CoincidentRootLoci : Index
- apolar -- the apolar map
- apolar(..., Variable => ...) -- specify a name for a variable
- apolar(RingElement) -- the apolar ideal
- apolar(RingElement,ZZ) -- homogeneous components of the apolar ideal
- apolar(ZZ,ZZ) -- the apolar map
- apolar(ZZ,ZZ,Ring) -- the apolar map
- chowForm(CoincidentRootLocus) -- Chow form of a coincident root locus
- codim(CoincidentRootLocus) -- compute the codimension
- coefficientRing(CoincidentRootLocus) -- get the coefficient ring
- CoincidentRootLoci -- A package for computations with coincident root loci
- CoincidentRootLocus -- the class of all coincident root loci
- coincidentRootLocus -- makes a coincident root locus
- CoincidentRootLocus * CoincidentRootLocus -- projective join of coincident root loci
- coincidentRootLocus(..., Variable => ...) -- specify a name for a variable
- coincidentRootLocus(List) -- makes a coincident root locus
- coincidentRootLocus(VisibleList,Ring) -- makes a coincident root locus
- complexrank -- compute the complex rank
- complexrank(..., Limit => ...) -- set a bound for the rank
- complexrank(RingElement) -- compute the complex rank
- CRL (missing documentation)
- degree(CoincidentRootLocus) -- compute the degree
- dim(CoincidentRootLocus) -- compute the dimension
- dual(CoincidentRootLocus) -- the projectively dual to a coincident root locus
- generic -- get the generic element
- generic(..., Reduce => ...) -- reduce the number of variables
- generic(..., Variable => ...) -- specify a name for a variable
- generic(CoincidentRootLocus) -- get the generic element
- ideal(CoincidentRootLocus) -- the defining ideal of a coincident root locus
- isInCoisotropic(Ideal,CoincidentRootLocus) -- test membership in a coisotropic hypersurface
- isSubset(CoincidentRootLocus,CoincidentRootLocus) -- whether one object is a subset of another
- map(CoincidentRootLocus) -- the map associated to a coincident root locus
- member(RingElement,CoincidentRootLocus) -- test membership in a coincident root locus
- partition(CoincidentRootLocus) -- the partition associated to a coincident root locus
- projectiveJoin -- projective join of coincident root loci
- QepcadOptions -- set the number of cells in the garbage collected space
- random(CoincidentRootLocus) -- get a random element
- randomBinaryForm -- random homogeneous polynomial in two variables
- randomBinaryForm(..., Variable => ...) -- specify a name for a variable
- randomBinaryForm(ZZ) -- random homogeneous polynomial in two variables
- randomBinaryForm(ZZ,Ring) -- random homogeneous polynomial in two variables
- randomBinaryForm(ZZ,Thing,Thing) -- random homogeneous polynomial in two variables
- randomBinaryForm(ZZ,Thing,Thing,Ring) -- random homogeneous polynomial in two variables
- randomInCoisotropic -- get a random element
- randomInCoisotropic(CoincidentRootLocus,ZZ) -- get a random element
- realrank -- compute the real rank
- realrank(..., Limit => ...) -- set a bound for the rank
- realrank(..., QepcadOptions => ...) -- set the number of cells in the garbage collected space
- realrank(..., Range => ...) -- can be assigned an interval
- realrank(..., Verbose => ...) -- request verbose feedback
- realrank(RingElement) -- compute the real rank
- realRankBoundary -- algebraic boundaries among typical ranks for real binary forms
- realRankBoundary(..., Variable => ...) -- specify a name for a variable
- realRankBoundary(ZZ,ZZ) -- algebraic boundaries among typical ranks for real binary forms
- realRankBoundary(ZZ,ZZ,Ring) -- algebraic boundaries among typical ranks for real binary forms
- realroots -- real roots of a binary form
- realroots(..., Verbose => ...) -- request verbose feedback
- realroots(RingElement) -- real roots of a binary form
- recover -- recover the binary form from its apolar ideal
- recover(Ideal) -- recover the binary form from its apolar ideal
- recover(RingElement,RingElement) -- recover the binary form from its apolar ideal
- ring(CoincidentRootLocus) -- get the ring of a coincident root locus
- singularLocus(CoincidentRootLocus) -- the singular locus of a coincident root locus
- subsets(CoincidentRootLocus) -- produce all the subloci
- supsets -- produce all the suploci
- supsets(CoincidentRootLocus) -- produce all the suploci
- switch(Ideal)
- switch(List)
- switch(RingElement)
- tangentSpace -- projective tangent space
- tangentSpace(CoincidentRootLocus,RingElement) -- projective tangent space