An Introduction to Z and Formal
Specifications

J. M. Spivey
Oxford University Computing Laboratory

Programming Research Group
11, Keble Road, Oxford, OX1 3QD

June 1988

Abstract

This article is an introduction to the description of information systems using
formal, mathematical specifications written in the Z notation, and to the
refinement of these specifications into rigorously-checked designs.

The first part introduces the idea of a formal specification using a sim-
ple example: that of a “birthday book” in which people’s birthdays can be
recorded, and which is able to issue reminders on the appropriate day. The
behaviour of this system for correct input is specified first, then the schema
calculus is used to strengthen the specification into one requiring error reports
for incorrect input.

The second part of the article introduces the idea of data refinement as the
primary means of constructing designs which achieve a formal specification.
Refinement is presented through the medium of two examples; the first is a
direct implementation of the birthday book from part one, and the second is
a simple checkpoint facility, which allows the current state of a database to
be saved and later restored. A Pascal-like programming language is used to
show the code for some of the operations in the examples.

1 What is a formal specification?

Formal specifications use mathematical notation to describe in a precise way
the properties which an information system must have, without unduly con-
straining the way in which these properties are achieved. They describe what
the system must do without saying how it is to be done. This abstraction
makes formal specifications useful in the process of developing a computer
system, because they allow questions about what the system does to be an-
swered confidently, without the need to disentangle the information from a
mass of detailed program code, or to speculate about the meaning of phrases
in an imprecisely-worded prose description.

A formal specification can serve as a single, reliable reference point for
those who investigate the customer’s needs, those who implement programs
to satisfy those needs, those who test the results, and those who write in-
struction manuals for the system. Because it is independent of the program
code, a formal specification of a system can be completed early in its de-
velopment. Although it might need to be changed as the design team gains
in understanding and the perceived needs of the customer evolve, it can be
a valuable means of promoting a common understanding among all those
concerned with the system.

Existing data modelling techniques — for example, relational databases [1]
— provide some of the abstraction we need, in that they free us from describing
the exact layout of data in the memory of a computer. But they are limited
to fairly simple models, and they are oriented towards direct implementation:
considerations of efficiency rather than clarity often dictate the structure of
the model. Also, whilst data modelling techniques can help to clarify the
description of a system, they provide little support for reasoning about its
behaviour.

One way in which mathematical notation can help to achieve these goals
is through the use of mathematical data types to model the data in a system.
These data types are not oriented towards computer representation, but they
obey a rich collection of mathematical laws which make it possible to reason
effectively about the way a specified system will behave. We use the notation
of predicate logic to describe abstractly the effect of each operation of our
system, again in a way that enables us to reason about its behaviour. These
two ideas also form important ingredients of other formal methods such as
VDM [5, 6].

The other main ingredient in Z is a way of decomposing a specification

into small pieces called schemas. By splitting the specification into schemas,
we can present it piece by piece. Each piece can be linked with a commentary
which explains informally the significance of the formal mathematics. In Z,
schemas are used to describe both static and dynamic aspects of a system.
The static aspects include

e the states it can occupy.

e the invariant relationships that are maintained as the system moves
from state to state.

The dynamic aspects include
e the operations that are possible.
e the relationship between their inputs and outputs.
e the changes of state that happen.

Later, we shall see how the schema language allows different facets of a
system to be described separately, then related and combined. For example,
the operation of a system when it receives valid input may be described first,
then the description may be extended to show how errors in the input are
handled. Or the evolution of a single process in a complete system may be
described in isolation, then related to the evolution of the system as a whole.

We shall also see how schemas can be used to describe a transformation
from one view of a system to another, and so explain why an abstract spec-
ification is correctly implemented by another containing more details of a
concrete design. By constructing a sequence of specifications, each contain-
ing more details than the last, we can eventually arrive at a program with
confidence that it satisfies the specification.

2 The birthday book

The best way to see how these ideas work out is to look at a small example.
For a first example, it is important to choose something simple, and I have
chosen a system so simple that it is usually implemented with a notebook
and pencil rather than a computer. It is a system which records people’s
birthdays, and is able to issue a reminder when the day comes round. The

first thing to describe is the state space of the system, and we do this with a
schema:

__ BirthdayBook
known : P NAME
birthday : NAME -+ DATE

known = dom birthday

Like most schemas, this consists of a part above the central dividing line, in
which some variables are declared, and a part below the line which gives a
relationship between the values of the variables. In this case we are describ-
ing the state space of a system, and the two variables represent important
observations which we can make of the state:

e known is the set of names with birthdays recorded.

e birthday is a function which, when applied to certain names, gives the
birthdays associated with them.

The part of the schema below the line gives a relationship which is true
in every state of the system and is maintained by every operation on it:
in this case, it says that the set known is the same as the domain of the
function birthday — the set of names to which it can be validly applied. This
relationship is an invariant of the system.

In this example, the invariant allows the the value of the variable known
to be derived from the value of birthday: known is a derived component of
the state, and it would be possible to specify the system without mentioning
known at all. However, giving names to important concepts helps to make
specifications more readable; because we are describing an abstract view
of the state space of the birthday book, we can do this without making a
commitment to represent known explicitly in an implementation.

One possible state of the system is the following:

known = { John, Mike, Susan }

birthday = { John ~— 25-Mar,
Mike +— 20-Dec,
Susan — 20-Dec }.

Here there are three names known to the system, and the birthday function
associates a date with each of them.

Notice that in this description of the state space of the system, we have
not been forced to place a limit on the number of birthdays recorded in the
birthday book, nor to say that the entries will be stored in a particular order.
We have also avoided making a premature decision about the format of names
and dates. On the other hand, we have concisely captured the information
that each person can have only one birthday, because the variable birthday
is a function, and that two people can share the same birthday as in our
example.

So much for the state space; we can now start on some operations on the
system. The first of these is to add a new birthday, and we describe it with
a schema:

__ AddBirthday
A BirthdayBook
name? : NAME
date? : DATE

name? ¢ known

birthday' = birthday U {name? — date?}

The declaration A BirthdayBook alerts us to the fact that the schema is de-
scribing a state change: it introduces four variables known, birthday, known’
and birthday’. The first two are observations of the state before the change,
and the last two are observations of the state after the change. Each pair
of variables is implicitly constrained to satisfy the invariant, so it must hold
both before and after the operation. Next come the declarations of the two
inputs to the operation. By convention, the names of inputs end in a question
mark.

The part of the schema below the line first of all gives a pre-condition for
the success of the operation: the name to be added must not already be one
of those known to the system. This is reasonable, since each person can only
have one birthday. What happens if the pre-condition is not satisfied is not
specified here: we shall see later how to extend the specification to say that
an error message is to be produced. If the pre-condition is satisfied, however,
the second line says that the birthday function is extended to map the new
name to the given date.

We expect that the set of names known to the system will be augmented
with the new name:

known' = known U {name?}.

In fact we can prove this from the specification of AddBirthday, using the
invariants on the state before and after the operation:

known'
= dom birthday’ [invariant after]
= dom(birthday U {name? — date?}) [spec. of AddBirthday]
= dom birthday U dom {name? — date?} [fact about dom]
= dom birthday U {name?} [fact about dom]
= known U {name?}. [invariant before]

Stating and proving properties like this one is a good way of making sure the
specification is accurate; reasoning from the specification allows us to explore
the behaviour of the system without going to the trouble and expense of
implementing it. The two facts about dom used in this proof are examples
of the laws obeyed by mathematical data types:

dom(f U g) = (dom f) U (dom g)
dom{a — b} = {a}.

The standard mathematical data types of Z obey many laws like these.
Another operation might be to find the birthday of a person known to
the system. Again we describe the operation with a schema:

__ FindBirthday
=ZBirthdayBook
name? : NAME
date! : DATE

name? € known

date! = birthday(name?)

Two new notations are illustrated by this schema. One is the declaration
=BirthdayBook, which indicates an operation in which the state does not

6

change: the values known' and birthday of the observations after the op-
eration are equal to their values known and birthday beforehand. Including
= BirthdayBook above the line is the same as including A BirthdayBook above
the line and the two equations:

known' = known

birthday' = birthday

below it. The other notation is the use of a name ending in an exclamation
mark for an output: the FindBirthday operation takes a name as input and
yields the corresponding birthday as output. The pre-condition for success
of the operation is that name? is one of the names known to the system; if
this is so, the output date! is the value of the birthday function at argument
name?.

The most useful operation on the system is the one to find which people
have birthdays on a given date. The operation has one input today?, and
one output, cards!, which is a set of names: there may be zero, one, or more
people with birthdays on a particular day, to whom birthday cards should
be sent.

— Remind
= BirthdayBook
today? : DATE
cards! : P NAME

cards! = { n : known | birthday(n) = today? }

Again the = convention is used to indicate that the state does not change.
This time there is no pre-condition. The output cards! is specified to be
equal to the set of all values n drawn from the set known such that the value
of the birthday function at n is today?. In general, y is a member of the set
{z:8|...z...} exactly if y is a member of S and the condition ...y...,
obtained by replacing = with y, is satisfied:

ye{z:S|...x...}yeSA(..y...).
So, in our case,

m € {n: known | birthday(n) = today? }
& m € known A birthday(m) = today?.

7

A name m is in the output set cards! exactly if it is known to the system
and the birthday recorded for it is today?.

To finish the specification, we must say what state the system is in when
it is first started. This is the initial state of the system, and it also is specified
by a schema:

—_InitBirthdayBook
BirthdayBook

knoun = &

This schema describes a birthday book in which the set known is empty: in
consequence, the function birthday is empty too.

What have we achieved in this specification? We have described in the
same mathematical framework both the state space of our birthday-book
system and the operations which can be performed on it. The data objects
which appear in the system were described in terms of mathematical data
types such as sets and functions. The description of the state space included
an invariant relationship between the parts of the state — information which
would not be part of a program implementing the system, but which is vital
to understanding it.

The effects of the operations are described in terms of the relationship
which must hold between the input and the output, rather than by giving a
recipe to be followed. This is particularly striking in the case of the Remind
operation, where we simply documented the conditions under which a name
should appear in the output. An implementation would probably have to
examine the known names one at a time, printing the ones with today’s date
as it found them, but this complexity has been avoided in the specification.
The implementor is free to use this technique, or any other one, as he or she
chooses.

Mathematical specifications have the three virtues of being concise, pre-
cise and unambiguous. They are concise because mathematical notation is
capable of expressing complex facts about information systems in a short
space. Practical experience shows that a mathematical specification of a sys-
tem is often much shorter than an equivalent informal specification. Hayes [3]
reports that a formal specification for a module in the CICS system is compa-
rable in length with the less informative English-language manual entry for
the same module. Mathematical specifications are precise because they allow

requirements to be documented accurately. The desired function of a system
is described in a way that does not unduly constrain either the data struc-
tures used to represent the information in the system, or the algorithms used
to compute with it. Finally, mathematical specifications are unambiguous:
differences of interpretation can be avoided when specifications are expressed
in a standardized language with a well-understood meaning.

Exercise. We have seen how schemas can be used to describe the state
space and operations of a system. Now try to write a Z specification for the
following system: a teacher wants to keep a register of students in her class,
and to record which of them have completed their homework. Specify:

1. The state space for a register. [Hint: use two sets of students

__ Register
enrolled : P STUDENT
completed : P STUDENT

Think carefully about the invariant].
2. An operation to enroll a new student.

3. An operation to record that a student (already enrolled in the class)
has finished the homework.

4. An operation to enquire whether a student (who must be enrolled) has
finished the homework. (Answer in the set { Yes, No}).

3 Strengthening the specification

A correct implementation of our specification will faithfully record birthdays
and display them, so long as there are no mistakes in the input. But the
specification has a serious flaw: as soon as the user tries to add a birthday
for someone already known to the system, or tries to find the birthday of
someone not known, it says nothing about what happens next. The action of
the system may be perfectly reasonable: it may simply ignore the incorrect
input. On the other hand, the system may break down: it may start to

9

display rubbish, or perhaps worst of all, it may appear to operate normally
for several months, until one day it simply forgets the birthday of a rich and
elderly relation.

Does this mean that we should scrap the specification and begin a new
one? That would be a shame, because the specification we have describes the
behaviour for correct input clearly and concisely, and modifying it to describe
the handling of incorrect input could only make it obscure. Luckily, there
is a better solution: we can describe, separately from the first specification,
the errors which might be detected and the desired responses to them, then
use the operations of the Z schema calculus to combine the two descriptions
into a stronger specification.

We shall add an extra output result! to each operation on the system.
When an operation is successful, this output will take the value ok, but
it may take other values when an error is detected. We first describe an
operation Success which just produces the result ok:

__Success
result! : REPORT

result! = ok

The conjunction operator A of the schema calculus allows us to combine this
description with our previous description of AddBirthday:

AddBirthday N Success.

This describes an operation which, for correct input, both acts as described
by AddBirthday and produces the result ok.

For each error that might be detected in the input, we specify an operation
which produces an appropriate report when the error has occurred. Here is
an operation which produces the report already_known when its input name?
is already a member of known:

__ AlreadyKnown
= BirthdayBook
name? : NAME
result! : REPORT

name? € known

result! = already_known

10

If the error occurs, this schema specifies that the state of the system should
not change.

We can combine this description with the previous one to give a specifi-
cation for a robust version of AddBirthday:

RAddBirthday = (AddBirthday N Success) V AlreadyKnown.

~

This definition written with the sign = introduces a new schema called
RAddBirthday, obtained by combining the three schemas shown on the right-
hand side. The operation RAddBirthday must terminate whatever its input.
If the input name? is already known, the state of the system does not change,
and the result already_known is returned; otherwise, the new birthday is
added to the database as described by AddBirthday, and the result ok is
returned.

We have specified the various requirements for this operation separately,
and then combined them into a single specification of the whole behaviour
of the operation. This does not mean that each requirement must be imple-
mented separately, and the implementations combined somehow. In fact, an
implementation might search for a place to store the new birthday, and at
the same time check that the name is not already known; the code for nor-
mal operation and error handling might be thoroughly mingled. This is an
example of the abstraction which is possible when we use a specification lan-
guage free from the constraints necessary in a programming language. The
operators A and V cannot (in general) be implemented efficiently as ways of
combining programs, but this should not stop us from using them to combine
specifications if that is a convenient thing to do.

The operation RAddBirthday could be specified directly by writing a
single schema which combines the predicate parts of the three constituents
AddBirthday, Success and AlreadyKnown:

11

_ RAddBirthday
A BirthdayBook
name? : NAME
date? : DATE
result! : REPORT

(name? ¢ known A
birthday' = birthday U {name? — date?} A
result! = ok) v
(name? € known A
birthday' = birthday N
result! = already_known)

As you can see, the effect of the schema V operator is to make a schema
in which the predicate part is the result of joining the predicate parts of
its two arguments with the logical connective V. Similarly, the effect of the
schema A operator is to take the conjunction of the two predicate parts.
Any common variables of the two schemas are merged: in this example,
the input name?, the output result!, and the four observations of the state
before and after the operation are shared by the two arguments of V. In
order to write RAddBirthday as a single schema, it has been necessary to
write out explicitly something which was implicitly part of the declaration
= BirthdayBook, namely that the state doesn’t change.

A robust version of the FindBirthday operation must be able to report if
the input name is not known:

_ NotKnown
=BirthdayBook
name? : NAME
result! : REPORT

name? & known

result! = not_known

The robust operation either behaves as described by FindBirthday and re-
ports success, or reports that the name was not known:

RFindBirthday = (FindBirthday N Success) V NotKnown.

12

The Remind operation can be called at any time: it never results in an error,
so the robust version need only add the reporting of success:

RRemind = Remind N Success.

The separation of normal operation from error-handling which we have
seen here is the simplest but also the most common kind of modularization
possible with the schema calculus. More complex modularizations include
promotion or framing [4], where operations on a single entity — for example,
a file — are made into operations on a named entity in a larger system — for
example, a named file in a directory. The operations of reading and writing
a file might be described by schemas. Separately, another schema might
describe the way a file can be accessed in a directory under its name. Putting
these two parts together would then result in a specification of operations for
reading and writing named files.

Other modularizations are possible: for example, the specification of a
system with access restrictions might separate the description of who may
call an operation from the description of what the operation actually does.
There are also facilities for generic definitions in Z which allow, for example,
the notion of resource management to be specified in general, then applied
to various aspects of a complex system [2].

Exercise. Specify a robust version of the class register system.

4 From specifications to designs

We have seen how the Z notation can be used to specify software modules,
and how the schema calculus allows us to put together the specification of
a module from pieces which describe various facets of its function. Now we
turn our attention to the techniques used in Z to document the design of a
program which implements the specification.

The central idea is to describe the concrete data structures which the pro-
gram will use to represent the abstract data in the specification, and to derive
descriptions of the operations in terms of the concrete data structures. We
call this process data refinement. Often, a data refinement will allow some of
the control structure of the program to be made explicit, and this is achieved
by one or more steps of operation refinement or algorithm development.

13

For simple systems, it is possible to go from the abstract specification to
the final program in one step, a method sometimes called direct refinement.
In more complex systems, however, there are too many design decisions for
them all to be recorded clearly in a single refinement step, and the technique
of deferred refinement is appropriate. Instead of a finished program, the first
refinement step results in a new specification, and this is then subjected to
further steps of refinement until a program is at last reached. The result is
a sequence of design documents, each describing a small collection of related
design decisions. As the details of the data structures are filled in step by
step, so more of the control structure can be filled in, leaving certain sub-
tasks to be implemented in subsequent refinement steps. These sub-tasks
can be made into subroutines in the final program, so the step-wise structure
of the development leads to a modular structure in the program.

Program developments are often documented by giving an idealized ac-
count of the path from specification to program. In these accounts, the
ideas all appear miraculously at the right time, one after another. There
are no mistakes, no false starts, no decisions taken which are later revised.
Of course, real program developments don’t happen like that, and the earlier
stages of a development are often revised many times as later stages cast new
light on the system. In any case, specifications are seldom written without
at least a rough idea of how they might be implemented, and it is very rare
to find that something similar hasn’t been implemented before.

This doesn’t mean that the idealized accounts are worthless, however.
They are often the best way of presenting the decisions which have been made
and the relationships between them, and such an account can be a valuable
piece of documentation, even if it is economical with the true history of the
development.

The rest of this article concentrates on data refinement in Z, although
the results of the operation refinement which might follow it are shown. Two
examples of data refinement are presented. The first shows direct refinement:
the birthday book we specified in section 2 is implemented using a pair of
arrays. In the second example, deferred refinement is used to show the im-
plementation of a simple checkpoint-restart mechanism. The implementation
uses two sub-modules for which specifications in Z are derived as part of the
refinement step. This demonstrates the way in which mathematics can help
us to explore design decisions at a high level of abstraction.

14

5 Implementing the birthday book

The specification of the birthday book worked with abstract data structures
chosen for their expressive clarity rather than their ability to be directly
represented in a computer. In the implementation, the data structures must
be chosen with an opposite set of criteria, but they can still be modelled with
mathematical data types and documented with schemas.

In our implementation, we choose to represent the birthday book with
two arrays, which might be declared by

names : array [1..] of NAME;
dates : array [1..] of DATE;

I have made these arrays “infinite” for the sake of simplicity. In a real
system development, we would use the schema calculus to specify a limit on
the number of entries, with appropriate error reports if the limit is exceeded.
Finite arrays could then be used in a more realistic implementation; but
for now, this would just be a distraction, so let us pretend that potentially
infinite arrays are part of our programming language. We shall, in any case,
only use a finite part of them at any time.

These arrays can be modelled mathematically by functions from the set
N; of strictly positive integers to NAMFE or DATE:

names : Ny — NAME
dates : N; — DATE.

The element names|i| of the array is simply the value names(i) of the func-
tion, and the assignment names[i| := v is exactly described by the specifica-
tion

names’ = names @ {i — v}.

The right-hand side of this equation is a function which takes the same value
as names everywhere except at the argument i, where it takes the value v.

We describe the state space of the program as a schema. There is another
variable hwm (for “high water mark”); it shows how much of the arrays is in
use.

15

__ BirthdayBook1
names : Ny — NAME
dates : Ny — DATE
hwm : N

Vi,7:1..hum e
i # j = names(i) # names(j)

The predicate part of this schema says that there are no repetitions among
the elements names(1), ..., names(hwm).

The idea of this representation is that each name is linked with the date
in the corresponding element of the array dates. We can document this
by defining another schema Abs that defines the abstraction relation be-
tween the abstract state space BirthdayBook and the concrete state space
BirthdayBook1:

__Abs
BirthdayBook
BirthdayBook1

known = {i:1.. hwm e names(i) }

Vi:l..hwm e
birthday(names(i)) = dates(1)

This schema relates two points of view on the state of the system. The obser-
vations involved are both those of the abstract state — known and birthday —
and those of the concrete state — names, dates and hwm. The first predicate
says that the set known consists of just those names which occur somewhere
among names(1), ..., names(hwm). The set {y : S o ...y...} contains
those values taken by the expression ...y ... as y takes values in the set S,
so known contains a name n exactly if n = names(i) for some value of i
such that 1 < 4 < hwm. We can write this in symbols with an existential
quantifier:

n € known < (3i:1.. hwm e n = names(i)).

The second predicate says that the birthday for names(7) is the corresponding
element dates(7) of the array dates.

16

Several concrete states may represent the same abstract state: in the ex-
ample, the order of the names and dates in the arrays does not matter, so
long as names and dates correspond properly. The order is not used in deter-
mining which abstract state is represented by a concrete state, so two states
which have the same names and dates in different orders will represent the
same abstract state. This is quite usual in data refinement, because efficient
representations of data often cannot avoid including superfluous information.

On the other hand, each concrete state represents only one abstract state.
This too is the usual situation, because we don’t expect to find superfluous
information in the abstract state. It does sometimes happen that one con-
crete state represents several abstract states, but this is often a sign of a
badly-written specification that has a bias towards a particular implementa-
tion.

Having explained what the concrete state space is, and how concrete
states are related to abstract states, we can begin to implement the operations
of the specification. To add a new name, we increase hwm by one, and fill in
the name and date in the arrays:

__AddBirthdayl
A BirthdayBook1
name? : NAME
date? : DATE

Vi:1..hwm e name? # names(i)

hwm' = hwm + 1
names’ = names @ {hwm' — name?}
dates’ = dates ® {hwm’ — date?}

This schema describes an operation which has the same inputs and outputs
as AddBirthday, but operates on the concrete instead of the abstract state.
It is a correct implementation of AddBirthday, because of the following two
facts:

1. Whenever AddBirthday is legal in some abstract state, the implemen-
tation AddBirthdayl is legal in any corresponding concrete state.

2. The final state which results from AddBirthdayl represents an abstract
state which AddBirthday could produce.

17

Let us look at the reasons why these two facts are true. The operation
AddBirthday is legal exactly if its pre-condition name? ¢ known is satisfied.
If this is so, the predicate

known = {i:1.. hwm e names(i) }
from Abs tells us that name? is not one of the elements names(i):
Vi:1..hwm e name? # names(i).

This is the pre-condition of AddBirthdayl.

To prove the second fact, we need to think about the concrete states before
and after an execution of AddBirthdayl, and the abstract states they repre-
sent according to Abs. The two concrete states are related by AddBirthdayl1,
and we must show that the two abstract states are related as prescribed by
AddBirthday:

birthday' = birthday U {name? — date?}.

The domains of these two functions are the same, because

dom birthday’
= known’ [invariant after]
={i:1.. hwm’ e names'(i)} [from Abs’|

={i:1.. hwm e names'(i) } U {names'(hwm')}
[since hwm' = hwm + 1]
={i:1.. hwm e names(i) } U{name?}
[since names’ = names @ {hwm' — name?}|
= known U {name?} [from Abs]

= dom birthday U {name?}. [invariant before]

There is no change in the part of the arrays which was in use before the
operation, so for all ¢ in the range 1.. hwm,

names'(i) = names(i) A dates’(i) = dates(1).
For any 7 in this range,

birthday'(names’ (1))

18

= dates' (1) [from Abs']
= dates(1) [dates unchanged|
= birthday(names(i)). [from Abs]

For the new name, stored at index hwm’ = hwm + 1,

birthday' (names'(hwm’))
= dates'(hwm’) [from Abs']
= date?. [spec. of AddBirthdayl]

So the two functions birthday’ and birthday U {name? — date?} are equal,
and the abstract states before and after the operation are guaranteed to be
related as described by AddBirthday.

The description of the concrete operation uses only notation which has
a direct counterpart in our programming language, so we can translate it
directly into a subroutine to perform the operation:

procedure AddBirthday(name : NAME; date : DATE);

begin
hwm = hwm + 1;
names[hwm] := name;
dates|hwm] := date
end;

The second operation, FindBirthday, is implemented by the following
operation, again described in terms of the concrete state:

__ FindBirthdayl
= BirthdayBook1
name? : NAME
date! : DATE

Ji:1..hume
name? = names(i) A date! = dates(i)

The predicate says that there is an index ¢ at which the names array contains
the input name?, and the output date! is the corresponding element of the
array dates. For this to be possible, name? must in fact appear somewhere
in the array names: this is the pre-condition of the operation.

19

Since neither the abstract nor the concrete operation changes the state,
there is no need to check that the final concrete state is acceptable, but we
need to check that the pre-condition of FindBirthdayl is sufficiently liberal,
and that the output date! is correct. The pre-conditions of the abstract and
concrete operations are in fact the same: that the input name? is known.
The output is correct because for some i, name? = names(i) and date! =
dates(i), so

date!
= dates(i) [spec. of FindBirthdayl]
= birthday(names(i)) [from Abs]
= birthday(name?). [spec. of FindBirthdayl]

The existential quantifier in the description of FindBirthdayl leads to a loop
in the program code, searching for a suitable value of i:

procedure FindBirthday(name : NAME; var date : DATE);
var i : INTEGER,;
begin
1:=1;
while names[i| # name do i := i + 1;
date := dates|i]
end;

The operation Remind poses a new problem, because its output cards
is a set of names, and cannot be directly represented in the programming
language. We can deal with it by introducing a new abstraction relation,
showing how it can be represented by an array and an integer:

__AbsCards
cards : P NAME
cardlist : Ny — NAME
ncards : N

cards = {1 :1..ncards e cardlist(1) }

The concrete operation can now be described: it produces as outputs cardlist
and ncards:

20

_ Remindl
=BirthdayBook1
today? : DATE
cardlist! : N, — NAME
ncards! : N

{i:1..ncards! e cardlist!(7) }
) pu—

={j:1.. hwm | dates(j) = today? e names(j) }

The set on the right-hand side of the equation contains all the names in the
names array for which the corresponding entry in the dates array is today?.
The program code for Remind uses a loop to examine the entries one by one:

procedure Remind(today : DATE;
var cardlist : array [1..]| of NAME;
var ncards : INTEGER);
var j : INTEGER;
begin
ncards := 0; j := 0;
while j < hwm do begin
Ji=7+1L
if dates[j] = today then begin
ncards := ncards + 1;
cardlist[ncards] := names|j]
end
end
end;

The initial state of the program has hwm = 0:

__ InitBirthdayBook1
BirthdayBook1

hwm =0

Nothing is said about the initial values of the arrays names and dates, be-
cause they do not matter. If the initial concrete state satisfies this descrip-

tion, and it is related to the initial abstract state by the abstraction schema
Abs, then

known

21

={7:1.. hwm e names(i) } [from Abs]
={i:1..0e names(i)} [from InitBirthdayBook1]
=g. [since 1..0 =]

so the initial abstract state is as described by InitBirthdayBook. This de-
scription of the initial concrete state can be used to write a subroutine to
initialize our program module:

procedure InitBirthdayBook;
begin

hwm := 0
end;

In this direct refinement, we have taken the birthday book specification
and in a single step produced a program module which implements it. The
relationship between the state of the book as described in the specification
and the values of the program variables which represent that state was doc-
umented with an abstraction schema, and this allowed descriptions of the
operations in terms of the program variables to be be derived. These opera-
tions were simple enough to implement immediately, but in a more complex
example, rules of operation refinement could be used to check the code against
the concrete operation descriptions.

Exercise. Implement the class register you specified earlier. Use two arrays

names : array [1..] of NAME;
finished : array [1..] of (Yes, No);

Document:

1. The concrete state space.
2. The abstraction relation.

3. The concrete operations.

6 A simple checkpointing scheme

This example shows how refinement techniques can be used at a high level in
the design of systems, as well as in detailed programming. What we shall call

22

a database is simply a function from addresses (modelled by the set ADDR)
to pages of data (PAGE):

DATABASE == ADDR — PAGE.

This definition written with the sign == introduces DATABASE as an ab-
breviation for the set of functions from ADDR to PAGE. We shall be looking
at a system which — from the user’s point of view — contains two versions of
a database

CheckSys
Tworkmg, backup : DATABASE

This schema has no predicate part: it specifies that the two observations
working and backup may be any databases at all, and need not be related.

Most operations affect only the working database. For example, it is
possible to access the page at a specified address:

__Access
=CheckSys
a? : ADDR
p!: PAGE

p! = working(a?)

This operation takes an address a? as input, and produces as its output p!
the page stored in the working database at that address. Neither version of
the database changes in the operation.

It is also possible to update the working database with a new page:

__Update
A CheckSys
a?: ADDR
p?: PAGE

working’ = working & {a? — p?}
backup’ = backup

In this operation, both an address a? and a page p? are supplied as input,
and the working database is updated so that the page p? is now stored at
address a?. The old contents of the address are lost.

23

There are two operations involving the back-up database. We can take a
copy of the working database: this is the CheckPoint operation:

__ CheckPoint
A CheckSys

working’ = working
backup’ = working

We can also restore the working database to the state it had at the last
checkpoint:

__ Restart
A CheckSys

working’ = backup
backup’ = backup

This completes the specification of our system, and we can begin to think of
how we might implement it. A first idea might be really to keep two copies
of the database, so implementing the specification directly. But experience
tells us that copying the entire database is an expensive operation, and that
if checkpoints are taken frequently, then the computer will spend much more
time copying than it does accessing and updating the working database.

The mathematics cannot make observations like this one automatically for
us, but by allowing the specification to be expressed precisely and abstractly,
mathematical techniques can help the designer to carry out this kind of
analysis, perhaps by calling to mind other, similar systems.

A better idea for an implementation might be to keep only one com-
plete copy of the database, together with a record of the changes made since
creation of this master copy. The master copy consists of a single database:

Master
Tmaster : DATABASE

The record of changes made since the last checkpoint is a partial function
from addresses to pages: it is partial because we expect that not every page
will have been updated since the last checkpoint.

24

Changes
Tchanges : ADDR —+ PAGE

The concrete state space is described by putting these two parts together:

CheckSys1
Master
Changes

How does this concrete state space mirror our original abstract view? The
master database is what we described as the back-up, and the working
database is master @ changes, the result of updating the master copy with
the recorded changes. We can record this relationship with an abstraction
schema:

__AbsDB
CheckSys
CheckSys1

backup = master
working = master & changes

The notation master @& changes denotes a function which agrees with master
everywhere except in the domain of changes, where it agrees with changes.

How can we implement the four operations? Accessing a page at ad-
dress a? should return working(a?) = (master @& changes)(a?), so a valid
specification of Accessl is as follows:

_ Accessl
=CheckSys1
a? : ADDR
p!: PAGE

p! = (master ® changes)(a?)

But we can do a little better than this: if a? € dom changes, then

(master @ changes)(a?) = changes(a?),

25

and if a? ¢ dom changes, then
(master @ changes)(a?) = master(a?).

So we can use operation refinement to develop the operation further; it is
implemented by

procedure Access(a : ADDR; var p : PAGE);
var r : RESULT;
begin
GetChange(a, p, r);
if 7 # found then
ReadMaster(a, p)
end;

What are the operations GetChange and ReadMaster? We need give only
their specifications here, and can leave their implementation to a later stage
in the development. GetChange operates only on the changes part of the
state; it checks whether a given page is present, returning a report and, if
possible, the page itself:

__GetChange
=Changes

a? : ADDR
p!: PAGE
rl: RESULT

(a? € dom changes N
p! = changes(a?) A
rl = found) vV
(a? ¢ dom changes N
r! = not_present)

As you will see, this is a specification which could be structured nicely with
the schema V operator. The ReadMaster operation simply returns a page
from the master database:

26

__ ReadMaster
=Master
a?: ADDR
p!: PAGE

p! = master(a?)

For the Update operation, we want backup’ = backup, so
master’ = backup’ = backup = master.
Also working’ = working @& {a? — p?}, so we want
master’ @ changes’ = (master @ changes) ® {a? — p7}.
Luckily, the overriding operator @ is associative: it satisfies the law
(a®b)Dc=a®(bdc).

If we let changes’ = changes ® {a? — p?}, then

working'
= working @& {a? — p?} [spec. of Update]
= (master & changes) @ {a? — p?} [from AbsDB)|
= master @ (changes ® {a? — p?}) lassociativity of @]
= master’ @& changes’. [spec. of Updatel]

and the abstraction relation is maintained. So the specification for Updatel
is

— Updatel
A CheckSys1
a?: ADDR
p?: PAGE

master’ = master
changes’ = changes & {a? — p?}

This is implemented by an operation MakeChange which has the same effect
as described here, but operates only on the Changes part of the state.

27

For the CheckPoint operation, we want backup’ = working, so we imme-
diately see that

master’ = backup’ = working = master @& changes.
We also want working’ = working, so
master’ @ changes’ = master @& changes = master’.

This equation is solved by setting changes’ = &, since the empty function &
is a right identity for @, as expressed by the law

ad D =a.
So a specification for Checkpoint] is

__ CheckPoint1
A CheckSys1

master’ = master @ changes
changes' = &

This can be refined to the code
MultiWrite(changes); ResetChanges

where MultiWrite carries out the updating of the master database, and
ResetChanges sets changes to &.

Finally, for the operation Restartl, we have backup’ = backup, so we need
master’ = master, as for Update. Again, we want

master’ & changes’ = master’,
this time because working’ = backup, so we choose changes’ = & as before:

_ Restartl
A CheckSys1

master’ = master
changes' = &

28

This can be refined to a simple call to ResetChanges.

Now we have found implementations for all the operations of our origi-
nal specification. In these implementations, we have used two new sets of
operations, which we have specified with schemas but not yet implemented.
One set, ReadMaster and MultiWrite operates on the master part of the
concrete state, and the other, containing MakeChange, GetChange, and
ResetChanges, operates only on the changes part of the state. The result
is two new specifications for what are in effect modules of the system, and
in later stages they can be developed independently. Perhaps the master
function would be represented by an array of pages stored on a disk, and
changes by a hash table held in main store.

The mathematical method can describe data structures with equal ease,
whether they are held in primary or secondary storage. It describes opera-
tions in terms of their function, and is indifferent to whether the execution
takes microseconds or hours to finish. Of course, the designer must be very
closely concerned with the capabilities of the equipment to be used, and it is
vital to distinguish primary storage, which though fast has limited capacity,
from the slower but larger secondary storage. But we regard it as a strength
and not a weakness of the mathematical method that it does not reflect
this distinction. By modelling only the functional characteristics of a soft-
ware module, a mathematical specification technique encourages a healthy
separation of concerns: it helps the designer to focus his or her attention
on functional aspects, and to compare different designs, even if they differ
widely in performance.

* * *

There has been space in this article for only a sketch of the refinement
process which leads from a Z specification to a working program. There has
been no space to state explicitly the facts which must be proved to show that
a data refinement is valid, and we have only touched on the idea of operation
refinement, in which a specification written in the notation of predicate logic
is turned into a program written in a programming language. But I hope
that an important message has come across.

This message, which might be taken as the creed of a mathematical ap-
proach to programming, is that the development of a program and the proof
of its correctness are not tasks which should be undertaken separately. It is
notoriously difficult to give even an informal proof of correctness for a pro-

29

gram which has been developed without such a proof in mind, so rigorously-
checked programs and their proofs must be developed together. More impor-
tantly, however, the constraints on the development of the program imposed
by the need to prove its correctness can help to guide the process of develop-
ment. In the checkpoint example, we saw how the rules of refinement allowed
us to find the descriptions of the concrete operations almost by calculation.
This is the real power of mathematical methods: their ability to systematize
our understanding of programming and make us more articulate in explaining
specifications and programs to others. This is the reason why mathemati-
cal methods are becoming more important in every-day programming, even
where risks to life and property do not make a formal, mathematical proof
of correctness into a moral necessity.

Acknowledgements

The author is grateful to M. A. McMorran, S. Powell and J. B. Wordsworth
of IBM United Kingdom Laboratories, and to T. Clement of the University of
Manchester for helpful comments on the paper, and to Oriel College, Oxford
and Rank Xerox (UK) Ltd. for financial support.

References

[1] DATE, C. J.: ‘An Introduction to Database Systems’, third edition
(Addison-Wesley, 1981).

[2] FLINN, L. W., and SORENSEN, I. H.: ‘CAVIAR: A Case Study in
Specification’. In ‘Specification Case Studies’, ed. I. J. Hayes
(Prentice-Hall International, 1987).

[3] HAYES, I. J.: ‘Applying Formal Specification to Software
Development in Industry’. In ‘Specification Case Studies’, ed. I. J.
Hayes (Prentice-Hall International, 1987).

[4] MORGAN, C. C., and SUFRIN, B. A.: ‘Specification of the UNIX
Filing System’. In ‘Specification Case Studies’, ed. I. J. Hayes
(Prentice-Hall International, 1987).

30

[5] JONES, C. B.: ‘Software Development: A Rigorous Approach’
(Prentice-Hall International, 1980).

[6] JONES, C. B.: ‘Systematic Software Development using VDM’
(Prentice-Hall International, 1986).

[7] SPIVEY, J. M.: ‘Understanding Z: A Specification Language and its
Formal Semantics’ (Cambridge University Press, 1987).

31

