LibTomCrypt

Developer Manual

Tom St Denis
LibTom Projects

This document is part of the LibTomCrypt package and is hereby released into the public
domain.

Open Source. Open Academia. Open Minds.
Tom St Denis

Ottawa, Ontario
Canada

Contents

‘1 Introduction
1.1 What is the LibTomCrypt?o ooe
1.1.1 _ What the library IS for?
1.2 Why did Twrite 067 o o oo e
1.21 Modular . . o o oo
1.3 Licensa ..
1.4 Patent Disclosure e e e e e e e e
1.5 Thanks
2 The Application Programming Interface (API)
2.1 Introductionl o oo o
2.2 MacCros e
2.3 Functions with Variable Length Output‘
2.4 Functions that need a PRNG
2.5 Functions that use Arrays of OctetS o oo
3 Symmetric Block Ciphers

3.1 Core FUNCEIONS . . o o o oo o e e e
3.1.1 Key Scheduling o o oot
3.1.2 ECB Encryption and Decryption
303 Self Testing o o oo
3.1.4 Key Sizing
3.1.5 Cipher Termination
3.1.6 Simple Encryption Demonstration
3.2 Key Sizes and Number of ROUNAS . « o v v o oo e e
3.3 The Cipher Descriptors
3.3.1 Notes e
3.4 Symmetric Modes of OPerations v v v v
341 Backgroundo
3.4.2 Choiceof Mode e
3.4.3 Ciphertext Stealing
3.4.4 Initialization
3.4.5 Encryption and Decryptionj
3.4.6 IV Manipulation
3.4.7 Stream Termination e

iii

— = e

[\

3.4.8 Examples e
3.4.9 LRW Mode oo
3400 XTS Modd . . o oo
3.4.11 F8 Mode e
3.5 Encrypt and Authenticate Modes o oo oo
3.5.1 EAX Mode
3.5.2 OCB Mode e e
353 CCMModd oo
3.5.4 GCM Mode e

One-Way Cryptographic Hash Functions

4.1 Core FUNCHONS . .« o o oo e e

4.2 Hash Descriptors e
4.2.1 Hash Registration o v oo o

4.3 Cipher Hash Construction ittt

4.4 Noticé ..

Message Authentication Codes
5.1 HMAC Protocolo vv oo
5.2 OMAC SUppOrt
5.3 PMAC Support e e
5.4 Pelican MAC e
541 Bxample . . o oottt e
5.5 XCBC-MAC
5.6 F9-MAC
5.6.1 Usage Notice
5.6.2 F9 MAC Functionsot

Pseudo-Random Number Generators

6.1 Core FUNCEIONS .« o o o e e e e e e

6.1.1 Remarks e

6.1.2 Examplg

6.2 PRNG DeSCIIDtOIS . . « o e e e e e e e
6.21 PRNGS Provided o oo

6.3 The Secure RNG 0
6.3.1 The Secure PRNG Interface o oo

RSA Public Key Cryptographﬂ
7.1 IntroductionJ ...
7.2 PKCOS #1 Padding o o v oo
7.2.1 PKCS #1 vL.5 Encoding o v oo
7.2.2 PKCS #1 v1.5 Decoding o o e
7.3 PKCS #1 v2.1 ENCIYPHON « « « « o o o v oo e e e
7.3.1 OAEP Encoding o o oot
7.3.2 OAEP Decoding o o
7.4 PKCS #1 Digital SIgnatures o o oo
741 PSS Encodingo oo

7.4.2 PSS Decoding e 72

7.5 RSA Key OPerations o oo oo v oo e 72
751 Background 72
7.5.2 RSA Key Generation 73
7.5.3 RSA Exponentiation 74

7.6 RSA Key ENCIVDHON « « « « o o o o oo e e e e 74
7.6.1 Extended Encryptiono 74

7.7 RSA Key Decryptionj 75
7.7.1 Extended DecryptionJ 75

7.8 RSA Signature Generationo oooo o 76
7.81 Extended Signatures 76

7.9 RSA Signature Verificationo 7
7.9.1 Extended Verification oooooo it 77

7.10 RSA Encryption Example o 0 v v oo 78

711 RSA Key Format] o .o 79
7.11.1 RSA Key Export‘ 79
7.11.2 RSA Key Import o 80

‘8 Elliptic Curve Cryptographﬂ 81

8.1 BackgroundJ ... 81

8.2 Fixed Point Optimizations 81

8.3 Key FOMAt . . « o o o oo 82

‘8.4 ECC Curve Parameter§ 83

8.5 Core FUNCHIONS . .« o v o o o o o 83
8.5.1 ECC Key Generation v 83
8.5.2 Extended Key Generationo oo e 84
8.5.3 BECC Key Free oo 84
8.5.4 ECC Key Export o e 84
8.5.5 ECC Key Import‘ 84
8.5.6 Extended Key Importl o oo 84
8.5.7 ANSI X9.63 Export 85
8.5.8 ANSI X9.63 IIMPOTt .« « o o v v e e e e e 85
8.5.9 Extended ANSI X9.63 Import o v oo 85
8.5.10 ECC Shared Secret] . . .« v v oo 86

8.6 ECC Diffie-Hellman Encryption 86
8.6.1 ECC-DH Encryptiono 86
8.6.2 ECC-DH Decryptiono 86
8.6.3 ECC Encryption Formatl o 87

8.7 ECDSA Signatures 87
8.7.1 EC-DSA Signature Generation 87
8.7.2 EC-DSA Signature Verificationo o 87
8.7.3 Signature FOIMAt . . . « o o o oo 88

8.8 ECC KEVSIZOS . .« o o o o oo e 88

9 Digital Signature AlgorithmJ 89

0.1 Introduction o oo 89
9.2 Key Format o e 89
9.3 Key Generation 90
9.4 Key Verification o v v v 90
9.5 Signature§ .. 91
9.5.1 Signature Generation 91
9.5.2 Signature Verificationot 92

9.6 DSA Encrypt and Decrypt‘ 92
9.6.1 DSA EncryptionJ 92
9.6.2 DSA Decryption e 93

9.7 DSA Key Import and EXpOI‘t‘ 93
9.7.1 DSA Key Export 93
9.7.2 DSA Key Import‘ 93

10 Standards Support 95
10.1 ASN.L FOITNALS .« « o o oot e e e e e e e 95
10.1.1 SEQUENCE Typd . . . o o oot 96
10.1.2 SET and SET OF oo 98
10.1.3 ASN.LINTEGER . . . o oot e o 100
10.1.4 ASN.IBIT STRING o oo o 100
10.1.5_ ASN.1 OCTET STRING oot 101
10.1.6 ASN.1 OBJECT IDENTIFIER] o\t toi e 101
10.1.7 ASNITAS STRING! o oo 102
10.1.8 ASN.1 PRINTABLE STRING o oottt 102
10.1.9 ASN.1 UTF8 STRING o oo 103
10..I0ASN.1 UTCTIME . . . o oo 103
10.1.11ASN.1 CHOICE o oo 104
10.1.12ASN.1 Flexi Decoder oot 104
10.2 Password Based Cryptography 106
1020 PKCS #5 . o oo 106
10.2.2 Algorithm O . . o o oo oo 106
10.2.3 AlgOTithm TWO .« o v v v vt e e e e e e 107

11 Miscellaneous 109
11.1 Base64 Encoding and Decoding o o oo 109
11.2 Primality Testing e 110
12 Programming Guidelines 111
12.1 Secure Pseudo Random Number Generatorso .. 111

12.4.1 Symmetric Ciphers o v oo 112

12.4.2 Asymmetric Ciphers oo 112
12.5 Thread Safetyl o o o o 113

13 Configuring and Building the Library
‘13.1 Introductionl ...
13.2 Makefile variables
13.2.1 MAKE, CCand AR o oo
13.2.2 IGNORE_SPEED| e
13.2.3 LIBNAME and LIBNAME-S« o0,
‘13.2.4 Installation Directorie§
13.3 Exttra HDTaries o oo
13.4 Building a Static Librarﬂ
13.5 Building a Shared Libraryo
13.6 Header Conﬁguratiorﬂ
13.7 The Configure Script‘
13.7.1 X Memory TOUtINeS . . « « o o o oo
‘13.7.2 X clock routine§
13.73 LTCNOFILE
13.7.4 LTC.CLEANSSTACK|
13.7.5 LTCTEST . . o oo
13.7.6 LTC.NOFAST oo
13.7.7 LTCFAST
13.7.8 LTCNOASM . . o oo
13.7.9 Symmetric Ciphers, One-way Hashes, PRNGS and Public Key Functions . .
13.710LTCEASY . o o oo
13.7.11 TWOFISH_ SMALL and TWOFISH. TABLES oo it
13.712GOM.TABLESo
13.713GOM.TABLES SSE2 i
13.714LTC_SMALL_.CODE i
13.715LTC_PTHREAD|
13.7.16 LTC_ECC_TIMING RESISTANT . . . o o o oo
13.7.17 Math Descriptors‘

14 Optimizations

14.1 Introduction . . . o v o o e
14.2 Ciphers e
14.2.1 Name e e
‘14.2.2 Internal ID e
14.23 Key Lengths o oo
14.2.4 Block Length o oo oo oo
14.2.5 Rounds

14.2.6 Setu;) ..

14.2.9 Key SIZINg . . o oo oo
‘ 14.2.10 Acceleration L
14.3 One-Way Hashes
14.3.1 Name
14.3.2 Internal ID oo

14.3.3 Digest Sizel .« o o 133

14.3.4 Block SIz€ . . . o oo i 133
14.3.5 OID Identifier 133
14.3.6 Initialization 134
14.3.7 Process e e 134
14.3.8 Done e 134
14.3.9 Accelerationo 134
14.3.10HMAC Acceleration e 134
14.4 Pseudo-Random Number Generators v oo vvi i 134
14.4.1 Name e 136
14.4.2 Export Size e e e 136
14.4.3 SEATt . . o o 136
14.4.4 Entropy Addition e 136
14.4.5 Ready o o o 136
14.4.6 Read e 136
14.4.7 Done L e e 136
14.4.8 Exporting and Importing Lo o 136
145 BigNum Math Descriptors 136
14.5.1 Conventiorﬁ 145
14.5.2 ECC Functions o . i i i e e 145
14.5.3 RSA Functions e 146

List of Figures

2.1 Load And Store Macros 7
2.2 Rotate Macros‘ 7
3.1 Built—In Software Ciphers 15
3.2 Twofish Build Options e 16
4.1 Built-In Software Hashes o oo 46
6.1 List of Provided PRNGS o o vt ote et 64
9.1 DSA Key Sizedo 90
10.1 List of ASN.1 Supported Types o . oot o e 96
12.1 RSA/DH Key Strength 112
12.2 ECC Key Strengthl o o v oo oo 113

X

Chapter 1

Introduction

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ISO C cryptographic library meant to be a tool set for cryptographers
who are designing cryptosystems. It supports symmetric ciphers, one-way hashes, pseudo-random
number generators, public key cryptography (via PKCS #1 RSA, DH or ECCDH), and a plethora
of support routines.

The library was designed such that new ciphers/hashes/PRNGs can be added at run-time and
the existing API (and helper API functions) are able to use the new designs automatically. There
exists self-check functions for each block cipher and hash function to ensure that they compile and
execute to the published design specifications. The library also performs extensive parameter error
checking to prevent any number of run-time exploits or errors.

1.1.1 What the library IS for?

The library serves as a toolkit for developers who have to solve cryptographic problems. Out of the
box LibTomCrypt does not process SSL or OpenPGP messages, it doesn’t read X.509 certificates,
or write PEM encoded data. It does, however, provide all of the tools required to build such
functionality. LibTomCrypt was designed to be a flexible library that was not tied to any particular
cryptographic problem.

1.2 Why did I write it?

You may be wondering, Tom, why did you write a crypto library. I already have one. Well the
reason falls into two categories:

1. T am too lazy to figure out someone else’s API. I'd rather invent my own simpler API and use
that.

2. It was (still is) good coding practice.

The idea is that I am not striving to replace OpenSSL or Crypto++ or Cryptlib or etc. I'm
trying to write my own crypto library and hopefully along the way others will appreciate the work.

1

2 www.libtom.org

With this library all core functions (ciphers, hashes, prngs, and bignum) have the same prototype
definition. They all load and store data in a format independent of the platform. This means if you
encrypt with Blowfish on a PPC it should decrypt on an x86 with zero problems. The consistent
API also means that if you learn how to use Blowfish with the library you know how to use Safer+,
RC6, or Serpent as well. With all of the core functions there are central descriptor tables that can
be used to make a program automatically pick between ciphers, hashes and PRNGs at run-time.
That means your application can support all ciphers/hashes/prngs/bignum without changing the
source code.

Not only did I strive to make a consistent and simple API to work with but I also attempted
to make the library configurable in terms of its build options. Out of the box the library will build
with any modern version of GCC without having to use configure scripts. This means that the
library will work with platforms where development tools may be limited (e.g. no autoconf).

On top of making the build simple and the API approachable I've also attempted for a reasonably
high level of robustness and efficiency. LibTomCrypt traps and returns a series of errors ranging
from invalid arguments to buffer overflows/overruns. It is mostly thread safe and has been clocked
on various platforms with cycles per byte timings that are comparable (and often favourable) to
other libraries such as OpenSSL and Crypto++-.

1.2.1 Modular

The LibTomCrypt package has also been written to be very modular. The block ciphers, one-way
hashes, pseudo-random number generators (PRNG), and bignum math routines are all used within
the API through descriptor tables which are essentially structures with pointers to functions. While
you can still call particular functions directly (e.g. sha256_process()) this descriptor interface allows
the developer to customize their usage of the library.

For example, consider a hardware platform with a specialized RNG device. Obviously one would
like to tap that for the PRNG needs within the library (e.g. making a RSA key). All the developer
has to do is write a descriptor and the few support routines required for the device. After that
the rest of the API can make use of it without change. Similarly imagine a few years down the
road when AES2 (or whatever they call it) has been invented. It can be added to the library and
used within applications with zero modifications to the end applications provided they are written
properly.

This flexibility within the library means it can be used with any combination of primitive
algorithms and unlike libraries like OpenSSL is not tied to direct routines. For instance, in OpenSSL
there are CBC block mode routines for every single cipher. That means every time you add or
remove a cipher from the library you have to update the associated support code as well. In
LibTomCrypt the associated code (chaining modes in this case) are not directly tied to the ciphers.
That is a new cipher can be added to the library by simply providing the key setup, ECB decrypt
and encrypt and test vector routines. After that all five chaining mode routines can make use of
the cipher right away.

1.3 License

The project is hereby released as public domain.

1.4 Patent Disclosure 3

1.4 Patent Disclosure

The author (Tom St Denis) is not a patent lawyer so this section is not to be treated as legal advice.
To the best of the author’s knowledge the only patent related issues within the library are the RC5
and RC6 symmetric block ciphers. They can be removed from a build by simply commenting out
the two appropriate lines in tomcrypt_custom.h. The rest of the ciphers and hashes are patent free
or under patents that have since expired.

The RC2 and RC4 symmetric ciphers are not under patents but are under trademark regulations.
This means you can use the ciphers you just can’t advertise that you are doing so.

1.5 Thanks

I would like to give thanks to the following people (in no particular order) for helping me develop
this project from early on:

1. Richard van de Laarschot
2. Richard Heathfield

Ajay K. Agrawal

L

Brian Gladman

o

Svante Seleborg
Clay Culver
Jason Klapste

Dobes Vandermeer

© »® N2

Daniel Richards
10. Wayne Scott

11. Andrew Tyler
12. Sky Schulz

13. Christopher Imes

There have been quite a few other people as well. Please check the change log to see who else
has contributed from time to time.

www.libtom.org

Chapter 2

The Application Programming
Interface (API)

2.1 Introduction

In general the API is very simple to memorize and use. Most of the functions return either void
or int. Functions that return int will return CRYPT_OK if the function was successful, or one
of the many error codes if it failed. Certain functions that return int will return —1 to indicate an
error. These functions will be explicitly commented upon. When a function does return a CRYPT
error code it can be translated into a string with

const char *error_to_string(int err);

An example of handling an error is:

void somefunc(void)
{

int err;

/* call a cryptographic function */

if ((err = some_crypto_function(...)) != CRYPT_0K) {
printf("A crypto error occurred, %s\n", error_to_string(err));
/* perform error handling */

}

/* continue on if no error occurred */

There is no initialization routine for the library and for the most part the code is thread safe.
The only thread related issue is if you use the same symmetric cipher, hash or public key state data

in multiple threads. Normally that is not an issue.
To include the prototypes for LibTomCrypt.a into your own program simply include tomcrypt.h
like so:

#include <tomcrypt.h>
int main(void) {

6 www.libtom.org

return O;
¥

The header file tomcrypt.h also includes stdio.h, string.h, stdlib.h, time.h and ctype.h.
2.2 Macros

There are a few helper macros to make the coding process a bit easier. The first set are related to
loading and storing 32/64-bit words in little/big endian format. The macros are:

2.3 Functions with Variable Length Output 7

STORE32L(x, y) unsigned long x, unsigned char *y z — yl0...3]
STOREG64L(x, y) | unsigned long long x, unsigned char *y | © — y[0...7]
LOAD32L(x, y) unsigned long x, unsigned char *y y[0...3] -z
LOADG64L(x, y) | unsigned long long x, unsigned char *y | y[0...7] — =
STORE32H(x, y) unsigned long x, unsigned char *y z—y[3...0]
STOREG4H(x, y) | unsigned long long x, unsigned char *y | z — y[7...0]
LOAD32H(x, y) unsigned long x, unsigned char *y y[3...0] =z
LOADG64H(x, y) | unsigned long long x, unsigned char *y | y[7...0] — =

BSWAP(x) unsigned long x Swap bytes

Figure 2.1: Load And Store Macros

There are 32 and 64-bit cyclic rotations as well:

ROL(x, y) unsigned long x, unsigned long y <<y, 0<y<3l
ROLc(x, y) unsigned long x, const unsigned longy | z << y,0 <y <31
ROR(x, y) unsigned long x, unsigned long y z>>y,0<y <31

RORc(x, y) unsigned long x, const unsigned longy | z >>y,0 <y <31

ROL64(x, vy) unsigned long x, unsigned long y T <<y,0<y <63
ROL64c(x, y) | unsigned long x, const unsigned longy | © << y,0 <y <63
ROR64(x, y) unsigned long x, unsigned long y z>>1y,0<y<63

ROR64c(x, y) | unsigned long x, const unsigned longy | 2 >>y,0 <y <63

Figure 2.2: Rotate Macros

2.3 Functions with Variable Length Output

Certain functions such as (for example) rsa_ezport() give an output that is variable length. To
prevent buffer overflows you must pass it the length of the buffer where the output will be stored.
For example:

#include <tomcrypt.h>
int main(void) {
rsa_key key;
unsigned char buffer[1024];
unsigned long x;
int err;

/* ... Make up the RSA key somehow ... */

/* lets export the key, set x to the size of the
* output buffer */
x = sizeof (buffer);
if ((err = rsa_export(buffer, &x, PK_PUBLIC, &key)) !'= CRYPT_OK) {
printf ("Export error: Y%s\n", error_to_string(err));
return -1;

8 www.libtom.org

}

/* if rsa_export() was successful then x will have
* the size of the output */
printf ("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return O;

In the above example if the size of the RSA public key was more than 1024 bytes this function would
return an error code indicating a buffer overflow would have occurred. If the function succeeds,
it stores the length of the output back into z so that the calling application will know how many
bytes were used.

As of v1.13, most functions will update your length on failure to indicate the size required by
the function. Not all functions support this so please check the source before you rely on it doing
that.

2.4 Functions that need a PRNG

Certain functions such as rsa_make_key() require a Pseudo Random Number Generator (PRNG).
These functions do not setup the PRNG themselves so it is the responsibility of the calling function
to initialize the PRNG before calling them.

Certain PRNG algorithms do not require a prng_state argument (sprng for example). The
prng_state argument may be passed as NULL in such situations.

#include <tomcrypt.h>
int main(void) {
rsa_key key;
int err;

/* register the system RNG */
register_prng(&sprng_desc)

/* make a 1024-bit RSA key with the system RNG */
if ((err = rsa_make_key(NULL, find_prng("sprng"), 1024/8, 65537, &key))
= CRYPT_OK) {
printf ("make_key error: Y%s\n", error_to_string(err));
return -1;

}
/* use the key ... */

return O;

2.5 Functions that use Arrays of Octets 9

2.5 Functions that use Arrays of Octets

Most functions require inputs that are arrays of the data type unsigned char. Whether it is a
symmetric key, IV for a chaining mode or public key packet it is assumed that regardless of the
actual size of unsigned char only the lower eight bits contain data. For example, if you want to
pass a 256 bit key to a symmetric ciphers setup routine, you must pass in (a pointer to) an array of
32 unsigned char variables. Certain routines (such as SAFER+) take special care to work properly
on platforms where an unsigned char is not eight bits.

For the purposes of this library, the term byte will refer to an octet or eight bit word. Typically
an array of type byte will be synonymous with an array of type unsigned char.

10

www.libtom.org

Chapter 3

Symmetric Block Ciphers

3.1 Core Functions

LibTomCrypt provides several block ciphers with an ECB block mode interface. It is important to
first note that you should never use the ECB modes directly to encrypt data. Instead you should
use the ECB functions to make a chaining mode, or use one of the provided chaining modes. All of
the ciphers are written as ECB interfaces since it allows the rest of the API to grow in a modular
fashion.

3.1.1 Key Scheduling

All ciphers store their scheduled keys in a single data type called symmetric_key. This allows all
ciphers to have the same prototype and store their keys as naturally as possible. This also removes
the need for dynamic memory allocation, and allows you to allocate a fixed sized buffer for storing
scheduled keys. All ciphers must provide six visible functions which are (given that XXX is the
name of the cipher) the following:

int XXX_setup(const unsigned char x*key,
int keylen,
int rounds,
symmetric_key *skey);

The XXX _setup() routine will setup the cipher to be used with a given number of rounds and
a given key length (in bytes). The number of rounds can be set to zero to use the default, which is
generally a good idea.

If the function returns successfully the variable skey will have a scheduled key stored in it. It’s
important to note that you should only used this scheduled key with the intended cipher. For
example, if you call blowfish_setup() do not pass the scheduled key onto rcd_echb_encrypt(). All
built—in setup functions do not allocate memory off the heap so when you are done with a key you
can simply discard it (e.g. they can be on the stack). However, to maintain proper coding practices
you should always call the respective XXX _done() function. This allows for quicker porting to
applications with externally supplied plugins.

11

12 www.libtom.org

3.1.2 ECB Encryption and Decryption
To encrypt or decrypt a block in ECB mode there are these two functions per cipher:

int XXX_ecb_encrypt(const unsigned char *pt,
unsigned char *ct,
symmetric_key *skey);

int XXX_ecb_decrypt(const unsigned char *ct,
unsigned char *pt,
symmetric_key *skey);

These two functions will encrypt or decrypt (respectively) a single block of tex, storing the result
in the ct buffer (pt resp.). It is possible that the input and output buffer are the same buffer.
For the encrypt function p#? is the input and cf? is the output. For the decryption function it’s
the opposite. They both return CRYPT_OK on success. To test a particular cipher against test
vectors? call the following self-test function.

3.1.3 Self-Testing
int XXX_test(void);

This function will return CRYPT_OK if the cipher matches the test vectors from the design
publication it is based upon.

3.1.4 Key Sizing

For each cipher there is a function which will help find a desired key size. It is specified as follows:
int XXX_keysize(int *keysize);

Essentially, it will round the input keysize in keysize down to the next appropriate key size. This
function will return CRYPT _OK if the key size specified is acceptable. For example:

#include <tomcrypt.h>
int main(void)

{
int keysize, err;
/* now given a 20 byte key what keysize does Twofish want to use? */
keysize = 20;
if ((err = twofish_keysize(&keysize)) != CRYPT_0K) {
printf ("Error getting key size: J%s\n", error_to_string(err));
return -1;
3
printf ("Twofish suggested a key size of %d\n", keysize);
return 0O;
}

IThe size of which depends on which cipher you are using.
2pt stands for plaintext.

3ct stands for ciphertext.

4As published in their design papers.

3.1 Core Functions 13
This should indicate a keysize of sixteen bytes is suggested by storing 16 in keysize.

3.1.5 Cipher Termination

When you are finished with a cipher you can de—initialize it with the done function.
void XXX_done(symmetric_key *skey);

For the software based ciphers within LibTomCrypt, these functions will not do anything. However,
user supplied cipher descriptors may require to be called for resource management purposes. To be
compliant, all functions which call a cipher setup function must also call the respective cipher done
function when finished.

3.1.6 Simple Encryption Demonstration

An example snippet that encodes a block with Blowfish in ECB mode.

#include <tomcrypt.h>

int main(void)

{
unsigned char pt[8], ct[8], keyl[8];
symmetric_key skey;

int err;
/* ... key is loaded appropriately in key ... */
/* ... load a block of plaintext in pt ... */

/* schedule the key */
if ((err = blowfish_setup(key, /* the key we will use */
8, /* key is 8 bytes (64-bits) long */
0, /* 0 == use default # of rounds */
&skey) /* where to put the scheduled key */
) != CRYPT_OK) {
printf ("Setup error: %s\n", error_to_string(err));
return -1;

}

/* encrypt the block */

blowfish_ecb_encrypt(pt, /* encrypt this 8-byte array */
ct, /* store encrypted data here */

&skey); /* our previously scheduled key */
/* now ct holds the encrypted version of pt */
/* decrypt the block */
blowfish_ecb_decrypt(ct, /* decrypt this 8-byte array */
pt, /* store decrypted data here */

&skey); /* our previously scheduled key */

/* now we have decrypted ct to the original plaintext in pt */

14 www.libtom.org

/* Terminate the cipher context */
blowfish_done (&skey) ;

return O;

3.2 Key Sizes and Number of Rounds

As a general rule of thumb, do not use symmetric keys under 80 bits if you can help it. Only a few of
the ciphers support smaller keys (mainly for test vectors anyways). Ideally, your application should
be making at least 256 bit keys. This is not because you are to be paranoid. It is because if your
PRNG has a bias of any sort the more bits the better. For example, if you have Pr[X = 1] = % +v
where |y| > 0 then the total amount of entropy in N bits is N - —logs (2 + |7]). So if v were 0.25 (a
severe bias) a 256-bit string would have about 106 bits of entropy whereas a 128-bit string would
have only 53 bits of entropy.

The number of rounds of most ciphers is not an option you can change. Only RC5 allows you
to change the number of rounds. By passing zero as the number of rounds all ciphers will use their
default number of rounds. Generally the ciphers are configured such that the default number of
rounds provide adequate security for the given block and key size.

3.3 The Cipher Descriptors

To facilitate automatic routines an array of cipher descriptors is provided in the array cipher_descriptor.
An element of this array has the following (partial) format (See Section[14.2):

struct _cipher_descriptor {
/** name of cipher */
char *name;

/** internal ID */
unsigned char ID;

/** min keysize (octets) */
int min_key_length,

/** max keysize (octets) */
max_key_length,

/** block size (octets) */
block_length,

/** default number of rounds */
default_rounds;
..<snip>...

3.3 The Cipher Descriptors 15

Where name is the lower case ASCII version of the name. The fields min_key_length and
max_key_length are the minimum and maximum key sizes in bytes. The block_length member is the
block size of the cipher in bytes. As a good rule of thumb it is assumed that the cipher supports
the min and max key lengths but not always everything in between. The default_rounds field is the
default number of rounds that will be used.

For a plugin to be compliant it must provide at least each function listed before the accelerators
begin. Accelerators are optional, and if missing will be emulated in software.

The end of the

The remaining fields are all pointers to the core functions for each cipher.

cipher_descriptor array is marked when name equals NULL.

As of this release the current cipher_descriptors elements are the following:

Name Descriptor Name | Block Size | Key Range | Rounds

Blowfish blowfish_desc 8 8 ...5H6 16

X-Tea xtea_desc 8 16 32

RC2 rc2_desc 8 8...128 16
RC5-32/12/b rch_desc 8 8...128 12...24

RC6-32/20/b rc6_desc 16 8...128 20
SAFER+ saferp_desc 16 16, 24, 32 8, 12, 16
AES aes_desc 16 16, 24, 32 10, 12, 14
aes_enc_desc 16 16, 24, 32 10, 12, 14

Twofish twofish_desc 16 16, 24, 32 16

DES des_desc 8 8 16

3DES (EDE mode) des3_desc 8 24 16

CAST5 (CAST-128) casth_desc 8 5...16 12, 16

Noekeon noekeon_desc 16 16 16

Skipjack skipjack_desc 8 10 32
Anubis anubis_desc 16 16 ... 40 12 ... 18

Khazad khazad _desc 8 16 8

SEED kseed_desc 16 16 16

KASUMI kasumi_desc 8 16 8

Figure 3.1: Built-In Software Ciphers

16 www.libtom.org

3.3.1 Notes

1. For AES, (also known as Rijndael) there are four descriptors which complicate issues a little. The

descriptors rijndael_desc and rijndael_enc_desc provide the cipher named rijndael. The descriptors
aes_desc and aes_enc_desc provide the cipher name aes. Functionally both rijndael and aes are the
same cipher. The only difference is when you call find_cipher() you have to pass the correct name. The
cipher descriptors with enc in the middle (e.g. rijndael_enc_desc) are related to an implementation of
Rijndael with only the encryption routine and tables. The decryption and self-test function pointers
of both encrypt only descriptors are set to NULL and should not be called.
The encrypt only descriptors are useful for applications that only use the encryption function of the
cipher. Algorithms such as EAX, PMAC and OMAC only require the encryption function. So far
this encrypt only functionality has only been implemented for Rijndael as it makes the most sense
for this cipher.

2. Note that for DES and 3DES they use 8 and 24 byte keys but only 7 and 21 [respectively] bytes of
the keys are in fact used for the purposes of encryption. My suggestion is just to use random 8/24
byte keys instead of trying to make a 8/24 byte string from the real 7/21 byte key.

3. Note that Twofish has additional configuration options (Figure [3.2) that take place at build time.
These options are found in the file tomcrypt_cfg.h. The first option is TWOFISH_SMALL which when
defined will force the Twofish code to not pre-compute the Twofish g(X) function as a set of four
8 x 32 s-boxes. This means that a scheduled key will require less ram but the resulting cipher will be
slower. The second option is TWOFISH_-TABLES which when defined will force the Twofish code to
use pre-computed tables for the two s-boxes qo, g1 as well as the multiplication by the polynomials 5B
and EF used in the MDS multiplication. As a result the code is faster and slightly larger. The speed
increase is useful when TWOFISH_SMALL is defined since the s-boxes and MDS multiply form the
heart of the Twofish round function.

TWOFISH_SMALL | TWOFISH_TABLES | Speed and Memory (per key)
undefined undefined Very fast, 4.2KB of ram.
undefined defined Faster key setup, larger code.
defined undefined Very slow, 0.2KB of ram.

defined defined Faster, 0.2KB of ram, larger code.

Figure 3.2: Twofish Build Options

To work with the cipher_descriptor array there is a function:
int find_cipher(char *name)

Which will search for a given name in the array. It returns —1 if the cipher is not found, otherwise
it returns the location in the array where the cipher was found. For example, to indirectly setup
Blowfish you can also use:

#include <tomcrypt.h>

int main(void)

{
unsigned char key[8];
symmetric_key skey;
int err;

/* you must register a cipher before you use it */

3.3 The Cipher Descriptors 17

if (register_cipher(&blowfish_desc)) == -1) {
printf ("Unable to register Blowfish cipher.");
return -1;

/* generic call to function (assuming the key
* in key[] was already setup) */
if ((err =
cipher_descriptor[find_cipher("blowfish")].
setup(key, 8, 0, &skey)) != CRYPT_OK) {
printf ("Error setting up Blowfish: %s\n", error_to_string(err));
return -1;

}

/* ... use cipher ... */

A good safety would be to check the return value of find_cipher() before accessing the desired
function. In order to use a cipher with the descriptor table you must register it first using:

int register_cipher(const struct _cipher_descriptor *cipher);

Which accepts a pointer to a descriptor and returns the index into the global descriptor table. If
an error occurs such as there is no more room (it can have 32 ciphers at most) it will return -1. If
you try to add the same cipher more than once it will just return the index of the first copy. To
remove a cipher call:

int unregister_cipher(const struct _cipher_descriptor *cipher);
Which returns CRYPT _OK if it removes the cipher, otherwise it returns CRYPT_ERROR.

#include <tomcrypt.h>
int main(void)
{

int err;

/* register the cipher */

if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael\n");
return -1;

}

/* use Rijndael */

/* remove it */

if ((err = unregister_cipher(&rijndael_desc)) !'= CRYPT_OK) {
printf ("Error removing Rijndael: %s\n", error_to_string(err));
return -1;

return 0O;

}

This snippet is a small program that registers Rijndael.

18 www.libtom.org

3.4 Symmetric Modes of Operations

3.4.1 Background

A typical symmetric block cipher can be used in chaining modes to effectively encrypt messages
larger than the block size of the cipher. Given a key k, a plaintext P and a cipher FE we shall
denote the encryption of the block P under the key k as E(P). In some modes there exists an
initial vector denoted as C'_;.

ECB Mode
ECB or Electronic Codebook Mode is the simplest method to use. It is given as:
C; = Ex(P;) (3.1)

This mode is very weak since it allows people to swap blocks and perform replay attacks if the same
key is used more than once.

CBC Mode

CBC or Cipher Block Chaining mode is a simple mode designed to prevent trivial forms of replay
and swap attacks on ciphers. It is given as:

C; = Ek(Pi D Cifl) (32)

It is important that the initial vector be unique and preferably random for each message encrypted
under the same key.

CTR Mode

CTR or Counter Mode is a mode which only uses the encryption function of the cipher. Given a
initial vector which is treated as a large binary counter the CTR mode is given as:

C_1=C_1+1 (mod 2W)
Ci=P & Ek(C,l) (33)
Where W is the size of a block in bits (e.g. 64 for Blowfish). As long as the initial vector is random
for each message encrypted under the same key replay and swap attacks are infeasible. CTR mode

may look simple but it is as secure as the block cipher is under a chosen plaintext attack (provided
the initial vector is unique).

CFB Mode
CFB or Ciphertext Feedback Mode is a mode akin to CBC. It is given as:
Ci=FP,aoC_,
C_1 = Ex(Cy) (3.4)

Note that in this library the output feedback width is equal to the size of the block cipher. That is
this mode is used to encrypt whole blocks at a time. However, the library will buffer data allowing
the user to encrypt or decrypt partial blocks without a delay. When this mode is first setup it will
initially encrypt the initial vector as required.

3.4 Symmetric Modes of Operations 19

OFB Mode
OFB or Output Feedback Mode is a mode akin to CBC as well. It is given as:

C_1 = Ex(C_y)
Ci=P&C, (3.5)

Like the CFB mode the output width in CFB mode is the same as the width of the block cipher.
OFB mode will also buffer the output which will allow you to encrypt or decrypt partial blocks
without delay.

3.4.2 Choice of Mode

My personal preference is for the CTR mode since it has several key benefits:
1. No short cycles which is possible in the OFB and CFB modes.
2. Provably as secure as the block cipher being used under a chosen plaintext attack.
3. Technically does not require the decryption routine of the cipher.
4. Allows random access to the plaintext.
5. Allows the encryption of block sizes that are not equal to the size of the block cipher.

The CTR, CFB and OFB routines provided allow you to encrypt block sizes that differ from the
ciphers block size. They accomplish this by buffering the data required to complete a block. This
allows you to encrypt or decrypt any size block of memory with either of the three modes.

The ECB and CBC modes process blocks of the same size as the cipher at a time. Therefore,
they are less flexible than the other modes.

3.4.3 Ciphertext Stealing

Ciphertext stealing is a method of dealing with messages in CBC mode which are not a multiple
of the block length. This is accomplished by encrypting the last ciphertext block in ECB mode,
and XOR’ing the output against the last partial block of plaintext. LibTomCrypt does not support
this mode directly but it is fairly easy to emulate with a call to the cipher’s ecb_encrypt() callback
function.

The more sane way to deal with partial blocks is to pad them with zeroes, and then use CBC
normally.

3.4.4 Initialization

The library provides simple support routines for handling CBC, CTR, CFB, OFB and ECB encoded
messages. Assuming the mode you want is XXX there is a structure called symmetricc XXX that
will contain the information required to use that mode. They have identical setup routines (except
CTR and ECB mode):

20 www.libtom.org

int XXX_start(int cipher,
const unsigned char *IV,
const unsigned char x*key,
int keylen,
int num_rounds,
symmetric_XXX *XXX);

int ctr_start(int cipher,
const unsigned char *IV,
const unsigned char xkey,
int keylen,
int num_rounds,
int ctr_mode,
symmetric_CTR *ctr);

int ecb_start(int cipher,
const unsigned char xkey,
int keylen,
int num_rounds,
symmetric_ECB *ecb);

In each case, cipher is the index into the cipher_descriptor array of the cipher you want to
use. The IV value is the initialization vector to be used with the cipher. You must fill the IV
yourself and it is assumed they are the same length as the block sizd? of the cipher you choose. It
is important that the IV be random for each unique message you want to encrypt. The parameters
key, keylen and num_rounds are the same as in the XXX _setup() function call. The final parameter
is a pointer to the structure you want to hold the information for the mode of operation.

The routines return CRYPT _OK if the cipher initialized correctly, otherwise, they return an
error code.

CTR Mode

In the case of CTR mode there is an additional parameter ctr_mode which specifies the mode that
the counter is to be used in. If CTR_.COUNTER_ LITTLE_ENDIAN was specified then the
counter will be treated as a little endian value. Otherwise, if CTR_.COUNTER_BIG_ENDIAN
was specified the counter will be treated as a big endian value. As of v1.15 the RFC 3686 style of
increment then encrypt is also supported. By OR’ing LTC_CTR_RFC3686 with the CTR mode
value, ctr_start() will increment the counter before encrypting it for the first time.

As of V1.17, the library supports variable length counters for CTR mode. The (optional) counter
length is specified by OR’ing the octet length of the counter against the ctr_mode parameter. The
default, zero, indicates that a full block length counter will be used. This also ensures backwards
compatibility with software that uses older versions of the library.

symmetric_CTR ctr;
int err;
unsigned char IV[16], key[16];

5In other words the size of a block of plaintext for the cipher, e.g. 8 for DES, 16 for AES, etc.

3.4 Symmetric Modes of Operations 21

/* use a 32-bit little endian counter */
if ((err = ctr_start(find_cipher("aes"),
IV, key, 16, O,
CTR_COUNTER_LITTLE_ENDIAN | 4,
&ctr)) '= CRYPT_OK) {
handle_error(err);

Changing the counter size has little (really no) effect on the performance of the CTR chaining
mode. It is provided for compatibility with other software (and hardware) which have smaller fixed
sized counters.

3.4.5 Encryption and Decryption

To actually encrypt or decrypt the following routines are provided:

int XXX_encrypt(const unsigned char *pt,
unsigned char *ct,
unsigned long len,
symmetric_YYY *YYY);

int XXX_decrypt(const unsigned char *ct,
unsigned char *pt,
unsigned long len,
symmetric_YYY *YYY);

Where XXX is one of {ecb, cbe, ctr,cfb, ofb}.

In all cases, len is the size of the buffer (as number of octets) to encrypt or decrypt. The
CTR, OFB and CFB modes are order sensitive but not chunk sensitive. That is you can encrypt
ABCDEF in three calls like AB, CD, EF or two like ABCDE and F and end up with the same
ciphertext. However, encrypting ABC and DABC will result in different ciphertexts. All five of
the modes will return CRYPT _OK on success from the encrypt or decrypt functions.

In the ECB and CBC cases, len must be a multiple of the ciphers block size. In the CBC case,
you must manually pad the end of your message (either with zeroes or with whatever your protocol
requires).

To decrypt in either mode, perform the setup like before (recall you have to fetch the IV value
you used), and use the decrypt routine on all of the blocks.

3.4.6 IV Manipulation

To change or read the IV of a previously initialized chaining mode use the following two functions.

int XXX_getiv(unsigned char *IV,
unsigned long *len,
symmetric_XXX *XXX);

22 www.libtom.org

int XXX_setiv(const unsigned char *IV,
unsigned long len,
symmetric_XXX *XXX);

The XXX _getiv() functions will read the IV out of the chaining mode and store it into IV along
with the length of the IV stored in len. The XXX _setiv will initialize the chaining mode state as if
the original IV were the new IV specified. The length of the IV passed in must be the size of the
ciphers block size.

The XXX _setiv() functions are handy if you wish to change the IV without re—keying the cipher.

What the setiv function will do depends on the mode being changed. In CBC mode, the new IV
replaces the existing IV as if it were the last ciphertext block. In CFB mode, the IV is encrypted
as if it were the prior encrypted pad. In CTR mode, the IV is encrypted without first incrementing
it (regardless of the LTC_RFC_3686 flag presence). In F8 mode, the IV is encrypted and becomes
the new pad. It does not change the salted IV, and is only meant to allow seeking within a session.
In LRW, it changes the tweak, forcing a computation of the tweak pad, allowing for seeking within
the session. In OFB mode, the IV is encrypted and becomes the new pad.

3.4.7 Stream Termination

To terminate an open stream call the done function.
int XXX_done (symmetric_XXX *XXX);

This will terminate the stream (by terminating the cipher) and return CRYPT_OK if success-
ful.

3.4 Symmetric Modes of Operations

3.4.8 Examples

#include <tomcrypt.h>

int main(void)

{
unsigned char key[16], IV[16], buffer[512];
symmetric_CTR ctr;
int x, err;

/* register twofish first */

if (register_cipher(&twofish_desc) == -1) {
printf ("Error registering cipher.\n");
return -1;

/* somehow £ill out key and IV */

/* start up CTR mode */
if ((err = ctr_start(
find_cipher("twofish"), /* index of desired cipher */
IV, /* the initial vector */
key, /* the secret key */
16, /* length of secret key (16 bytes) */
0, /* 0 == default # of rounds */
CTR_COUNTER_LITTLE_ENDIAN, /* Little endian counter */
&ctr) /* where to store the CTR state */
) != CRYPT_OK) {
printf("ctr_start error: %s\n", error_to_string(err));
return -1;

/* somehow fill buffer than encrypt it */
if ((err = ctr_encrypt(buffer, /* plaintext */
buffer, /* ciphertext */
sizeof (buffer), /* length of plaintext pt */
&ctr) /* CTR state */
) !'= CRYPT_OK) {
printf ("ctr_encrypt error: %s\n", error_to_string(err));
return -1;

/* make use of ciphertext... */

/* now we want to decrypt so let’s use ctr_setiv */
if ((err = ctr_setiv(IV, /* the initial IV we gave to ctr_start */
16, /* the IV is 16 bytes long */
&ctr) /* the ctr state we wish to modify */
) != CRYPT_OK) {
printf("ctr_setiv error: %s\n", error_to_string(err));
return -1;

24 www.libtom.org

if ((err = ctr_decrypt(buffer, /* ciphertext */
buffer, /* plaintext */
sizeof (buffer), /* length of plaintext */
&ctr) /* CTR state */
) !'= CRYPT_OK) {
printf("ctr_decrypt error: %s\n", error_to_string(err));
return -1;

}

/* terminate the stream */

if ((err = ctr_done(&ctr)) != CRYPT_OK) {
printf("ctr_done error: %s\n", error_to_string(err));
return -1;

}

/* clear up and return */
zeromem(key, sizeof (key));
zeromem(&ctr, sizeof(ctr));

return 0O;

3.4.9 LRW Mode

LRW mode is a cipher mode which is meant for indexed encryption like used to handle storage
media. It is meant to have efficient seeking and overcome the security problems of ECB mode while
not increasing the storage requirements. It is used much like any other chaining mode except with
two key differences.

The key is specified as two strings the first key K is the (normally AES) key and can be any
length (typically 16, 24 or 32 octets long). The second key Ko is the tweak key and is always 16
octets long. The tweak value is NOT a nonce or IV value it must be random and secret.

To initialize LRW mode use:

int lrw_start(int cipher,
const unsigned char *IV,
const unsigned char xkey,
int keylen,
const unsigned char *tweak,
int num_rounds,
symmetric_LRW *1lrw);

This will initialize the LRW context with the given (16 octet) IV, cipher Ky key of length
keylen octets and the (16 octet) Ko tweak. While LRW was specified to be used only with AES,
LibTomCrypt will allow any 128-bit block cipher to be specified as indexed by cipher. The number
of rounds for the block cipher num_rounds can be 0 to use the default number of rounds for the
given cipher.

To process data use the following functions:

3.4 Symmetric Modes of Operations 25

int lrw_encrypt(const unsigned char *pt,
unsigned char *ct,
unsigned long len,
symmetric_LRW *1rw);

int lrw_decrypt(const unsigned char *ct,
unsigned char *pt,
unsigned long len,
symmetric_LRW *1rw) ;

These will encrypt (or decrypt) the plaintext to the ciphertext buffer (or vice versa). The length
is specified by len in octets but must be a multiple of 16. The LRW code uses a fast tweak update
such that consecutive blocks are encrypted faster than if random seeking where used.

To manipulate the IV use the following functions:

int lrw_getiv(unsigned char *IV,
unsigned long *len,
symmetric_LRW *1rw);

int lrw_setiv(const unsigned char *IV,
unsigned long len,
symmetric_LRW *1rw);

These will get or set the 16—octet IV. Note that setting the IV is the same as seeking and unlike
other modes is not a free operation. It requires updating the entire tweak which is slower than
sequential use. Avoid seeking excessively in performance constrained code.

To terminate the LRW state use the following:

int lrw_done(symmetric_LRW *lrw);

3.4.10 XTS Mode

As of v1.17, LibTomCrypt supports XTS mode with code donated by Elliptic Semiconductor Tncl6.
XTS is a chaining mode for 128-bit block ciphers, recommended by IEEE (P1619) for disk en-
cryption. It is meant to be an encryption mode with random access to the message data without
compromising privacy. It requires two private keys (of equal length) to perform the encryption
process. Each encryption invocation includes a sector number or unique identifier specified as a
128-bit string.

To initialize XT'S mode use the following function call:

int xts_start(int cipher,
const unsigned char *keyl,
const unsigned char xkey2,
unsigned long keylen,
int num_rounds,
symmetric_xts *xts)

Swww.ellipticsemi.com

26 www.libtom.org

This will start the XTS mode with the two keys pointed to by key! and key2 of length keylen octets
each.
To encrypt or decrypt a sector use the following calls:

int xts_encrypt(
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
const unsigned char *tweak,
symmetric_xts *xts);

int xts_decrypt(
const unsigned char *ct, unsigned long ptlen,
unsigned char *pt,
const unsigned char *tweak,
symmetric_xts *xts);

The first will encrypt the plaintext pointed to by pt of length ptlen octets, and store the ciphertext
in the array pointed to by ct. It uses the 128-bit tweak pointed to by tweak to encrypt the block.
The decrypt function performs the opposite operation. Both functions support ciphertext stealing
(blocks that are not multiples of 16 bytes).

The P1619 specification states the tweak for sector number shall be represented as a 128-bit
little endian string.

To terminate the XTS state call the following function:

void xts_done(symmetric_xts *xts);

3.4.11 F8 Mode

The F8 Chaining mode (see RFC 3711 for instance) is yet another chaining mode for block ciphers.
It behaves much like CTR mode in that it XORs a keystream against the plaintext to encrypt. F8
mode comes with the additional twist that the counter value is secret, encrypted by a salt key. We
initialize F8 mode with the following function call:

int £8_start(int cipher,
const unsigned char *IV,
const unsigned char xkey,
int keylen,
const unsigned char *salt_key,
int skeylen,
int num_rounds,
symmetric_F8 *£8);

This will start the F8 mode state using key as the secret key, IV as the counter. It uses the salt_key
as IV encryption key (m in the RFC 3711). The salt_key can be shorter than the secret key but it
should not be longer.

To encrypt or decrypt data we use the following two functions:

3.4 Symmetric Modes of Operations 27

int f8_encrypt(const unsigned char *pt,
unsigned char *ct,
unsigned long len,
symmetric_F8 *f8);

int f8_decrypt(const unsigned char *ct,
unsigned char *pt,
unsigned long len,
symmetric_F8 *f8);

These will encrypt or decrypt a variable length array of bytes using the F8 mode state specified.
The length is specified in bytes and does not have to be a multiple of the ciphers block size.
To change or retrieve the current counter IV value use the following functions:

int f8_getiv(unsigned char *IV,
unsigned long *len,
symmetric_F8 *£8);

int f8_setiv(const unsigned char *IV,
unsigned long len,
symmetric_F8 *£8);

These work with the current IV value only and not the encrypted IV value specified during the call
to f8_start(). The purpose of these two functions is to be able to seek within a current session only.
If you want to change the session IV you will have to call {8_done() and then start a new state with
8 _start().

To terminate an F8 state call the following function:

int f8_done(symmetric_F8 *£8);

28 www.libtom.org

3.5 Encrypt and Authenticate Modes
3.5.1 EAX Mode

LibTomCrypt provides support for a mode called EAX7 in a manner similar to the way it was
intended to be used by the designers. First, a short description of what EAX mode is before we
explain how to use it. EAX is a mode that requires a cipher, CTR and OMAC support and provides
encryption and authentication®. It is initialized with a random nonce that can be shared publicly,
a header which can be fixed and public, and a random secret symmetric key.

The header data is meant to be meta—data associated with a stream that isn’t private (e.g.,
protocol messages). It can be added at anytime during an EAX stream, and is part of the au-
thentication tag. That is, changes in the meta-data can be detected by changes in the output
tag.

The mode can then process plaintext producing ciphertext as well as compute a partial checksum.
The actual checksum called a tag is only emitted when the message is finished. In the interim, the
user can process any arbitrary sized message block to send to the recipient as ciphertext. This
makes the EAX mode especially suited for streaming modes of operation.

The mode is initialized with the following function.

int eax_init(eax_state *eax,
int cipher,
const unsigned char xkey,
unsigned long keylen,
const unsigned char *nonce,
unsigned long noncelen,
const unsigned char *header,
unsigned long headerlen);

Where eazx is the EAX state. The cipher parameter is the index of the desired cipher in the
descriptor table. The key parameter is the shared secret symmetric key of length keylen octets.
The nonce parameter is the random public string of length noncelen octets. The header parameter
is the random (or fixed or NULL) header for the message of length headerlen octets.

When this function completes, the eax state will be initialized such that you can now either
have data decrypted or encrypted in EAX mode. Note: if headerlen is zero you may pass header
as NULL to indicate there is no initial header data.

To encrypt or decrypt data in a streaming mode use the following.

int eax_encrypt(eax_state *eax,
const unsigned char *pt,
unsigned char *ct,

unsigned long length);

int eax_decrypt(eax_state *eax,
const unsigned char *ct,
unsigned char *pt,

unsigned long length);

7See M. Bellare, P. Rogaway, D. Wagner, A Conventional Authenticated-Encryption Mode.
8Note that since EAX only requires OMAC and CTR you may use encrypt only cipher descriptors with this mode.

3.5 Encrypt and Authenticate Modes 29

The function eaz_encrypt will encrypt the bytes in pt of length octets, and store the ciphertext in
ct. Note: ct and pt may be the same region in memory. This function will also send the ciphertext
through the OMAC function. The function eaz_decrypt decrypts ct, and stores it in pt. This also
allows pt and ct to be the same region in memory.

You cannot both encrypt or decrypt with the same eaz context. For bi—directional communica-
tion you will need to initialize two EAX contexts (preferably with different headers and nonces).

Note: both of these functions allow you to send the data in any granularity but the order is
important. While the eax_init() function allows you to add initial header data to the stream you
can also add header data during the EAX stream with the following.

int eax_addheader(eax_state *eax,
const unsigned char *header,
unsigned long length);

This will add the length octet from header to the given ear header. Once the message is finished,
the tag (checksum) may be computed with the following function:

int eax_done(eax_state *eax,
unsigned char *tag,
unsigned long *taglen) ;

This will terminate the EAX state eaz, and store up to taglen bytes of the message tag in tag. The
function then stores how many bytes of the tag were written out back in to taglen.

The EAX mode code can be tested to ensure it matches the test vectors by calling the following
function:

int eax_test(void);

This requires that the AES (or Rijndael) block cipher be registered with the cipher_descriptor table
first.

#include <tomcrypt.h>
int main(void)
{
int err;
eax_state eax;
unsigned char pt[64], ct[64], nonce[16], key[16], tagl[16];
unsigned long taglen;

if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael");
return EXIT_FAILURE;

}

/* ... make up random nonce and key ... */

/* initialize context */
if ((err = eax_init(&eax, /* context */

30

find_cipher("rijndael"),

nonce,
16,

"TestApp",

) !'= CRYPT_OK) {
printf ("Error eax_init: %s", error_to_string(err));
return EXIT_FAILURE;

3

7)

www.libtom.org

/* cipher id */

/* the nonce */

/* nonce is 16 bytes */
/* example header */

/* header length */

/* now encrypt data, say in a loop or whatever */

if ((err = eax_encrypt(

) !'= CRYPT_OK) {
printf ("Error eax_encrypt: %s", error_to_string(err));
return EXIT_FAILURE;

3

sizeof (pt) /*

&eax, /*

eax context */

pt, /* plaintext (source) */
ct, /* ciphertext (destination) */

size of plaintext */

/* finish message and get authentication tag */
taglen = sizeof(tag);
if ((err = eax_done(

) '= CRYPT_OK) {
printf ("Error eax_done: %s", error_to_string(err));
return EXIT_FAILURE;

3

&eax,
tag,
&taglen

/* eax context */
/* where to put tag */
/* length of tag space */

/* now we have the authentication tag in "tag" and
* it’s taglen bytes long */

You can also perform an entire EAX state on
the following functions.

int eax_encrypt_authenticate_memory(

const unsigned
const unsigned
const unsigned
const unsigned
unsigned
unsigned

int
char
char
char
char
char
char

cipher,
*key,
*nonce,
*xheader,
*pt .
*xct,
*tag,

int eax_decrypt_verify_memory (

unsigned
unsigned
unsigned
unsigned

unsigned

a block of memory in a single function call with

long keylen,
long noncelen,
long headerlen,
long ptlen,

long *taglen);

3.5 Encrypt and Authenticate Modes 31

int cipher,
const unsigned char xkey, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,

const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
unsigned char *tag, unsigned long taglen,
int *res) ;

Both essentially just call eax_init() followed by eax_encrypt() (or eax_decrypt() respectively)
and eax_done(). The parameters have the same meaning as with those respective functions.

The only difference is eax_decrypt_verify_memory() does not emit a tag. Instead you pass it a
tag as input and it compares it against the tag it computed while decrypting the message. If the
tags match then it stores a 1 in res, otherwise it stores a 0.

3.5.2 0OCB Mode

LibTomCrypt provides support for a mode called OCBY . OCB is an encryption protocol that
simultaneously provides authentication. It is slightly faster to use than EAX mode but is less
flexible. Let’s review how to initialize an OCB context.

int ocb_init(ocb_state *ocb,
int cipher,

const unsigned char xkey,
unsigned long keylen,
const unsigned char *nonce);

This will initialize the ocb context using cipher descriptor cipher. It will use a key of length
keylen and the random nonce. Note that nonce must be a random (public) string the same length
as the block ciphers block size (e.g. 16 bytes for AES).

This mode has no Associated Data like EAX mode does which means you cannot authenticate
metadata along with the stream. To encrypt or decrypt data use the following.

int ocb_encrypt(ocb_state *ocb,
const unsigned char *pt,
unsigned char *ct);

int ocb_decrypt(ocb_state *ocb,
const unsigned char *ct,
unsigned char *pt);

This will encrypt (or decrypt for the latter) a fixed length of data from pt to c¢t (vice versa for
the latter). They assume that pt and ct are the same size as the block cipher’s block size. Note
that you cannot call both functions given a single ocb state. For bi-directional communication you
will have to initialize two ocb states (with different nonces). Also pt and ¢t may point to the same
location in memory.

9See P. Rogaway, M. Bellare, J. Black, T. Krovetz, OCB: A Block Cipher Mode of Operation for Efficient
Authenticated Encryption.

32 www.libtom.org

State Termination

When you are finished encrypting the message you call the following function to compute the tag.

int ocb_done_encrypt(ocb_state *ocb,
const unsigned char *pt,
unsigned long ptlen,
unsigned char *ct,
unsigned char *tag,
unsigned long *taglen);

This will terminate an encrypt stream ocb. If you have trailing bytes of plaintext that will not
complete a block you can pass them here. This will also encrypt the ptlen bytes in pt and store
them in ct. It will also store up to taglen bytes of the tag into tag.

Note that ptlen must be less than or equal to the block size of block cipher chosen. Also note
that if you have an input message equal to the length of the block size then you pass the data here
(not to ocb_encrypt()) only.

To terminate a decrypt stream and compared the tag you call the following.

int ocb_done_decrypt(ocb_state *ocb,
const unsigned char *ct,
unsigned long ctlen,
unsigned char *pt,
const unsigned char x*tag,
unsigned long taglen,
int *res);

Similarly to the previous function you can pass trailing message bytes into this function. This will
compute the tag of the message (internally) and then compare it against the taglen bytes of tag
provided. By default res is set to zero. If all taglen bytes of tag can be verified then res is set to
one (authenticated message).

Packet Functions

To make life simpler the following two functions are provided for memory bound OCB.

int ocb_encrypt_authenticate_memory (
int cipher,

const unsigned char xkey, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);

This will OCB encrypt the message pt of length ptlen, and store the ciphertext in c¢t. The length
ptlen can be any arbitrary length.

3.5 Encrypt and Authenticate Modes 33

int ocb_decrypt_verify_memory (
int cipher,

const unsigned char xkey, unsigned long keylen,

const unsigned char *nonce,

const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,

const unsigned char *tag, unsigned long taglen,
int *res) ;

Similarly, this will OCB decrypt, and compare the internally computed tag against the tag
provided. res is set appropriately.

3.5.3 CCM Mode

CCM is a NIST proposal for encrypt + authenticate that is centered around using AES (or any
16-byte cipher) as a primitive. Unlike EAX and OCB mode, it is only meant for packet mode
where the length of the input is known in advance. Since it is a packet mode function, CCM only
has one function that performs the protocol.

int ccm_memory (
int cipher,
const unsigned char xkey, unsigned long keylen,
symmetric_key *uskey,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,

int direction);

This performs the CCM operation on the data. The cipher variable indicates which cipher in
the descriptor table to use. It must have a 16-byte block size for CCM.

The key can be specified in one of two fashions. First, it can be passed as an array of octets in
key of length keylen. Alternatively, it can be passed in as a previously scheduled key in uskey. The
latter fashion saves time when the same key is used for multiple packets. If uskey is not NULL,
then key may be NULL (and vice-versa).

The nonce or salt is nonce of length noncelen octets. The header is meta—data you want to send
with the message but not have encrypted, it is stored in header of length headerlen octets. The
header can be zero octets long (if headerlen = 0 then you can pass header as NULL).

The plaintext is stored in pt, and the ciphertext in ct. The length of both are expected to be
equal and is passed in as ptlen. It is allowable that pt = ct. The direction variable indicates whether
encryption (direction = CCM_ENCRYPT) or decryption (direction = CCM_DECRYP