
HPIC
(HPIC Pixelization In C)

Theodore Kisner

November 11, 2005

CONTENTS

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Current Status . 4
1.3 Future Roadmap . 4
1.4 Converting Programs that Currently use CHEALPix 5

2 C Reference 6
2.1 Constants . 6
2.2 Error Handling . 7
2.3 Low Level Functions . 8

2.3.1 General Tools . 9
2.3.2 Pixel Tools . 9
2.3.3 Projection Tools . 11
2.3.4 Location Tools . 12

2.4 Maps . 12
2.4.1 Allocation . 12
2.4.2 Parameter Access . 13
2.4.3 Data Access . 15
2.4.4 Basic Operations . 15

2.5 Vectors . 16
2.5.1 Allocation . 16
2.5.2 Data Access . 17
2.5.3 Basic Operations . 17

2.6 Map Conversion . 18
2.6.1 Types . 18
2.6.2 Ordering . 19
2.6.3 Resolution . 19

2.7 Map Math . 20
2.7.1 Scaling and Offsets . 20

1

CONTENTS

2.7.2 Arithmetic . 20
2.8 Projection . 21

2.8.1 Allocation . 22
2.8.2 Parameter Access . 22
2.8.3 Data Access . 22
2.8.4 Projecting Maps and Vectors 23

2.9 Transforms and Filtering . 24
2.10 FITS Reading and Writing . 24

2.10.1 Format Specifications . 24
2.10.2 Optional Keys . 26
2.10.3 Map FITS I/O . 27
2.10.4 Vector FITS I/O . 29

2.11 CMB Specific Functions . 31
2.11.1 Projection . 31
2.11.2 Specialized FITS I/O . 32

2.12 Compatibility Wrappers . 33
2.12.1 Pixel Tools . 33
2.12.2 Legacy FITS I/O . 34

3 Perl Reference 35
3.1 Constants and Low Level Functions 35
3.2 Maps . 37
3.3 Vectors . 39
3.4 Math and Miscellany . 40
3.5 Projection . 41
3.6 Transforms and Filtering . 41
3.7 FITS I/O . 41
3.8 CMB Specific . 43

4 Command Line Tools 44
4.1 General Tools . 44
4.2 Simple Math Tools . 48

References 49

2

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This software package is an implementation of the healpix algorithms originally
developed by Gorski, Wandelt, Hivon, Banday and others[1, 2, 3, 4, 5]. I would
like to thank and acknowledge the original HEALPIX authors for their hard work de-
veloping the theoretical framework upon which this project is based. Throughout
this document, when I mention "healpix", I am refering to the algorithms them-
selves. When I refer to a specific implementation of these algorithms, I will write
them as HPIC or HEALPIX .

In mid-September of 2005, version 2.00 of HEALPIX was released. Unlike
previous releases, this one was licensed under the GPL. For the first time, HPIC

and HEALPIX were legally allowed to share code. Hopefully this development will
lead to a fruitful and peaceful coexistence between the two projects.

1.1 Overview

The HPIC package contains a number of different components: an object oriented C
library, a Perl interface to the C library, and command line utilities for manipulating
and operating on FITS files. So why create another software library when one
already exists? Let me first say that I believe choice is a good thing! Secondly, I
wanted to have an object-oriented set of tools which I could use in C, C++, and
Perl programs. An original consideration was also that the HEALPIX license was
incompatible with the GPL. This has changed with the release of version 2.00 of
HEALPIX .

I have attempted to make the HPIC library as intuitive as possible. Although
function names are long and descriptive, they are constructed in a uniform way
according to what they do and what type of data they operate on. I have tried to
loosely model the calling format after that of the GNU Science Library (GSL).

3

CHAPTER 1. INTRODUCTION

1.2 Current Status

As of version 0.50, the HPIC tools are already quite useful. Although there is
still much functionality to implement, the features that are implemented have been
tested as much as possible. I already make extensive use of these tools in other
projects. A partial list of working features include:

• Basic single pixel operations (order conversion, projection, degrade/prograde,
etc)

• Basic map operations(order conversion, arithmetic, degrade/prograde, com-
parison, etc)

• A set of useful vector types that can be easily resized

• Cartesian and sinusoidal projection of maps, pixel vectors, point vectors, and
vector fields onto a 2D grid

• FITS reading/writing of full-sphere, cut-sphere and vector formats

• Perl interface to the C library

• Command line utilities for simple math and conversion operations on FITS
files

• Compatibility functions for legacy programs that currently use the CHEALPIX

tools.

Despite all these useful features, keep in mind the version number. I think that
the existing functional interfaces are fairly stable, but alas I cannot make too many
promises at this stage. The latest version of the HPIC tools can be found on the
project website (http://cmb.phys.cwru.edu/hpic).

1.3 Future Roadmap

There are a few known problems with the current HPIC library that will be ad-
dressed in future releases. Also, the most useful tools (spherical harmonic trans-
forms, filtering, etc) have yet to be implemented. Here is a list of things to do:

• Implement in-place order conversion of maps

• Finish implementing tree-based map structure

• Normal and spin-weighted harmonic transforms

• Standard types of map filtering

4

http://cmb.phys.cwru.edu/hpic

CHAPTER 1. INTRODUCTION

1.4 Converting Programs that Currently use CHEALPix

If your program currently uses the C library included with the HEALPIX software
suite, it is trivial to convert it to use HPIC . You can either modify your function calls
to pass the types that HPIC expects, or you can simply prepend a "compat_" prefix
to each function call and recompile. Of course there are many ways of automating
this- for example the one line perl command

> perl −i −p −e ’ s / a n g 2 p i x _ r i n g / c o m p a t _ a n g 2 p i x _ r i n g / g ’ ∗

will replace all calls to ang2pix_ring with the "compatibility wrapper" version
in all files in the current directory. The only other changes needed are to include the
hpic.h header file instead of chealpix.h and link with -lhpic instead of -lchealpix.

5

CHAPTER 2. C REFERENCE

Chapter 2

C Reference

The following chapter outlines how to use the HPIC library in your own software
projects. You should be able to link this library to both C and C++ programs. The
first step is to include the HPIC header file:

#include < h p i c . h>

When linking the program, you will also need to link to the math and CFITSIO
libraries (i.e. -lm -lcfitsio -lhpic).

For examples of how to use the following functions, see the "hpictest" program
in the src/test directory.

2.1 Constants

There are many constants that are defined and used throughout the HPIC library:

6

CHAPTER 2. C REFERENCE

Constant Name Value Meaning
HPIC_PI 3.14159265358979 The value of π
HPIC_INVPI 0.318309886183791 The value of 1/π
HPIC_PISQ 9.86960440108936 The value of π2

HPIC_HALFPI 1.5707963267949 The value of π/2
HPIC_NSIDE_MAX 8192 The maximum NSIDE value
HPIC_STRNL 200 The maximum string length
HPIC_DEBUG 0 or 1 Whether to print debug messages
HPIC_RING 0 Indicates RING ordering of a map
HPIC_NEST 1 Indicates NESTED ordering of a map
HPIC_COORD_C 0 Map in celestial/equatorial coordinates
HPIC_COORD_G 1 Map in galactic coordinates
HPIC_COORD_E 2 Map in ecliptic coordinates
HPIC_COORD_O 3 Map in other coordinates
HPIC_STND 0 Map always kept in a standard C array
HPIC_TREE 1 Map always kept in a pixel tree
HPIC_AUTO 2 Map switched between standard/tree
HPIC_VECBUF 10 Realloc buffer for vector resizing
HPIC_PROJ_CAR 0 Cartesian projection
HPIC_PROJ_SIN 1 Sinusoidal projection
HPIC_INTERSECT 0 Take the intersection of maps
HPIC_UNION 1 Take the union of maps
HPIC_FITS_FULL 0 FITS map file uses full-sphere maps
HPIC_FITS_CUT 1 FITS map file uses cut-sphere maps
HPIC_FITS_BIN 0 FITS file uses a binary extension
HPIC_FITS_ASCII 1 FITS file uses an ascii extension
HPIC_FITS_VEC 0 FITS file uses floating-point vectors
HPIC_FITS_VEC_INDX 1 FITS file uses an index vector
HPIC_NULL -1.6375e30 Floating-point NULL value in a map
HPIC_EPSILON 0.0001e30 Range around HPIC_NULL equal to NULL
HPIC_INT_NULL -2147483646 Integer NULL value in a map

2.2 Error Handling

The HPIC library contains a global pointer to an error handling function. Most
functions in the HPIC library will call this error handler if they encounter a problem
and then return an error code. The following error codes are defined:

Error Code Value Meaning
HPIC_ERR_NONE 0 No error
HPIC_ERR_ALLOC 1 Memory allocation error
HPIC_ERR_FREE 2 Memory freeing error
HPIC_ERR_NSIDE 3 Illegal NSIDE value
HPIC_ERR_ORDER 4 Illegal ORDER value
HPIC_ERR_COORD 5 Illegal COORDINATE value
HPIC_ERR_RANGE 6 Value is out of range
HPIC_ERR_ACCESS 7 Memory is not accessible
HPIC_ERR_PROJ 8 Projection error
HPIC_ERR_FITS 9 FITS error

If the global error handling pointer is NULL (which is the initial value), then the
default error handler is called. This default handler prints an error message to

7

CHAPTER 2. C REFERENCE

stderr and then terminates the program with abort(). If you would like to use the
error handling in your programs, you can call the hpic_error function directly,
or use one of the provided Macros.

void hpic_error (int errcode , const char ∗file , int line ,
const char ∗msg) ;

HPIC_ERROR (errcode , msg)
HPIC_ERROR_VAL (errcode , msg , value)
HPIC_ERROR_VOID (errcode , msg)

The Macros call hpic_error with the given error code and automatically pass in
the values of the current line and file (__LINE__ and __FILE__). Then the Macros
exit the function, returning either the error code, a specified value, or nothing, de-
pending on which Macro is used. Since it is not generally good to have library
functions aborting programs directly, the user can define his or her own error han-
dling function. You may wish (for example) to call hpic_error_default to
print error message, but then NOT abort the program until it has done some further
clean up. Here is an example of how you could do this:

/* custom error handler example */

void my_handler (int errcode , const char ∗file ,
int line , const char ∗msg)

{
/* handle errors */
return ;

}

/* keep pointer to old error handler */
hpic_error_handler_t ∗oldhandler ;
oldhandler = hpic_set_error_handler(&my_handler) ;

If you wish to switch back to the default error handler, simply pass a NULL pointer
to hpic_set_error_handler.

2.3 Low Level Functions

There are many low level functions which can be used independently and upon
which higher level functions are based. These functions may be useful if you are
writing custom software that only needs to deal with a few pixel operations, etc. If
you are operating on many pixels, then (hopefully) you will find the higher level
routines easier to use.

8

CHAPTER 2. C REFERENCE

2.3.1 General Tools

Here are a few very simple functions. They are so simple that I won’t waste much
time on them. The following functions return 1 if their argument is "null" and 0 if
it is "non-null". For the double and float versions, the argument is considered null
if it lies within +/- HPIC_EPSILON of HPIC_NULL. For the integer version, the
argument is considered null if it is equal to HPIC_INT_NULL.

int hpic_is_dnull (double val) ;
int hpic_is_fnull (float val) ;
int hpic_is_inull (int val) ;

It is sometimes useful to dynamically allocate an array of strings. These functions
allocate and free an array of strings that each have length HPIC_STRNL.

char∗∗ hpic_strarr_alloc (size_t nstring) ;
int hpic_strarr_free (char ∗∗array , size_t nstring) ;

2.3.2 Pixel Tools

These functions handle basic pixel manipulation. Roughly speaking this includes:
converting between RING and NESTED pixel numbers, converting between angu-
lar coordinates and pixel number, converting between rectangular coordinates and
pixel number, and degrading a pixel number to a lower NSIDE value.

The first function below returns one if the value of nside is invalid. The other
two functions simply convert between an NSIDE value and the total number of
pixels in the map (NPIX = 12·NSIDE2).

int hpic_nsidecheck (size_t nside) ;
size_t hpic_nside2npix (size_t nside) ;
size_t hpic_npix2nside (size_t npix) ;

These functions convert between RING and NESTED pixel numbers. For the re-
turn value, you should obviously pass a pointer to an existing data structure.

int hpic_nest2ring (size_t nside , size_t pnest ,
size_t ∗pring) ;

int hpic_ring2nest (size_t nside , size_t pring ,
size_t ∗pnest) ;

To convert between angular coordinates on the sphere and pixel number, use the
following functions. The values of theta and phi are in radians, with theta mea-
sured from the North pole and phi measured in a right-handed sense from the prime
meridian. In the functions ang2pix_ring and ang2pix_nest, the angles are
first converted to a pixel number with NSIDE set to HPIC_NSIDE_MAX. This pixel

9

CHAPTER 2. C REFERENCE

number is then degraded to the desired NSIDE. This ensures that rounding errors
are consistently treated for all NSIDE values.

int hpic_pix2ang_ring (size_t nside , size_t pix ,
double ∗theta , double ∗phi) ;

int hpic_pix2ang_nest (size_t nside , size_t pix ,
double ∗theta , double ∗phi) ;

int hpic_ang2pix_ring (size_t nside , double theta ,
double phi , size_t ∗pix) ;

int hpic_ang2pix_nest (size_t nside , double theta ,
double phi , size_t ∗pix) ;

To convert between spherical coordinates on the sphere and their 3D cartesian
equivalents you can use the following functions. The xcomp, ycomp, and zcomp

variables are the x, y and z components of the point on the sphere.

int hpic_vec2ang (double xcomp , double ycomp , double zcomp ,
double∗ theta , double∗ phi) ;

int hpic_ang2vec (double theta , double phi , double∗ xcomp ,
double∗ ycomp , double∗ zcomp) ;

The following functions convert between pixel number and 3D cartesian compo-
nents. When converting from pixel number to rectangular coordinates, the coordi-
nates of the pixel center are returned.

int hpic_pix2vec_ring (size_t nside , size_t pix ,
double∗ xcomp , double∗ ycomp ,
double∗ zcomp) ;

int hpic_pix2vec_nest (size_t nside , size_t pix ,
double∗ xcomp , double∗ ycomp ,
double∗ zcomp) ;

int hpic_vec2pix_ring (size_t nside , double xcomp ,
double ycomp , double zcomp ,
size_t ∗pix) ;

int hpic_vec2pix_nest (size_t nside , double xcomp ,
double ycomp , double zcomp ,
size_t ∗pix) ;

To degrade a pixel number at one NSIDE to a new pixel number at a (smaller)
NSIDE, use the following functions

int hpic_degrade_nest (size_t oldnside , size_t oldpix ,
size_t newnside , size_t ∗newpix) ;

int hpic_degrade_ring (size_t oldnside , size_t oldpix ,
size_t newnside , size_t ∗newpix) ;

10

CHAPTER 2. C REFERENCE

2.3.3 Projection Tools

When displaying maps, it is often necessary to project spherical coordinates onto
a rectangular image. The following functions do forward and reverse projections
of points to and from a rectangular projection of size xmax by ymax. The range of
the projection in spherical coordinates is specified by the parameters mintheta,
maxtheta, minphi, and maxphi. Note that since theta increases from North to
South, the maximum theta value is actually at the bottom of the projection. Here
is a diagram of the various projection parameters, and the functions to do cartesian
and sinusoidal projections are below. Note that if the projection of (theta,phi)
falls outside the range of the projection, then HPIC_NULL will be returned for
values of x and y.

(0, 0) xmax

(x, y)
minphi

ymax

(theta, phi)

maxphi

maxtheta

mintheta

North

int hpic_proj_car (double mintheta , double maxtheta ,
double minphi , double maxphi ,
double xmax , double ymax , double theta ,
double phi , double ∗x , double ∗y) ;

int hpic_proj_sin (double mintheta , double maxtheta ,
double minphi , double maxphi ,
double xmax , double ymax , double theta ,
double phi , double ∗x , double ∗y) ;

11

CHAPTER 2. C REFERENCE

int hpic_proj_rev_car (double mintheta , double maxtheta ,
double minphi , double maxphi ,
double xmax , double ymax , double x ,
double y , double ∗theta , double ∗phi) ;

int hpic_proj_rev_sin (double mintheta , double maxtheta ,
double minphi , double maxphi ,
double xmax , double ymax , double x ,
double y , double ∗theta , double ∗phi) ;

2.3.4 Location Tools

For some of the higher level functions it is useful to have low level tools that
deal with pixel locations. In these functions the order parameter should be ei-
ther HPIC_RING or HPIC_NEST. The hpic_loc_dist function returns the an-
gular distance (in radians) between the centers of the two pixel indices. The
hpic_neighbors function returns the pixel indices of the surrounding pixels.
The vector of indices is resized to the proper length. The first four elements of
the index vector contain the pixel numbers of neighbors that share a side with the
specified pixel. The remaining indices in the vector are pixels that share a vertex
with the specified pixel.

double hpic_loc_dist (size_t nside , int order , size_t pix1 ,
size_t pix2) ;

int hpic_neighbors (size_t nside , int ordering , size_t pixel ,
hpic_vec_index ∗parray) ;

2.4 Maps

The HPIC library provides map types for double, float, and int maps. These struc-
tures and their associated functions provide an easy way to manipulate whole maps
and perform complex operations. In addition to the data, map structures also store
parameters associated with the map (NSIDE, name, units, ordering, coordinate sys-
tem, etc). Because the underlying structure may change as new features are added,
you should always use the provided access functions to change and retrieve these
parameters.

2.4.1 Allocation

These functions allocate a map of double, float or int values and return a pointer to
a new hpic, hpic_float, or hpic_int structure respectively. All maps are ini-
tialized to either HPIC_NULL (for double and float maps) or HPIC_INT_NULL (for

12

CHAPTER 2. C REFERENCE

integer maps). The order parameter can be either HPIC_NEST or HPIC_RING.
The coord parameter can take on values of HPIC_COORD_C, HPIC_COORD_G,
HPIC_COORD_E, or HPIC_COORD_O. Currently the coordinate system variable is
not used for anything except when writing the map to a FITS file, where it is printed
as a keyword.

The mem parameter specifies the internal memory structure in which to store the
data. If this is set to HPIC_STND, then the data will always be stored in a standard
C array. If set to HPIC_TREE, then the data will always be stored in a nested tree
structure. This tree storage is slower, but greatly reduces the memory requirements
when working with high-resolution maps that have only a small coverage area.
Of course, if you have a high coverage fraction in your map, then tree storage
will actually use more memory. If the mem parameter is set to HPIC_AUTO, then
the storage format will be automatically switched between the standard and tree
formats to conserve memory. NOTE: tree based storage is not yet implemented-
all options currently have the behaviour of HPIC_STND.

A newly allocated map has all of its elements set to HPIC_NULL (in the case of
double or float maps) or HPIC_INT_NULL (in the case of integer maps).

hpic∗ hpic_alloc (size_t nside , int order , int coord ,
int mem) ;

hpic_float∗ hpic_float_alloc (size_t nside , int order ,
int coord , int mem) ;

hpic_int∗ hpic_int_alloc (size_t nside , int order ,
int coord , int mem) ;

To free a map structure after it has been allocated, simply use the appropriate free
command below.

int hpic_free (hpic∗ map) ;
int hpic_float_free (hpic_float∗ map) ;
int hpic_int_free (hpic_int∗ map) ;

2.4.2 Parameter Access

The following functions can be used to set and retrieve various parameter values
stored in a map structure. To access the values of the "unchangeable" map param-
eters (NSIDE, number of pixels, ordering, coordinate system) that were set when
the map was allocated, use the appropriate version (double, float, or int) of the
following functions:

size_t hpic_nside_get (hpic ∗map) ;
size_t hpic_float_nside_get (hpic_float ∗map) ;
size_t hpic_int_nside_get (hpic_int ∗map) ;

13

CHAPTER 2. C REFERENCE

size_t hpic_npix_get (hpic ∗map) ;
size_t hpic_float_npix_get (hpic_float ∗map) ;
size_t hpic_int_npix_get (hpic_int ∗map) ;

int hpic_order_get (hpic ∗map) ;
int hpic_float_order_get (hpic_float ∗map) ;
int hpic_int_order_get (hpic_int ∗map) ;

int hpic_coord_get (hpic ∗map) ;
int hpic_float_coord_get (hpic_float ∗map) ;
int hpic_int_coord_get (hpic_int ∗map) ;

It is not absolutely necessary to give each map a name, but if a name exists it will
become the column title if the map is printed to a FITS file. To set or get the map
name, use the following functions. Note that the "get" functions return a pointer to
the char array that exists inside the map structure. This returned pointer is suitable
for use in functions like strcpy, etc.

int hpic_name_set (hpic ∗map , const char ∗name) ;
int hpic_float_name_set (hpic_float ∗map , const char ∗name) ;
int hpic_int_name_set (hpic_int ∗map , const char ∗name) ;

char∗ hpic_name_get (hpic ∗map) ;
char∗ hpic_float_name_get (hpic_float ∗map) ;
char∗ hpic_int_name_get (hpic_int ∗map) ;

Another optional map parameter is the units of the map. This parameter is used to
set the name of the units field when printing a map to a FITS file. To set and get
the map units, use these functions

int hpic_units_set (hpic ∗map , const char ∗units) ;
int hpic_float_units_set (hpic_float ∗map ,

const char ∗units) ;
int hpic_int_units_set (hpic_int ∗map , const char ∗units) ;

char∗ hpic_units_get (hpic ∗map) ;
char∗ hpic_float_units_get (hpic_float ∗map) ;
char∗ hpic_int_units_get (hpic_int ∗map) ;

The internal memory format of the data may be changed after a map is allocated.
If the new memory format is not compatible with the current state of the data, the
data will be remapped into either a standard C array or a tree structure. You can
use the following functions to change or return the memory structure of a map.

int hpic_mem_set (hpic ∗map , int mem) ;
int hpic_float_mem_set (hpic_float ∗map , int mem) ;

14

CHAPTER 2. C REFERENCE

int hpic_int_mem_set (hpic_int ∗map , int mem) ;

int hpic_mem_get (hpic ∗map) ;
int hpic_float_mem_get (hpic_float ∗map) ;
int hpic_int_mem_get (hpic_int ∗map) ;

2.4.3 Data Access

To set or return the values of individual pixels, you should use the following func-
tions. The pix parameter is the pixel number (in the ordering of the map) which
you wish to set or get. To set a pixel to a "NULL" value, simply set it to ei-
ther HPIC_NULL or HPIC_INT_NULL, depending on whether the map is a floating
point or integer type.

int hpic_set (hpic∗ map , size_t pix , double val) ;
int hpic_float_set (hpic_float∗ map , size_t pix , float val) ;
int hpic_int_set (hpic_int∗ map , size_t pix , int val) ;

double hpic_get (hpic∗ map , size_t pix) ;
float hpic_float_get (hpic_float∗ map , size_t pix) ;
int hpic_int_get (hpic_int∗ map , size_t pix) ;

To set all of the map elements to a certain value, use the following functions. Cau-
tion: if your map is set to type HPIC_TREE and you set all pixels to a non-
NULL value, then memory for the ENTIRE tree will be allocated! This will
use many times more memory than a standard C vector! If your map is set to
type HPIC_AUTO, then it will be converted to a standard C vector on the fly as soon
as it is more beneficial from a memory perspective.

int hpic_setall (hpic ∗map , double val) ;
int hpic_float_setall (hpic_float ∗map , float val) ;
int hpic_int_setall (hpic_int ∗map , int val) ;

2.4.4 Basic Operations

There are several simple operations that can be performed on map structures. To
create a copy of a map, use the copy functions below. These will allocate a new
map structure and fill it with the contents of the original. Both the original and the
new maps will need to be freed with the appropriate function after use.

hpic∗ hpic_copy (hpic ∗map) ;
hpic_float∗ hpic_float_copy (hpic_float ∗map) ;
hpic_int∗ hpic_int_copy (hpic_int ∗map) ;

15

CHAPTER 2. C REFERENCE

It is often useful to be able to compare two maps to see if they are equal. The
following functions return 0 if the two maps are equal. They return 1 if the map
data is equal, but the map parameters are different. A return value of 2 indicates
that neither the parameters nor the data are equal.

int hpic_comp (hpic ∗map1 , hpic ∗map2) ;
int hpic_float_comp (hpic_float ∗map1 , hpic_float ∗map2) ;
int hpic_int_comp (hpic_int ∗map1 , hpic_int ∗map2) ;

For debugging and informational purposes, it can be useful to display some basic
information about the contents of a map. The functions below print the map pa-
rameters and the first and last elements of the map data to either a file pointer or
stdout.

int hpic_info_fprintf (FILE ∗fp , hpic ∗map) ;
int hpic_float_info_fprintf (FILE ∗fp , hpic_float ∗map) ;
int hpic_int_info_fprintf (FILE ∗fp , hpic_int ∗map) ;

int hpic_info_printf (hpic ∗map) ;
int hpic_float_info_printf (hpic_float ∗map) ;
int hpic_int_info_printf (hpic_int ∗map) ;

2.5 Vectors

Although many different vector structures exist in various C libraries, I wanted
to have a vector type that was entirely contained within the HPIC library. The
following types can be used to store and manipulate a vector of double, float, int,
or size_t values. I refer to the size_t vectors as "index" vectors, since they are
usually used to store a vector of indices.

2.5.1 Allocation

Use one of these functions to allocate a vector of the appropriate type. The n

parameter is the size of the vector. Note that it is possible to allocate a vector of
zero size (useful if you plan to append data or resize later).

hpic_vec∗ hpic_vec_alloc (size_t n) ;
hpic_vec_float∗ hpic_vec_float_alloc (size_t n) ;
hpic_vec_int∗ hpic_vec_int_alloc (size_t n) ;
hpic_vec_index∗ hpic_vec_index_alloc (size_t n) ;

After you are finished with a vector, you can free the memory with one of the
following commands

16

CHAPTER 2. C REFERENCE

int hpic_vec_free (hpic_vec∗ vec) ;
int hpic_vec_float_free (hpic_vec_float∗ vec) ;
int hpic_vec_int_free (hpic_vec_int∗ vec) ;
int hpic_vec_index_free (hpic_vec_index∗ vec) ;

2.5.2 Data Access

To find the size of a vector that has already been allocated, use the function below
that corresponds to the type of the vector.

size_t hpic_vec_n_get (hpic_vec ∗vec) ;
size_t hpic_vec_float_n_get (hpic_vec_float ∗vec) ;
size_t hpic_vec_int_n_get (hpic_vec_int ∗vec) ;
size_t hpic_vec_index_n_get (hpic_vec_index ∗vec) ;

To set a vector element to a given value, use one of these functions. The elem

parameter is the index of the element you wish to change. The val parameter is
the new value to assign to the element.

int hpic_vec_set (hpic_vec∗ vec , size_t elem , double val) ;
int hpic_vec_float_set (hpic_vec_float∗ vec , size_t elem ,

float val) ;
int hpic_vec_int_set (hpic_vec_int∗ vec , size_t elem ,

int val) ;
int hpic_vec_index_set (hpic_vec_index∗ vec , size_t elem ,

size_t val) ;

In a similar fashion, you can retrieve the value of a vector element using one of
these functions.

double hpic_vec_get (hpic_vec∗ vec , size_t elem) ;
float hpic_vec_float_get (hpic_vec_float∗ vec , size_t elem) ;
int hpic_vec_int_get (hpic_vec_int∗ vec , size_t elem) ;
size_t hpic_vec_index_get (hpic_vec_index∗ vec , size_t elem) ;

To set all elements of a vector to a certain value, use one of the "setall" functions
below.

int hpic_vec_setall (hpic_vec ∗vec , double val) ;
int hpic_vec_float_setall (hpic_vec_float ∗vec , float val) ;
int hpic_vec_int_setall (hpic_vec_int ∗vec , int val) ;
int hpic_vec_index_setall (hpic_vec_index ∗vec , size_t val) ;

2.5.3 Basic Operations

There are several simple operations that can be performed on a vector. To create a
copy of a vector, use one of the following commands. You should use the appro-

17

CHAPTER 2. C REFERENCE

priate free command on both the original and the copy after you are finished using
them.

hpic_vec∗ hpic_vec_copy (hpic_vec ∗vec) ;
hpic_vec_float∗ hpic_vec_float_copy (hpic_vec_float ∗vec) ;
hpic_vec_int∗ hpic_vec_int_copy (hpic_vec_int ∗vec) ;
hpic_vec_index∗ hpic_vec_index_copy (hpic_vec_index ∗vec) ;

Use the functions below to resize a vector. The parameter newn is the new size of
the vector. If the new size is smaller than the current size, the vector is truncated.
If the new size is larger than the current size, additional elements are added to the
end of the vector and set to zero. Resizing a vector to size zero is NOT the same as
freeing the vector.

int hpic_vec_resize (hpic_vec∗ vec , size_t newn) ;
int hpic_vec_float_resize (hpic_vec_float∗ vec ,

size_t newn) ;
int hpic_vec_int_resize (hpic_vec_int∗ vec , size_t newn) ;
int hpic_vec_index_resize (hpic_vec_index∗ vec ,

size_t newn) ;

To append a single element to a vector use the following functions. The vector size
is increased by one, and the new element is set to the value specified by the val

parameter.

int hpic_vec_append (hpic_vec∗ vec , double val) ;
int hpic_vec_float_append (hpic_vec_float∗ vec , float val) ;
int hpic_vec_int_append (hpic_vec_int∗ vec , int val) ;
int hpic_vec_index_append (hpic_vec_index∗ vec , size_t val) ;

2.6 Map Conversion

There are several different sorts of conversion operations one might want to do on
a map. Besides converting between different types (double, float, and int), it is also
desirable to convert between RING and NESTED ordering schemes and to be able
to degrade and prograde a map.

2.6.1 Types

The following functions take a map of one type, allocate a map of the new type, and
copy the contents from the old to the new. The old map is NOT freed. A pointer to
the new map is returned. The new map has exactly the same name, units, ordering,
etc as the old map. When converting from a floating point type to an int map, the
map data is truncated (rounded down).

18

CHAPTER 2. C REFERENCE

hpic_float∗ hpic_double2float (hpic ∗map) ;
hpic_int∗ hpic_double2int (hpic ∗map) ;

hpic∗ hpic_float2double (hpic_float ∗map) ;
hpic_int∗ hpic_float2int (hpic_float ∗map) ;

hpic∗ hpic_int2double (hpic_int ∗map) ;
hpic_float∗ hpic_int2float (hpic_int ∗map) ;

2.6.2 Ordering

The fastest way to convert the ordering of a map is to make a temporary map that
has the new ordering and then convert all the pixels. Unfortunately this requires
more memory. The following functions do an out-of-place conversion that makes
use of a temporary copy of the map.

int hpic_conv_nestcopy (hpic ∗map) ;
int hpic_conv_ringcopy (hpic ∗map) ;

int hpic_conv_float_nestcopy (hpic_float ∗map) ;
int hpic_conv_float_ringcopy (hpic_float ∗map) ;

int hpic_conv_int_nestcopy (hpic_int ∗map) ;
int hpic_conv_int_ringcopy (hpic_int ∗map) ;

To save memory at the price of speed, it is also possible to do an in-place con-
version. I am still working on the most efficient way of implementing this. As
of right now, these functions perform an out-of-place conversion. This will be
fixed soon.

int hpic_conv_nest (hpic ∗map) ;
int hpic_conv_ring (hpic ∗map) ;

int hpic_conv_float_nest (hpic_float ∗map) ;
int hpic_conv_float_ring (hpic_float ∗map) ;

int hpic_conv_int_nest (hpic_int ∗map) ;
int hpic_conv_int_ring (hpic_int ∗map) ;

2.6.3 Resolution

The following functions convert a map to a new NSIDE resolution. The functions
return a pointer to a newly allocated map. The old map is not freed. The new map
has the same name, units, and ordering, but has an NSIDE equal to the newnside

19

CHAPTER 2. C REFERENCE

parameter. If the original map is being degraded, then each pixel of the new map
will be an average of the high resolution pixel values that lie within it. Pixel values
equal to HPIC_NULL or HPIC_INT_NULL will not be included in the average. If
the original map is being prograded, then each pixel of the new map will have the
same value as the low resolution pixel that it lies within.

hpic∗ hpic_conv_xgrade (hpic ∗map , size_t newnside) ;
hpic_float∗ hpic_conv_float_xgrade (hpic_float ∗map ,

size_t newnside) ;
hpic_int∗ hpic_conv_int_xgrade (hpic_int ∗map ,

size_t newnside) ;

2.7 Map Math

It is often useful to perform simple mathematical operations on a map. The fol-
lowing tools abstract this process as much as possible to allow for a more intuitive
useage.

2.7.1 Scaling and Offsets

The "scale" functions listed below will multiply every pixel in the map by the value
specified in the val parameter. In the case of the integer map, the resulting product
is truncated. The "offset" functions add the val parameter to all pixels in the map.
Note that NULL pixels are not affected by these functions (they remain NULL).

int hpic_scale (hpic ∗map , double val) ;
int hpic_float_scale (hpic_float ∗map , double val) ;
int hpic_int_scale (hpic_int ∗map , double val) ;

int hpic_offset (hpic ∗map , double val) ;
int hpic_float_offset (hpic_float ∗map , float val) ;
int hpic_int_offset (hpic_int ∗map , int val) ;

2.7.2 Arithmetic

The functions listed below are used to add, subtract, multiply, or divide two maps
of the same type (double, float, or int). In all cases, the data in the first map is
replaced by the result of the operation. If the second map has a different ordering
or NSIDE value, it is automatically converted to the same NSIDE and ordering
as the first map before doing the operation. The mode parameter can take values
of HPIC_INTERSECT or HPIC_UNION. If the intersection is requested, then only

20

CHAPTER 2. C REFERENCE

pixels which are non-NULL in both maps will appear in the output (the rest of the
output pixels will be set to NULL). If the union is requested, then all pixels that
are non-NULL in any map will be included in the output. In the case of a union
operation, pixels that exist in one map but not the other will be unmodified in the
output.

int hpic_add (hpic ∗first , hpic ∗second , int mode) ;
int hpic_float_add (hpic_float ∗first , hpic_float ∗second ,

int mode) ;
int hpic_int_add (hpic_int ∗first , hpic_int ∗second ,

int mode) ;

int hpic_subtract (hpic ∗first , hpic ∗second , int mode) ;
int hpic_float_subtract (hpic_float ∗first ,

hpic_float ∗second , int mode) ;
int hpic_int_subtract (hpic_int ∗first , hpic_int ∗second ,

int mode) ;

int hpic_multiply (hpic ∗first , hpic ∗second , int mode) ;
int hpic_float_multiply (hpic_float ∗first ,

hpic_float ∗second , int mode) ;
int hpic_int_multiply (hpic_int ∗first , hpic_int ∗second ,

int mode) ;

int hpic_divide (hpic ∗first , hpic ∗second , int mode) ;
int hpic_float_divide (hpic_float ∗first ,

hpic_float ∗second , int mode) ;
int hpic_int_divide (hpic_int ∗first , hpic_int ∗second ,

int mode) ;

2.8 Projection

The projection types and routines found in HPIC are designed to allow easy projec-
tion of maps, sets of maps (vectorfields), sets of points, and sets of pixels onto a
bitmap. These functions work, but add an "extra step" if you have to then copy this
projection to another image for display purposes. If you are developing software
to display or print healpix maps, you are probably better off creating functions that
project a healpix map directly onto a display buffer, etc. Nevertheless, these func-
tions at least show one way to implement projections of whole maps. In order to
do this, I have defined a structure (hpic_proj) which contains the bitmap and
various parameters associated with the projection.

21

CHAPTER 2. C REFERENCE

2.8.1 Allocation

To allocate or free the projection structure, use the functions below. The nx and ny
parameters are the dimensions in pixels of the projection.

hpic_proj∗ hpic_proj_alloc (size_t nx , size_t ny) ;
int hpic_proj_free (hpic_proj ∗proj) ;

2.8.2 Parameter Access

When a projection is allocated, it defaults to a cartesian projection. You can set
or get the type of the projection with the functions below. Valid values of the
type parameter are HPIC_PROJ_CAR and HPIC_PROJ_SIN. You can set or get
the maximum and minimum range values of the projection by using the "range"
functions below. See the earlier diagram for a description of what these range
values mean. Note that setting the type or range of the projection also clears all of
the projection data.

int hpic_proj_type_get (hpic_proj ∗proj) ;
int hpic_proj_type_set (hpic_proj ∗proj , int type) ;

int hpic_proj_range_get (hpic_proj ∗proj , double ∗mintheta ,
double ∗maxtheta , double ∗minphi ,
double ∗maxphi) ;

int hpic_proj_range_set (hpic_proj ∗proj , double mintheta ,
double maxtheta , double minphi ,
double maxphi) ;

2.8.3 Data Access

To set or get a specific value from the projection array, use the "set" and "get"
functions below. The xelem and yelem parameters specify the array coordinates
of the value you are changing or retrieving. You can also set all array elements with
the "setall" command. To print the size, type, and range values of the projection to
a file or stdout, you can use the print functions below.

int hpic_proj_set (hpic_proj ∗proj , size_t xelem ,
size_t yelem , double val) ;

double hpic_proj_get (hpic_proj ∗proj , size_t xelem ,
size_t yelem) ;

int hpic_proj_setall (hpic_proj ∗proj , double val) ;

int hpic_proj_info_fprintf (FILE ∗fp , hpic_proj ∗proj) ;

22

CHAPTER 2. C REFERENCE

int hpic_proj_info_printf (hpic_proj ∗proj) ;

2.8.4 Projecting Maps and Vectors

To project the data of a single map onto a projection structure, simply call the
hpic_proj_map function. The rest of the projection functions do not actually
write any data to the array contained in the projection structure. Instead, they use
the projection structure to obtain the type, size, and range of the projection. These
functions return vectors of pixel indices. These index vectors must be allocated
when you pass them to the functions, but their size is not important (they will be
resized by the function).

In the case of hpic_proj_points, a set of ordered pairs of (theta, phi)
values is projected into a set of ordered pairs of x and y pixel coordinates. The x
and y vectors will contain the projection array coordinates of all the points lying
within the range of the projection. Note that the length of the x and y vectors will
be different than the length of the input vectors unless all the (theta, phi) values
lie inside the range of the projection.

The hpic_proj_pixels function takes a list of map pixel indices at a certain
NSIDE and ordering, and returns a list of projection array pixel coordinates that
fall within the specified map pixels.

The hpic_proj_vecfield function takes two maps specifying the theta and
phi components of a vector field. It returns four index vectors giving the projection
array coordinates of the heads and tails of the vectors. The pnside parameter is
the NSIDE of the vector field projection. If this is different from the NSIDE of
the component maps, the components will be degraded to the desired NSIDE be-
fore projecting. The maxmag parameter specifies the magnitude of a vector which
should approximately span the size of one pixel (at pnside resolution).

int hpic_proj_map (hpic_proj ∗proj , hpic ∗map) ;

int hpic_proj_points (hpic_proj ∗proj , hpic_vec ∗theta ,
hpic_vec ∗phi , hpic_vec_index ∗x ,
hpic_vec_index ∗y) ;

int hpic_proj_pixels (hpic_proj ∗proj , size_t nside ,
int order , hpic_vec_index ∗pixels ,
hpic_vec_index ∗x , hpic_vec_index ∗y) ;

int hpic_proj_vecfield (hpic_proj ∗proj , hpic ∗thetacomp ,
hpic ∗phicomp , size_t pnside ,
double maxmag ,
hpic_vec_index ∗headx ,

23

CHAPTER 2. C REFERENCE

hpic_vec_index ∗heady ,
hpic_vec_index ∗tailx ,
hpic_vec_index ∗taily) ;

2.9 Transforms and Filtering

This section is the area of current active work. Now that the basic pixel and map
operations are implemented, the next phase of development includes implementing
harmonic transforms and various types of filtering. Look for more info in future
releases...

2.10 FITS Reading and Writing

The FITS standard provides an incredibly flexible framework for storing data in a
portable file. Over the years there have been many different formats used to store
healpix style data. The goal of this portion of the HPIC library is to provide an
extensible, easy to use set of tools to allow the reading and writing of all known
healpix FITS formats, as well as allow the development of new formats as needed.

2.10.1 Format Specifications

Since there is no official "standard" for what constitutes a healpix FITS file, I have
attempted to create a standard which encompasses all known existing types. Ob-
viously compatibility with all the different codes in use is important. By making
some minimal assumptions, I claim that this is a tractable problem. Note that these
rules have changed slightly over time, to accomodate new formats. Here is a list of
requirements that a healpix map file must follow:

1. Maps must be contained in the first extension (HDU 2) and not in the primary
image.

2. The extension which contains the maps must be a binary table.

3. The extension must contain the string keyword "PIXTYPE", and the value
of this keyword must be "HEALPIX".

4. The extension must contain the integer keyword "NSIDE", and this must
have a value that corresponds to the NSIDE of the maps.

5. The extension must contain the string keyword "ORDERING", which can
take values of either "RING" or "NESTED".

24

CHAPTER 2. C REFERENCE

6. The extension should have the string keyword "COORDSYS". If it does not,
a celestial/equatorial coordinate system is implied.

7. The extension should have the string keyword "INDXSCHM", which can
take values of "IMPLICIT" or "EXPLICIT". If this keyword is not present,
a value of "IMPLICIT" is assumed.

8. The extension should contain the integer keyword "GRAIN". If it does not,
a value of zero is assumed.

9. All maps in the table must have the same NSIDE, ORDERING, and CO-
ORDSYS values.

10. In addition to the required keywords, any number of optional keywords are
allowed.

11. A "full-sphere" FITS file should have INDXSCHM=IMPLICIT and GRAIN=0.

12. A "full-sphere" FITS file has one or more columns, where each column is a
list of floating point pixel values for every pixel in a map.

13. If a "full-sphere" FITS file has NSIDE > 8, then the columns MAY be 1024
elements wide.

14. A "full-sphere" FITS file MIGHT contain only a contiguous portion of a
map. Such a file MUST contain the keywords "NPIX", "FIRSTPIX", and
"LASTPIX".

15. A "cut-sphere" FITS file should have INDXSCHM=EXPLICIT and GRAIN
>= 1.

16. The first column of a "cut-sphere" FITS file is a list of pixel indices. After
that follows one or more floating point columns containing map values at the
indicated pixels. After the data columns is an integer column of hits/obser-
vations. The last column is a floating point column of error values. Note
that there is no requirement on the actual name or units of the hits and error
columns- only their type matters.

In addition to these FITS files that are designed to store maps, there are also various
types of FITS files in use that store general vectors. I have created a specification
that encompasses these "vector" FITS files as well:

1. Vectors must be stored in the first extension (HDU 2), and not in the primary
image.

25

CHAPTER 2. C REFERENCE

2. The extension which contains the vectors may be either an ASCII table or a
binary table.

3. The extension may contain any number of optional keywords.

4. All vectors must have the same length.

5. If the vectors are stored in an ASCII table, then the table may consist of one
or more columns of floating point numbers, where each column is a vector.

6. If the vectors are stored in a binary table, then the table may consist of either
columns of floating point numbers or a single integer column of "index"
values followed by columns of floating point numbers.

2.10.2 Optional Keys

All of the FITS file formats allow the user to specify optional keywords. To make
this process relatively easy, the hpic_keys structure is used to hold any number of
string, integer, and floating point keywords. After allocating an hpic_keys struc-
ture, you pass a pointer to this structure to the FITS reading or writing routines.

In the case of reading a FITS file, the keys structure will be populated by all the
non-required keywords found in the file. You can then access any keyword values
within the structure. In the case of writing a FITS file, you easily add keywords to
the structure before calling the writing routine, and all the keywords in the structure
will be written to the FITS file.

To allocate, free and clear (remove all keys from) a keys structure, use the
following functions

hpic_keys∗ hpic_keys_alloc () ;
int hpic_keys_free (hpic_keys∗ keys) ;
int hpic_keys_clear (hpic_keys∗ keys) ;

To add or delete keys from an hpic_keys structure, use the functions below. The
keyname parameter is a string containing the name of the key. The keyval param-
eter is the value of the key. Note that you must use the correct function depending
on the type of key you are adding (string, integer or float). The string parameter
keycom is the comment for the key.

int hpic_keys_sadd (hpic_keys ∗keys , char ∗keyname ,
char ∗keyval , char ∗keycom) ;

int hpic_keys_iadd (hpic_keys ∗keys , char ∗keyname ,
int keyval , char ∗keycom) ;

int hpic_keys_fadd (hpic_keys ∗keys , char ∗keyname ,
float keyval , char ∗keycom) ;

int hpic_keys_del (hpic_keys ∗keys , char ∗keyname) ;

26

CHAPTER 2. C REFERENCE

To retrieve a key value from the structure, you can use the key name and one of the
"find" routines below. The value of the key and the comment string are returned. If
the find routine is successful, the return value of the function is zero. Otherwise the
function returns a value of 1. Obviously for the integer and floating point functions,
the keyval parameter should be the address of an existing variable. To find out the
total number of keys (of all types) stored in a structure, use the hpic_keys_total
function.

int hpic_keys_total (hpic_keys ∗keys) ;
int hpic_keys_sfind (hpic_keys ∗keys , char ∗keyname ,

char ∗keyval , char ∗keycom) ;
int hpic_keys_ifind (hpic_keys ∗keys , char ∗keyname ,

int ∗keyval , char ∗keycom) ;
int hpic_keys_ffind (hpic_keys ∗keys , char ∗keyname ,

float ∗keyval , char ∗keycom) ;

It is sometimes useful to print the contents of a keys structure to a file or stdout.
This can be accomplished by the two functions below.

int hpic_keys_fprintf (FILE ∗fp , hpic_keys ∗keys) ;
int hpic_keys_printf (hpic_keys ∗keys) ;

2.10.3 Map FITS I/O

To test an existing FITS file to see if it is compatible with the healpix map specifica-
tion, use the hpic_fits_map_test function. This function returns the NSIDE,
ordering, coordinate system, and type of the file, as well as the number of sig-
nal maps in the file (for example, a four column, cut-sphere file has only one signal
map). The returned type parameter will have a value equal to either HPIC_FITS_FULL,
HPIC_FITS_CHUNK or HPIC_FITS_CUT. The return value of the function will be
equal to 1 if the file is a supported type, and zero if it is not recognized.

int hpic_fits_map_test (char ∗filename , size_t ∗nside ,
int ∗order , int ∗coord ,
int ∗type , size_t ∗nmaps) ;

If you want to check file’s compatibility but need slightly more information about
the file, such as the names of the columns or values of keys in the header, you can
use the hpic_fits_map_info function.

int hpic_fits_map_info (char ∗filename , size_t ∗ nside ,
int ∗order , int ∗coord , int ∗type ,
size_t ∗ nmaps , char ∗creator ,
char ∗extname , char ∗∗names ,
char ∗∗units , hpic_keys ∗keys) ;

27

CHAPTER 2. C REFERENCE

To quickly read a single signal map from a file, use the hpic_fits_read_one

function. A new float map is allocated and returned by the function. The keys pa-
rameter should point to an existing structure (allocated with hpic_keys_alloc).
After the function call, any optional keywords in the file will be stored in the keys
structure. The mapnum parameter is the (zero-based) number of the map you want
to retrieve. The creator parameter returns the creator string found in the file.

hpic_float∗ hpic_fits_read_one (char ∗filename ,
size_t mapnum ,
char ∗creator ,
hpic_keys ∗keys) ;

The FITS reading and writing functions below are as general as possible, and
work with files containing any number of signal columns. This generality comes at
the cost of ease of use. If you are only working with one of the currently existing
formats used in CMB research, you will probably prefer to use the cmb-specific
FITS functions in the next section.

Before reading or writing general map FITS files, you will need to allocate
enough maps to hold the data in the file. The pointers to these maps are then stored
inside a special structure, which is passed to the reading and writing functions.
This is somewhat awkward, and is necessary for two reasons:

1. C cannot (easily) handle a variable number of function arguments

2. When wrapping C code with SWIG for use in scripting languages, it is much
more difficult to pass an array of struct pointers than a single struct pointer

For map FITS files, the hpic_fltarr structure is used to pass an array of hpic_float∗
values to the FITS I/O routines. To allocate and manipulate this simple structure,
you can use the following functions

hpic_fltarr∗ hpic_fltarr_alloc (size_t nmaps) ;
int hpic_fltarr_free (hpic_fltarr∗ array) ;

size_t hpic_fltarr_n_get (hpic_fltarr ∗array) ;

int hpic_fltarr_set (hpic_fltarr∗ array , size_t elem ,
hpic_float∗ map) ;

hpic_float∗ hpic_fltarr_get (hpic_fltarr∗ array ,
size_t elem) ;

Note that this structure is just a "container" for holding map pointers- it does not
handle the allocation or freeing of the maps themselves. The exact use of this
structure will become more clear if you examine its use in the src/test/hpictest.c
test file.

28

CHAPTER 2. C REFERENCE

To write or read a file containing full-sphere maps, use the following functions.
As previously mentioned, the user is responsible for allocating and populating the
hpic_fltarr structure with pointers to maps that have been allocated. The keys
parameter should also already be allocated. NOTE: When writing FITS files, the
column names and units in the output file are set from the names and units of the
input maps.

int hpic_fits_full_write (char ∗filename , char ∗creator ,
char ∗extname , char ∗comment ,
hpic_fltarr ∗maps ,
hpic_keys ∗keys) ;

int hpic_fits_full_read (char ∗filename , char ∗creator ,
char ∗extname , hpic_fltarr ∗maps ,
hpic_keys ∗keys) ;

To write or read a file containing cut-sphere maps, use the functions below. In
addition to the array of signal maps, the user also specifies maps for the pixel
indices, hits, and errors. The hits, errors, and all signal maps are cut based on the
contents of the index map. Every pixel in the index map equal to HPIC_INT_NULL
will be cut in the final output file. All non-null pixels will be included in the output
file.

int hpic_fits_cut_write (char ∗filename , char ∗creator ,
char ∗extname , char ∗comment ,
hpic_int ∗pixels , hpic_int ∗hits ,
hpic_float ∗errs ,
hpic_fltarr ∗maps ,
hpic_keys ∗keys) ;

int hpic_fits_cut_read (char ∗filename , char ∗creator ,
char ∗extname , hpic_int ∗pixels ,
hpic_int ∗hits , hpic_float ∗errs ,
hpic_fltarr ∗maps ,
hpic_keys ∗keys) ;

2.10.4 Vector FITS I/O

To test an existing FITS file to see if it is compatible with the healpix vector specifi-
cation, use the hpic_fits_vec_test function. This function returns the number
of floating point vector columns, the length of the vectors (number of rows in the
table), the type of the file, and the type of the table. The returned filetype pa-
rameter will equal HPIC_FITS_VEC (if the file contains only floating point vectors)
or HPIC_FITS_VEC_INDX (if the file has an integer index vector). The returned

29

CHAPTER 2. C REFERENCE

tabtype parameter will equal HPIC_FITS_BIN or HPIC_FITS_ASCII. If you
need more information about the file, use hpic_fits_vec_info

int hpic_fits_vec_test (char ∗filename , size_t ∗nvecs ,
size_t ∗length , int ∗filetype ,
int ∗tabtype) ;

int hpic_fits_vec_info (char ∗filename , size_t ∗ nvecs ,
size_t ∗ length , int ∗filetype ,
int ∗tabtype , char ∗creator ,
char ∗extname , char ∗∗names ,
char ∗∗units , hpic_keys ∗ keys) ;

Note that a full-sphere healpix map format FITS file is also a valid healpix vector
format FITS file. If you are unsure what kind of file you have, first check to see if
it is a map format file.

As with the map functions that read or write any number of data columns to a
FITS file, the vector FITS functions also require the user to allocate all necessary
vectors ahead of time, and to then pass an array of vector pointers to the reading
and writing functions. The hpic_vec_fltarr structure is used to store these
pointers, and functions the same way as the hpic_fltarr structure.

hpic_vec_fltarr∗ hpic_vec_fltarr_alloc (size_t nvecs) ;
int hpic_vec_fltarr_free (hpic_vec_fltarr∗ array) ;

size_t hpic_vec_fltarr_n_get (hpic_vec_fltarr ∗array) ;

int hpic_vec_fltarr_set (hpic_vec_fltarr∗ array ,
size_t elem , hpic_vec_float∗ vec) ;

hpic_vec_float∗ hpic_vec_fltarr_get (hpic_vec_fltarr∗ array ,
size_t elem) ;

To read and write a standard vector FITS file containing any number of floating
point columns, use the following functions. The tabtype parameter is the desired
type of the FITS table. The vecnames and vecunits parameters are arrays of
strings containing the names and units of the vectors. These labels will be written
to or read from the FITS file. You can allocate these arrays of strings using the
hpic_strarr_alloc function if you wish.

int hpic_fits_vec_write (char ∗filename , int tabtype ,
char ∗creator , char ∗extname ,
char ∗comment ,
hpic_vec_fltarr ∗vecs ,
char ∗∗vecnames , char ∗∗vecunits ,
hpic_keys ∗keys) ;

int hpic_fits_vec_read (char ∗filename , char ∗creator ,

30

CHAPTER 2. C REFERENCE

char ∗extname ,
hpic_vec_fltarr ∗vecs ,
char ∗∗vecnames , char ∗∗vecunits ,
hpic_keys ∗keys) ;

To read and write vector FITS files that also contain an initial index column,
use the functions below. Since this type of FITS file can only be constructed using
a binary table, there is no parameter to specify the table type.

int hpic_fits_vecindx_write (char ∗filename , char ∗creator ,
char ∗extname , char ∗comment ,
hpic_vec_int ∗indx ,
hpic_vec_fltarr ∗vecs ,
char ∗∗vecnames ,
char ∗∗vecunits ,
hpic_keys ∗keys) ;

int hpic_fits_vecindx_read (char ∗filename , char ∗creator ,
char ∗extname ,
hpic_vec_int ∗indx ,
hpic_vec_fltarr ∗vecs ,
char ∗∗vecnames , char ∗∗vecunits ,
hpic_keys ∗keys) ;

2.11 CMB Specific Functions

The field of Cosmic Microwave Background (CMB) research has obviously been
one of the major application areas of the healpix algorithms. I have attempted to
separate functions that are CMB-specific from those that are generally applicable
to pixelized functions on the sphere.

2.11.1 Projection

As a special case of vector field projection, you can use the hpic_cmb_proj_QU
function to project the Q and U stokes parameter components of a polarization field
onto a projection structure. Since this quantity is a "headless" vector, it is irrelevant
which end is considered the head or tail.

int hpic_cmb_proj_QU (hpic_proj ∗proj , hpic ∗Qmap ,
hpic ∗Umap , size_t pnside ,
double maxmag ,
hpic_vec_index ∗headx ,
hpic_vec_index ∗heady ,
hpic_vec_index ∗tailx ,

31

CHAPTER 2. C REFERENCE

hpic_vec_index ∗taily) ;

2.11.2 Specialized FITS I/O

Since there are already certain common FITS formats in use in the CMB commu-
nity, it is convenient to have some reading and writing functions that deal specif-
ically with these formats (instead of always having to use the general functions).
NOTE: When writing FITS files, the column names and units in the output file are
set from the names and units of the input maps.

To write a single, full-sky map, use the hpic_cmb_write_full function.
All the parameters have the usual definitions (see the general FITS section for
more info). To read a file such as this, use the hpic_fits_read_one function
discussed previously.

int hpic_cmb_write_full (char ∗filename , hpic_float ∗data ,
char ∗comment , char ∗creator ,
hpic_keys ∗keys) ;

To read and write a set of full-sky T, Q, and U maps, use the following functions.

int hpic_cmb_write_fullTQU (char ∗filename ,
hpic_float ∗tdata ,
hpic_float ∗qdata ,
hpic_float ∗udata , char ∗comment ,
char ∗creator , hpic_keys ∗keys) ;

int hpic_cmb_read_fullTQU (char ∗filename , hpic_float ∗tdata ,
hpic_float ∗qdata ,
hpic_float ∗udata , char ∗creator ,
hpic_keys ∗keys) ;

To read and write a single cut-sky map, use the following functions.

int hpic_cmb_write_cut (char ∗filename , hpic_int ∗pix ,
hpic_float ∗data , hpic_int ∗hits ,
hpic_float ∗errs , char ∗comment ,
char ∗creator , hpic_keys ∗keys) ;

int hpic_cmb_read_cut (char ∗filename , hpic_int ∗pix ,
hpic_float ∗data , hpic_int ∗hits ,
hpic_float ∗errs , char ∗creator ,
hpic_keys ∗keys) ;

To read and write a set of cut-sky T, Q, and U maps, use the following functions.

int hpic_cmb_write_cutTQU (char ∗filename , hpic_int ∗pix ,

32

CHAPTER 2. C REFERENCE

hpic_float ∗tdata ,
hpic_float ∗qdata ,
hpic_float ∗udata , hpic_int ∗hits ,
hpic_float ∗errs , char ∗comment ,
char ∗creator , hpic_keys ∗keys) ;

int hpic_cmb_read_cutTQU (char ∗filename , hpic_int ∗pix ,
hpic_float ∗tdata ,
hpic_float ∗qdata ,
hpic_float ∗udata , hpic_int ∗hits ,
hpic_float ∗errs , char ∗creator ,
hpic_keys ∗keys) ;

2.12 Compatibility Wrappers

This set of functions is intended to be used as a "transitional" step for software
projects that have been using the CHEALPIX tools and wish to start using the HPIC

library. These functions are wrappers around the standard HPIC functions, so they
may be slower than calling the native functions. The goal is to allow the user to
do several regular-expression substitution operations on a source tree and simply
recompile.

2.12.1 Pixel Tools

The compatibility pixel tools (should) have exactly the same calling sequence as
those in CHEALPIX . The only difference is that the functions begin with the "com-
pat_" character sequence.

void compat_ang2pix_nest (const long nside , double theta ,
double phi , long ∗ipix) ;

void compat_ang2pix_ring (const long nside , double theta ,
double phi , long ∗ipix) ;

void compat_pix2ang_nest (long nside , long ipix ,
double ∗theta , double ∗phi) ;

void compat_pix2ang_ring (long nside , long ipix ,
double ∗theta , double ∗phi) ;

void compat_nest2ring (long nside , long ipnest ,
long ∗ipring) ;

void compat_ring2nest (long nside , long ipring ,
long ∗ipnest) ;

long compat_nside2npix (const long nside) ;

33

CHAPTER 2. C REFERENCE

2.12.2 Legacy FITS I/O

These functions support the simple full-sky FITS format found in CHEALPIX , as
well as the cut-sky format used in Boomerang and other experiments. Again, the
only difference is the "compat_" string prepended to the function names.

long compat_get_fits_size (char ∗filename , long ∗nside ,
char ∗ordering) ;

int compat_read_healpix_map (char ∗infile , long ∗nside ,
char ∗coordsys , char ∗ordering ,
float ∗map) ;

int compat_write_healpix_map (float ∗signal , long nside ,
char ∗filename , char nest ,
char ∗coordsys) ;

void compat_read_fits_cut4 (char ∗filename , int ∗pixel ,
float ∗signal , int ∗n_obs ,
float ∗serror , char ∗channel ,
char ∗coordsys , int ∗nside ,
int ∗obs_npix , char ∗ordering ,
char ∗target , int ∗shot ,
char ∗units) ;

int compat_write_fits_cut4 (int ∗pixel , float ∗signal ,
int ∗n_obs , float ∗serror ,
char ∗channel , char ∗coordsys ,
int nside , int obs_npix ,
char ∗ordering , char ∗target ,
int shot , char ∗units ,
char ∗filename , char ∗creator ,
char ∗release) ;

34

CHAPTER 3. PERL REFERENCE

Chapter 3

Perl Reference

In order to provide a Perl interface to the HPIC library, I have made extensive use
of SWIG (Simplified Wrapper and Interface Generator) to build a Perl module that
"wraps" the C library. After building and installing the module, you can use it in
your programs just like any other module:

use HPIC ;

Since Perl supports object oriented programming better than C, I have incorporated
many of the functions into the types they operate on. This changes the calling se-
quence somewhat, but the interface is much cleaner. Aside from this change, the
Perl interface is so similar to the C interface that I will not go into great detail about
the parameters of each function. See the corresponding section of the C reference
for more details. This chapter will focus on the differences between the Perl and C
interfaces. The Perl interface may change in the future as I become more knowl-
edgeable about converting types between C and Perl. For example, it would be
nice to have HPIC vectors mapped directly to Perl arrays and vice versa. Right now
this is not a very high priority, since the current scheme works, even if it is a bit
clumsy.

For examples of many of the following functions, see the "test.pl" program in
the src/perl subdirectory.

3.1 Constants and Low Level Functions

All of the constants defined in the C library are available under Perl as read-only
variables. For example, to print the value of PI, you could do

print " $HPIC_PI \ n " ;

35

CHAPTER 3. PERL REFERENCE

The low level functions work the same as the C version. The only difference is
that the function return values are returned as an array. The following listing shows
how these functions should be called.

$result = hpic_is_dnull ($value) ;
$result = hpic_is_fnull ($value) ;
$result = hpic_is_inull ($value) ;
$result = hpic_nsidecheck ($nside) ;

$npix = hpic_nside2npix ($nside) ;
$nside = hpic_npix2nside ($npix) ;

$pring = hpic_nest2ring ($nside , $pnest) ;
$pnest = hpic_ring2nest ($nside , $pring) ;
($err ,$theta ,$phi) = hpic_pix2ang_ring ($nside , $pix) ;
($err ,$theta ,$phi) = hpic_pix2ang_nest ($nside , $pix) ;
$pix = hpic_ang2pix_ring ($nside , $theta , $phi) ;
$pix = hpic_ang2pix_nest ($nside , $theta , $phi) ;
($err ,$theta ,$phi) = hpic_vec2ang ($xcomp , $ycomp , $zcomp) ;
($err ,$xcomp ,$ycomp ,$zcomp) = hpic_ang2vec ($theta , $phi) ;
($err ,$xcomp ,$ycomp ,$zcomp) = hpic_pix2vec_ring ($nside ,

$pix) ;
($err ,$xcomp ,$ycomp ,$zcomp) = hpic_pix2vec_nest ($nside ,

$pix) ;
$pix = hpic_vec2pix_ring ($nside , $xcomp , $ycomp , $zcomp) ;
$pix = hpic_vec2pix_nest ($nside , $xcomp , $ycomp , $zcomp) ;

$newpix = hpic_degrade_nest ($oldnside , $oldpix , $newnside) ;
$newpix = hpic_degrade_ring ($oldnside , $oldpix , $newnside) ;

($err ,$x ,$y) = hpic_proj_car ($mintheta , $maxtheta , $minphi ,
$maxphi , $xmax , $ymax , $theta ,
$phi) ;

($err ,$x ,$y) = hpic_proj_sin ($mintheta , $maxtheta , $minphi ,
$maxphi , $xmax , $ymax , $theta ,
$phi) ;

($err ,$theta ,$phi) = hpic_proj_rev_car ($mintheta , $maxtheta ,
$minphi , $maxphi ,
$xmax , $ymax , $x , $y) ;

($err ,$theta ,$phi) = hpic_proj_rev_sin ($mintheta , $maxtheta ,
$minphi , $maxphi ,
$xmax , $ymax , $x , $y) ;

36

CHAPTER 3. PERL REFERENCE

3.2 Maps

In Perl, the HPIC map structures have been wrapped into classes, and many of the
functions that operate on the structures are now part of the class. This means that
the calling sequence and names of most of the functions have changed slightly. It
should still be clear which Perl function corresponds to a certain C function. The
listing below includes the three map classes and their functions. Note how a new
map is allocated and destroyed.

double map
$dmap = new HPIC : : hpic ($nside , $order , $coord , $mem) ;
$dmap−>DESTROY () ;

$dmap−>map_mem_set ($mem) ;
$mem = $dmap−>map_mem_get () ;
$dmap−>map_name_set ($name) ;
$dmap−>map_units_set ($units) ;
$name = $dmap−>map_name_get () ;
$units = $dmap−>map_units_get () ;
$nside = $dmap−>map_nside_get () ;
$npix = $dmap−>map_npix_get () ;
$order = $dmap−>map_order_get () ;
$coord = $dmap−>map_coord_get () ;
$dmap−>map_set ($pix , $val) ;
$val = $dmap−>map_get ($pix) ;
$dmap−>map_setall ($val) ;
$dmapcopy = $dmap−>map_copy () ;
$dmap−>map_scale ($val) ;
$dmap−>map_offset ($val) ;
$fmap = $dmap−>to_float () ;
$imap = $dmap−>to_int () ;
$dmap−>nestcopy () ;
$dmap−>ringcopy () ;
$dmap−>nest () ;
$dmap−>ring () ;
$dmapgrade = $dmap−>xgrade ($newnside) ;
$dmap−>printf () ;

float map
$fmap = new HPIC : : hpic_float ($nside , $order , $coord , $mem) ;
$fmap−>DESTROY () ;

$fmap−>map_mem_set ($mem) ;
$mem = $fmap−>map_mem_get () ;
$fmap−>map_name_set ($name) ;

37

CHAPTER 3. PERL REFERENCE

$fmap−>map_units_set ($units) ;
$name = $fmap−>map_name_get () ;
$units = $fmap−>map_units_get () ;
$nside = $fmap−>map_nside_get () ;
$npix = $fmap−>map_npix_get () ;
$order = $fmap−>map_order_get () ;
$coord = $fmap−>map_coord_get () ;
$fmap−>map_set ($pix , $val) ;
$val = $fmap−>map_get ($pix) ;
$fmap−>map_setall ($val) ;
$fmapcopy = $fmap−>map_copy () ;
$fmap−>map_scale ($val) ;
$fmap−>map_offset ($val) ;
$dmap = $fmap−>to_double () ;
$imap = $fmap−>to_int () ;
$fmap−>nestcopy () ;
$fmap−>ringcopy () ;
$fmap−>nest () ;
$fmap−>ring () ;
$fmapgrade = $fmap−>xgrade ($newnside) ;
$fmap−>printf () ;

int map
$imap = new HPIC : : hpic_int ($nside , $order , $coord , $mem) ;
$imap−>DESTROY () ;

$imap−>map_mem_set ($mem) ;
$mem = $imap−>map_mem_get () ;
$imap−>map_name_set ($name) ;
$imap−>map_units_set ($units) ;
$name = $imap−>map_name_get () ;
$units = $imap−>map_units_get () ;
$nside = $imap−>map_nside_get () ;
$npix = $imap−>map_npix_get () ;
$order = $imap−>map_order_get () ;
$coord = $imap−>map_coord_get () ;
$imap−>map_set ($pix , $val) ;
$val = $imap−>map_get ($pix) ;
$imap−>map_setall ($val) ;
$imapcopy = $imap−>map_copy () ;
$imap−>map_scale ($val) ;
$imap−>map_offset ($val) ;
$dmap = $imap−>to_double () ;
$fmap = $imap−>to_float () ;
$imap−>nestcopy () ;

38

CHAPTER 3. PERL REFERENCE

$imap−>ringcopy () ;
$imap−>nest () ;
$imap−>ring () ;
$imapgrade = $imap−>xgrade ($newnside) ;
$imap−>printf () ;

3.3 Vectors

The vector structures in Perl have also been wrapped into classes. The listing below
shows the syntax of their use.

double vector
$dvec = new HPIC : : hpic_vec ($n) ;
$dvec−>DESTROY () ;
$n = $dvec−>vec_n_get () ;
$dvec−>vec_set ($elem , $val) ;
$val = $dvec−>vec_get ($elem) ;
$dvec−>vec_setall ($val) ;
$dveccopy = $dvec−>vec_copy () ;
$dvec−>vec_resize ($newn) ;
$dvec−>vec_append ($val) ;

float vector
$fvec = new HPIC : : hpic_vec_float ($n) ;
$fvec−>DESTROY () ;
$n = $fvec−>vec_n_get () ;
$fvec−>vec_set ($elem , $val) ;
$val = $fvec−>vec_get ($elem) ;
$fvec−>vec_setall ($val) ;
$fveccopy = $fvec−>vec_copy () ;
$fvec−>vec_resize ($newn) ;
$fvec−>vec_append ($val) ;

int vector
$ivec = new HPIC : : hpic_vec_int ($n) ;
$ivec−>DESTROY () ;
$n = $ivec−>vec_n_get () ;
$ivec−>vec_set ($elem , $val) ;
$val = $ivec−>vec_get ($elem) ;
$ivec−>vec_setall ($val) ;
$iveccopy = $ivec−>vec_copy () ;
$ivec−>vec_resize ($newn) ;
$ivec−>vec_append ($val) ;

39

CHAPTER 3. PERL REFERENCE

index (size_t) vector
$xvec = new HPIC : : hpic_vec_index ($n) ;
$xvec−>DESTROY () ;
$n = $xvec−>vec_n_get () ;
$xvec−>vec_set ($elem , $val) ;
$val = $xvec−>vec_get ($elem) ;
$xvec−>vec_setall ($val) ;
$xveccopy = $xvec−>vec_copy () ;
$xvec−>vec_resize ($newn) ;
$xvec−>vec_append ($val) ;

3.4 Math and Miscellany

These functions are grouped together because they are basically identical to their
C counterparts, and there is not much to say about them. For completeness, here is
how they look in Perl, but there is nothing new here.

map comparison
$result = hpic_comp ($dmap1 , $dmap2) ;
$result = hpic_float_comp ($fmap1 , $fmap2) ;
$result = hpic_int_comp ($imap1 , $imap2) ;

pixel location
$dist = hpic_loc_dist ($nside , $order , $pix1 , $pix2) ;
$err = hpic_neighbors ($nside , $order , $pixel , $parray) ;

math
hpic_add ($first , $second , $mode) ;
hpic_float_add ($first , $second , $mode) ;
hpic_int_add ($first , $second , $mode) ;
hpic_subtract ($first , $second , $mode) ;
hpic_float_subtract ($first , $second , $mode) ;
hpic_int_subtract ($first , $second , $mode) ;
hpic_multiply ($first , $second , $mode) ;
hpic_float_multiply ($first , $second , $mode) ;
hpic_int_multiply ($first , $second , $mode) ;
hpic_divide ($first , $second , $mode) ;
hpic_float_divide ($first , $second , $mode) ;
hpic_int_divide ($first , $second , $mode) ;

40

CHAPTER 3. PERL REFERENCE

3.5 Projection

Projection of maps, points, etc is straightforward in Perl. The projection structure
has been wrapped into a class, and the functions that do the the projection are
basically the same as in C.

projection
$proj = new HPIC : : hpic_proj ($nx , $ny) ;
$proj−>DESTROY () ;
$type = $proj−>proj_type_get () ;
$proj−>proj_type_set ($type) ;
($err ,$mintheta ,$maxtheta ,$minphi ,$maxphi) =

$proj−>proj_range_get () ;
$proj−>proj_range_set ($mintheta , $maxtheta , $minphi ,

$maxphi) ;
$proj−>proj_set ($xelem , $yelem , $val) ;
$val = $proj−>proj_get ($xelem , $yelem) ;
$proj−>proj_setall ($val) ;
$proj−>printf () ;

hpic_proj_points ($proj , $theta , $phi , $x , $y) ;
hpic_proj_pixels ($proj , $nside , $order , $pixels , $x , $y) ;
hpic_proj_map ($proj , $map) ;
hpic_proj_vecfield ($proj , $thetacomp , $phicomp , $pnside ,

$maxmag , $headx , $heady , $tailx , $taily) ;

3.6 Transforms and Filtering

Since the C functions are not implemented yet, the Perl wrappers certainly don’t
work...

3.7 FITS I/O

The steps for reading and writing FITS files in Perl are analogous to those in C.
You must still allocate space for the maps/vectors, the map/vector array, and the
optional keys. See the test.pl file for an example of how to put all these pieces
together.

array of float maps
$maps = new HPIC : : hpic_fltarr ($n) ;
$maps−>DESTROY () ;
$maps−>array_set ($elem , $map) ;
$map = $maps−>array_get ($elem) ;

41

CHAPTER 3. PERL REFERENCE

array of float vectors
$vecs = new HPIC : : hpic_vec_fltarr ($n) ;
$vecs−>DESTROY () ;
$vecs−>array_set ($elem , $vec) ;
$vec = $vecs−>array_get ($elem) ;

FITS keys
$keys = new HPIC : : hpic_keys () ;
$keys−>DESTROY () ;
$keys−>keys_clear () ;
$keys−>keys_sadd ($keyname , $keyval , $keycom) ;
$keys−>keys_iadd ($keyname , $keyval , $keycom) ;
$keys−>keys_fadd ($keyname , $keyval , $keycom) ;
$keys−>keys_del ($keyname) ;
$total = $keys−>keys_total () ;
($err ,$result ,$keyval ,$keycom) = $keys−>keys_sfind ($keyname) ;
($err ,$result ,$keyval ,$keycom) = $keys−>keys_ifind ($keyname) ;
($err ,$result ,$keyval ,$keycom) = $keys−>keys_ffind ($keyname) ;
$keys−>keys_printf () ;

map FITS functions
($err ,$result ,$nside ,$order ,$coord ,$type ,$nmaps) =

hpic_fits_map_test ($filename) ;
($err ,$result ,$nside ,$order ,$coord ,$type ,$nmaps) =

hpic_fits_map_info ($filename , $creator ,
$extname , $names , $units ,
$keys) ;

hpic_fits_full_write ($filename , $creator , $extname ,
$comment , $maps , $keys) ;

hpic_fits_cut_write ($filename , $creator , $extname ,
$comment , $pixels , $hits , $errs ,
$maps , $keys) ;

hpic_fits_full_read ($filename , $creator , $extname , $maps ,
$keys) ;

hpic_fits_cut_read ($filename , $creator , $extname , $pixels ,
$hits , $errs , $maps , $keys) ;

$fmap = hpic_fits_read_one ($filename , $mapnum , $creator ,
$keys) ;

vector FITS functions
($err ,$result ,$nvecs ,$length ,$filetype ,$tabtype) =

hpic_fits_vec_test ($filename) ;
($err ,$result ,$nvecs ,$length ,$filetype ,$tabtype) =

hpic_fits_vec_info ($filename , $creator , $extname ,

42

CHAPTER 3. PERL REFERENCE

$names , $units , $keys) ;
hpic_fits_vec_write ($filename , $tabtype , $creator , $extname ,

$comment , $vecs , $vecnames , $vecunits ,
$keys) ;

hpic_fits_vecindx_write ($filename , $creator , $extname ,
$comment , $indx , $vecs , $vecnames ,
$vecunits , $keys) ;

hpic_fits_vec_read ($filename , $creator , $extname , $vecs ,
$vecnames , $vecunits , $keys) ;

hpic_fits_vecindx_read ($filename , $creator , $extname , $indx ,
$vecs , $vecnames , $vecunits , $keys) ;

3.8 CMB Specific

The Perl CMB functions are identical to the C functions. They are listed below for
completeness.

hpic_cmb_proj_QU ($proj , $Qmap , $Umap , $pnside , $maxmag ,
$headx , $heady , $tailx , $taily) ;

hpic_cmb_write_full ($filename , $data , $comment , $creator ,
$keys) ;

hpic_cmb_write_fullTQU ($filename , $tdata , $qdata , $udata ,
$comment , $creator , $keys) ;

hpic_cmb_write_cut ($filename , $pix , $data , $hits , $errs ,
$comment , $creator , $keys) ;

hpic_cmb_write_cutTQU ($filename , $pix , $tdata , $qdata ,
$udata , $hits , $errs , $comment ,
$creator , $keys) ;

hpic_cmb_read_fullTQU ($filename , $tdata , $qdata , $udata ,
$creator , $keys) ;

hpic_cmb_read_cut ($filename , $pix , $data , $hits , $errs ,
$creator , $keys) ;

hpic_cmb_read_cutTQU ($filename , $pix , $tdata , $qdata ,
$udata , $hits , $errs , $creator ,
$keys) ;

43

CHAPTER 4. COMMAND LINE TOOLS

Chapter 4

Command Line Tools

Although the HPIC library allows the user to manipulate healpix data in a variety
of ways, some operations are very common. I have written a set of programs that
perform many of the common tasks needed when working with healpix format
FITS files.

4.1 General Tools

These functions are used to modify the data in a healpix FITS file. The hpic_scale
program applies a scale factor and/or an overall offset to one of the signal maps in
a healpix FITS file. The command line options are shown below.

hpic_scale

−file <FITS file>
This is the FITS file on which to operate .

−map <map number to modify in file>
This is the (zero−base) number of the signal
map to be modified .

−scale <factor by which to multiply map>
Each pixel value in the signal map is multiplied
by this number

−offset <offset to add to map>
This number is added to each pixel value in
the signal map .

44

CHAPTER 4. COMMAND LINE TOOLS

The hpic_convert program reads in one healpix map file, converts all maps to
new NSIDE and/or ordering, and writes the converted maps to a new file.

hpic_convert

−in <input FITS file>
This is the file to read in .

−out <output FITS file>
This is the new file to be created .

−nside <new nside value>
This is the new NSIDE that all the maps will
be converted to .

−order <ordering (0=RING , 1=NEST) >
This is the new ordering that all maps will be
converted to .

The hpic_thresh program reads in a single map from a FITS file and cuts all
pixels that lie outside a specified range. The remaining pixels are written to a new
file and (optionally) set to a new value. If no upper or lower bound is set, then all
pixels are kept.

hpic_thresh

−in <input FITS file>
This is the file to read in .

−out <output FITS file>
This is the new file that will be created .

−mapnum <map number to process>
The (zero−based) number of the input signal map .

−upper <upper threshold>
All pixels with a value higher than this number will
be cut (set to HPIC_NULL) .

−lower <lower threshold>
All pixels with a value lower than this number will
be cut (set to HPIC_NULL) .

−outval <optionally set all in−range pixels to this value>
If specified , all output pixels lying between upper and
lower will be set to this value .

45

CHAPTER 4. COMMAND LINE TOOLS

The hpic_outline program reads in a single map from a FITS file and finds all
non-null pixels that border (with a side or vertex) all null-valued pixels. These
pixels are written to a new file and (optionally) set to a new value. If the input
contains no null-valued pixels, then the output map will be empty.

hpic_outline

−in <input FITS file>
This is the file to read in .

−out <output FITS file>
This is the new file that will be created .

−mapnum <map number to process>
The (zero−based) number of the input signal map .

−outval <optionally set all border pixels to this value>
If specified , all output pixels will be set to
this value .

The hpic_2ascii program reads in any supported FITS file (map or vector), and
dumps the contents to stdout.

hpic_2ascii <input FITS file>

The hpic_2fits program reads a specially formatted text file and creates a valid
healpix FITS file.

hpic_2fits

−out <output FITS file>
The name of the FITS file to generate .

−vec (build vector FITS file)
−vecindx (build indexed vector FITS file)
−full (build full−sphere map FITS file)
−cut (build cut−sphere map FITS file)

These 4 options specify what type of file
you wish to build . You must specify exactly
one of these options .

−nside <nside of maps>
If you are building a map FITS file , then this
is the NSIDE value of the maps .

−order <0=NESTED 1=RING>
If you are building a map FITS file , then this

46

CHAPTER 4. COMMAND LINE TOOLS

is the ordering of the maps .

−table <0=BINARY 1=ASCII>
If you are building a non−index vector FITS file ,
then this specifies the type of table to use .

−units <units>
The units of the signal columns .

−coord <coordsys (eg . C , G , O) >
If you are building a map FITS file , then this
is the coordinate system to use .

<input text file (properly formatted) >
The final argument is the name of the input
text file .

The formatting of the text file is as follows: the first line contains a comment
character (the first word of the line is ignored) followed by three numbers. The first
number is the number of optional keys. The second number is the total number
of columns. The third number is the length of the columns. After the first line
are a number of lines specifying optional key values. Each key line consists of a
comment character, a word specifying the key type (SKEY, FKEY, or IKEY), the
key name, the key value, and the rest of the line is treated as the key comment. For
example, to generate a vector fits file with one column, I might use a text file like
this:

3 1 2049
SKEY CHANNEL B145W1 Simulated Beam for B145W1
FKEY AZFWHM 9 . 7 5 Beam azimuth FWHM in arcmin
FKEY ELFWHM 9 . 9 3 Beam elevation FWHM in arcmin
1 .000000
0 .999997
0 .999991
0 .999982
0 .999970
0 .999955
.
.
.

To build a cut-sphere map file, I might use a text file like this:

6 4 86098
SKEY CHANNEL B145W1 Channel of Observation
SKEY RELEASE 1 . 0 Data Release

47

CHAPTER 4. COMMAND LINE TOOLS

SKEY TARGET CMB Observed Target
SKEY OBJECT PARTIAL Sky coverage represented by data
IKEY SHOT 1 Shot of this target
IKEY OBS_NPIX 86098 Number of pixels observed
2348362 1 .000000e+00 78 9 .715862e−04
2348363 1 .000000e+00 72 7 .337384e−04
2348364 1 .000000e+00 72 9 .687704e−04
2348365 1 .000000e+00 72 9 .399473e−04
2348366 1 .000000e+00 72 9 .749437e−04
2348367 1 .000000e+00 72 9 .362744e−04
2348368 1 .000000e+00 60 1 .017587e−03
.
.
.

4.2 Simple Math Tools

These four programs take the sum, difference, product, or quotient of two maps.
The first file is backed up and overwritten with the result of the operation.

hpic_sum OR hpic_diff OR hpic_prod OR hpic_quot

−first <first FITS file>
This is the first file to use . A backup of
this file will be created and the original
will be overwritten by the result .

−fmap <map number to use in first file>
The (zero−based) signal map to use .

−second <second FITS file>
The second FITS file .

−smap <map number to use in second file>
The (zero−based) signal map to use from
the second file .

−union (keep union of maps)
If specified , keep the union of the non−NULL
map values . Default is to keep the intersection .

48

REFERENCES

References

[1] Krzysztof M. Górski, Eric Hivon, and Benjamin D. Wandelt. Analysis issues
for large cmb data sets. In Proceedings of the MPA/ESO Cosmology Confer-
ence, 1999. 3

[2] Krzysztof M. Górski, Eric Hivon, Benjamin D. Wandelt, Frode K. Hansen, and
Anthony J. Banday. The HEALPix Primer, 1.10 edition, March 2000. 3

[3] B.D. Wandelt, E. Hivon, and K. M. Górski. Topological analysis of high-
resolution cmb maps. In Fundamental Parameters in Cosmology, Proceedings
of the 23rd Rencontres de Moriond, 1998. Astro-ph/9803317. 3

[4] Frode K. Hansen, Benjamin D. Wandelt, Krzysztof M. Górski, Anthony J.
Banday, and Eric Hivon. HEALPix Fortran Facility Users Guide, 1.10 edition,
March 2000. 3

[5] Frode K. Hansen, Benjamin D. Wandelt, Krzysztof M. Górski, Eric Hivon, and
Anthony J. Banday. HEALPix Fortran90 Subroutines Overview, 1.10 edition,
March 2000. 3

49

	Introduction
	Overview
	Current Status
	Future Roadmap
	Converting Programs that Currently use CHEALPix

	C Reference
	Constants
	Error Handling
	Low Level Functions
	General Tools
	Pixel Tools
	Projection Tools
	Location Tools

	Maps
	Allocation
	Parameter Access
	Data Access
	Basic Operations

	Vectors
	Allocation
	Data Access
	Basic Operations

	Map Conversion
	Types
	Ordering
	Resolution

	Map Math
	Scaling and Offsets
	Arithmetic

	Projection
	Allocation
	Parameter Access
	Data Access
	Projecting Maps and Vectors

	Transforms and Filtering
	FITS Reading and Writing
	Format Specifications
	Optional Keys
	Map FITS I/O
	Vector FITS I/O

	CMB Specific Functions
	Projection
	Specialized FITS I/O

	Compatibility Wrappers
	Pixel Tools
	Legacy FITS I/O

	Perl Reference
	Constants and Low Level Functions
	Maps
	Vectors
	Math and Miscellany
	Projection
	Transforms and Filtering
	FITS I/O
	CMB Specific

	Command Line Tools
	General Tools
	Simple Math Tools

	References

