The generators in the ith 2-flat (beginning with i=0) in the input for holonomyLie generate a subalgebra of the holonomy Lie algebra and the output of localLie(i,n) is a basis for this subalgebra in the specified degree n. The output of localLie(i) is the Lie algebra itself.
i1 : L=holonomyLie({{0,1,2},{0,3,4},{1,3,5},{2,4,5}}) o1 = L o1 : LieAlgebra |
i2 : peek localLie(2) o2 = LieAlgebra{cache => CacheTable{...10...} } compdeg => 0 deglength => 2 field => QQ genDiffs => {[], [], []} genSigns => {0, 0, 0} gensLie => {1, 3, 5} genWeights => {{1, 0}, {1, 0}, {1, 0}} numGen => 3 relsLie => {{{1, 1, 1}, {[3, 1], [3, 3], [3, 5]}}, {{1, 1, 1}, {[5, 1], [5, 3], [5, 5]}}} |
i3 : localLie(2,3) o3 = {[3, 5, 3], [5, 5, 3]} o3 : List |