
Yaws - Yet Another Web Server

Claes Wikstrom
klacke@hyber.org

February 25, 2011

Contents

1 Introduction 3

1.1 Prerequisites . 4

1.2 A tiny example . 4

2 Compile, Install, Config and Run 6

2.0.1 Compile and Install . 6

2.0.2 Configure . 7

3 Static content 10

4 Dynamic content 11

4.1 Introduction . 11

4.2 EHTML . 11

4.3 POSTs . 16

4.3.1 Queries . 16

4.3.2 Forms . 16

4.4 POSTing files . 17

5 Mode of operation 20

5.1 On the fly compilation . 20

5.2 Evaluating the Yaws Code . 21

6 SSL 22

7 Applications 23

7.1 Login scenarios . 23

7.1.1 The session server . 23

7.1.2 Arg rewrite . 25

1

CONTENTS 2

7.1.3 Authenticating . 25

7.1.4 Database driven applications . 27

7.2 Appmods . 27

7.3 The opaque data . 28

7.4 Customizations . 29

7.4.1 404 File not found . 29

7.4.2 Crash messages . 30

7.5 Stream content . 30

7.6 All out/1 return values . 31

8 Debugging and Development 33

8.1 Logs . 33

9 External scripts via CGI 34

10 FastCGI 35

10.1 The FastCGI Responder Role . 35

10.2 The FastCGI Authorizer Role . 36

10.3 The FastCGI Filter Role . 36

10.4 FastCGI Configuration . 36

11 Security 37

11.1 WWW-Authenticate . 37

12 Embedded mode 39

12.1 Creating Global and Server Configurations . 39

12.2 Starting Yaws in Embedded Mode . 40

13 The config file - yaws.conf 41

13.1 Global Part . 41

13.2 Server Part . 42

13.3 Configuration Examples . 45

Chapter 1

Introduction

YAWS is an ERLANG web server. It’s written in ERLANG and it uses ERLANG as its embedded language
similar to PHP in Apache or Java in Tomcat.

The advantages of ERLANG as an embedded web page language as opposed to Java or PHP are many.

• Speed - Using ERLANG for both implementing the web server itself as well as embedded script lan-
guage gives excellent dynamic page generation performance.

• Beauty - Well this is subjective

• Scalability - due to the light weight processes of ERLANG , YAWS is able to handle a very large
number of concurrent connections

YAWS has a wide feature set, it supports:

1. HTTP 1.0 and HTTP 1.1

2. Static content page delivery

3. Dynamic content generation using embedded ERLANG code in the HTML pages

4. Common Log Format traffic logs

5. Virtual hosting with several servers on the same IP address

6. Multiple servers on multiple IP addresses.

7. HTTP tracing for debugging

8. An interactive interpreter environment in the Web server while developing and debugging the web
site.

3

CHAPTER 1. INTRODUCTION 4

9. RAM caching of commonly accessed pages.

10. Full streaming capabilities of both up and down load of dynamically generated pages.

11. SSL

12. Support for WWW-Authenticated pages.

13. Support API for cookie based sessions.

14. Application Modules where virtual directory hierarchies can be made.

15. Embedded mode

1.1 Prerequisites

This document requires that the reader:

• Is well acquainted with the ERLANG programming language

• Understands basic Web technologies.

1.2 A tiny example

We introduce YAWS by help of a tiny example. The web server YAWS serves and delivers static content
pages similar to any old web server, except that YAWS does this much faster than most web servers. It’s
the dynamic pages that makes YAWS interesting. Any page with the suffix “.yaws” is considered a dynamic
YAWS page. A YAWS page can contain embedded ERLANG snippets that are executed while the page is
being delivered to the WWW browser.

Example 1.1 is the HTML code for a small YAWS page.

<html>

<p> First paragraph

<erl>
out(Arg) ->

{html, "<p>This string gets inserted into HTML document dynamically"}.
</erl>

<p> And here is some more HTML code

</html>

Figure 1.1: Example 1.1

CHAPTER 1. INTRODUCTION 5

It illustrates the basic idea behind YAWS . The HTML code can contain <erl> and </erl> tags and inside
these tags an ERLANG function called out/1 gets called and the output of that function is inserted into the
HTML document, dynamically.

It is possible to have several chunks of HTML code together with several chunks of ERLANG code in the
same YAWS page.

The Arg argument supplied to the automatically invoked out/1 function is an ERLANG record that contains
various data which is interesting when generating dynamic pages. For example the HTTP headers which
were sent from the WWW client, the actual TCP/IP socket leading to the WWW client. This will be
elaborated on throughly in later chapters.

The out/1 function returned the tuple {html, String} and String gets inserted into the HTML output.
There are number of different return values that can be returned from the out/1 function in order to control
the behavior and output from the YAWS web server.

Chapter 2

Compile, Install, Config and Run

This chapter is more of a “Getting started” guide than a full description of the YAWS configuration. YAWS is
hosted on Sourceforge at http://sourceforge.net/projects/erlyaws/. This is where the source code
resides in a CVS repository and the latest unreleased version is available through anonymous CVS through
the following commands:

export CVS_RSH=ssh
export CVSROOT=:pserver:anonymous@cvs.erlyaws.sourceforge.net:/cvsroot/erlyaws
cvs login
cvs -z3 co .

Released version of YAWS are available either at the Sourceforge site or at http://yaws.hyber.org/
download.

2.0.1 Compile and Install

To compile and install a YAWS release one of the prerequisites is a properly installed ERLANG system.
YAWS runs on ERLANG releases OTP R8 and later. Get ERLANG from http://www.erlang.org/

Compile and install is straight forward:

cd /usr/local/src
tar xfz yaws-X.XX.tar.gz
cd yaws
./configure && make
make install

The make command will compile the YAWS web server with the erlc compiler found by the configure
script.

• make install - will install the executable called yaws in /usr/local/bin/ and a working config-
uration file in /etc/yaws.conf

6

 http://sourceforge.net/projects/erlyaws/
http://yaws.hyber.org/download
http://yaws.hyber.org/download
http://www.erlang.org/

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 7

• make local_install - will install the executable in $HOME/bin and a working configuration file in
$HOME/yaws.conf

While developing a YAWS site, it’s typically most convenient to use the local_install and run YAWS as a
non-privileged user.

2.0.2 Configure

Let’s take a look at the config file that gets written to $HOME after a local_install.

first we have a set of globals

logdir = .
ebin_dir = /home/klacke/yaws/yaws/examples/ebin
include_dir = /home/klacke/yaws/yaws/examples/include

and then a set of servers

<server localhost>
port = 8000
listen = 127.0.0.1
docroot = /home/klacke/yaws/yaws/scripts/../www

</server>

Figure 2.1: Minimal Local Configuration

The configuration consists of an initial set of global variables that are valid for all defined servers.

The only global directive we need to care about for now is the logdir. YAWS produces a number of log files
and they will - using the Configuration from Figure 2.1 - end up in the current working directory. We start
YAWS interactively as

~/bin/yaws -i
Erlang (BEAM) emulator version 5.1.2.b2 [source]

Eshell V5.1.2.b2 (abort with ^G)
1>
=INFO REPORT==== 30-Oct-2002::01:38:22 ===
Using config file /home/klacke/yaws.conf
=INFO REPORT==== 30-Oct-2002::01:38:22 ===
Listening to 127.0.0.1:8000 for servers ["localhost:8000"]

1>

By starting YAWS in interactive mode (using the command switch -i we get a regular ERLANG prompt. This
is most convenient when developing YAWS /http pages. For example we:

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 8

• Can dynamically compile and load optional helper modules we need.

• Get all the crash and error reports written directly to the terminal.

The configuration in Example 2.1 defined one HTTP server on address 127.0.0.1:8000 called "localhost".
It is important to understand the difference between the name and the address of a server. The name is the
expected value in the client Host: header. That is typically the same as the fully qualified DNS name of the
server whereas the address is the actual IP address of the server.

Since YAWS support virtual hosting with several servers on the same IP address, this matters.

Nevertheless, our server listens to 127.0.0.1:8000 and has the name "localhost", thus the correct URL for
this server is http://localhost:8000.

The document root (docroot) for the server is set to the www directory in the YAWS source code distribution.
This directory contains a bunch of examples and we should be able to run all those example now on the URL
http://localhost:8000.

Instead of editing and adding files in the YAWS www directory, we create yet another server on the same IP
address but a different port number - and in particular a different document root where we can add our own
files.

mkdir ~/test
mkdir ~/test/logs

Now change the config so it looks like this:

logdir = /home/klacke/test/logs
ebin_dir = /home/klacke/test
include_dir = /home/klacke/test

<server localhost>
port = 8000
listen = 127.0.0.1
docroot = /home/klacke/yaws/yaws/www

</server>

<server localhost>
port = 8001
listen = 127.0.0.1
docroot = /home/klacke/test

</server>

We define two servers, one being the original default and a new pointing to a document root in our home
directory.

We can now start to add static content in the form of HTML pages, dynamic content in the form of .yaws
pages or ERLANG .beam code that can be used to generate the dynamic content.

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 9

The load path will be set so that beam code in the directory ~/test will be automatically loaded when
referenced.

It is best to run YAWS interactively while developing the site. In order to start the YAWS as a daemon, we
give the flags:

yaws -D --heart

The -D or –daemon flags instructs YAWS to run as a daemon and the –heart flag will start a heartbeat program
called heart which restarts the daemon if it should crash or if it stops responding to a regular heartbeat. By
default, heart will restart the daemon unless it has already restarted 5 times in 60 seconds or less, in which
case it considers the situation fatal and refuses to restart the daemon again. The -heart-restart=C,T flag
changes the default 5 restarts in 60 seconds to C restarts in T seconds. For infinite restarts, set both C and T
to 0. This flag also enables the –heart flag.

Once started in daemon mode, we have very limited ways of interacting with the daemon. It is possible to
query the daemon using:

yaws -S

This command produces a simple printout of Uptime and number of hits for each configured server.

If we change the configuration, we can HUP the daemon using the command:

yaws -h

This will force the daemon to reread the configuration file.

Chapter 3

Static content

YAWS acts very much like any regular web server while delivering static pages. By default YAWS will cache
static content in RAM. The caching behavior is controlled by a number of global configuration directives.
Since the RAM caching occupies memory, it may be interesting to tweak the default values for the caching
directives or even to turn it off completely.

The following configuration directives control the caching behavior

• max_num_cached_files = Integer YAWS will cache small files such as commonly accessed GIF images
in RAM. This directive sets a maximum number on the number of cached files. The default value is
400.

• max_num_cached_bytes = Integer This directive controls the total amount of RAM which can maxi-
mally be used for cached RAM files. The default value is 1000000, 1 megabyte.

• max_size_cached_file = Integer

This directive sets a maximum size on the files that are RAM cached by YAWS . The default value i
8000, 8 batters.

It may be considered to be confusing, but the numbers specified in the above mentioned cache directives
are local to each server. Thus if we have specified max_num_cached_bytes = 1000000 and have defined
3 servers, we may actually use 3∗1000000 bytes.

10

Chapter 4

Dynamic content

Dynamic content is what YAWS is about. Most web servers are designed with HTTP and static content in
mind whereas YAWS is designed for dynamic pages from the start. Most large sites on the Web today make
heavy use of dynamic pages.

4.1 Introduction

When the client GETs a page that has a .yaws suffix, the YAWS server will read that page from the hard disk
and divide it in parts that consist of HTML code and ERLANG code. Each chunk of ERLANG code will be
compiled into a module. The chunk of ERLANG code must contain a function out/1. If it doesn’t the YAWS

server will insert a proper error message into the generated HTML output.

When the YAWS server ships a .yaws page it will process it chunk by chunk through the .yaws file. If it is
HTML code, the server will ship that as is, whereas if it is ERLANG code, the YAWS server will invoke the
out/1 function in that code and insert the output of that out/1 function into the stream of HTML that is
being shipped to the client.

YAWS will (of course) cache the result of the compilation and the next time a client requests the same .yaws
page YAWS will be able to invoke the already compiled modules directly.

4.2 EHTML

There are two ways to make the out/1 function generate HTML output. The first and most easy to under-
stand is by returning a tuple {html, String} where String then is regular HTML data (possibly as a deep
list of strings and/or binaries) which will simply be inserted into the output stream. An example:

<html>
<h1> Example 1 </h1>

<erl>
out(A) ->

Headers = A#arg.headers,
{html, io_lib:format("You say that you’re running ~p",

11

CHAPTER 4. DYNAMIC CONTENT 12

[Headers#headers.user_agent])}.

</erl>

</html>

The second way to generate output is by returning a tuple {ehtml, EHTML}. The term EHTML must adhere
to the following structure:

EHT ML = [EHT ML]|{TAG,Attrs,Body}|{TAG,Attrs}|{TAG}|binary()|character()

TAG = atom()

Attrs = [{HtmlAttribute,Value}]

HtmlAttribute = atom()

Value = string()|atom()

Body = EHT ML

We give an example to show what we mean: The tuple

{ehtml, {table, [{bgcolor, grey}],
[
{tr, [],
[
{td, [], "1"},
{td, [], "2"},
{td, [], "3"}
]

},
{tr, [],
[{td, [{colspan, "3"}], "444"}]}]}}.

Would be expanded into the following HTML code

<table bgcolor="grey">
<tr>
<td> 1 </td
<td> 2 </td>
<td> 3 </td>

</tr>
<tr>
<td colspan="3"> 444 </td>

</tr>
</table>

At a first glance it may appears as if the HTML code is more beautiful than the ERLANG tuple. That may
very well be the case from a purely aesthetic point of view. However the ERLANG code has the advantage

CHAPTER 4. DYNAMIC CONTENT 13

of being perfectly indented by editors that have syntax support for ERLANG (read Emacs). Furthermore, the
ERLANG code is easier to manipulate from an ERLANG program.

As an example of some more interesting ehtml we could have an out/1 function that prints some of the
HTTP headers.

In the www directory of the YAWS source code distribution we have a file called arg.yaws. The file
demonstrates the Arg #arg record parameter which is passed to the out/1 function.

But before we discuss that code, we describe the Arg record in detail.

Here is the yaws_api.hrl file which is in included by default in all YAWS files. The #arg record contains
many fields that are useful when processing HTTP request dynamically. We have access to basically all the
information which associated to the client request such as:

• The actual socket leading back to the HTTP client

• All the HTTP headers - parsed into a #headers record.

• The HTTP request - parsed into a #http_request record

• clidata - Data which is POSTed by the client

• querydata - This is the remainder of the URL following the first occurrence of a ? character - if any.

• docroot - The absolute path to the docroot of the virtual server that is processing the request.

-record(arg, {
clisock, %% the socket leading to the peer client
client_ip_port, %% {ClientIp, ClientPort} tuple
headers, %% headers
req, %% request
clidata, %% The client data (as a binary in POST requests)
server_path, %% The normalized server path
querydata, %% Was the URL on the form of ...?query (GET reqs)
appmoddata, %% the remainder of the path leading up to the querey
docroot, %% where’s the data
docroot_mount, %% virtual directory e.g /myapp/ that the docroot

%% refers to.
fullpath, %% full path to yaws file
cont, %% Continuation for chunked multipart uploads
state, %% State for use by users of the out/1 callback
pid, %% pid of the yaws worker process
opaque, %% useful to pass static data
appmod_prepath, %% path in front of: <appmod><appmoddata>
prepath, %% Path prior to ’dynamic’ segment of URI.

%% ie http://some.host/<prepath>/<script-point>/d/e
%% where <script-point> is an appmod mount point,
%% or .yaws,.php,.cgi,.fcgi etc script file.

pathinfo %% Set to ’d/e’ when calling c.yaws for the request

CHAPTER 4. DYNAMIC CONTENT 14

%% http://some.host/a/b/c.yaws/d/e
}).

-record(http_request, {method,
path,
version}).

-record(headers, {
connection,
accept,
host,
if_modified_since,
if_match,
if_none_match,
if_range,
if_unmodified_since,
range,
referer,
user_agent,
accept_ranges,
cookie = [],
keep_alive,
location,
content_length,
content_type,
content_encoding,
authorization,
transfer_encoding,
other = [] %% misc other headers

}).

There are a number of advanced fields in the #arg record such as appmod, opaque that will be discussed in
later chapters.

Now, we show some code which displays the content of the Arg #arg record. The code is available in
yaws/www/arg.yaws and after a a local_install a request to http://localhost:8000/arg.yaws will run the
code.

<html>

<h2> The Arg </h2>

<p>This page displays the Arg #argument structure
supplied to the out/1 function.

CHAPTER 4. DYNAMIC CONTENT 15

<erl>

out(A) ->
Req = A#arg.req,
H = yaws_api:reformat_header(A#arg.headers),
{ehtml,
[{h4,[], "The headers passed to us were:"},
{hr},
{ol, [],lists:map(fun(S) -> {li,[], {p,[],S}} end,H)},

{h4, [], "The request"},
{ul,[],
[{li,[], f("method: ~s", [Req#http_request.method])},
{li,[], f("path: ~p", [Req#http_request.path])},
{li,[], f("version: ~p", [Req#http_request.version])}]},

{hr},
{h4, [], "Other items"},
{ul,[],
[{li,[], f("clisock from: ~p", [inet:peername(A#arg.clisock)])},
{li,[], f("docroot: ~s", [A#arg.docroot])},
{li,[], f("fullpath: ~s", [A#arg.fullpath])}]},

{hr},
{h4, [], "Parsed query data"},
{pre,[], f("~p", [yaws_api:parse_query(A)])},
{hr},
{h4,[], "Parsed POST data "},
{pre,[], f("~p", [yaws_api:parse_post(A)])}]}.

</erl>

</html>

The code utilizes 4 functions from the yaws_api module. yaws_api is a general purpose www api module
that contains various functions that are handy while developing YAWS code. We will see many more of
those functions during the examples in the following chapters.

The functions used are:

• yaws_api:f/2 alias for io_lib:format/2. The f/2 function is automatically -included in all
YAWS code.

• yaws_api:reformat_header/1 — This function takes the #headers record and unparses it, that is
reproduces regular text.

• yaws_api:parse_query/1 — The topic of next section.

CHAPTER 4. DYNAMIC CONTENT 16

• yaws_api:parse_post/1 — Ditto.

4.3 POSTs

4.3.1 Queries

The user can supply data to the server in many ways. The most common is to give the data in the actual
URL. If we invoke:

GET http://localhost:8000/arg.yaws?kalle=duck&goofy=unknown

we pass two parameters to the arg.yaws page. That data is URL-encoded by the browser and the server
can retrieve the data by looking at the remainder of the URL following the ? character. If we invoke the
arg.yaws page with the above mentioned URL we get as the result of yaws_parse_query/1:

kalle = duck

goo f y = unknown

In ERLANG terminology, the call yaws_api:parse_query(Arg) returns the list:

[{kalle, "duck"}, {goofy, "unknown"}]

Note that the first element is transformed into an atom, whereas the value is still a string.

hence, a web page can contain URLs with a query and thus pass data to the web server. This scheme works
both with GET and POST requests. It is the easiest way to pass data to the Web server since no FORM is
required in the web page.

4.3.2 Forms

In order to POST data a FORM is required, say that we have a page called form.yaws that contain the
following code:

<html>
<form action="/post_form.yaws"

method="post"

<p> A Input field
<input name="xyz" type="text">
<input type="submit">
</form>
</html>

This will produce a page with a simple input field and a Submit button.

If we enter something - say “Hello there “ - in the input field and click the Submit button the client will
request the page indicated in the “action” attribute, namely post_form.yaws.

If that YAWS page has the following code:

CHAPTER 4. DYNAMIC CONTENT 17

out(A) ->
L = yaws_api:parse_post(A),
{html, f("~p", [L])}

The user will see the output

[{xyz, "Hello there"}]

The differences between using the query part of the URL and a form are the following:

• Using the query arg only works in GET request. We parse the query argument with the function
yaws_api:parse_query(Arg)

• If we use a form and POST the user data the client will transmit the user data in the body of the
request. That is - the client sends a request to get the page using the POST method and it then attaches
the user data - encoded - into the body of the request.

A POST request can have a query part in its URL as well as user data in the body.

4.4 POSTing files

It is possible to upload files from the client to the server by means of POST. We indicate this in the form by
telling the browser that we want a different encoding. Here is an example form that does this:

out(A) ->
Form =

{form, [{enctype, "multipart/form-data"},
{method, post},
{action, "file_upload_form.yaws"}],
[{input, [{type, submit}, {value, "Upload"}]},
{input, [{type,file}, {width, "50"}, {name, foo}]}]},

{ehtml, {html,[], [{h2,[], "A simple file upload page"},
Form]}}.

CHAPTER 4. DYNAMIC CONTENT 18

As shown in the figure, the page delivers the entire HTML page with enclosing html markers.

The user gets an option to browse the local host for a file or the user can explicitly fill in the file name in the
input field. The file browsing part is automatically taken care of by the browser.

The action field in the form states that the client shall POST to a page called file_upload_form.yaws.
This page will get the contents of the file in the body of the POST message. To read it, we use the
yaws_multipart module, which provides the following capabilities:

1. It reads all parameters — files uploaded and other simple parameters.

2. It takes a few options to help file uploads. Specifically:

(a) {max_file_size, MaxBytes}: if the file size in bytes exceeds MaxBytes, return an error

(b) no_temp_file: read the uploaded file into memory without any temp files

(c) {temp_file,FullFilePath}: specify FullFilePath for the temp file; if not given, a unique
file name is generated

(d) {temp_dir, TempDir}: specify TempDir as the directory to store the uploaded temp file; if this
option is not provided, then by default an OS-specific temp directory such as “/tmp” is used

Just call yaws_multipart:read_multipart_form from your out/1 function and it’ll return a tuple with
the first element set to one of these three atoms:

• get_more: more data needs to be read; return this tuple directly to YAWS from your out/1 function
and it will call your out/1 function again when it has read more POST data, at which point you must
call read_multipart_form again

• done: multipart form reading is complete; a dict full of parameters is returned

• error: an error occurred

The dict returned with done allows you to query it for parameters by name. For file upload parameters, it
returns one of the following lists:

[{filename, "name of the uploaded file as entered on the form"},
{value, Contents_of_the_file_all_in_memory} | _T]

CHAPTER 4. DYNAMIC CONTENT 19

or:

[{filename, "name of the uploaded file as entered on the form"},
{temp_file, "full pathname of the temp file"} | _T]

Some multipart/form messages also include headers such as Content-Type and Content-Transfer-Encoding
for different subparts of the message. If these headers are present in any subpart of a multipart/form message,
they’re also included in that subpart’s parameter list, like this:

[{filename, "name of the uploaded file as entered on the form"},
{value, Contents_of_the_file_all_in_memory},
{content_type, "image/png"} | _T]

Note that for the temporary file case, it’s your responsibility to delete the file when you’re done with it.

Here’s an example:

-module(my_yaws_controller).
-export([out/1]).

out(Arg) ->
Options = [no_temp_file],
case yaws_multipart:read_multipart_form(Arg, Options) of

{done, Params} ->
io:format("Params : ~p~n", [Params]),
{ok, [{filename, FileName},{value,FileContent}|_]} =

dict:find("my_file", Params),
AnotherParam = dict:find("another_param", Params);

%% do something with FileName, FileContent and AnotherParam
{error, Reason} ->

io:format("Error reading multipart form: ~s~n", [Reason]);
Other -> Other

end.

Chapter 5

Mode of operation

5.1 On the fly compilation

When the client requests a YAWS page, YAWS will look in its caches (there is one cache per virtual server)
to see if it finds the requested page in the cache. If YAWS doesn’t find the page in the cache, it will compile
the page. This only happens the first time a page is requested. Say that the page is 400 bytes big and has the
following layout:

100 bytes of HTML code

120 bytes of Erlang code

80 bytes of HTML code

60 bytes of Erlang code

140 bytes of HTML code

The YAWS server will then parse the file and produce a structure which makes it possible to deliver the page
in a readily fashion the next time the same page is requested.

When shipping the page it will

1. Ship the first 100 bytes from the file

2. Evaluate the first ERLANG chunk in the file and ship the output from the out/1 function in that chunk.
It will also jump ahead in the file and skip 120 bytes.

3. Ship 80 bytes of HTML code

20

CHAPTER 5. MODE OF OPERATION 21

4. Again evaluate an ERLANG chunk, this time the second and jump ahead 60 bytes in the file.

5. And finally ship 140 bytes of HTML code to the client

YAWS writes the source output of the compilation into a directory /tmp/yaws/$UID. The beam files are
never written to a file. Sometimes it can be useful to look at the generated source code files, for example if
the YAWS /ERLANG code contains a compilation error which is hard to understand.

5.2 Evaluating the Yaws Code

All client requests will execute in their own ERLANG process. For each group of virtual hosts on the same
IP:PORT pair one ERLANG process listens for incoming requests.

This process spawns acceptor processes for each incoming request. Each acceptor process reads and parses
all the HTTP headers from the client. It then looks at the Host: header to figure out which virtual server to
use, i.e. which docroot to use for this particular request. If the Host: header doesn’t match any server from
yaws.conf with that IP:PORT pair, the first one from yaws.conf is chosen.

By default YAWS will not ship any data at all to the client while evaluating a YAWS page. The headers as
well as the generated content are accumulated and not shipped to the client until the entire page has been
processed.

Chapter 6

SSL

SSL - Secure Socket Layer is a protocol used on the Web for delivering encrypted pages to the WWW client.
SSL is widely deployed on the Internet and virtually all bank transactions as well as all on-line shopping
today is done with SSL encryption. There are many good sources on the net that describes SSL in detail
- and I will not try to do that here. There is for example a good document at: http://www.tldp.org/
HOWTO/SSL-Certificates-HOWTO/ which describes how to manage certificates and keys.

In order to run an SSL server we must have a certificate. Either we can create a so called self-signed
certificate ourselves or buy a certificate from one of the many CA’s (Certificate Authority’s) on the net.
YAWS use the otp interface to openssl.

To setup a YAWS server with SSL we could have a yaws.conf file that looks like:

logdir = /var/log/yaws

<server www.funky.org>
port = 443
listen = 192.168.128.32
docroot = /var/yaws/www.funky.org
<ssl>

keyfile = /etc/funky.key
certfile = /etc/funky.cert
password = gazonk

</ssl>
</server>

This is the easiest possible SSL configuration. The configuration refers to a certificate file and a key file.
The certificate file must contain the name "www.funky.org" as it "Common Name".

The keyfile is the private key file and it is encrypted using the password "gazonk".

22

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/
http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/

Chapter 7

Applications

YAWS is well suited for Web applications. In this chapter we will describe a number of application templates.
Code and strategies that can be used to build Web applications.

There are several ways of starting applications from YAWS .

• The first and most easy variant is to specify the -r Module flag to the YAWS startup script. This will
apply(Module,start,[])

• We can also specify runmods in the yaws.conf file. It is possible to have several modules specified if
want the same YAWS server to run several different applications.

runmod = myapp
runmod = app_number2

• It is also possible to do it the other way around, let the main application start YAWS . We call this
embedded mode and that will be discussed in a later chapter,

7.1 Login scenarios

Many Web applications require the user to login. Once the user has logged in the server sets a Cookie and
then the user will be identified by help of the cookie in subsequent requests.

7.1.1 The session server

The cookie is passed in the headers and is available to the YAWS programmer in the Arg #arg record. The
YAWS session server can help us to maintain a state for a user while the user is logged in to the application.
The session server has the following 5 api functions to aid us:

1. yaws_api:new_cookie_session(Opaque) This function initiates a new cookie based session. The
Opaque data is typically some application specific structure which makes it possible for the application
to read a user state, or it can be the actual user state itself.

23

CHAPTER 7. APPLICATIONS 24

2. yaws_api:cookieval_to_opaque(Cookie) This function maps a cookie to a session.

3. yaws_api:replace_cookie_session(Cookie, NewOpaque) Replace the Opaque user state in the
session server.

4. yaws_api:delete_cookie_session(Cookie) This function should typically be called when the
user logs out or when our web application decides to auto logout the user.

All cookie based applications are different but they have some things in common. In the example that follow
we assume the existence of a function myapp:auth(UserName, Passwd) and it returns ok or {error, Reason}.

Furthermore - let’s have a record:

-record(session, {user,
passwd,
udata = []}).

The following function is a good template function to check the cookie.

get_cookie_val(CookieName, Arg) ->
H = Arg#arg.headers,
yaws_api:find_cookie_val(CookieName, H#headers.cookie).

check_cookie(A, CookieName) ->
case get_cookie_val(CookieName, A) of

[] ->
{error, "not logged in"};

Cookie ->
yaws_api:cookieval_to_opaque(Cookie)

end.

So what we need to do is the following: We want to check all requests and make sure the the session_server
has our cookie registered as an active session.

If a request comes in without a working cookie we want to present a login page instead of the page the user
requested.

Another quirky issue is that the pages necessary for display of the login page must be shipped without
checking the cookie.

CHAPTER 7. APPLICATIONS 25

7.1.2 Arg rewrite

In this section we describe a feature whereby the user is allowed to rewrite the Arg at an early stage in the
YAWS server. We do that by specifying an arg_rewrite_mod in the yaws.conf file.

arg_rewrite_mod = myapp

Then in the myapp module we have:

arg_rewrite(Arg) ->
OurCookieName = "myapp_sid"
case check_cookie(A, OurCookieName) of

{error, _} ->
do_rewrite(Arg);

{ok, _Session} ->
%return Arg untouched
Arg

end.

%% these pages must be shippable without a good cookie
login_pages() ->

["/banner.gif", "/login.yaws", "/post_login.yaws"].

do_rewrite(Arg) ->
Req = Arg#arg.req,
{abs_path, Path} = Req#http_request.path,
case lists:member(Path, login_pages()) of

true ->
Arg;

false ->
Arg#arg{req = Req#http_request{path = {abs_path, "/login.yaws"}},

state = {abs_path, Path}}
end.

Our arg rewrite function lets all Args go through untouched that either have a good cookie or belong to a set
of predefined pages that are acceptable to get without being logged in. If we decode that the user must log
in, we change the path of the request, thereby making the YAWS server ship a login page instead of the page
the user requested. We also set the original path in the Arg state argument so that the login page can redirect
the user to the original page - once the login procedure is finished.

7.1.3 Authenticating

Now we’re approaching the login.yaws page, the page that displays the login prompt to the user. The login
page consists of two parts, one part that displays the login data as a form and one form processing page that
reads the data the user entered in the login fields and performs the actual authentication.

CHAPTER 7. APPLICATIONS 26

The login page performs a tiny well known Web trick where it passes the original URL request in a hidden
field in the login page and thereby passing that information to the form processing page.

The page login.yaws:

<erl>

out(A) ->
{ehtml,
{html,[],
[{h2, [], "Login page"},
{hr},
{form, [{action,"/login_post.yaws"},

{method,post}],

[{p,[], "Username"}, {input, [{type,text},{name,uname}]},
{p,[],"Password"}, {input, [{type,password},{name,passwd}]},
{input, [{type,submit},{value,"Login"}]},
{input, [{type,hidden},{name,url},

{value, A#arg.state}]}]}]}}.

</erl>

The form processing page which gets the POST data from the code above looks like:

<erl>

-include("myapp.hrl").
%% we have the session record there
%% we must set the include_path in the yaws.conf file
%% in order for the compiler to find that file

kv(K,L) ->
{value, {K, V}} = lists:keysearch(K,1,L),
V.

out(A) ->
L = yaws_api:parse_post(A),
User = kv(user, L),
Pwd = kv(passwd, L),
case myapp:auth(User, Pwd) of

ok ->
S = #session{user = User,

passwd = Pwd,
udata = []},

%% Now register the session to the session server

CHAPTER 7. APPLICATIONS 27

Cookie = yaws_api:new_cookie_session(S),
[{redirect_local, kv(url, L)},

yaws_api:setcookie("myapp_sid",Cookie)]
Err ->

{ehtml,
{html, [],
{p, [], f("Bad login: ~p",[Err])}}}

end.

</erl>

The function returns a list of two new previously not discussed return values: Instead of returning HTML
output as in {html, Str} or {ehtml,Term} we return a list of two new values. There are many different
possible return values from the out/1 function and they will all be described later.

1. The tuple {redirect_local, Path}. This particular redirect return value will make the YAWS web
server return a 302 redirect to the specified Path. Optionally a different status code can be supplied
which will be used in place of 302, eg {redirect_local, Path, 307}.

2. yaws_api:setcookie("myapp_sid",Cookie) generates a Set-Cookie header

Now if we put all this together we have a full blown cookie based login system. The last thing we did in the
form processing code was to register the session with the session server thereby letting any future requests
go straight through the Arg rewriter.

This way both YAWS pages as well as all or some static content is protected by the cookie login code.

7.1.4 Database driven applications

We can use code similar to the code in the previous section to associate a user session to entries in a database.
Mnesia fits perfectly together with YAWS and keeping user persistent state in Mnesia is both easy and
convenient.

Once the user has logged in we can typically use the user name as key into the database. We can mix
ram_tables and disc_tables to our liking. The Mnesia database must be initialized by means of create_table/2
before it can be used. This is typically done while installing the web application on a machine.

Another option is to let the application check that Mnesia is initialized whenever the application starts.

If we don’t want or need to use Mnesia, it’s of course possible to use a simple dets file or a text file as well.

7.2 Appmods

Appmods is mechanism to invoke different applications based upon the URL. A URL - as presented to the
web server in a request - has a path part and a query part.

It is possible to install several appmods in the yaws.conf file as:

CHAPTER 7. APPLICATIONS 28

appmods = foo myapp

Now, if the user requests a URL where any component in the directory path is an appmod, the parsing of the
URL will terminate there and instead of reading the actual file from the disk, YAWS will invoke the appmod
with the remainder of the path inserted into Arg#arg.appmoddata.

Say the user requests the URL http://www.funky.org/myapp/xx/bar.html. YAWS will not ship the file bar.html
to the client, instead it will invoke myapp:out(Arg)with Arg#arg.appmoddata set to the string xx/bar.html.
Any optional query data - that is data that follows the first "?" character in the URL - is removed from the
path and passed as Arg#arg.querydata.

Appmods can be used to run applications on a server. All requests to the server that has an appmod in the
URL will be handled by that application. If the application decides that it want to ship a page from the disk
to the client, it can return the tuple {page, Path}. This return value will make YAWS read the page from
the disk, possibly add the page to it’s cache of commonly accessed pages and ship it back to the client.

The {page, Path} return value is equivalent to a redirect, but it removes an extra round trip - and is thus
faster.

Appmods can also be used to fake entire directory hierarchies that doesn’t exists on the disk.

7.3 The opaque data

Sometimes an application needs application specific data such as the location of its data files or whatever.
There exists a mechanism to pass application specific configuration data from the YAWS server to the appli-
cation.

When configuring a server we have an opaque field in the configuration file that can be used for this purpose.
Say that we have the following fields in the config file:

<server foo>
listen = 192.168.128.44
<opaque>

foo = bar
somefile = /var/myapp/db
myname = hyber

</opaque>
</server>

This will create a normal server that listens to the specified IP address. An application has access to the
opaque data that was specified in that particular server through Arg#arg.opaque

If we have the opaque data specified above, the Arg opaque field will have the value:

[{foo, "bar"},
{somefile, "/var/myapp/db"},

CHAPTER 7. APPLICATIONS 29

{myname, "hyber"}
]

7.4 Customizations

When actually deploying an application at a live site, some of the standard YAWS behaviors are not accept-
able. Many sites want to customize the web server behavior when a client requests a page that doesn’t exists
on the web server. The standard YAWS behavior is to reply with status code 404 and a message explaining
that the page doesn’t exist.

Similarly, when YAWS code crashes, the Reason for the crash is displayed in the Web browser. This is very
convenient while developing a sit but not acceptable in production.

7.4.1 404 File not found

We can install a special handler for 404 messages. We do that by specifying a errormod_404 in the
yaws.conf file.

If we have:

<server foo>
..
..
..
errormod_404 = myapp

</server>

When YAWS gets a request for a file that doesn’t exists on the hard disk, it invokes the errormod_404 module
to generate both the status code as well as the content of the message.

Module:out404(Arg, GC, SC) will be invoked by YAWS . The arguments are

• Arg is a #arg record

• GC is a #gconf record (defined in yaws.hrl)

• SC is a #sconf record (defined in yaws.hrl)

The function can and must do the same things that a normal out/1 does.

CHAPTER 7. APPLICATIONS 30

7.4.2 Crash messages

We use a similar technique for generating the crash messages, we install a module in the yaws.conf file and
let that module generate the crash message. We have:

errormod_crash = Module

The default is to display the entire formated crash message in the browser. This is good for debugging but
not in production.

The function Module:crashmsg(Arg, SC, Str) will be called. The Str is the real crash message for-
mated as a string.

7.5 Stream content

If the out/1 function returns the tuple {content, MimeType, Content} YAWS will ship that data to the
Client. This way we can deliver dynamically generated content to the client which is of a different mime
type than "text/html".

If the generated file is very large and it not possible to generate the entire file, we can return the value:
{streamcontent, MimeType, FirstChunk} which delivers data back to the client using HTTP chunked
transfer (see RFC 2616 section 3.6.1) and then from a different ERLANG process deliver the remaining
chunks by using the functions:

1. yaws_api:stream_chunk_deliver(YawsPid, Data) where the YawsPid is the process id of the
YAWS worker process. That pid is available in Arg#arg.pid.

2. stream_chunk_end(YawsPid) This function must be called to indicate the end of the stream.

A streaming alternative is also available for applications that need a more direct way to deliver data to clients,
such as those dealing with data too large to buffer in memory but not wishing to use chunked transfer, or ap-
plications that use long-polling (Comet) techniques that require them to hold client connections open for ex-
tended periods. For these situations we can return the value: {streamcontent_from_pid, MimeType, Pid}
to tell YAWS that we wish to deliver data of mime type MimeType to the client from process Pid. In this
case, YAWS will prepare the socket for delivery from Pid and then send one of the following messages to
Pid:

• {ok, YawsPid} tells Pid that it is now OK to proceed with sending data back to the client using the
socket. The socket is accessible as Arg#arg.clisock.

• {discard, YawsPid} informs Pid that it should not attempt to use the socket, typically because the
requested HTTP method requires no response body.

We call one of the following functions to send data:

• yaws_api:stream_process_deliver(Socket, IoList) sends data IoList using socket Socket
without chunking the data.

CHAPTER 7. APPLICATIONS 31

• yaws_api:stream_process_deliver_chunk(Socket, IoList) sends data IoList using socket
Socket but converts the data into chunked transfer form before sending it.

Pids using chunked transfer must indicate the end of their transfer by calling the following function:

• yaws_api:stream_process_deliver_final_chunk(Socket, IoList)

which delivers a special HTTP chunk to mark the end of the data transfer to the client.

Finally, Pid must always call yaws_api:stream_process_end(Socket, YawsPid) when it finishes send-
ing data or when it receives the {discard, YawsPid} message from YAWS — this is required to inform
YAWS that Pid has finished with the socket and will not use it directly anymore. If the application has to
close the socket while it’s in control of it, though, it must pass the atom closed as the first argument to
yaws_api:stream_process_end in place of the socket to inform YAWS that the socket has been closed
and it should no longer attempt to use it.

Applications using streamcontent_from_pidwanting to avoid chunked transfer encoding for their streams
should be sure to include a setting for the Content-Length header in their out/1 return value. YAWS auto-
matically sets the Transfer-Encoding header to chunked if it does not detect a Content-Length header.

7.6 All out/1 return values

• {html, DeepList} This assumes that DeepList is formatted HTML code. The code will be inserted
in the page.

• {ehtml, Term} This will transform the ERLANG term Term into a stream of HTML content.

• {content, MimeType, Content} This function will make the web server generate different content
than HTML. This return value is only allowed in a YAWS file which has only one <erl> </erl> part
and no html parts at all.

• {streamcontent, MimeType, FirstChunk} This return value plays the same role as the content
return value above. However it makes it possible to stream data to the client using HTTP chunked
transfer if the YAWS code doesn’t have access to all the data in one go. (Typically if a file is very large
or if data arrives from back end servers on the network.)

• {streamcontent_from_pid, MimeType, Pid} This return value is similar to the streamcontent
return value above. However it makes it possible to stream data to the client directly from an appli-
cation process to the socket. This approach can be useful for applications that employ long-polling
(Comet) techniques, for example, and for applications wanting to avoid buffering data or avoid HTTP
chunked mode transfer for streamed data.

• {header, H} Accumulates a HTTP header. Used by for example the yaws_api:setcookie/2-6
function.

• {allheaders, HeaderList} Will clear all previously accumulated headers and replace them.

• {status, Code} Will set another HTTP status code than 200.

• break Will stop processing of any consecutive chunks of erl or html code in the YAWS file.

CHAPTER 7. APPLICATIONS 32

• ok Do nothing.

• {redirect, Url} Erase all previous headers and accumulate a single Location header. Set the status
code.

• {redirect, Url, Status} Same as redirect above with the additional option of supplying the status
code. The default for a redirect is 302 but 301, 303 and 307 are also valid redirect status codes.

• {redirect_local, Path} Does a redirect to the same Scheme://Host:Port/Path in which we are
currently executing. Path can be either be the path directly (equivalent to abs_path), or one of
{{abs_path, Path} or {{rel_path, RelativePath}}

• {redirect_local, Path, Status} Same as redirect_local above with the additional option of
supplying the status code. The default for a redirect is 302 but 301, 303 and 307 are also valid redirect
status codes.

• {get_more, Cont, State} When we are receiving large POSTs we can return this value and be
invoked again when more Data arrives.

• {page, Page} Make YAWS return a different page than the one being requested.

• {page, {Options, Page}}

Like the above, but supplying an additional deep list of options. For now, the only type of option is
{header, H} with the effect of accumulating the HTTP header H for page Page.

• [ListOfValues]

It is possible to return a list of the above defined return values. Any occurrence of stream_content,
get_more, or page in this list is legal only if it is the last position of the list.

Chapter 8

Debugging and Development

YAWS has excellent debugging capabilities. First and foremost we have the ability to run the web server in
interactive mode by means of the command line switch -i

This gives us a regular ERLANG command line prompt and we can use that prompt to compile helper code
or reload helper code. Furthermore all error messages are displayed there. If a .yaws page producees any
regular ERLANG io, that output will be displayed at the ERLANG prompt - assuming that we are running in
interactive mode.

If we give the command line switch -d we get some additional error messages. Also YAWS does some
additional checking of user supplied data such as headers.

8.1 Logs

YAWS produces various logs. All log files are written into the YAWS logdir directory. This directory is
specified in the config file.

We have the following log files:

• The access log. Access logging is turn on or off per server in the yaws.conf file. If access_log
is turned on for a server, YAWS will produce a log in Common Access Log Format called Host-
Name:PortNumber.access

• report.log This file contains all error and crash messages for all virtual servers in the same file.

• trace.traffic and trace.http The two command line flags -t and -T tells YAWS to trace all traffic or just
all HTTP messages and write them to a file.

33

Chapter 9

External scripts via CGI

YAWS can also interface to external programs generating dynamic content via the Common Gateway Inter-
face (CGI). This has to be explicitly enabled for a virtual host by listing cgi in the allowed_scripts line
in the configuration file. Any request for a page ending in .cgi (or .CGI) will then result in trying to execute
the corresponding file.

If you have a Php executable compiled for using CGI in the PATH of the YAWS server, you can enable Php
support by adding php to allowed_scripts. Requests for pages ending in .php will then result in YAWS

executing php (configurable via php_exe_path) and passing the name of the corresponding file to it via the
appropriate environment variable.

These ways of calling CGI scripts are also available to .yaws scripts and appmods via the functions
yaws_api:call_cgi/2 and yaws_api:call_cgi/3. This makes it possible to write wrappers for CGI
programs, irrespective of the value of allowed_scripts.

The author of this YAWS feature uses it for self-written CGI programs as well as for using a standard
CGI package. You should not be surprised however, should some scripts not work as expected due to
an incomplete or incorrect implementation of certain CGI meta-variables. The author of this feature is
interested in hearing about your experiences with it. He can be contacted at carsten@codimi.de.

34

Chapter 10

FastCGI

YAWS supports the responder role and the authorizer role of the FastCGI protocol. See www.fastcgi.com
for details on the FastCGI protocol.

The benefits of using FastCGI include:

1. Unlike CGI, it is not necessary to spawn a new process for every request; the application server can
handle multiple requests in a single process.

2. The fact that the application server can run on a different computer benefits scalability and security.

3. The application server can be written in any language for which a FastCGI library is available. Exist-
ing applications which have been written for other web servers can be used with YAWS .

4. FastCGI can also be used to implement external authentication servers (in addition to generating
dynamic content).

Support for FastCGI was added to YAWS by Bruno Rijsman (brunorijsman@hotmail.com).

10.1 The FastCGI Responder Role

The FastCGI responder role allows YAWS to communicate with an application server running on a different
(or on the same) computer to generate dynamic content.

The FastCGI protocol (which runs over TCP) is used to send the request information from YAWS to the
application server and to send the response information (e.g. the generated dynamic content) from the
application server back to YAWS .

FastCGI responders can be invoked in two ways:

1. By including fcgi in the allowed_scripts line in the configuration file (note that the default value
for allowed_scripts includes fcgi).

In this case a request for any resource with the .fcgi extension will result in a FastCGI call to the
application server to dynamically generate the content.

Note: the YAWS server will only call the application server if a file corresponding to the resource
name (i.e. a file with the .fcgi extension) exists locally on the YAWS server. The contents of that file
are not relevant.

35

CHAPTER 10. FASTCGI 36

2. By creating an appmod which calls yaws_api:call_fcgi_responder. See the yaws_api (5) man
page for details.

10.2 The FastCGI Authorizer Role

The FastCGI authorizer role allows YAWS to communicate with an authentication server to authenticate
requests.

The FastCGI protocol is used to send the request information from YAWS to the authentication server and
the authentication respone back from the authentication server to YAWS .

If access is allowed, YAWS processing of the request proceeds normally.

If access is denied, the authentication server provides the response which is sent back to the client. This is
typically a not authorized response or a redirect to a login page.

FastCGI authorizers are invoked by creating an appmod which calls yaws_api:call_fcgi_authorizer.
See the yaws_api (5) man page for details.

10.3 The FastCGI Filter Role

FastCGI defines a third role, the filter role, which YAWS does not currently support.

10.4 FastCGI Configuration

The following commands in the yaws.conf file control the operation of FastCGI.

If you use FastCGI, you must include the fcgi_app_server setting in the configuration file to specify the
host name (or IP address) and TCP port of the FastCGI application server.

You may include the fcgi_trace_protocol setting to enable or disable tracing of FastCGI protocol mes-
sages. This is useful for debugging.

You may include the fcgi_log_app_error setting to enable or disable logging application errors (any
output to stderr and non-zero exit codes).

You may include the extra_cgi_vars command to pass additional environment variables to the application.

Chapter 11

Security

YAWS is of course susceptible to intrusions. YAWS has the ability to run under a different user than root -
Assuming we need to listen to privileged port numbers. Running as root is generally a bad idea.

Intrusions can happen basically at all places in YAWS code where the YAWS code calls either the BIF
open_port or when YAWS code does calls to os:cmd/1.

Both open_port and os:cmd/1 invoke the /bin/sh interpreter to execute its commands. If the commands
are nastily crafted bad things can easily happen.

All data that is passed to these two function must be carefully checked.

Since YAWS is written in ERLANG a large class of cracks are eliminated since it is not possible to perform
any buffer overrun cracks on a YAWS server. This is very good.

Another possible point of entry to the system is by providing a URL which takes the client out from the
docroot. This should not be possible - and the impossibility relies on the correctness of the URL parsing
code in YAWS .

11.1 WWW-Authenticate

YAWS has support for WWW-Authentication. WWW-Authenticate is a standard HTTP scheme for the basic
protection of files with a username and password. When a client browser wants a protected file, it must send
a “Authenticate: username:password” header in the request. Note that this is plain text. If there is no such
header or the username and password is invalid the server will respond with status code 401 and the realm.
Browsers will then tell the user that a username and password is needed for “realm”, and will resend the
request after the user enters the information.

WWW-Authentication is configured in the yaws.conf file, in as many <auth> directives as you desire:

<server foo>
docroot = /var/yaws/www/

..

..

37

CHAPTER 11. SECURITY 38

<auth>
realm = secretpage
dir = /protected
dir = /anotherdir
user = klacke:gazonk
user = jonny:xyz
user = ronny:12r8uyp09jksfdge4

</auth>
</server>

YAWS will require one of the given username:password pairs for all files in the /protected and /anotherdir
directories. Note that these directories are specified as a server path, that is, the filesystem path that is
actually protected here is /var/yaws/www/protected

Chapter 12

Embedded mode

YAWS is a normal OTP application. It is possible to integrate YAWS into another - larger - application. The
YAWS source tree must be integrated into the larger applications build environment. YAWS is then simply
started by application:start() from the larger applications boot script, or the YAWS components needed
for the larger application can be started individually under the application’s supervisor(s).

By default YAWS reads its configuration data from a config file, the default is "/etc/yaws.conf". If YAWS

is integrated into a larger application, however, that application typically has its configuration data kept at
some other centralized place. Sometimes we may not even have a file system to read the configuration from
if we run a small embedded system.

YAWS reads its application environment. If the environment key embedded is set to ttrue, YAWS starts in
embedded mode. Once started it must be fed a configuration, and that can be done after YAWS has started
by means of the function yaws_api:setconf/2.

It is possible to call setconf/2 several times to force YAWS to reread the configuration.

12.1 Creating Global and Server Configurations

The yaws_api:setconf/2 function mentioned in the previous section takes two arguments:

• a #gconf record instance, specifying global YAWS configuration

• a list of lists of #sconf record instances, each specifying configuration for a particular server instance

These record types are specified in yaws.hrl, which is not normally intended for inclusion by applications.
Instead, YAWS provides the yaws_api:embedded_start_conf/1,2,3,4 functions that allow embedded
mode applications to specify configuration data using property lists (lists of \{key, value\} pairs).

The yaws_api:embedded_start_conf functions all return a tuple containing the following four items:

• the atom ok.

• a list of lists of #sconf record instances. This variable is intended to be passed directly to
yaws_api:setconf/2 as its second argument.

39

CHAPTER 12. EMBEDDED MODE 40

• a #gconf record instance. This variable is intended to be passed directly to yaws_api:setconf/2 as
its first argument.

• a list of supervisor child specification for the YAWS components the embedded mode application’s
configuration specified should be started. This allows embedded mode applications to start YAWS

under its own supervisors.

Note that yaws_api:embedded_start_conf does not actually start any servers, but rather it only returns
the configuration information and child specifications needed for the embedded mode application to start
and configure YAWS itself.

12.2 Starting Yaws in Embedded Mode

An embedded mode application can start YAWS in one of two ways:

• It can call yaws_api:embedded_start_conf to obtain configuration and YAWS startup information
as described in the previous section, start YAWS under its own supervisors, and then pass the global
and server configuration settings to yaws_api:setconf/2.

• It can call yaws:start_embedded/1,2,3,4, each of which takes exactly the same arguments as the
corresponding yaws_api:embedded_start_conf/1,2,3,4 function. Instead of just returning start
and configuration information, however, yaws:start_embedded also starts and configures YAWS ,
which can be more convenient but does not allow the embedded mode application any supervision
control over YAWS .

Both of these functions take care of setting the environment key embedded to true. Neither approach
requires any special settings in the embedded mode application’s .app file nor any special command-line
switches to the ERLANG runtime.

For an example of how to use yaws_api:embedded_start_conf along with yaws_api:setconf, please
see the files www/ybed_sup.erl and www/ybed.erl in the YAWS distribution.

Chapter 13

The config file - yaws.conf

In this section we provide a complete listing of all possible configuration file options. The configuration
contains two distinct parts: a global part which affects all the virtual hosts and a server part where options
for each virtual host is supplied.

13.1 Global Part

• logdir = Directory - All YAWS logs will be written to files in this directory. There are several
different log files written by YAWS .

– report.log - this is a text file that contains all error logger printouts from YAWS .

– Host.access - for each virtual host served by YAWS , a file Host.access will be written which
contains an access log in Common Log Format.

– trace.http - this file contains the HTTP trace if that is enabled

– trace.traffic - this file contains the traffic trace if that is enabled

• ebin_dir = Directory - This directive adds Directory to the ERLANG search path. It is possible to
have several of these command in the configuration file.

• include_dir = Directory - This directive adds Directory to the path of directories where the ER-
LANG compiler searches for include files. We need to use this if we want to include .hrl files in our
YAWS ERLANG code.

• max_num_cached_files = Integer - YAWS will cache small files such as commonly accessed GIF
images in RAM. This directive sets a maximum number on the number of cached files. The default
value is 400.

• max_num_cached_bytes = Integer - This directive controls the total amount of RAM which can
maximally be used for cached RAM files. The default value is 1000000, 1 megabyte.

• max_size_cached_file = Integer - This directive sets a maximum size on the files that are RAM
cached by YAWS . The default value is 8000, 8 kBytes.

41

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 42

• cache_refresh_secs = Integer - The RAM cache is used to serve pages that sit in the cache. An
entry sits in cache at most cache_refresh_secs number of seconds. The default is 30. This means
that when the content is updated under the docroot, that change doesn’t show until 30 seconds have
passed. While developing a YAWS site, it may be convenient to set this value to 0. If the debug flag
(-d) is passed to the YAWS start script, this value is automatically set to 0.

• max_connections = nolimit | Integer - This value controls the maximum number of connec-
tions from HTTP clients into the server. This is implemented by closing the last socket if the threshold
is reached.

• keepalive_maxuses = nolimit | Integer - Normally, YAWS does not restrict the number of
times a connection is kept alive using keepalive. Setting this parameter to an integer X will ensure
that connections are closed once they have been used X times. This can be a useful to guard against
long-running connections collecting too much garbage in the ERLANG VM.

• keepalive_timeout = Integer | infinity - If the HTTP session will be kept alive (i.e., not
immediately closed) it will close after the specified number of milliseconds unless a new request is
received in that time. The default value is 30000. The value infinity is legal but not recommended.

• trace = traffic | http - This enables traffic or http tracing. Tracing is also possible to enable
with a command line flag to YAWS .

• username = User - When YAWS is run as root, it can be configured to change userid once it has
created the necessary listen sockets on privilged ports.

• subconfig = File - Load specified config file.

• subconfigdir = Directory - Load all config file in specified directory.

13.2 Server Part

YAWS can virthost several web servers on the same IP address as well as several web servers on different IP
addresses. The only limitation here is that there can be only one server with SSL enabled per each individual
IP address. Each virtual host is defined within a matching pair of <server ServerName> and </server>.
The ServerName will be the name of the web server.

The following directives are allowed inside a server definition.

• port = Port - This makes the server listen on Port.

• listen = IpAddress - This makes the server listen on IpAddress when virthosting several servers
on the same IP/port address, if the browser doesn’t send a Host: field, YAWS will pick the first server
specified in the config file.

• listen_backlog = Integer - This sets the TCP listen backlog for the server to define the maximum
length the queue of pending connections may grow to. The default is the same as the default provided
by gen_tcp:listen/2, which is 5.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 43

• rport = Port This forces all local redirects issued by the server to go to Port. This is useful when
YAWS listens to a port which is different from the port that the user connects to. For example, running
YAWS as a non-privileged user makes it impossible to listen to port 80, since that port can only be
opened by a privileged user. Instead YAWS listens to a high port number port, 8000, and iptables are
used to redirect traffic to port 80 to port 8000 (most NAT:ing firewalls will also do this for you).

• rscheme = http | https This forces all local redirects issued by the server to use this method.
This is useful when an SSL off-loader, or stunnel, is used in front of YAWS .

• access_log = true | false Setting this directive to false turns of traffic logging for this virtual
server. The default value is true.

• docroot = Directory - This makes the server serve all its content from Directory.

• auth_skip_docroot = true | false - If true, the docroot will not be searched for .yaws_auth
files. This is useful when the docroot is quite large and the time to search it is prohibitive when YAWS

starts up. Defaults to false.

• partial_post_size = Integer - When a YAWS file receives large POSTs, the amount of data
received in each chunk is determined by the this parameter. The default value is 10240.

• tilde_expand = true|false - If this value is set to false YAWS will never do tilde expansion. Tilde
expansion takes a URL of the form http://www.foo.com/~username and changes it into a request
where the docroot for that particular request is set to the directory ~username/public_html/. The
default value is false.

• allowed_scripts = [ListOfSuffixes] - The allowed script types for this server. Recognized are
‘yaws’, ‘cgi’, ‘php’. Default is allowed_scripts = yaws.

• appmods = [ListOfModuleNames] - If any the names in ListOfModuleNames appear as compo-
nents in the path for a request, the path request parsing will terminate and that module will be called.

Assume for example that we have the URL http://www.hyber.org/myapp/foo/bar/baz?user=joe
while we have the module foo defined as an appmod, the function foo:out(Arg) will be invoked
instead of searching the file systems below the point foo.

The Arg argument will have the missing path part supplied in its appmoddata field.

• php_exe_path = Path - The name of (and possibly path to) the php executable used to interpret php
scripts (if allowed). Default is php_exe_path = php.

• phpfcgi = HostPortSpec - The host and port of a PHP FCGI server for interpreting .php files. If
specified, it overrides the php_exe_path setting. For all servers where phpfcgi is not specified, the
binary specified by php_exe_path is invoked as normal CGI.

• fcgi_app_server = HostPortSpec - The hostname (or IP address) and TCP port of a FastCGI ap-
plication server. This is separate from the phpfcgi setting and is used for normal FCGI applications.
Because they’re separate, both fcgi_app_server and phpfcgi can be set for the same server to allow
it to serve both .fcgi and .php files.

• fcgi_trace_protocol = true | false - Enable or disable tracing of FastCGI protocol messages.
This is useful for debugging.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 44

• fcgi_log_app_error = true | false - Enable or disable logging FCGI application errors (any
output to stderr and non-zero exit codes).

• errormod_404 = Module - It is possible to set a special module that handles 404 Not Found mes-
sages.

The function Module:out404(Arg, GC, SC) will be invoked. The arguments are

Arg is an arg{} record

GC is a gconf{} record (defined in yaws.hrl)

SC is a sconf{} record (defined in yaws.hrl)

The function can and must do the same things that a normal out/1 does.

• errormod_crash = Module - It is possible to set a special module that handles the HTML generation
of server crash messages. The default is to display the entire formated crash message in the browser.
This is good for debugging but not in production.

The function Module:crashmsg(Arg, SC, Str) will be called. The Str is the real crash message
formatted as a string.

• arg_rewrite_mod = Module - It is possible to install a module that rewrites all the Arg arg records
at an early stage in the YAWS server. This can be used to do various things such as checking a cookie,
rewriting paths etc.

• <ssl> </ssl> This begins and ends an SSL configuration for this server.

– keyfile = File - Specifies which file contains the private key for the certificate.

– certfile = File - Specifies which file contains the certificate for the server.

– cacertfile = File File If the server is setup to require client certificates. This file needs to
contain all the certificates of the acceptable signers for the client certs.

– verify = 1 | 2 | 3 Specifies the level of verification the server does on client certs. 1 means
nothing , 2 means the the server will ask the client for a cert but not fail if the client doesn’t
supply a client cert, 3 means that the server requires the client to supply a client cert.

– depth = Int Specifies the depth of certificate chains the server is prepared to follow when
verifying client certs.

– password = String - String If the private key is encrypted on disk, this password is the 3des
key to decrypt it.

– cciphers = String This string specifies the ssl cipher string. The syntax of the ssl cipher
string is a little horrible sub language of its own. It is documented in the ssl man page for
"ciphers".

– </ssl> Ends an SSL definition

• <auth> ... </auth> Defines an auth structure. The following items are allowed within a matching
pair of <auth> and </auth> delimiters.

– dir = Dir Makes Dir to be controlled bu WWW-authenticate headers. In order for a user to
have access to WWW-Authenticate controlled directory, the user must supply a password.

– realm = Realm In the directory defined here, the WWW-Authenticate Realm is set to this value.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 45

– user = User:Password Inside this directory, the user User has access if the user supplies the
password Password in the pop up dialog presented by the browser. We can obviously have
several of these value inside a single <auth> </auth> pair.

– </auth> Ends an auth definition

13.3 Configuration Examples

The following example defines a single server on port 80.

logdir = /var/log/yaws
<server www.mydomain.org>

port = 80
listen = 192.168.128.31
docroot = /var/yaws/www

</server>

And this example shows a similar setup but two webÂ servers on the same IP address

logdir = /var/log/yaws
<server www.mydomain.org>

port = 80
listen = 192.168.128.31
docroot = /var/yaws/www

</server>

<server www.funky.org>
port = 80
listen = 192.168.128.31
docroot = /var/yaws/www_funky_org

</server>

When there are several virtual hosts defined for the same IP number and port, and an HTTP request arrives
with a Host field that does not match any defined virtual host, then the one which defined “first” in the file
is chosen.

An example with www-authenticate and no access logging at all.

logdir = /var/log/yaws
<server www.mydomain.org>

port = 80
listen = 192.168.128.31
docroot = /var/yaws/www
access_log = false

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 46

<auth>
dir = /var/yaws/www/secret
realm = foobar
user = jonny:verysecretpwd
user = benny:thequestion
user = ronny:havinganamethatendswithy

</auth>

</server>

And finally a slightly more complex example with two servers on the same IP, and one ssl server on a
different IP.

The is_default is used to select the funky server if someone types in for example http://192.168.128.31/
in his/her browser.

logdir = /var/log/yaws
max_num_cached_files = 8000
max_num_cached_bytes = 6000000

<server www.mydomain.org>
port = 80
listen = 192.168.128.31
docroot = /var/yaws/www

</server>

<server www.funky.org>
port = 80
is_default = true
listen = 192.168.128.31
docroot = /var/yaws/www_funky_org

</server>

<server www.funky.org>
port = 443
listen = 192.168.128.32
docroot = /var/yaws/www_funky_org
<ssl>

keyfile = /etc/funky.key
certfile = /etc/funky.cert
password = gazonk

</ssl>
</server>

	Introduction
	Prerequisites
	A tiny example

	Compile, Install, Config and Run
	Compile and Install
	Configure

	Static content
	Dynamic content
	Introduction
	EHTML
	POSTs
	Queries
	Forms

	POSTing files

	Mode of operation
	On the fly compilation
	Evaluating the Yaws Code

	SSL
	Applications
	Login scenarios
	The session server
	Arg rewrite
	Authenticating
	Database driven applications

	Appmods
	The opaque data
	Customizations
	404 File not found
	Crash messages

	Stream content
	All out/1 return values

	Debugging and Development
	Logs

	External scripts via CGI
	FastCGI
	The FastCGI Responder Role
	The FastCGI Authorizer Role
	The FastCGI Filter Role
	FastCGI Configuration

	Security
	WWW-Authenticate

	Embedded mode
	Creating Global and Server Configurations
	Starting Yaws in Embedded Mode

	The config file - yaws.conf
	Global Part
	Server Part
	Configuration Examples

