Given an ideal I and an integer n, returns the larger value between the maximum of the quotiens m/k that fail I(m) ⊆Ik with k ≤n and (α(I))/(waldschmidt(I)).
i1 : T = QQ[x,y,z]; |
i2 : I = intersect(ideal"x,y",ideal"x,z",ideal"y,z"); o2 : Ideal of T |
i3 : lowerBoundResurgence(I,5,UseWaldschmidt=>true) Ideal is monomial, the Waldschmidt constant is computed exactly 4 o3 = - 3 o3 : QQ |
The object UseWaldschmidt is a symbol.