We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00146381, .000990814) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00419536, .0754786) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00461368, .0209427}, {.0044215, .0063344}, {.00476819, .0102663}, ------------------------------------------------------------------------ {.0181246, .016463}, {.00465073, .0243577}, {.00517271, .0239806}, ------------------------------------------------------------------------ {.00454481, .0125462}, {.00473394, .0114967}, {.00378874, .00761121}, ------------------------------------------------------------------------ {.00504613, .0139071}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .00598650590000001 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0147905834 o7 : RR (of precision 53) |