMC.

The setprop opcode sets the value of a named property on a PMC. It
takes three arguments: the PMC on which to set a property, the name of
the property, and a PMC containing the value of the property.

setprop $PO, "name", $P1

1With low-level strings, the copies created by clone are copy-on-write exactly the same
as the copy created by =.

48

The getprop opcode returns the value of a property. It takes two arguments:
the name of the property and the PMC from which to retrieve the property
value.

$P2 = getprop "name", $PO

This example creates a String object in $P0 and an Integer object with
the value 1 in $P1. setprop sets a property named “eric” on the object in
$P0O and gives the property the value of $P1. getprop retrieves the value of
the property “eric” on $PO and stores it in $P2.

$PO = new "String"
$PO = "Half-a-Bee"
$P1 = new "Integer"
$P1 =1

setprop $PO, "eric", $P1 # set a property on $PO
$P2 = getprop "eric", $PO # retrieve a property from $PO

say $P2 # prints 1

Parrot stores PMC properties in an associative array where the name of the
property is the key.
delprop deletes a property from a PMC.

delprop $P1, "constant" # delete property

You can fetch a complete hash of all properties on a PMC with prophash:
$PO = prophash $P1 # set $PO to the property hash of $P1

Fetching the value of a non-existent property returns an Undef PMC.

Vtable Functions

You may have noticed that a simple operation sometimes has a different
effect on different PMCs. Assigning a low-level integer value to a Integer
PMC sets its integer value of the PMC, but assigning that same integer to
an ordered array sets the size of the array.

Every PMC defines a standard set of low-level operations called vtable
functions. When you perform an assignment like:

$P0 = 5

... Parrot calls the set_integer native vtable function on the PMC re-
ferred to by register $PO.

Parrot has a fixed set of vtable functions, so that any PMC can stand
in for any other PMC; they’re polymorphic.!> Every PMC defines some
behavior for every vtable function. The default behavior is to throw an
exception reporting that the PMC doesn’t implement that vtable function.
The full set of vtable functions for a PMC defines the PMC'’s basic interface,
but PMCs may also define methods to extend their behavior beyond the
vtable set.

15Hence the name “Polymorphic Container”.

49

Namespaces

Parrot performs operations on variables stored in small register sets local to
each subroutine. For more complex tasks,'% it’s also useful to have variables
that live beyond the scope of a single subroutine. These variables may be
global to the entire program or restricted to a particular library. Parrot
stores long-lived variables in a hierarchy of namespaces.

The opcodes set_global and get_global store and fetch a variable in
a namespace:

$PO = new "String"

$PO = "buzz, buzz"

set_global "bee", $PO

...

$P1 = get_global "bee"

say $P1 # prints "buzz, buzz"

The first two statements in this example create a String PMC in $PO and
assign it a value. In the third statement, set_global stores that PMC as the
named global variable bee. At some later point in the program, get_global
retrieves the global variable by name, and stores it in $P1 to print.

Namespaces can only store PMC variables. Parrot boxes all primitive
integer, number, or string values into the corresponding PMCs before storing
them in a namespace.

The name of every variable stored in a particular namespace must be
unique. You can’t have store both an Integer PMC and an array PMC
both named “bee”, stored in the same namespace.'”

Namespace Hierarchy

A single global namespace would be far too limiting for most languages or
applications. The risk of accidental collisions—where two libraries try to
use the same name for some variable—would be quite high for larger code
bases. Parrot maintains a collection of namespaces arranged as a tree, with
the parrot namespace as the root. Every namespace you declare is a child
of the parrot namespace (or a child of a child....).

The set_global and get_global opcodes both have alternate forms that
take a key name to access a variable in a particular namespace within the
tree. This code example stores a variable as bill in the Duck namespace
and retrieves it again:

set_global ["Duck"], "bill", $PO

$P1 = get_global ["Duck"], "bill"
The key name for the namespace can have multiple levels, which correspond
to levels in the namespace hierarchy. This example stores a variable as bill

in the Electric namespace under the General namespace in the hierarchy.
16

...and for most high-level languages that Parrot supports.

"You may wonder why anyone would want to do this. We wonder the same thing, but
Perl 5 does it all the time. The Perl 6 implementation on Parrot includes type sigils in the
names of the variables it stores in namespaces so each name is unique, e.g. $bee, @bee. ...

50

set_global ["General";"Electric"], "bill", $PO
$P1 = get_global ["General";"Electric"], "bill"

The set_global and get_global opcode operate on the currently se-
lected namespace. The default top-level namespace is the “root” names-
pace. The .namespace directive allows you to declare any namespace for
subsequent code. If you select the General Electric namespace, then store
or retrieve the bill variable without specifying a namespace, you will work
with the General Electric bill, not the Duck bill.

.namespace ["General";"Electric"]

#...

set_global "bill", $PO

$P1 = get_global "bill"
Passing an empty key to the .namespace directive resets the selected names-
pace to the root namespace. The brackets are required even when the key
is empty.

.namespace []

When you need to be absolutely sure you’re working with the root namespace
regardless of what namespace is currently active, use the set_root_global
and get_root_global opcodes instead of set_global and get_global. This
example sets and retrieves the variable bill in the Dollar namespace, which
is directly under the root namespace:

set_root_global ["Dollar"], "bill", $PO

$P1 = get_root_global ["Dollar"], "bill"
To prevent further collisions, each high-level language running on Parrot
operates within its own virtual namespace root. The default virtual root is
parrot, and the .HLL directive (for High-Level Language) selects an alter-
nate virtual root for a particular high-level language:

.HLL ’ruby’

The set_hll_global and get_hll _global opcodes are like set_root_global
and get_root_global, except they always operate on the virtual root for the
currently selected HLL. This example stores and retrieves a bill variable
in the Euro namespace, under the Dutch HLL namespace root:

.HLL ’Dutch’

#...

set_hll_global ["Euro"], "bill", $PO
$P1 = get_hll_global ["Euro"], "bill"

NameSpace PMC

Namespaces are just PMCs. They implement the standard vtable functions
and a few extra methods. The get_namespace opcode retrieves the currently
selected namespace as a PMC object:

$PO = get_namespace

o1

The get_root_namespace opcode retrieves the namespace object for the root
namespace. The get_hll namespace opcode retrieves the virtual root for
the currently selected HLL.

$P0 = get_root_namespace
= get_hll_namespace

Each of these three opcodes can take a key argument to retrieve a names-
pace under the currently selected namespace, root namespace, or HLL root

namespace:
$P0 = get_namespace ["Duck"]
$P0 = get_root_namespace ["General";"Electric"]
$PO0 = get_hll_namespace ["Euro"]

Once you have a namespace object you can use it to retrieve variables from
the namespace instead of using a keyed lookup. This example first looks up
the Euro namespace in the currently selected HLL, then retrieves the bill
variable from that namespace:

$PO
$P1

get_hll_namespace ["Euro"]
get_global $PO, "bill"

Namespaces also provide a set of methods to provide more complex behavior
than the standard vtable functions allow. The get_name method returns the
name of the namespace as a ResizableStringArray:

$P3 = $PO.’get_name’ ()

The get_parent method retrieves a namespace object for the parent names-
pace that contains this one:
$P5 = $PO.’get_parent’ ()

The get_class method retrieves any Class PMC associated with the names-
pace:
$P6 = $PO.’get_class’ ()

The add_var and find_var methods store and retrieve variables in a names-
pace in a language-neutral way:

$P0.’add_var’ ("bee", $P3)

$P1 = $PO.’find_var’ ("bee")
The find namespace method looks up a namespace, just like the get_namespace
opcode:

$P1 = $PO.’find_namespace’ ("Duck")

The add_namespace method adds a new namespace as a child of the names-
pace object:
$P0.’add_namespace’ ($P1)

The make namespace method looks up a namespace as a child of the names-
pace object and returns it. If the requested namespace doesn’t exist, make namespace
creates a new one and adds it under that name:

$P1 = $PO. ’make_namespace’ ("Duck")

52

Aliasing

Just like regular assignment, the various operations to store a variable in a
namespace only store a pointer to the PMC. If you modify the local PMC
after storing in a namespace, those changes will also appear in the stored
global. To store a true copy of the PMC, clone it before you store it.

Leaving the global variable as an alias for a local variable has its advan-
tages. If you retrieve a stored global into a register and modify it:

$P1 = get_global "feather"

inc $P1
...you modify the value of the stored global, so you don’t need to call
set_global again.

5.5 Control Structures

The semantics of control structures in high-level languages vary broadly.
Rather than dictating one particular set of semantics for control structures,
or attempting to provide multiple implementations of common control struc-
tures to fit the semantics of all major target languages, PIR provides a simple
set of conditional and unconditional branch instructions.'®

Conditionals and Unconditionals

An unconditional branch always jumps to a specified label. PIR has only
one unconditional branch instruction, goto. In this example, the first say
statement never runs because the goto always skips over it to the label
skip_all_that:

goto skip_all_that
say "never printed"

skip_all_that:
say "after branch"

A conditional branch jumps to a specified label only when a particular con-
dition is true. The condition may be as simple as checking the truth of a
particular variable or as complex as a comparison operation.

In this example, the if/goto skips to the label maybe_skip only if the
value stored in $I0 is true. If $I0 is false, it will print “might be printed”
and then print “after branch”:

if $I0 goto maybe_skip

say "might be printed"
maybe_skip:

say "after branch"

18Tn fact, all control structures in all languages ultimately compile down to conditional
and unconditional branches, so you're just getting a peek into the inner workings of your
software.

93

Boolean Truth

Parrot’s if and unless instructions evaluate a variable as a boolean to
decide whether to jump. In PIR, an integer is false if it’s 0 and true if
it’s any non-zero value. A number is false if it’s 0.0 and true otherwise. A
string is false if it’s the empty string (¢ ¢?’) or a string containing only a
zero (€ €0°”), and true otherwise. Evaluating a PMC as a boolean calls the
vtable function get_bool to check if it’s true or false, so each PMC is free
to determine what its boolean value should be.

Comparisons

In addition to a simple check for the truth of a variable, PIR provides a
collection of comparison operations for conditional branches. These jump
when the comparison is true.

This example compares $I0 to $I1 and jumps to the label success if

$I0 is less than $I1:
if $I0 < $I1 goto success
say "comparison false"
success:
say "comparison true"

The full set of comparison operators in PIR are == (equal), != (not equal),
< (less than), <= (less than or equal), > (greater than), and >= (greater than
or equal).

Complex Conditions

PIR disallows nested expressions. You cannot embed a statement within
another statement. If you have a more complex condition than a simple
truth test or comparison, you must build up your condition with a series of
instructions that produce a final, single truth value.

This example performs two operations, addition and multiplication, then
uses and to check if the results of both operations were true. The and opcode
stores a boolean value (0 or 1) in the integer variable $I2; the code uses this
value in an ordinary truth test:

$I0 =4 + 5
$I1 =63 *x 0
$I2 = and $I0, $I1

if $I2 goto true
say "maybe printed"
true:

If /Else Construct

if control structure High-level languages often use the keywords if and
else for simple conditional control structures. These control structures per-
form an action when a condition is true and skip the action when the con-
dition is false. PIR’s if instruction can build up simple conditionals.

54

This example checks the truth of the condition $I0. If $I0 is true, it
jumps to the do_it label, and runs the body of the conditional construct. If
$10 is false, it continues on to the next statement, a goto instruction that
skips over the body of the conditional to the label dont_do_it:

if $I0 goto do_it
goto dont_do_it

do_it:
say "in the body of the if"
dont_do_it:

The control flow of this example may seem backwards. In a high-level lan-
guage, if often means “if the condition is true, run the next few lines of
code”. In an assembly language, it’s often more straightforward to write
“if the condition is true, skip the next few lines of code”. Because of the
reversed logic, you may find it easier to build a simple conditional construct
using the unless instruction instead of if.

unless $I0 goto dont_do_it

say "in the body of the if"

dont_do_it:
This example produces the same output as the previous example, but the
logic is simpler. When $I0 is true, unless does nothing and the body of
the conditional runs. When $I0 is false, unless skips over the body of the
conditional by jumping to dont_do_it.

else control structure An if/else control structure is easier to build
using the if instruction than unless. To build an if/else, insert the body
of the else right after the first if instruction.

This example checks if $I0 is true. If so, it jumps to the label true and
runs the body of the if construct. If $I0 is false, the if instruction does
nothing, and the code continues to the body of the else construct. When
the body of the else has finished, the goto jumps to the end of the if/else
control structure by skipping over the body of the if construct:

if $I0 goto true
say "in the body of the else"
goto done
true:
say "in the body of the if"
done:

Switch Construct

A switch control structure selects one action from a list of possible actions
by comparing a single variable to a series of values until it finds one that
matches. The simplest way to achieve this in PIR is with a series of unless
instructions:

$S0 = ’a’

optioni:
unless $S0 == ’a’ goto option2

95

say "matched: a"
goto end_of_switch

option2:
unless $SO == ’b’ goto default
say "matched: b"
goto end_of_switch

default:
say "I don’t understand"

end_of_switch:

This example uses $30 as the case of the switch construct. It compares that
case against the first value a. If they match, it prints the string “matched:
a”, then jumps to the end of the switch at the label end_of _switch. If the
first case doesn’t match a, the goto jumps to the label option2 to check
the second option. The second option compares the case against the value
b. If they match, it prints the string “matched: b”, then jumps to the end
of the switch. If the case doesn’t match the second option, the goto goes on
to the default case, prints “I don’t understand”, and continues to the end
of the switch.

Do-While Loop

A do-while loop runs the body of the loop once, then checks a condition
at the end to decide whether to repeat it. A single conditional branch can
build this style of loop:

$I0 = 0 # counter

redo: # start of loop
inc $I0
say $I0

if $I0 < 10 goto redo # end of loop

This example prints the numbers 1 to 10. The first time through, it executes
all statements up to the if instruction. If the condition evaluates as true
($I0 is less than 10), it jumps to the redo label and runs the loop body
again. The loop ends when the condition evaluates as false.

Here’s a slightly more complex example that calculates the factorial 5!:

.local int product, counter

product = 1
counter = 5

redo: # start of loop
product *= counter
dec counter
if counter > 0 goto redo # end of loop

say product

Each time through the loop it multiplies product by the current value of
the counter, decrements the counter, and jumps to the start of the loop.
The loop ends when counter has counted down to 0.

o6

While Loop

A while loop tests the condition at the start of the loop instead of at the end.
This style of loop needs a conditional branch combined with an unconditional
branch. This example also calculates a factorial, but with a while loop:

.local int product, counter
product = 1
counter

redo: # start of loop
if counter <= 0 goto end_loop
product *= counter
dec counter
goto redo
end_loop: # end of loop

say product

This code tests the counter counter at the start of the loop to see if it’s less
than or equal to 0, then multiplies the current product by the counter and
decrements the counter. At the end of the loop, it unconditionally jumps
back to the start of the loop and tests the condition again. The loop ends
when the counter counter reaches 0 and the if jumps to the end_loop label.
If the counter is a negative number or zero before the loop starts the first
time, the body of the loop will never execute.

For Loop

A for loop is a counter-controlled loop with three declared components: a
starting value, a condition to determine when to stop, and an operation to
step the counter to the next iteration. A for loop in C looks something like:

for (i = 1; i <= 10; i++) {
}

where 1 is the counter, i = 1 sets the start value, i <= 10 checks the stop
condition, and i++ steps to the next iteration. A for loop in PIR requires
one conditional branch and two unconditional branches.

loop_init:
.local int counter
counter = 1

loop_test:
if counter <= 10 goto loop_body
goto loop_end

loop_body:
say counter

loop_continue:
inc counter

goto loop_test

loop_end:

o7

The first time through the loop, this example sets the initial value of the
counter in loop_init. It then goes on to test that the loop condition is met
in loop_test. If the condition is true (counter is less than or equal to 10) it
jumps to loop_body and executes the body of the loop. If the the condition
is false, it will jump straight to loop_end and the loop will end. The body of
the loop prints the current counter then goes on to loop_continue, which
increments the counter and jumps back up to loop_test to continue on to
the next iteration. Each iteration through the loop tests the condition and
increments the counter, ending the loop when the condition is false. If the
condition is false on the very first iteration, the body of the loop will never
run.

5.6 Subroutines

Subroutines in PIR are roughly equivalent to the subroutines or methods of
a high-level language. They’re the most basic building block of code reuse
in PIR. Each high-level language has different syntax and semantics for
defining and calling subroutines, so Parrot’s subroutines need to be flexible
enough to handle a broad array of behaviors.

A subroutine declaration starts with the .sub directive and ends with
the .end directive. This example defines a subroutine named hello that
prints a string “Hello, Polly.”:

.sub ’hello’
say "Hello, Polly."
.end
The quotes around the subroutine name are optional as long as the name of
the subroutine uses only plain alphanumeric ASCII characters. You must use
quotes if the subroutine name uses Unicode characters, characters from some
other character set or encoding, or is otherwise an invalid PIR identifier.

A subroutine call consists of the name of the subroutine to call followed
by a list of (zero or more) arguments in parentheses. You may precede
the call with a list of (zero or more) return values. This example calls the
subroutine fact with two arguments and assigns the result to $I0:

$I0 = ’fact’ (count, product)

Modifiers

A modifier is an annotation to a basic subroutine declaration'® that selects
an optional feature. Modifiers all start with a colon (:). A subroutine can
have multiple modifiers.

When you execute a PIR file as a program, Parrot normally runs the
first subroutine it encounters, but you can mark any subroutine as the first

one to run with the :main modifier:
196r parameter declaration

o8

.sub ’first’
say "Polly want a cracker?"
.end

.sub ’second’ :main
say "Hello, Polly."
.end
This code prints “Hello, Polly.” but not “Polly want a cracker?”. The first
subroutine is first in the source code, but second has the :main modifier.
Parrot will never call first in this program. If you remove the :main
modifier, the code will print “Polly want a cracker?” instead.

The :load modifier tells Parrot to run the subroutine when it loads
the current file as a library. The :init modifier tells Parrot to run the
subroutine only when it executes the file as a program (and not as a library).
The :immediate modifier tells Parrot to run the subroutine as soon as it
gets compiled. The :postcomp modifier also runs the subroutine right after
compilation, but only if the subroutine was declared in the main program
file (when not loaded as a library).

By default, Parrot stores all subroutines in the namespace currently
active at the point of their declaration. The :anon modifier tells Parrot not
to store the subroutine in the namespace. The :nsentry modifier stores
the subroutine in the currently active namespace with a different name. For
example, Parrot will store this subroutine in the current namespace as bar,
not foo:

.sub ’foo’ :nsentry(’bar’)
#...
.end

Chapter 7 on “Classes and Objects” explains other subroutine modifiers.

Parameters and Arguments

The .param directive defines the parameters for the subroutine and creates
local named variables for them (similar to .local):

.param int c

The .return directive returns control flow to the calling subroutine. To
return results, pass them as arguments to .return.

.return($P0)

This example implements the factorial algorithm using two subroutines,
main and fact:

factorial.pir

.sub ’main’ :main
.local int count
.local int product
count =5
product = 1

$I0 = ’fact’(count, product)

99

say $I0
.end

.sub ’fact’
.param int c
.param int p

loop:
if ¢ <= 1 goto fin
p=c*p
dec ¢
branch loop
fin:
.return (p)
.end

This example defines two local named variables, count and product, and
assigns them the values 1 and 5. It calls the fact subroutine with both
variables as arguments. The fact subroutine uses the .param directive to
retrieve these parameters and the .return directive to return the result.
The final printed result is 120.

Positional Parameters

The default way of matching the arguments passed in a subroutine call to
the parameters defined in the subroutine’s declaration is by position. If you

declare three parameters—an integer, a number, and a string:

.sub ’foo’
.param int a
.param num b
.param string c
...

.end

...then calls to this subroutine must also pass three arguments—an integer,
a number, and a string:

’foo0’(32, 5.9, "bar")
Parrot will assign each argument to the corresponding parameter in order
from first to last. Changing the order of the arguments or leaving one out
is an error.

Named Parameters

Named parameters are an alternative to positional parameters. Instead of
passing parameters by their position in the string, Parrot assigns arguments
to parameters by their name. Consequently you may pass named parameters
in any order. Declare named parameters with with the :named modifier.
This example declares two named parameters in the subroutine shoutout—

name and years—each declared with the :named modifier and followed by
the name to use when pass arguments. The string name can match the
parameter name (as with the name parameter), but it can also be different
(as with the years parameter):

60

.sub ’shoutout’
.param string name :named("name")
.param string years :named("age")

$S0 = "Hello " . name
$S1 = "You are " . years
$s1 .= " years old"
say $S0
say $S1

.end

Pass named arguments to a subroutine as a series of name/value pairs, with
the elements of each pair separated by an arrow =>.
.sub ’main’ :main
’shoutout’ ("age" => 42, "name" => "Bob")
.end

The order of the arguments does not matter:

.sub ’main’ :main
’shoutout’ ("name" => "Bob", "age" => 42)
.end

Optional Parameters

Another alternative to the required positional parameters is optional pa-
rameters. Some parameters are unnecessary for certain calls. Parameters
marked with the :optional modifier do not produce errors about invalid
parameter counts if they are not present. A subroutine with optional pa-
rameters should gracefully handle the missing argument, either by providing
a default value or by performing an alternate action that doesn’t need that
value.

Checking the value of the optional parameter isn’t enough to know
whether the call passed such an argument, because the user might have
passed a null or false value intentionally. PIR also provides an :opt_flag
modifier for a boolean check whether the caller passed an argument:

.param string name :optional
.param int has_name :opt_flag
When an integer parameter with the :opt_flag modifier immediately fol-
lows an :optional parameter, it will be true if the caller passed the argu-
ment and false otherwise.
This example demonstrates how to provide a default value for an optional
parameter:

.param string name :optional
.param int has_name :opt_flag

if has_name goto we_have_a_name

name = "default value"
we_have_a_name:

61

When the has_name parameter is true, the if control statement jumps to
the we_have_a name label, leaving the name parameter unmodified. When
has name is false (when the caller passed no argument for name) the if
statement does nothing. The next line sets the name parameter to a default
value.

The :opt_flag parameter never takes an argument from the passed-in
argument list. It’s purely for bookkeeping within the subroutine.

Optional parameters can be positional or named parameters. Optional
parameters must appear at the end of the list of positional parameters af-
ter all the required parameters. An optional parameter must immediately
precede its :opt_flag parameter whether it’s named or positional:

.sub ’question’

.param int value :named ("answer") :optional
.param int has_value :opt_flag
#...

.end

You can call this subroutine with a named argument or with no argument:

’question’ ("answer" => 42)
’question’ ()

Aggregating Parameters

Another alternative to a sequence of positional parameters is an aggregat-
ing parameter which bundles a list of arguments into a single parameter.
The :slurpy modifier creates a single array parameter containing all the
provided arguments:

.param pmc args :slurpy

$P0 = args[0] # first argument
$P1 = args[1] # second argument

As an aggregating parameter will consume all subsequent parameters, you
may use an aggregating parameter with other positional parameters only
after all other positional parameters:

.param string first

.param int second
.param pmc the_rest :slurpy

$PO
$pP1

the_rest[0] # third argument
the_rest[1] # fourth argument

When you combine :named and :slurpy on a parameter, the result is a
single associative array containing the named arguments passed into the
subroutine call:

.param pmc all_named :slurpy :named

$PO
$P1

all_named[’name’] # ’name’ => ’Bob’
all_named[’age’] # ’age’ => 42

62

Flattening Arguments

A flattening argument breaks up a single argument to fill multiple parame-
ters. It’s the complement of an aggregating parameter. The :flat modifier
splits arguments (and return values) into a flattened list. Passing an array
PMC to a subroutine with :flat:

$P0 = new "ResizablePMCArray"
$PO[0] = "Bob"

$PO[1] = 42

’foo’ ($PO :flat)

... allows the elements of that array to fill the required parameters:

.param string name # Bob
.param int age # 42

Arguments on the Command Line

Arguments passed to a PIR program on the command line are available to
the :main subroutine of that program as strings in a ResizableStringArray
PMC. If you call a program args.pir, passing it three arguments:

$ parrot args.pir foo bar baz

...they will be accessible at index 1, 2, and 3 of the PMC parameter.?’

.sub ’main’ :main
.param pmc all_args

$S1 = all_args[1] # foo
$S2 = all_args[2] # bar
$S3 = all_args[3] # baz
...

.end

Because all_args is a ResizableStringArray PMC, you can loop over the
results, access them individually, or even modify them.

Compiling and Loading Libraries

In addition to running PIR files on the command-line, you can also load
a library of pre-compiled bytecode directly into your PIR source file. The
load bytecode opcode takes a single argument: the name of the bytecode
file to load. If you create a file named foo_file.pir containing a single sub-
routine:

foo_file.pir

.sub ’foo_sub’ # .sub stores a global sub
say "in foo_sub"
.end

...and compile it to bytecode using the —o command-line switch:

$ parrot -o foo_file.pbc foo_file.pir

2%Tndex 0 is unused.

63

...you can then load the compiled bytecode into main.pir and directly call
the subroutine defined in foo_file.pir:

main.pir
.sub ’main’ :main
load_bytecode "foo_file.pbc" # compiled foo_file.pir
foo_sub()
.end
The load bytecode opcode also works with source files, as long as Parrot

has a compiler registered for that type of file:

main2.pir

.sub ’main’ :main
load_bytecode "foo_file.pir" # PIR source code
foo_sub()

.end

Sub PMC

Subroutines are a PMC type in Parrot. You can store them in PMC regis-
ters and manipulate them just as you do with other PMCs. Parrot stores
subroutines in namespaces; retrieve them with the get_global opcode:

$PO0 = get_global "my_sub"

To find a subroutine in a different namespace, first look up the appropriate
the namespace object, then use that as the first parameter to get_global:

$PO
$pP1

get_namespace ["My";"Namespace"]
get_global $PO, "my_sub"

You can invoke a Sub object directly:
$PO(1, 2, 3)

You can get or even change its name:

$s0
$PO

$PO # Get the current name
"my_new_sub" # Set a new name

You can get a hash of the complete metadata for the subroutine:

$P1 = inspect $PO
... which contains the fields:
e pos_required
The number of required positional parameters
e pos_optional
The number of optional positional parameters
e named_required
The number of required named parameters
e named_optional

The number of optional named parameters

64

e pos_slurpy
True if the sub has an aggregating parameter for positional args
e named_slurpy

True if the sub has an aggregating parameter for named args

Instead of fetching the entire inspection hash, you can also request indi-
vidual pieces of metadata:

$P1 = inspect $PO, "pos_required"
The arity method on the sub object returns the total number of defined
parameters of all varieties:

$I0 = $PO.’arity’ ()
The get_namespace method on the sub object fetches the namespace PMC
which contains the Sub:

$P1 = $PO.’get_namespace’ ()

Evaluating a Code String

One way of producing a code object during a running program is by com-
piling a code string. In this case, it’s a bytecode segment object.
The first step is to fetch a compiler object for the target language:

$P1 = compreg "PIR"

Parrot registers a compiler for PIR by default, so it’s always available. The
following example fetches a compiler object for PIR and places it in the
named variable compiler. It then generates a code object from a string
by calling compiler as a subroutine and places the resulting bytecode seg-
ment object into the named variable generated and then invokes it as a
subroutine:

.local pmc compiler, generated
.local string source

source = ".sub foo\n$S1 = ’in eval’\nprint $S1\n.end"
compiler = compreg "PIR"

generated = compiler(source)

generated ()

say "back again"

You can register a compiler or assembler for any language inside the Parrot
core and use it to compile and invoke code from that language.

In the following example, the compreg opcode registers the subroutine-
like object $P10 as a compiler for the language “MyLanguage”:

compreg "MyLanguage", $P10

65

Lexicals

Variables stored in a namespace are global variables. They’re accessible
from anywhere in the program if you specify the right namespace path.
High-level languages also have lexical variables which are only accessible
from the local section of code (or scope) where they appear, or in a section
of code embedded within that scope.?! In PIR, the section of code between
a .sub and a .end defines a scope for lexical variables.

While Parrot stores global variables in namespaces, it stores lexical vari-
ables in lexical pads??. Each lexical scope has its own pad. The store_lex
opcode stores a lexical variable in the current pad. The find_lex opcode
retrieves a variable from the current pad:

$PO = new "Integer" # create a variable

$PO = 10 # assign value to it

store_lex "foo", $PO # store with lexical name "foo"
..

$P1 = find_lex "foo" # get the lexical "foo" into $P1
say $P1 # prints 10

The .1lex directive defines a local variable that follows these scoping rules:

.local pmc foo
.lex ’foo’, foo

LexPad and LexInfo PMCs

Parrot uses two different PMCs to store information about a subroutine’s
lexical variables: the LexPad PMC and the LexInfo PMC. Neither of these
PMC types are usable directly from PIR code; Parrot uses them internally
to store information about lexical variables.

LexInfo PMCs store information about lexical variables at compile time.
Parrot generates this read-only information during compilation to represent
what it knows about lexical variables. Not all subroutines get a LexInfo
PMC by default; subroutines need to indicate to Parrot that they require a
LexInfo PMC. One way to do this is with the .lex directive. Of course,
the .lex directive only works for languages that know the names of their
lexical variables at compile time. Languages where this information is not
available can mark the subroutine with :1lex instead.

LexPad PMCs store run-time information about lexical variables. This
includes their current values and type information. Parrot creates a new
LexPad PMC for subs that have a LexInfo PMC already. It does so for
each invocation of the subroutine, which allows for recursive subroutine calls
without overwriting lexical variables.

The get_lexinfo method on a sub retrieves its associated LexInfo
PMC:

2L A scope is roughly equivalent to a block in C.
22Think of a pad like a box to hold a collection of lexical variables.

66

$PO
$P1

get_global "MySubroutine"
$P0. get_lexinfo’ ()

The LexInfo PMC supports a few introspection operations. The elements
opcode retrieves the number of elements it contains. String key access op-
erations retrieve entries from the LexInfo PMC as if it were an associative

array.
$I0 = elements $P1 # number of lexical variables
$PO = $P1["name"] # lexical variable "name"

There is no easy way to retrieve the current LexPad PMC in a given sub-
routine, but they are of limited use in PIR.

Nested Scopes

PIR has no separate syntax for blocks or lexical scopes; subroutines define
lexical scopes in PIR. Because PIR disallows nested .sub/.end declarations,
it needs a way to identify which lexical scopes are the parents of inner lexical
scopes. The :outer modifier declares a subroutine as a nested inner lexical
scope of another existing subroutine. The modifier takes one argument, the
name of the outer subroutine:

.sub ’foo’
defines lexical variables
.end

.sub ’bar’ :outer(’foo’)
can access foo’s lexical variables
.end
Sometimes a name alone isn’t sufficient to uniquely identify the outer sub-
routine. The :subid modifier allows the outer subroutine to declare a truly
unique name usable with :outer:

.sub ’foo’ :subid(’barsouter’)
defines lexical variables
.end

.sub ’bar’ :outer (’barsouter’)
can access foo’s lexical variables
.end

The get_outer method on a Sub PMC retrieves its :outer sub.

$P1 = $PO.’get_outer’ ()

If there is no :outer sub, this will return a null PMC. The set_outer
method on a Sub object sets the :outer sub:

$P0. ’set_outer’ ($P1)

67

Scope and Visibility

High-level languages such as Perl, Python, and Ruby allow nested scopes,
or blocks within blocks that have their own lexical variables. This construct
is common even in C:

{
int x = 0;
int y = 1;
{
int z = 2;
/* x, y, and z are all visible here */
}
/* only x and y are visible here */
}

In the inner block, all three variables are visible. The variable z is only
visible inside that block. The outer block has no knowledge of z. A nalve
translation of this code to PIR might be:

.param int x
.param int y
.param int z
0
1
2

N < ™
wonon

H*

This PIR code is similar, but the handling of the variable z is different:
z is visible throughout the entire current subroutine. It was not visible
throughout the entire C function. A more accurate translation of the C
scopes uses :outer PIR subroutines instead:

.sub ’MyQOuter’

.local pmc x, y

.lex ’x?, x

dlex ’y’, y

x = new ’Integer’

x = 10

’MyInner’ ()

only x and y are visible here

say y # prints 20
.end

.sub ’MyInner’ :outer(’MyOuter’)
.local pmc x, new_y, z
.lex ’z’, z
find_lex x, ’x’

say x # prints 10
new_y = new ’Integer’
new_y = 20
store_lex ’y’, new_y
.end

The find lex and store_lex opcodes don’t just access the value of a vari-
able directly in the scope where it’s declared, they interact with the LexPad
PMC to find lexical variables within outer lexical scopes. All lexical vari-
ables from an outer lexical scope are visible from the inner lexical scope.
Note that you can only store PMCs—not primitive types—as lexicals.

68

Multiple Dispatch

Multiple dispatch subroutines (or multis) have several variants with the
same name but different sets of parameters. The set of parameters for a
subroutine is its signature. When a multi is called, the dispatch operation
compares the arguments passed in to the signatures of all the variants and
invokes the subroutine with the best match.

Parrot stores all multiple dispatch subs with the same name in a names-
pace within a single PMC called a MultiSub. The MultiSub is an invokable
list of subroutines. When a multiple dispatch sub is called, the MultiSub
PMC searches its list of variants for the best matching candidate.

The :multi modifier on a .sub declares a MultiSub:

.sub ’MyMulti’ :multi()
does whatever a MyMulti does
.end

Each variant in a MultiSub must have a unique type or number of parame-
ters declared, so the dispatcher can calculate a best match. If you had two
variants that both took four integer parameters, the dispatcher would never
be able to decide which one to call when it received four integer arguments.

The :multi modifier takes one or more arguments defining the multi
stgnature. The multi signature tells Parrot what particular combination of
input parameters the multi accepts:

.sub ’Add’ :multi(I, I)

.param int x
.param int y

$10 = x + y
.return($I10)
.end

.sub ’Add’ :multi(N, N)
.param num x
.param num y

$NO = x + §y
.return($NO)
.end

.sub ’Start’ :main

$I0 = Add(1, 2) # 3

$NO = AQd(3.14, 2.0) # 5.14

$S0 = Add("a", "b") # ERROR! No (S, S) variant!
.end

Multis can take I, N, S, and P types, but they can also use _ (underscore)
to denote a wildcard, and a string which names a PMC type:

.sub ’Add’ :multi(I, I) # two integers
#...
.end

.sub ’Add’ :multi(I, ’Float’) # integer and Float PMC

#...
.end

69

.sub ’Add’ :multi(’Integer’, _) # Integer PMC and wildcard
#...
.end

When you call a MultiSub, Parrot will try to take the most specific best-
match variant, but will fall back to more general variants if it cannot find
a perfect match. If you call Add with (1, 2), Parrot will dispatch to the
(I, I) variant. If you call it with (1, ‘‘hi’’), Parrot will match the (T,
_) variant, as the string in the second argument doesn’t match I or Float.
Parrot can also promote one of the I, N, or S values to an Integer, Float, or
String PMC.

To make the decision about which multi variant to call, Parrot calculates
the Manhattan Distance between the argument signature and the parameter
signature of each variant. Every difference between each element counts as
one step. A difference can be a promotion from a primitive type to a PMC,
the conversion from one primitive type to another, or the matching of an
argument to a _ wildcard. After Parrot calculates the distance to each
variant, it calls the one with the lowest distance. Notice that it’s possible to
define a variant that is impossible to call: for every potential combination
of arguments there is a better match. This is uncommon, but possible in
systems with many multis and a limited number of data types.

Continuations

Continuations are subroutines that take snapshots of control flow. They are
frozen images of the current execution state of the VM. Once you have a
continuation, you can invoke it to return to the point where the continuation
was first created. It’s like a magical timewarp that allows the developer to
arbitrarily move control flow back to any previous point in the program.
Continuations are like any other PMC; create one with the new opcode:

$P0 = new ’Continuation’

The new continuation starts in an undefined state. If you attempt to invoke
a new continuation without initializing it, Parrot will throw an exception.
To prepare the continuation for use, assign it a destination label with the
set_addr opcode:

$P0 = new ’Continuation’

set_addr $PO, my_label

my_label:
...

To jump to the continuation’s stored label and return the context to the
state it was in at the point of its creation, invoke the continuation:

$P0 Q)

Even though you can use the subroutine call notation $P0() to invoke the
continuation, you cannot pass arguments or obtain return values.

70

Continuation Passing Style

Parrot uses continuations internally for control flow. When Parrot invokes
a subroutine, it creates a continuation representing the current point in the
program. It passes this continuation as an invisible parameter to the subrou-
tine call. To return from that subroutine, Parrot invokes the continuation
to return to the point of creation of that continuation. If you have a con-
tinuation, you can invoke it to return to its point of creation any time you
want.

This type of flow control—invoking continuations instead of performing
bare jumps—is called Continuation Passing Style (CPS).

Tailcalls

Many subroutines set up and call another subroutine and then return the
result of the second call directly. This is a tailcall, and is an important
opportunity for optimization. Here’s a contrived example in pseudocode:
call add_two(5)
subroutine add_two(value)

value = add_one(value)

return add_one(value)

In this example, the subroutine add_two makes two calls to add_one. The
second call to add_one is the return value. add_one gets called; its result
gets returned to the caller of add_two. Nothing in add_two uses that return
value directly.

A simple optimization is available for this type of code. The second call
to add_one can return to the same place that add_two returns; it’s perfectly
safe and correct to use the same return continuation that add_two uses. The
two subroutine calls can share a return continuation.

PIR provides the .tailcall directive to identify similar situations. Use
it in place of the .return directive. .tailcall performs this optimization
by reusing the return continuation of the parent subroutine to make the
tailcall:

.sub ’main’ :main
.local int value
value = add_two(5)

say value
.end

.sub ’add_two’
.param int value
.local int val2
val2 = add_one(value)
.tailcall add_one(val2)
.end

.sub ’add_one’

.param int a
.local int b

71

b=a+1
.return (b)
.end

This example prints the correct value 7.

Coroutines

Coroutines are similar to subroutines except that they have an internal no-
tion of state. In addition to performing a normal .return to return control
flow back to the caller and destroy the execution environment of the sub-
routine, coroutines may also perform a .yield operation. .yield returns a
value to the caller like .return can, but it does not destroy the execution
state of the coroutine. The next call to the coroutine continues execution
from the point of the last .yield, not at the beginning of the coroutine.

Inside a coroutine continuing from a .yield, the entire execution envi-
ronment is the same as it was when the coroutine .yielded. This means
that the parameter values don’t change, even if the next invocation of the
coroutine had different arguments passed in.

Coroutines look like ordinary subroutines. They do not require any
special modifier or any special syntax to mark them as being a coroutine.
What sets them apart is the use of the .yield directive. .yield plays
several roles:

e Identifies coroutines

When Parrot sees a .yield, it knows to create a Coroutine PMC
object instead of a Sub PMC.

e Creates a continuation

.yield creates a continuation in the coroutine and stores the continu-
ation object in the coroutine object for later resuming from the point
of the .yield.

e Returns a value

.yield can return a value 23 to the caller. It is basically the same as
a .return in this regard.

Here is a simple coroutine example:

.sub ’MyCoro’
.yield(1)
.yield(2)
.yield(3)
.return(4)

.end

.sub ’main’ :main
$I0 = MyCoro() # 1
$I0 = MyCoro() # 2

23 .. or many values, or no values.

72

$I0 = MyCoro() # 3
$I0 = MyCoro() #4
$I0 = MyCoro() # 1
$I0 = MyCoro() # 2
$I0 = MyCoro() #3
$I0 = MyCoro() # 4
$I0 = MyCoro() #1
$I0 = MyCoro() # 2
$I0 = MyCoro() #3
$I0 = MyCoro() # 4
.end

This contrived example demonstrates how the coroutine stores its state.
When Parrot encounters the .yield, the coroutine stores its current execu-
tion environment. At the next call to the coroutine, it picks up where it left
off.

Native Call Interface

The Native Call Interface (NCI) is a special version of the Parrot calling con-
ventions for calling functions in shared C libraries with a known signature.
This is a simplified version of the first test in t/pmc/nci.t:

.local pmc library
library = loadlib "libnci_test" # library object
say "loaded"

.local pmc ddfunc
ddfunc = dlfunc library, "nci_dd", "dd" # function object
say "dlfunced"

.local num result
result = ddfunc(4.0) # call the function

ne result, 8.0, nok_1
say "ok 1"
end
nok_1:
say "not ok 1"

#...

This example shows two new opcodes: 1loadlib and dlfunc. The loadlib
opcode obtains a handle for a shared library. It searches for the shared
library in the current directory, in runtime/parrot/dynext, and in a few other
configured directories. It also tries to load the provided filename unaltered
and with appended extensions like .so or .dll. Which extensions it tries
depends on the operating system Parrot is running on.

The dlfunc opcode gets a function object from a previously loaded li-
brary (second argument) of a specified name (third argument) with a known
function signature (fourth argument). The function signature is a string
where the first character is the return value and the rest of the parame-
ters are the function parameters. Table 6-1 lists the characters used in NCI
function signatures.

73

Table 5.5: Function signature letters

Character | Register | C type

v - void (no return value)

c I char

s I short

i I int

1 I long

f N float

d N double

t S char *

p P void * (or other pointer)

I - Parrot_Interp *interpreter
C - a callback function pointer
D - a callback function pointer
Y P the subroutine C or D calls into
Z P the argument for Y

5.7 Classes and Objects

Many of Parrot’s core classes—such as Integer, String, or ResizablePMCArray—
are written in C, but you can also write your own classes in PIR. PIR doesn’t

have the shiny syntax of high-level object-oriented languages, but it provides

the necessary features to construct well-behaved objects every bit as pow-

erful as those of high-level object systems.

Parrot developers often use the word “PMCs” to refer to the objects
defined in C classes and “objects” to refer to the objects defined in PIR. In
truth, all PMCs are objects and all objects are PMCs, so the distinction is
a community tradition with no official meaning.

Class Declaration

The newclass opcode defines a new class. It takes a single argument, the

name of the class to define.
$PO = newclass ’Foo’

Just as with Parrot’s core classes, the new opcode instantiates a new object
of a named class.

$P1 = new ’Foo’
In addition to a string name for the class, new can also instantiate an object

from a class object or from a keyed namespace name.
$PO = newclass ’Foo’
$P1 = new $PO

$P2 = new [’Bar’;’Baz’]

74

Attributes

The addattribute opcode defines a named attribute—or instance vari-
able—in the class:

$P0 = newclass ’Foo’
addattribute $PO, ’bar’

The setattribute opcode sets the value of a declared attribute. You must
declare an attribute before you may set it. The value of an attribute is
always a PMC, never an integer, number, or string.?*

$P6 = box 42
setattribute $P1, ’bar’, $P6

The getattribute opcode fetches the value of a named attribute. It takes
an object and an attribute name as arguments and returns the attribute
PMC:

$P10 = getattribute $P1, ’bar’
Because PMCs are containers, you may modify an object’s attribute by
retrieving the attribute PMC and modifying its value. You don’t need to
call setattribute for the change to stick:

$P10 = getattribute $P1, ’bar’
$P10 = 5
Instantiation

With a created class, we can use the new opcode to instantiate an object of

that class in the same way we can instantiate a new PMC.

$PO
$P1

newclass "Foo"
new $PO

Or, if we don’t have the class object handy, we can do it by name too:

$P1 = new "Foo"

PMCs have two VTABLE interface functions for dealing with instantiating
a new object: init and init_pmc. The former is called when a new PMC is
created, the later is called when a new PMC is created with an initialization
argument.

.namespace ["Foo"]
.sub ’init’ :vtable

say "Creating a new Foo"
.end

.sub ’init_pmc’ :vtable
.param pmc args
print "Creating a new Foo with argument "
say args

.end

.namespace[]
.sub ’main’ :main

$P1 = new [’Foo’] # init

$P2 = new [’Foo’], $P1 # init_pmc
.end

24Though it can be an Integer, Number, or String PMC.

75

Methods

Methods in PIR are subroutines stored in the class object. Define a method
with the .sub directive and the :method modifier:

.sub half :method

$P0 = getattribute self, ’bar’

$P1 = $PO / 2

.return($P1)

.end
This method returns the integer value of the bar attribute of the object
divided by two. Notice that the code never declares the named variable
self. Methods always make the invocant object—the object on which the
method was invoked—available in a local variable called self.

The :method modifier adds the subroutine to the class object associated
with the currently selected namespace, so every class definition file must
contain a .namespace declaration. Class files for languages may also contain
an .HLL declaration to associate the namespace with the appropriate high-
level language:

.HLL ’php’

.namespace [’Foo’]
Method calls in PIR use a period (.) to separate the object from the method
name. The method name is either a literal string in quotes or a string
variable. The method call looks up the method in the invocant object using
the string name:

$P0 = $P1.’half’ ()
$S2 = ’double’
$P0 = $P1.$S20)

You can also pass a method object to the method call instead of looking it
up by string name:

$P2
$PO

get_global ’triple’
$P1.$P20)

Parrot always treats a PMC used in the method position as a method object,
so you can’t pass a String PMC as the method name.

Methods can have multiple arguments and multiple return values just
like subroutines:

($PO, $S1) = $P2.’method’ ($I3, $P4)

The can opcode checks whether an object has a particular method. It
returns 0 (false) or 1 (true):

$I0 = can $P3, ’add’

76

Inheritance

The subclass opcode creates a new class that inherits methods and at-
tributes from another class. It takes two arguments: the name of the parent
class and the name of the new class:

$P3 = subclass ’Foo’, ’Bar’

subclass can also take a class object as the parent class instead of a class
name:
$P3 = subclass $P2, ’Bar’

The addparent opcode also adds a parent class to a subclass. This is espe-
cially useful for multiple inheritance, as the subclass opcode only accepts
a single parent class:

$P4 = newclass ’Baz’

addparent $P3, $P4

addparent $P3, $P5
To override an inherited method in the child class, define a method with
the same name in the subclass. This example code overrides Bar’s who_am_i
method to return a more meaningful name:

.namespace [’Bar’]

.sub ’who_am_i’ :method

.return(’I am proud to be a Bar’)

.end

Object creation for subclasses is the same as for ordinary classes:

$P5 = new ’Bar’

Calls to inherited methods are just like calls to methods defined in the class:

$P1.’increment’ ()

The isa opcode checks whether an object is an instance of or inherits from
a particular class. It returns 0 (false) or 1 (true):

$I0 = isa $P3, ’Foo’
$I0 = isa $P3, ’Bar’

Overriding Vtable Functions

The Object PMC is a core PMC written in C that provides basic object-like
behavior. Every object instantiated from a PIR class inherits a default set
of vtable functions from Object, but you can override them with your own
PIR subroutines.

The :vtable modifier marks a subroutine as a vtable override. As it
does with methods, Parrot stores vtable overrides in the class associated
with the currently selected namespace:

.sub ’init’ :vtable
$P6 = new ’Integer’
setattribute self, ’bar’, $P6
.return()

.end

77

Subroutines acting as vtable overrides must either have the name of an
actual vtable function or include the vtable function name in the :vtable
modifier:

.sub foozle :vtable(’init’)

. efld. h
You must call methods on objects explicitly, but Parrot calls vtable functions
implicitly in multiple contexts. For example, creating a new object with $P3
= new ’Foo’ will call init with the new Foo object.

As an example of some of the common vtable overrides, the = operator
(or set opcode) calls Foo’s vtable function set_integer native when its
left-hand side is a Foo object and the argument is an integer literal or integer
variable:

$P3 = 30
The + operator (or add opcode) calls Foo’s add vtable function when it adds
two Foo objects:

$P3 = new ’Foo’
$P3 = 3

$P4 = new ’Foo’
$P4 = 1774

$P5 = $P3 + $P4

or:

add $P5, $P3, $P4
The inc opcode calls Foo’s increment vtable function when it increments
a Foo object:

inc $P3
Parrot calls Foo’s get_integer and get_string vtable functions to retrieve
an integer or string value from a Foo object:

$I10 = $P5 # get_integer
say $P5 # get_string

Introspection

Classes defined in PIR using the newclass opcode are instances of the Class
PMC. This PMC contains all the meta-information for the class, such as at-
tribute definitions, methods, vtable overrides, and its inheritance hierarchy.
The opcode inspect provides a way to peek behind the curtain of encap-
sulation to see what makes a class tick. When called with no arguments,
inspect returns an associative array containing data on all characteristics
of the class that it chooses to reveal:

$P1
$P2

inspect $PO
$P1[’attributes’]

When called with a string argument, inspect only returns the data for a
specific characteristic of the class:
$PO = inspect $P1, ’parents’

Table 7-1 shows the introspection characteristics supported by inspect.

78

Table 5.6: Class Introspection

Characteristic Description

attributes Information about the attributes the class will instantiate in its objects. An :
flags An Integer PMC containing any integer flags set on the class object.
methods A list of methods provided by the class. An associative array where the keys
name A String PMC containing the name of the class.

namespace The NameSpace PMC associated with the class.

parents An array of Class objects that this class inherits from directly (via subclas:
roles An array of Role objects composed into the class.

vtable_overrides | A list of vtable overrides defined by the class. An associative array where the

58 1/0

Parrot handles all I/O in Parrot with a set of PMCs. The FileHandle
PMC takes care of reading from and writing to files and file-like streams.
The Socket PMC takes care of network I/0.

FileHandle Opcodes

The open opcode opens a new filehandle. It takes a string argument, which
is the path to the file:

.loadlib ’io_ops’
...
$P0O = open ’my/file/name.txt’

By default, it opens the filehandle as read-only, but an optional second string
argument can specify the mode for the file. The modes are r for read, w for
write, a for append, and p for pipe:2°

.loadlib ’io_ops’

...

$PO = open ’my/file/name.txt’, ’a’
$PO0 = open ’myfile.txt’, ’r’

You can combine modes; a handle that can read and write uses the mode
string rw. A handle that can read and write but will not overwrite the
existing contents uses ra instead.

25These are the same as the C language read-modes, so may be familiar.

79

The close opcode closes a filehandle when it’s no longer needed. Closing
a filehandle doesn’t destroy the object, it only makes that filehandle object
available for opening a different file.26

.loadlib ’io_ops’
...
close $PO

The print opcode prints a string argument or the string form of an integer,
number, or PMC to a filehandle:

print $PO, ’Nobody expects’
It also has a one-argument variant that always prints to standard output:
print ’the Spanish Inquisition’

The say opcode also prints to standard output, but it appends a trailing
newline to whatever it prints. Another opcode worth mentioning is the
printerr opcode, which prints an argument to the standard error instead
of standard output:

say ’Turnip’

...

.loadlib ’io_ops’

...

printerr ’Blancmange’

The read and readline opcodes read values from a filehandle. read takes
an integer value and returns a string with that many characters (if possible).
readline reads a line of input from a filehandle and returns the string
without the trailing newline:

.loadlib ’io_ops’
$S0 = read $PO, 10
$S0 = readline $PO

The read opcode has a one-argument variant that reads from standard in-
put:

.loadlib ’io_ops’
...
$S0 = read 10

The getstdin, getstdout, and getstderr opcodes fetch the filehandle ob-
jects for the standard streams: standard input, standard output, and stan-

dard error:
26T¢’s generally not a good idea to manually close the standard input, standard output,
or standard error filehandles, though you can recreate them.

80

.loadlib ’io_ops’

...

$PO = getstdin # Standard input handle
$P1 = getstdout # Standard output handle
$P2 = getstderr # Standard error handle

Once you have the filehandle for one of the standard streams, you can use
it just like any other filehandle object:

.loadlib ’io_ops’

...

$PO = getstdout

print $PO, ’hello’
This following example reads data from the file myfile.txt one line at a time
using the readline opcode. As it loops over the lines of the file, it checks the
boolean value of the read-only filehandle $PO to test whether the filehandle

has reached the end of the file:
.loadlib ’io_ops’

.sub ’main’
$P0 = getstdout
$P1 = open ’myfile.txt’, ’r’
loop_top:
$S0 = readline $P1
print $PO, $S0
if $P1 goto loop_top
close $P1
.end

FileHandle Methods

The methods available on a filehandle object are mostly duplicates of the
opcodes, though sometimes they provide more options. Behind the scenes
many of the opcodes call the filehandle’s methods anyway, so the choice
between the two is more a matter of style preference than anything else.

open

The open method opens a stream in an existing filehandle object. It takes
two optional string arguments: the name of the file to open and the open

mode.
$PO = new ’FileHandle’
$PO.’open’ (*myfile.txt’, ’r’)

The open opcode internally creates a new filehandle PMC and calls its open
method on it. The opcode version is shorter to write, but it also creates a
new PMC for every call, while the method can reopen an existing filehandle
PMC with a new file.

When reopening a filehandle, Parrot will reuse the previous filename
associated with the filehandle unless you provide a different filename. The
same goes for the mode.

81

close

The close method closes the filehandle. This does not destroy the filehandle
object; you can reopen it with the open method later.
$PO. ’close’ ()

is_closed

The is_closed method checks if the filehandle is closed. It returns true if
the filehandle has been closed or was never opened, and false if it is currently
open:

$I0 = $P0.’is_closed’ ()

print

The print method prints a given value to the filehandle. The argument can
be an integer, number, string, or PMC.
$PO. ’print’ (’Hello!’)

puts

The puts method is similar to print, but it only takes a string argument.
$PO. puts’ (’Hello!’)

read

The read method reads a specified number of bytes from the filehandle
object and returns them in a string.
$S0 = $PO.’read’ (10)

If the remaining bytes in the filehandle are fewer than the requested number
of bytes, returns a string containing the remaining bytes.

readline

The readline method reads an entire line up to a newline character or the
end-of-file mark from the filehandle object and returns it in a string.
$S0 = $PO.’readline’ ()

readline_interactive

The readline_interactive method is useful for command-line scripts. It
writes the single argument to the method as a prompt to the screen, then
reads back a line of input.

$S0 = $PO.’readline_interactive’ (’Please enter your name:’)

82

readall

The readall method reads an entire file. If the filehandle is closed, it will
open the file given by the passed in string argument, read the entire file,
and then close the filehandle.

$S0 = $PO.’readall’ (’myfile.txt’)

If the filehandle is already open, readall will read the contents of the file,
and won’t close the filehandle when it’s finished. Don’t pass the name
argument when working with a file you’ve already opened.

$S0 = $P0O.’readall’ ()

mode

The mode method returns the current file access mode for the filehandle
object.
$S0 = $PO. mode’ ()

encoding

The encoding method sets or retrieves the string encoding behavior of the
filehandle.

$P0.’encoding’ (*utf8’)

$S0 = $PO.’encoding’ ()
See “Encodings and Charsets“ in Chapter 4 for more details on the encodings
supported in Parrot.

buffer_type

The buffer_type method sets or retrieves the buffering behavior of the
filechandle object. The argument or return value is one of: unbuffered
to disable buffering, 1line-buffered to read or write when the filehandle
encounters a line ending, or full-buffered to read or write bytes when the
buffer is full.

$P0. buffer_type’ (’full-buffered’)
$S0 = $PO.’buffer_type’ ()

buffer_size

The buffer_size method sets or retrieves the buffer size of the filehandle
object.

$PO. ’buffer_size’ (1024)

$I0 = $PO.’buffer_size’ ()
The buffer size set on the filehandle is only a suggestion. Parrot may allocate
a larger buffer, but it will never allocate a smaller buffer.

83

flush

The flush method flushes the buffer if the filehandle object is working in a
buffered mode.

$P0. > flush’ ()

eof

The eof method checks whether a filehandle object has reached the end of
the current file. It returns true if the filehandle is at the end of the current
file and false otherwise.

$I0 = $PO.’eof’ ()

isatty

The isatty method returns a boolean value whether the filehandle is a TTY
terminal.

$P0. isatty’)

get_fd

The get_fd method returns the integer file descriptor of the current filehandle
object. Not all operating systems use integer file descriptors. Those that
don’t simply return -1.

$I0 = $PO.’get_£d’)

5.9 Exceptions

Exceptions provide a way of subverting the normal flow of control. Their
main use is error reporting and cleanup tasks, but sometimes exceptions are
just a funny way to jump from one code location to another one. Parrot
uses a robust exception mechanism and makes it available to PIR.

Exceptions are objects that hold essential information about an excep-
tional situation: the error message, the severity and type of the error, the
location of the error, and backtrace information about the chain of calls that
led to the error. Exception handlers are ordinary subroutines, but user code
never calls them directly from within user code. Instead, Parrot invokes an
appropriate exception handler to catch a thrown exception.

84

Throwing Exceptions

The throw opcode throws an exception object. This example creates a new
Exception object in $P0O and throws it:

$PO = new ’Exception’
throw $PO

Setting the string value of an exception object sets its error message:

$PO = new ’Exception’
$PO = "I really had my heart set on halibut."
throw $PO

Other parts of Parrot throw their own exceptions. The die opcode throws
a fatal (that is, uncatchable) exception. Many opcodes throw exceptions to
indicate error conditions. The / operator (the div opcode), for example,
throws an exception on attempted division by zero.

When no appropriate handlers are available to catch an exception, Parrot
treats it as a fatal error and exits, printing the exception message followed
by a backtrace showing the location of the thrown exception:

I really had my heart set on halibut.
current instr.: ’main’ pc 6 (pet_store.pir:4)

Catching Exceptions

Exception handlers catch exceptions, making it possible to recover from
errors in a controlled way, instead of terminating the process entirely.

The push_eh opcode creates an exception handler object and stores it in
the list of currently active exception handlers. The body of the exception
handler is a labeled section of code inside the same subroutine as the call to
push_eh. The opcode takes one argument, the name of the label:

push_eh my_handler
$PO = new ’Exception’
throw $PO

say ’never printed’

my_handler:

say ’caught an exception’

This example creates an exception handler with a destination address of the
my_handler label, then creates a new exception and throws it. At this point,
Parrot checks to see if there are any appropriate exception handlers in the
currently active list. It finds my_handler and runs it, printing “caught an
exception”. The “never printed” line never runs, because the exceptional
control flow skips right over it.

Because Parrot scans the list of active handlers from newest to oldest,
you don’t want to leave exception handlers lying around when you’re done
with them. The pop_eh opcode removes an exception handler from the list
of currently active handlers:

85

push_eh my_handler
$I0 = $I1 / $I2
pop_eh

say ’maybe printed’
goto skip_handler

my_handler:
say ’caught an exception’
pop_eh

skip_handler:

This example creates an exception handler my_handler and then runs a
division operation that will throw a “division by zero” exception if $I2 is
0. When $12 is 0, div throws an exception. The exception handler catches
it, prints “caught an exception”, and then clears itself with pop_eh. When
$I2 is a non-zero value, there is no exception. The code clears the exception
handler with pop_eh, then prints “maybe printed”. The goto skips over the
code of the exception handler, as it’s just a labeled unit of code within the
subroutine.

The exception object provides access to various attributes of the excep-
tion for additional information about what kind of error it was, and what
might have caused it. The directive .get_results retrieves the Exception
object from inside the handler:

my_handler:
.get_results($P0)
Not all handlers are able to handle all kinds of exceptions. If a handler
determines that it’s caught an exception it can’t handle, it can rethrow the
exception to the next handler in the list of active handlers:

my_handler:

.get_results($P0)

rethrow $PO
If none of the active handlers can handle the exception, the exception be-
comes a fatal error. Parrot will exit, just as if it could find no handlers.

An exception handler creates a return continuation with a snapshot of
the current interpreter context. If the handler is successful, it can resume
running at the instruction immediately after the one that threw the excep-
tion. This resume continuation is available from the resume attribute of the
exception object. To resume after the exception handler is complete, call

the resume handler like an ordinary subroutine:
my_handler:
.get_results($P0)
$P1 = $PO[’resume’]
$P10)

86

Exception PMC

Exception objects contain several useful pieces of information about the
exception. To set and retrieve the exception message, use the message key
on the exception object:

$PO
$PO[’message’]

new ’Exception’
"this is an error message for the exception"

...or set and retrieve the string value of the exception object directly:

$S0 = $PO

The severity and type of the exception are both integer values:

1
2

$PO[’severity’]
$PO[’type’]

The payload holds any user-defined data attached to the exception object:

$P0[’payload’] = $P2

The attributes of the exception are useful in the handler for making decisions
about how and whether to handle an exception and report its results:

my_handler:
.get_results($P2)
$S0 = $P2[’message’]
print ’caught exception: "’
print $SO
$I0 = $P2[’type’]
print ’", of type ’
say $I0

ExceptionHandler PMC

Exception handlers are subroutine-like PMC objects, derived from Parrot’s
Continuation type. When you use push_eh with a label to create an excep-
tion handler, Parrot creates the handler PMC for you. You can also create
it directly by creating a new ExceptionHandler object, and setting its des-
tination address to the label of the handler using the set_addr opcode:

$PO = new ’ExceptionHandler’
set_addr $PO, my_handler
push_eh $PO

...

my_handler:
...

ExceptionHandler PMCs have several methods for setting or checking han-
dler attributes. The can_handle method reports whether the handler is
willing or able to handle a particular exception. It takes one argument, the
exception object to test:

$I0 = $PO.’can_handle’ ($P1)

87

The min_severity and max_severity methods set and retrieve the severity
attributes of the handler, allowing it to refuse to handle any exceptions
whose severity is too high or too low. Both take a single optional integer
argument to set the severity; both return the current value of the attribute
as a result:

$PO. ’min_severity’ (5)

$I0 = $PO.’max_severity’ ()
The handle_types and handle _types_except methods tell the exception
handler what types of exceptions it should or shouldn’t handle. Both take
a list of integer types, which correspond to the type attribute set on an
exception object:

$P0. handle_types’ (5, 78, 42)

The following example creates an exception handler that only handles excep-
tion types 1 and 2. Instead of having push_eh create the exception handler
object, it creates a new ExceptionHandler object manually. It then calls
handle_types to identify the exception types it will handle:

$PO = new ’ExceptionHandler’
set_addr $PO, my_handler
$PO. ’handle_types’ (1, 2)
push_eh $PO

This handler can only handle exception objects with a type of 1 or 2. Parrot
will skip over this handler for all other exception types.

$P1 = new ’Exception’

$P1[’type’] = 2

throw $P1 # caught

$P1 = new ’Exception’

$P1[’type’] = 3

throw $P1 # uncaught
Annotations

Annotations are pieces of metadata code stored in a bytecode file. This is
especially important when dealing with high-level languages, where annota-
tions contain information about the HLL’s source code such as the current
line number and file name.

Create an annotation with the .annotate directive. Annotations consist
of a key/value pair, where the key is a string and the value is an integer,
a number, or a string. Bytecode stores annotations as constants in the
compiled bytecode. Consequently, you may not store PMCs.

.annotate ’file’, ’mysource.lang’

.annotate ’line’, 42

.annotate ’compiletime’, 0.3456
Annotations exist, or are “in force” throughout the entire subroutine or until
their redefinition. Creating a new annotation with the same name as an old
one overwrites it with the new value. The annotations opcode retrieves
the current hash of annotations:

88

.annotate ’line’, 1
$PO = annotations # {’line’ => 1}

.annotate ’line’, 2
$PO = annotations # {’line’ => 2}
To retrieve a single annotation by name, use the name with annotations:

$PO = annotations ’line’

Exception objects contain information about the annotations that were in
force when the exception was thrown. Retrieve them with the annotations
method on the exception PMC object:

$10
$P1

$P0. ’annotations’(’line’) # only the ’line’ annotation

$P0.’annotations’ () # hash of all annotations

Exceptions can also include a backtrace to display the program flow to the
point of the throw:

$P1 = $PO. ’backtrace’ ()
The backtrace PMC is an array of hashes. Each element in the array corre-
sponds to a function in the current call chain. Each hash has two elements:

annotation (the hash of annotations in effect at that point) and sub (the
Sub PMC of that function).

89

