The user may also specify the variable name of the new projective space.
i1 : R = ZZ/7[x,y,z]; |
i2 : D = divisor(x*y) o2 = Div(y) + Div(x) o2 : WeilDivisor on R |
i3 : mapToProjectiveSpace(D, Variable=>"Z") ZZ 2 2 2 o3 = map(R,--[Z , Z , Z , Z , Z , Z ],{x , x*y, x*z, y , y*z, z }) 7 1 2 3 4 5 6 ZZ o3 : RingMap R <--- --[Z , Z , Z , Z , Z , Z ] 7 1 2 3 4 5 6 |