![]() |
http://www.sim.no http://www.coin3d.org |
The SbDPMatrix class is a 4x4 dimensional representation of a double-precision matrix.This class is like the SbMatrix class, but uses double-precision floating point values for its elements. For more class documentation, see SbMatrix. More...
#include <Inventor/SbDPMatrix.h>
Public Member Functions | |
SbDPMatrix (void) | |
SbDPMatrix (const double a11, const double a12, const double a13, const double a14, const double a21, const double a22, const double a23, const double a24, const double a31, const double a32, const double a33, const double a34, const double a41, const double a42, const double a43, const double a44) | |
SbDPMatrix (const SbDPMat &matrix) | |
SbDPMatrix (const SbDPMat *matrix) | |
SbDPMatrix (const SbMatrix &matrix) | |
~SbDPMatrix (void) | |
SbDPMatrix & | operator= (const SbDPMat &m) |
operator double * (void) | |
SbDPMatrix & | operator= (const SbDPMatrix &m) |
void | setValue (const SbDPMat &m) |
const SbDPMat & | getValue (void) const |
void | makeIdentity (void) |
void | setRotate (const SbDPRotation &q) |
SbDPMatrix | inverse (void) const |
double | det3 (int r1, int r2, int r3, int c1, int c2, int c3) const |
double | det3 (void) const |
double | det4 (void) const |
SbBool | equals (const SbDPMatrix &m, double tolerance) const |
operator SbDPMat & (void) | |
double * | operator[] (int i) |
const double * | operator[] (int i) const |
SbDPMatrix & | operator= (const SbDPRotation &q) |
SbDPMatrix & | operator*= (const SbDPMatrix &m) |
void | getValue (SbDPMat &m) const |
void | setScale (const double s) |
void | setScale (const SbVec3d &s) |
void | setTranslate (const SbVec3d &t) |
void | setTransform (const SbVec3d &t, const SbDPRotation &r, const SbVec3d &s) |
void | setTransform (const SbVec3d &t, const SbDPRotation &r, const SbVec3d &s, const SbDPRotation &so) |
void | setTransform (const SbVec3d &translation, const SbDPRotation &rotation, const SbVec3d &scaleFactor, const SbDPRotation &scaleOrientation, const SbVec3d ¢er) |
void | getTransform (SbVec3d &t, SbDPRotation &r, SbVec3d &s, SbDPRotation &so) const |
void | getTransform (SbVec3d &translation, SbDPRotation &rotation, SbVec3d &scaleFactor, SbDPRotation &scaleOrientation, const SbVec3d ¢er) const |
SbBool | factor (SbDPMatrix &r, SbVec3d &s, SbDPMatrix &u, SbVec3d &t, SbDPMatrix &proj) |
SbBool | LUDecomposition (int index[4], double &d) |
void | LUBackSubstitution (int index[4], double b[4]) const |
SbDPMatrix | transpose (void) const |
SbDPMatrix & | multRight (const SbDPMatrix &m) |
SbDPMatrix & | multLeft (const SbDPMatrix &m) |
void | multMatrixVec (const SbVec3d &src, SbVec3d &dst) const |
void | multVecMatrix (const SbVec3d &src, SbVec3d &dst) const |
void | multDirMatrix (const SbVec3d &src, SbVec3d &dst) const |
void | multLineMatrix (const SbDPLine &src, SbDPLine &dst) const |
void | multVecMatrix (const SbVec4d &src, SbVec4d &dst) const |
void | print (FILE *fp) const |
Static Public Member Functions | |
static SbDPMatrix | identity (void) |
Friends | |
SbDPMatrix | operator* (const SbDPMatrix &m1, const SbDPMatrix &m2) |
int | operator== (const SbDPMatrix &m1, const SbDPMatrix &m2) |
int | operator!= (const SbDPMatrix &m1, const SbDPMatrix &m2) |
The SbDPMatrix class is a 4x4 dimensional representation of a double-precision matrix.
This class is like the SbMatrix class, but uses double-precision floating point values for its elements. For more class documentation, see SbMatrix.
SbDPMatrix::SbDPMatrix | ( | void | ) |
The default constructor does nothing. The matrix will be uninitialized.
Referenced by identity().
SbDPMatrix::SbDPMatrix | ( | const double | a11, |
const double | a12, | ||
const double | a13, | ||
const double | a14, | ||
const double | a21, | ||
const double | a22, | ||
const double | a23, | ||
const double | a24, | ||
const double | a31, | ||
const double | a32, | ||
const double | a33, | ||
const double | a34, | ||
const double | a41, | ||
const double | a42, | ||
const double | a43, | ||
const double | a44 | ||
) |
Constructs a matrix instance with the given initial elements.
References setValue().
SbDPMatrix::SbDPMatrix | ( | const SbDPMat & | matrixref | ) |
Constructs a matrix instance with the initial elements from the matrix argument.
References setValue().
SbDPMatrix::SbDPMatrix | ( | const SbDPMat * | matrixptr | ) |
This constructor is courtesy of the Microsoft Visual C++ compiler.
References setValue().
SbDPMatrix::SbDPMatrix | ( | const SbMatrix & | matrixref | ) |
This constructor converts a single-precision matrix to a double-precision matrix.
References setValue().
SbDPMatrix::~SbDPMatrix | ( | void | ) |
Default destructor does nothing.
SbDPMatrix & SbDPMatrix::operator= | ( | const SbDPMat & | m | ) |
Assignment operator. Copies the elements from m to the matrix.
References setValue().
SbDPMatrix::operator double * | ( | void | ) |
Return pointer to the matrix' 4x4 double array.
SbDPMatrix & SbDPMatrix::operator= | ( | const SbDPMatrix & | m | ) |
Assignment operator. Copies the elements from m to the matrix.
References setValue().
void SbDPMatrix::setValue | ( | const SbDPMat & | m | ) |
Copies the elements from m into the matrix.
Referenced by operator=(), and SbDPMatrix().
const SbDPMat & SbDPMatrix::getValue | ( | void | ) | const |
Returns a pointer to the 2 dimensional double array with the matrix elements.
void SbDPMatrix::makeIdentity | ( | void | ) |
Set the matrix to be the identity matrix.
Referenced by SbXfBox3d::extendBy(), SbXfBox3d::SbXfBox3d(), setScale(), and setTranslate().
void SbDPMatrix::setRotate | ( | const SbDPRotation & | q | ) |
Set matrix to be a rotation matrix with the given rotation.
Referenced by operator=(), and setTransform().
SbDPMatrix SbDPMatrix::inverse | ( | void | ) | const |
Return a new matrix which is the inverse matrix of this.
The user is responsible for checking that this is a valid operation to execute, by first making sure that the result of SbDPMatrix::det4() is not equal to zero.
References SbMatrix::identity(), and SoDebugError::postWarning().
double SbDPMatrix::det3 | ( | int | r1, |
int | r2, | ||
int | r3, | ||
int | c1, | ||
int | c2, | ||
int | c3 | ||
) | const |
Returns the determinant of the 3x3 submatrix specified by the row and column indices.
References SoDebugError::post().
Referenced by SbXfBox3d::getVolume().
double SbDPMatrix::det3 | ( | void | ) | const |
Returns the determinant of the upper left 3x3 submatrix.
Referenced by det4().
double SbDPMatrix::det4 | ( | void | ) | const |
Returns the determinant of the matrix.
References det3().
SbBool SbDPMatrix::equals | ( | const SbDPMatrix & | m, |
double | tolerance | ||
) | const |
Check if the m matrix is equal to this one, within the given tolerance value. The tolerance value is applied in the comparison on a component by component basis.
References SoDebugError::postWarning().
SbDPMatrix::operator SbDPMat & | ( | void | ) |
Return pointer to the matrix' 4x4 double array.
double * SbDPMatrix::operator[] | ( | int | i | ) |
Returns pointer to the 4 element array representing a matrix row. i should be within [0, 3].
References SoDebugError::post().
const double * SbDPMatrix::operator[] | ( | int | i | ) | const |
Returns pointer to the 4 element array representing a matrix row. i should be within [0, 3].
References SoDebugError::postWarning().
SbDPMatrix & SbDPMatrix::operator= | ( | const SbDPRotation & | q | ) |
Set matrix to be a rotation matrix with the given rotation.
References setRotate().
SbDPMatrix & SbDPMatrix::operator*= | ( | const SbDPMatrix & | m | ) |
void SbDPMatrix::getValue | ( | SbDPMat & | m | ) | const |
Return matrix components in the SbDPMat structure.
|
static |
Return the identity matrix.
References SbDPMatrix().
Referenced by SbXfBox3d::intersect().
void SbDPMatrix::setScale | ( | const double | s | ) |
Set matrix to be a pure scaling matrix. Scale factors are specified by s.
References makeIdentity().
Referenced by setTransform().
void SbDPMatrix::setScale | ( | const SbVec3d & | s | ) |
Set matrix to be a pure scaling matrix. Scale factors in x, y and z is specified by the s vector.
References makeIdentity().
void SbDPMatrix::setTranslate | ( | const SbVec3d & | t | ) |
Make this matrix into a pure translation matrix (no scale or rotation components) with the given vector as the translation.
References makeIdentity().
Referenced by getTransform(), and setTransform().
Set translation, rotation and scaling all at once. The resulting matrix gets calculated like this:
where S, R and T is scaling, rotation and translation matrices.
References multRight(), setRotate(), setScale(), and setTranslate().
void SbDPMatrix::setTransform | ( | const SbVec3d & | t, |
const SbDPRotation & | r, | ||
const SbVec3d & | s, | ||
const SbDPRotation & | so | ||
) |
Set translation, rotation and scaling all at once with a specified scale orientation. The resulting matrix gets calculated like this:
where Ro is the scale orientation, and S, R and T is scaling, rotation and translation.
References multRight(), setRotate(), setScale(), and setTranslate().
void SbDPMatrix::setTransform | ( | const SbVec3d & | translation, |
const SbDPRotation & | rotation, | ||
const SbVec3d & | scaleFactor, | ||
const SbDPRotation & | scaleOrientation, | ||
const SbVec3d & | center | ||
) |
Set translation, rotation and scaling all at once with a specified scale orientation and center point. The resulting matrix gets calculated like this:
where Tc is the center point, Ro the scale orientation, S, R and T is scaling, rotation and translation.
References multRight(), setRotate(), setScale(), and setTranslate().
void SbDPMatrix::getTransform | ( | SbVec3d & | t, |
SbDPRotation & | r, | ||
SbVec3d & | s, | ||
SbDPRotation & | so | ||
) | const |
Factor the matrix back into its translation, rotation, scale and scaleorientation components.
Referenced by getTransform().
void SbDPMatrix::getTransform | ( | SbVec3d & | translation, |
SbDPRotation & | rotation, | ||
SbVec3d & | scaleFactor, | ||
SbDPRotation & | scaleOrientation, | ||
const SbVec3d & | center | ||
) | const |
Factor the matrix back into its translation, rotation, scaleFactor and scaleorientation components. Will eliminate the center variable from the matrix.
References getTransform(), multLeft(), multRight(), and setTranslate().
SbBool SbDPMatrix::factor | ( | SbDPMatrix & | r, |
SbVec3d & | s, | ||
SbDPMatrix & | u, | ||
SbVec3d & | t, | ||
SbDPMatrix & | proj | ||
) |
SbBool SbDPMatrix::LUDecomposition | ( | int | index[4], |
double & | d | ||
) |
This function produces a permuted LU decomposition of the matrix. It uses the common single-row-pivoting strategy.
FALSE is returned if the matrix is singular, which it never is, because of small adjustment values inserted if a singularity is found (as Open Inventor does too).
The parity argument is always set to 1.0 or -1.0. Don't really know what it's for, so it's not checked for correctness.
The index[] argument returns the permutation that was done on the matrix to LU-decompose it. index[i] is the row that row i was swapped with at step i in the decomposition, so index[] is not the actual permutation of the row indexes!
BUGS: The function does not produce results that are numerically identical with those produced by Open Inventor for the same matrices, because the pivoting strategy in OI was never fully understood.
References factor().
void SbDPMatrix::LUBackSubstitution | ( | int | index[4], |
double | b[4] | ||
) | const |
This function does a solve on the "Ax = b" system, given that the matrix is LU-decomposed in advance. First, a forward substitution is done on the lower system (Ly = b), and then a backwards substitution is done on the upper triangular system (Ux = y).
The index[] argument is the one returned from SbDPMatrix::LUDecomposition(), so see that function for an explanation.
The b[] argument must contain the b vector in "Ax = b" when calling the function. After the function has solved the system, the b[] vector contains the x vector.
BUGS: As is done by Open Inventor, unsolvable x values will not return NaN but 0.
SbDPMatrix SbDPMatrix::transpose | ( | void | ) | const |
Returns the transpose of this matrix.
SbDPMatrix & SbDPMatrix::multRight | ( | const SbDPMatrix & | m | ) |
Let this matrix be right-multiplied by m. Returns reference to self.
Referenced by SbXfBox3d::extendBy(), getTransform(), operator*=(), setTransform(), and SbXfBox3d::transform().
SbDPMatrix & SbDPMatrix::multLeft | ( | const SbDPMatrix & | m | ) |
Let this matrix be left-multiplied by m. Returns reference to self.
Referenced by getTransform().
Multiply src vector with this matrix and return the result in dst. Multiplication is done with the vector on the right side of the expression, i.e. dst = M * src.
Multiply src vector with this matrix and return the result in dst. Multiplication is done with the vector on the left side of the expression, i.e. dst = src * M.
It is safe to let src and be the same SbVec3d instance.
Referenced by SbXfBox3d::extendBy(), SbXfBox3d::getCenter(), SbXfBox3d::intersect(), multLineMatrix(), SbBox3d::outside(), and SbBox3d::transform().
Multiplies src by the matrix. src is assumed to be a direction vector, and the translation components of the matrix are therefore ignored.
Multiplication is done with the vector on the left side of the expression, i.e. dst = src * M.
Referenced by multLineMatrix().
void SbDPMatrix::multLineMatrix | ( | const SbDPLine & | src, |
SbDPLine & | dst | ||
) | const |
Multiplies line point with the full matrix and multiplies the line direction with the matrix without the translation components.
References multDirMatrix(), and multVecMatrix().
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
void SbDPMatrix::print | ( | FILE * | fp | ) | const |
Write out the matrix contents to the given file.
|
friend |
Multiplies matrix m1 with matrix m2 and returns the resultant matrix.
|
friend |
Compare matrices to see if they are equal. For two matrices to be equal, all their individual elements must be equal.
|
friend |
Compare matrices to see if they are not equal. For two matrices to not be equal, it is enough that at least one of their elements are unequal.
Copyright © 1998-2007 by Systems in Motion AS. All rights reserved.
Generated on Fri Jul 20 2018 for Coin by Doxygen. 1.8.14