IUPAC International Chemical Identifier (InChl)

InChl version 1, software version 1.03 (2010)

API Reference

Last revision date: June 15, 2010

This document is a part of the release of the IUPAC International Chemical Identifier with
InChlIKey, version 1, software version 1.03 (http://www.iupac.org/inchi).

InChlI software v. 1.03 has merged functionality: it allows one to produce both standard and

non-standard InChl identifiers, as well as their hashed representation (InChIKey).

CONTENTS
OVETVIEW .ttt ettt ettt ettt b e e b et s bt e eh e s et e at e ea bt et e et e eabeeebe e bt e bt e sheeebbesntesaneenteeas 3
InChI API - “classic” — GeNeTal-PUIPOSEeeveeriirierieeiieieeie et et e st seesieeeeaesneeseeeneeens 3
GEEINCHIL.... ettt ae ettt b et bt e e e sbeeeeeneas 4
Fre@INCHIL ..ottt ettt ettt s 7
GetINCHITOMINCHI ..ot ettt 7
GetStructFromINCHIL.......cocoii e 8
FreeStructFromINCHI ..o 9
Free inChi INPUL c..oouiiiiiiee ettt et st eaee 9
Get_inchi_Input FromAUXINTOoocviviiiiiiiieiee e 10
ChEeCKINCHLI ..ottt sttt sb s et eae e 11
InChI API - “classic” — standard INChI SUDSEt...........ccceevuiriirriieriieiieeeese e 12
GEESEAINCHLL ...ttt ettt sttt 12
Fre@StAINCHLI ...ttt s 13

GetStructFrOMSTAINCHL ... e e e e e e e e e e e aas 13

FreeStructFromStAINCHLo e e e e e e e e e e e aas 13

Free std NChi INPUL......coiiiiiiie et 14
Get_std_inchi_Input FromAUXINTO........ccovviiiiiiiiiieeeee e 14
InChI API - modularized — general-purposeccueeeueeiieieenieeiieieseesieesee e 15
INCHIGEN _CIEateeeeiuiieiiiieiiie ettt ettt ettt sttt ettt ettt st ee e bt e e nteesaaeesnneas 16
INCHIGEN _S@LUP ..ottt ettt ettt st e b e it e e e saneas 16
INCHIGEN DONOTMAlIZAtIONeouvieiiieiieiieiiesieesiiesie ettt eie ettt seeesseenieesanans 17
INCHIGEN DoCanonicaliZationccec.eerierienieniesieeieeieereeieesieenieeseesseesseenneesenens 18
INCHIGEN DOSerialiZationc.cccuieriieriienienieniieniesteeiieeee s eie e eseeseesseessaenaeesenens 18
INCHIGEN RESEL.....cueeuiiiiiieie ettt ettt sttt sbe st et enee e e 19
INCHIGEN DESIIOYceeiutieiiieeiiie ettt ettt ettt sttt ettt st e st e e st e stae s sbeeenaaeesaaeesnnees 20
InChI API - modularized — standard InChI Subsetccceevieniiiiniiiniinienee e, 20
STDINCHIGEN CIateeeeiuiiiiiiieiiieeiieerie ettt ettt ettt sttt et esbeesaieeens 20
STDINCHIGEN S@LUPeetiitieieiieie ittt ettt sttt ese e s 21
STDINCHIGEN DONOImMaliZation.........c.cecvuveeiuieeiiieeieienieesieeeieeesieeeeeeseaeesseessaeesnnneens 22
STDINCHIGEN DoCanonicaliZation..........c.ceecueeeruieeneeenieeniieeiieesieeeeeeseeeesneessveesneneens 22
STDINCHIGEN DoOSerialiZation..........ccceereuiiriuieeiiieeeieeieeeieeeieeesieeeaeeseteeeneessaeesnnneens 22
STDINCHIGEN RESETcuiiuieiiiieieite ettt ettt st ese e s 23
STDINCHIGEN DESIIOYeueeuiiiieieiieeiieiestietiete ettt sttt ettt ee et e sae et eseenseees 23
INChIKey API — eNeral-PUIPOSEcccuieruieriiirieeiieiieeie ettt ste ettt et see s e seaesneeenneenees 24
GetINCHIKeyFromINCHIccooiiiiiiiieiee e e 24
CRECKINCHIKEYeiiiieiieeiiieiieee ettt ettt sttt eeste e beesbe e e e sseeseenneesaeens 25
InChlKey API — standard INChI SUDSEL.........ccccuieviiiiiiieiice e 26
GetStdINCHIKeyFromStdINCHI.........oooiiiiiiiiee e 26
INChI API — mMiSCEIIANEOUS......ccueiuiiiiiieiiiiietee ettt 27
GetSrINGLENGN ..o ettt e 27
Examples of INChI APT USE......cccouiiiiiiiiiiccieeie ettt e e aeeeaaeeen 27

Overview

The current version of InChl Identifier is 1; the current version of the InChl software
is 1.03 (June 2010). Previously released versions 1.01 (2006), 1.02-beta (2007), and 1.02-

standard (2009), as well as all earlier versions, are now considered obsolete.

By default, InChl software v. 1.03 (2010) generates standard InChl. In particular, standard
identifier is generated when the software is used without any passed options. If some options
are specified, and at least one of them qualifies as related to non-standard InChl, the software

produces non-standard InChl/InChIKey.

However, for compatibility with the previous v. 1.02-standard (2009) release, API calls which
deal only with standard InChl — for example, GetStdINCHI() - are retained (technically, they

provide pre-customized interface to general-purpose API functions).

Below is a brief description of InChl/InChIKey API functions (for more details on the related
data structures/parameters and see inchi api.h header file in the InChl software source

code).

InChl API - “classic” — general-purpose

The API functions for “classic” (v. 1.01-style, non-modularized) are similar to those present

in InChl software v. 1.01 and v. 1.02-beta (see, however, the notes below).

GetINCHI

int INCHI DECL GetINCHI (inchi Input *inp, inchi Output *out)

Description

GetINCHI () is the primary function producing InChl.

GetINCHI produces standard InChl if no InChlI creation/stereo modification options are
specified. If at least one of the options SUU | SLUUD | RecMet | FixedH | Ket |

15T | SRel | SRac | SUCF is specified, generated InChl will be non-standard one.

Input

Data structure inchi Input is created by the user.

Its layout is described in inchi api.h header file in the InChl software source code.

Options supplied to GetINCHI in inchi Input.szOptions should be preceded by

‘/> under Windows or ‘-° Linux). Valid options are listed below.
Option Meaning Default behavior
(standard; if no option

supplied)

Structure perception (compatible with standard InChl)

NEWPSOFF Both ends of wedge point to Only narrow end of
stereocenters wedge points to
stereocenter
DoNotAddH All hydrogens in input structure ~ Add H according to usual

SNon

are explicit

Ignore stereo

valences

Use absolute stereo

Stereo interpretation (lead to generation of non-standard InChlI)

SRel
SRac
SUCF

ChiralFlagON
ChiralFlagOFF

Use relative stereo

Use racemic stereo

Use Chiral Flag in MOL/SD file

record: if On — use Absolute
stereo, Off — Relative

Set chiral flag ON

Set chiral flag OFF

Use absolute stereo
Use absolute stereo

Use absolute stereo

InChl creation options (lead to generation of non-standard InChlI)

SUU

SLUUD

FixedH

RecMet
KET

15T

Always indicate

unknown/undefined stereo

Stereo labels for “unknown” and

“undefined” are different, ‘u’

and ‘?°, resp. (new option)

Include reconnected metals
results

Include Fixed H layer
Account for keto-enol
tautomerism (experimental;
extension to InChlI 1)
Account for 1,5-tautomerism
(experimental; extension to

InChI 1)

Does not indicate
unknown/undefined
stereo unless at least one
defined stereo is present
Stereo labels for
“unknown” and
“undefined” are the same
(?)

Do not include
Do not include
Ignore keto-enol

tautomerism

Ignore 1,5-tautomerism

Miscellaneous

AuxNone Omit auxiliary information Include

Wnumber Set time-out per structure in The default value is
seconds; WO means unlimited unlimited

OutputSDF Output SDfile instead of InChl

WarnOnEmptyStructure Warn and produce empty InChl
for empty structure
SaveOpt Save custom InChl creation

options (non-standard InChlI)

Output

Data structure inchi Output is described in inchi api.h header file.

inchi Output does not need to be initialized out to zeroes; see

FreeNCHI () /FreeSTDINCHI () on how to deallocate it. Strings in inchi Output are
allocated and deallocated by InChl.

Return codes

Code Value Meaning

inchi Ret OKAY 0 Success; no errors or warnings

inchi Ret WARNING 1 Success; warning(s) issued

inchi Ret ERROR 2 Error: no InChI has been created

inchi Ret FATAL 3 Severe error: no InChl has been created (typically,

memory allocation failure)

inchi Ret UNKNOWN 4 Unknown program error

inchi Ret BUSY 5 Previuos call to InChlI has not returned yet
inchi Ret EOF -1 no structural data has been provided

inchi Ret SKIP -2 not used in InChlI library

FreelNCHI

void INCHI DECL FreeINCHI (inchi Output *out)

Description

This function should be called to deallocate char* pointers obtained from each Get INCHI

call.

GetINCHIfromINCHI

int INCHI_DECL GetINCHIfromINCHI(inchi_InputINCHI *inpInChl,
inchi_Output *out)

Description

GetINCHIfromINCHI does same as -InChI2InChl option: converts InChl into InChl for
validation purposes. It may also be used to filter out specific layers. For instance, SNon
would remove stereochemical layer. Omitting Fi xedH and/or RecMet would remove
Fixed-H or Reconnected layers. Option InChI2InChT is not needed.

Notes: options are supplied in inpInChl,szOptions should be preceded by /> under Windows

or ‘-‘ under Linux; there is no explicit tool to conversion from/to standard InChl

Input

inchi InputINCHI is created by the user.

Output

Strings in inchi Output are allocated and deallocated by InChl. inchi Output does

not need to be initilized out to zeroes; see FreeINCHI () on how to deallocate it.

Return codes

Same as for Get INCHI.

GetStructFromINCHI

int INCHI DECL GetStructFromINCHI (inchi InputINCHI *inpInChI,
inchi OutputStruct *outStruct)

Description

This function creates structure from InChl string.

Option Inchi2Struct is not needed for Get Struct FromINCHI.

Input

Data structure inchi Inputinchi InputINCHI is created by the user.

For the description, see header file inchi api.h.

Output

For the description of inchi OutputStruct, see header file inchi api.h. Pointers in
inchi OutputStruct are allocated and deallocated by InChl. inchi OutputStruct
does not need to be initilized out to zeroes; see FreeStructFromINCHI() on how to

deallocate it.

Return codes

The same as for Get INCHI.

FreeStructFromINCHI

void INCHI_DECL FreeStructFromINCHI(inchi_OutputStruct *out)

Description

Should be called to deallocate pointers obtained from each Get StructFromINCHI.

Free inchi Input

void INCHI_DECL Free inchi_Input(inchi_Input *plnp)

Description

To deallocate and write zeroes into the changed members of pInchiInp->pInp call

Free inchi Input(inchi Input *pInp).

Get inchi Input FromAuxinfo

int INCHI DECL Get inchi Input FromAuxInfo(
char *szInchiAuxInfo, int bDoNotAddH, int bDiffUnkUndfStereo, InchilnpData *pInchilnp)

Description

This function creates input data structure for InChl out of auxiliary information string. Note
the parameter bDiffUnkUndfStereo (if not 0, use different labels for unknown and undefined

stereo) which is new for the software v. 1.03.

Input

szInchiAuxInfo

contains ASCIIZ string of InChlI output for a single structure or only the AuxInfo line
bDoNotAddH

if 0 then InChl will be allowed to add implicit H
bDiffUnkUndfStereo

if not 0, use different labels for unknown and undefined stereo

pInchiInp
should have a valid pointer pInchiInp->pInp to an empty (all members = 0)

inchi Input structure

Output

The following members of pInp may be filled during the call: atom, num atoms,

stereo0D, num stereoOD

Return codes

Same as for Get INCHI.

10

CheckINCHI

int INCHI_DECL CheckINCHI(const char *szINCHI, const int strict)

Description

Check if the string represents valid InChl/standard InChl.

Input

Input:

szINCHI source InChl

strict if 0, just briefly check for proper layout (prefix, version, etc.).

The result may not be strict.

If not 0, try to perform InChI2InChlI conversion and returns success if a resulting InChl string
exactly match source. Be cautious: the result may be too strict, i.e. the 'false alarm', due to

imperfectness of conversion.

Return codes

Code Value Meaning

INCHI VALID STANDARD 0 InChl is valid and standard

INCHI VALID NON STANDARD -1 InChl is valid and non-standard

INCHI INVALID PREFIX 1 InChl has invalid ptefix

INCHI INVALID VERSION 2 InChlI has invalid version number (not
equal to 1)

INCHI INVALID LAYOUT 3 InChlI has invalid layout

INCHI FAIL I2I 4 Checking InChl thru InChI2InChlI is

either failed or produced the result which

does not match source InChl string

11

InChl API - “classic” — standard InChl subset

Described below are “standard” counterparts of general-purpose functions; these “standard”

API calls are retained for compatibility reasons.

GetStdINCHI

int INCHI DECL GetStdINCHI (inchi Input *inp, inchi Output

*out)

Description

This is a “standard” counterpart of Get INCHI () which may produce only the standard
InChl.

Input

The same as for Ge t INCHTI except that perception/creation options supplied in
inchi_Input.szOptions may be only:

NEWPSOFF DoNotAddH SNon

Other possible options are:

AuxNone

Wnumber

OutputSDF

WarnOnEmptyStructure

Output

The same as for Get INCHT except for that only standard InChl is produced.

Return codes

The same as for Get INCHI .

12

FreeStdINCHI

void INCHI DECL FreeStdINCHI (inchi Output *out)

Description

This is a “standard” counterpart of FreeINCHI which should be called to deallocate char*

pointers obtained from each Get StdINCHT call.

GetStructFromStdINCHI

int INCHI_DECL GetStructFromStdINCHI(inchi_InputINCHI *inpInChl,

inchi_OutputStruct *outStruct)

Description

This is a “standard” counterpart of Get St ruct FromINCHI.

Input

The same as for GetStructFromINCHI.

Output

The same as for GetStructFromINCHI.

Return codes

The same as for GetStructFromINCHI.

FreeStructFromStdINCHI

void INCHI_DECL FreeStructFromStdINCHI(inchi_OutputStruct *out)

13

Description

Should be called to deallocate pointers obtained from each GetStructFromINCHI.

Free std inchi Input

void INCHI DECL Free std inchi Input(inchi Input *pInp)

Description

This is a “standard” counterpart of Free inchi Input

Get std inchi Input FromAuxinfo

int INCHI_DECL Get_std _inchi_Input FromAuxInfo(char *szInchiAuxInfo,
int bDoNotAddH,
InchilnpData *pInchilnp)

Description

This is a “standard” counterpart of Get std inchi Input FromAuxInfo.

14

InChl API - modularized — general-purpose

The main purpose of modularized interface of InChl library is to modularize the process of

InChl generation by separating normalization, canonicalization, and serialization stages.

Using these API functions allows, in particular, checking intermediate normalization results

before performing further steps and getting diagnostics messages from each stage

independently. The functions use exactly the same inchi Input and inchi Output

data structures as “classic” InChl API functions do. However, a new data structure,

INCHIGEN DATA, has been added to expose the normalization results (see inchi api.h
header file).

A typical process of InChl generation with this API calls is as follows.

1)

2)

3)

6)

7)

Get handle of a new InChl generator object:
HGen = INCHIGEN Create();

read a molecular structure and use it to initialize the generator:
result = INCHIGEN Setup (HGen, pGenData, pInp);

normalize the structure:
result = INCHIGEN DoNormalization (HGen, pGenData);
optionally, look at the results;

obtain canonical numberings:
result = INCHIGEN DoCanonicalization (HGen, pGenData);

serialize, i.e. produce InChl string:
retcode=INCHIGEN DoSerialization (HGen,GenData, pResults);

reset the InChl generator
INCHIGEN Reset (HGen, pGenData, pResults);
and go to step 2 to read next structure, or

Finally destroy the generator object and free standard InChl library memories:
INCHIGEN Destroy (HGen);

15

INCHIGEN Create

INCHIGEN HANDLE INCHI _DECL INCHIGEN_Create(void)

Description

InChI Generator: create generator.

Once the generator is created, it may be used repeatedly for processing the new structures.
Before repetitive use, the pair of calls INCHIGEN Reset /INCHIGEN Setup should

occur.

Returns
The handle of InChI generator object or NULL on failure.

Note: the handle is used just to refer to the internal InChl library object, whose structure is
invisible to the user (unless the user chooses to browse the InChl source code). This internal

object is initialized and modified through the subsequent calls to INCHIGEN API functions.

INCHIGEN Setup

int INCHI DECL INCHIGEN Setup (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,

inchi Input * pInp)

Description

InChI Generator: initialization stage (storing a specific structure in the generator object).

Note: INCHIGEN DATA object contains intermediate data visible to the user, in particular,

the string accumulating diagnostic messages from all the steps.

16

Input

INCHIGEN_HANDLE HGen is one obtained through INCHIGEN Create call.

INCHIGEN DATA * pGenData is created by the caller. It need not to be initialized.

Data structure inchi Input * pInp isthe same as for Get INCHI.

Return codes

The same as for Get INCHT.

INCHIGEN DoNormalization

int INCHI DECL INCHIGEN DoNormalization (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData)

Description

InChlI Generator: perform structure normalization.

Should be called after INCHIGEN Setup.

Note: INCHIGEN DATA object explicitly exposes the intermediate normalization data, see

inchi api.h.

Input

INCHIGEN_HANDLE HGen and INCHIGEN DATA *pGenData as they are after calling

INCHIGEN Setup.

Return codes

The same as for Get INCHT.

17

INCHIGEN DoCanonicalization

int INCHI_DECL INCHIGEN DoCanonicalization (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData)

Description

InChI Generator: perform structure canonicalization.

Should be called after INCHIGEN DoNormalization .

Input

INCHIGEN_HANDLE HGen and INCHIGEN DATA *pGenData as they are after calling

INCHIGEN DoNormalization.

Return codes

The same as for Get INCHT.

INCHIGEN DoSerialization

int INCHI DECL INCHIGEN DoSerialization (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,

inchi Output * pResults)

Description

InChlI Generator: perform InChl serialization.

Should be called after INCHIGEN DoCanonicalization.

18

Input

INCHIGEN_HANDLE HGen and INCHIGEN DATA *pGenData as they are after calling

INCHIGEN DoCanonicalization.

Return codes

The same as for Get INCHT.

INCHIGEN Reset

void INCHI DECL INCHIGEN_ Reset(INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,
inchi_Output * pResults)

Description

InChl Generator: reset (use before calling INCHIGEN Setup(...) to start processing the

next structure and before calling INCHIGEN Destroy(...))

Input

INCHIGEN_HANDLE HGen and INCHIGEN DATA *pGenData as they are after calling

INCHIGEN DoSerialization.

Return codes

The same as for Get INCHT.

19

INCHIGEN Destroy

void INCHI_DECL INCHIGEN Destroy(INCHIGEN _HANDLE HGen)

Description

Destroys the generator object and frees associated InChl library memories.

Important: make sure INCHIGEN Reset(...) is called before calling

INCHIGEN Destroy(...).

Input

The handle of InChl generator object.

InChl API - modularized — standard InChl subset

Described below are “standard” counterparts of general-purpose functions; these “standard”

API calls are retained for compatibility reasons.

STDINCHIGEN Create

INCHIGEN HANDLE INCHI DECL STDINCHIGEN Create (void)

Description

Standard InChl Generator: create generator.

This is a “standard” counterpart of INCHIGEN Create.

20

Returns

The handle of standard InChl generator object or NULL on failure. Note: the handle serves to
access the internal object, whose structure is invisible to the user (unless the user chooses to

browse the InChl library source code which is open).

STDINCHIGEN Setup

int INCHI DECL STDINCHIGEN Setup (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,

inchi Input * pInp)

Description

Standard InChl Generator: initialization stage (storing a specific structure in the generator

object).

This is a “standard” counterpart of INCHIGEN Setup.

Note: INCHIGEN DATA object contains intermediate data visible to the user, in particular,

the string accumulating diagnostic messages from all the steps.

Input

INCHIGEN_HANDLE HGen is one obtained through INCHIGEN Create call.

INCHIGEN DATA * pGenData is created by the caller.

Data structure inchi Input * pInp isthe same as for Get INCHI.

Return codes

The same as for Get StdINCHI.

21

STDINCHIGEN DoNormalization

int INCHI_DECL STDINCHIGEN DoNormalization(INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData)

Description

Standard InChl Generator: perform structure normalization.

The entry is “standard” counterpart of INCHIGEN DoNormalization.

STDINCHIGEN DoCanonicalization

int INCHI DECL STDINCHIGEN DoCanonicalization(INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData)

Description

Standard InChl Generator: perform structure canonicalization.

The entry is “standard” counterpart of INCHIGEN DoCanonicalization.

STDINCHIGEN DoSerialization

int INCHI DECL STDINCHIGEN DoSerialization (
INCHIGEN HANDLE HGen,
INCHIGEN DATA * GenData,

inchi Output * pResults)

Description

Standard InChl Generator: perform InChl serialization.

22

The entry is “standard” counterpart of INCHIGEN DoSerialization.

STDINCHIGEN Reset

void INCHI DECL STDINCHIGEN Reset (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,

inchi Output * pResults);

Description

Standard InChl Generator: reset (use before calling STDINCHIGEN Setup(...) to start

processing the next structure and before calling STDINCHIGEN Destroy(...))

The entry is “standard” counterpart of INCHIGEN Reset.

STDINCHIGEN Destroy

INCHI_API void INCHI DECL STDINCHIGEN_Destroy(INCHIGEN HANDLE HGen)

Description

Destroys the standard InChl generator object and frees associated InChl library memories.

This is a “standard” counterpart of INCHIGEN Destroy.

Important: make sure STDINCHIGEN Reset(...) is called before calling

STDINCHIGEN Destroy(...).

23

InChlKey API — general-purpose

GetINCHIKeyFromINCHI

int INCHI _DECL GetINCHIKeyFromINCHI(const char* szZINCHISource,
const int xtral, const int xtra2,
char* szINCHIKey,

char* szXtral, char* szXtra2);

Description

Calculate InChIKey from InChl string.

Input

szINCHISource — source null-terminated InChlI string.
xtral =1 calculate hash extension (up to 256 bits; 1st block)
xtra2 =1 calculate hash extension (up to 256 bits; 2nd block)

Output

szZINCHIKey - InChIKey string, null-terminated. The user-supplied buffer szZINCHIKey
should be at least 28 bytes long.

szXtral- hash extension (up to 256 bits; 1st block) string. Caller should allocate space for 64
characters + trailing NULL.

szXtra2 - hash extension (up to 256 bits; 2nd block) string. Caller should allocate space for 64
characters + trailing NULL.

Return codes

Code Value Meaning
INCHIKEY OK 0 Success; no errors or warnings
INCHIKEY UNKNOWN ERROR 1 Unknown program error

24

INCHIKEY EMPTY INPUT 2
INCHIKEY INVALID INCHI PREFIX 3

INCHIKEY NOT ENOUGH MEMORY 4
INCHIKEY INVALID INCHI 20
INCHIKEY INVALID STD INCHI 21

CheckINCHIKey

Source string is empty
Invalid InChl prefix or invalid version
(mot 1)

Not enough memory

Source InChl has invalid layout
Source standard InChlI has invalid

layout

int INCHI DECL CheckINCHIKey (const char *szINCHIKey)

Description

Check if the string represents valid InChIKey.

Input

szZINCHIKey - source InChIKey string

Return codes

Code Value
INCHIKEY_VALID_STANDARD 0

-1
INCHIKEY_VALID_NON_STANDARD
INCHIKEY_INVALID_LENGTH 1
INCHIKEY_INVALID_LAYOUT 2
INCHIKEY_INVALID_VERSION 3

25

Meaning
InChIKey is valid and standard
InChIKey is valid and non-standard

InChIKey has invalid length

InChIKey has invalid layout

InChIKey has invalid version number

(not equal to 1)

InChlKey API — standard InChl subset

Described below is “standard” counterpart of general-purpose function; this “standard” API

call is retained for compatibility reasons.

GetStdINCHIKeyFromStdINCHI

int INCHI_DECL GetStdINCHIKeyFromStdINCHT (
const char* szINCHISource,

char* szINCHIKey) :;

Description

Calculate standard InChIKey from standard InChl string.

"Standard" counterpart of Get INCHIKeyFromINCHT.

For compatibility with v. 1.02-standard, no extra hash calculation is allowed. To calculate

extra hash(es), use Get INCHIKeyFromINCHI with stdInChl as input.

Input

szINCHISource — source null-terminated InChl string.

Output

szINCHIKey - InChlKey string, null-terminated. The user-supplied buffer szINCHIKey
should be at least 28 bytes long.

Return codes

The same as for Get INCHIKeyFromINCHTI.

26

InChl APl — miscellaneous

GetStringLength

int INCHI DECL GetStringLength(char *p)

Description

Returns string length.

Examples of InChl APl use

The distribution package of InChl software v. 1.03 contains the two examples of API usage.

1. The first one is C calling program located in inchi main/ subfolder of INCHI-1-
API/INCHI API/ folder. This program calls InChl library libinchi.dll under
Microsoft Windows or 1ibinchi. so under Linux or Unix (note that the program is just a

sample which is not supposed to be used for the production).

Defining CREATE INCHI STEP BY STEP in e mode.h makes the program use the
modularized interface to InChl generation process. This is the default option. Commenting
out the line containing this #define makes the program use “classic” (“GetINCHI”;
software version 1.01-style) interface. The both options provide examples of using interface

to the InChIKey part of the library.

If the testing application is compiled with CREATE INCHI STEP BY STEP option, an
additional defining of OUTPUT _NORMALIZATION DATA in e mode.h makes the

program output the intermediate (normalization) data into the log file. The related data

27

structures are described in header file inchi api.h; their use is exemplified in
e ichimain a.c file. Note that including the intermediate (normalization) data in the

output may produce a very long log file.

Folder INCHI-1-API/INCHI API/vc9/inchi d11/ contains a MS Visual C++ 2008

project to build dynamically linked library libinchi.dll under Windows.

Folder INCHI-1-API/INCHI API/vc9/inchi main/contains a MS Visual C++
2008 project to build both dynamically linked library libinchi.dll and the testing application
InChl_MAIN.exe under Windows (both library and executable are placed into subfolders
Release or Debug of ve6 INCHI_DLL folder).

Folder INCHI-1-API/INCHI API/gcc so makefile contains a gcc makefile for

creating InChl library as a Linux shared object dynamically linked to the main program.

2. The second example illustrates how the InChlI library (Windows DLL/Linux .so) functions
may be accessed from within Python. Source code of a sample program is in the folder
INCHI-1-API/INCHI API/python sample. The program has a simple Mol/SDfile

reader and produces InChl strings and, optionally, generates InChIKey codes.

More details on these testing applications may be found in readme.txt files in the

corresponding directories and in source codes.

28

