This blackbox solver is similar in usage to sparseMonodromySolve, but with "technical" output.
i1 : R = CC[a,b,c,d][A,B] o1 = R o1 : PolynomialRing |
i2 : polys = polySystem {A^2*a+B^2*b,A*B*c+d} o2 = polys o2 : PolySystem |
i3 : setRandomSeed 0; |
i4 : (V,npaths) = monodromySolve(polys, NumberOfNodes => 3); |
i5 : peek V o5 = HomotopyNode{BasePoint => {-.971549+.236839*ii, .157598-.987503*ii, .841103-.540875*ii, -.396553+.918012*ii} } Edges => MutableList{...8...} Graph => HomotopyGraph{...5...} PartialSols => {PointArray( 4 points: 0 3 1 2 ), {-.555644-.83142*ii, .002423+.999997*ii}, {.83142-.555644*ii, .999997-.002423*ii}, {.555644+.83142*ii, -.002423-.999997*ii}, {-.83142+.555644*ii, -.999997+.002423*ii}} 2 2 SpecializedSystem => {(- .971549 + .236839*ii)A + (.157598 - .987503*ii)B , (.841103 - .540875*ii)A*B - .396553 + .918012*ii} |