Given a normal Q-Gorenstein ring R (or a Gorenstein ring in general), this computes whether the ring is strongly F-regular.
i1 : R = ZZ/5[x,y,z]/ideal(x^2+y*z); |
i2 : isFregular(R) o2 = true |
i3 : R = ZZ/7[x,y,z]/ideal(x^3+y^3+z^3); |
i4 : isFregular(R) o4 = false |
It can also do the same computation for a pair.
i5 : R = ZZ/5[x,y]; |
i6 : f = y^2-x^3; |
i7 : isFregular(1/2, f) o7 = true |
i8 : isFregular(5/6, f) o8 = false |
i9 : isFregular(4/5, f) o9 = false |
i10 : isFregular(4/5-1/100000, f) o10 = true |