/€€

Third Edition, Version 3.11-1

http://www.freefem.org/ff++

F Hecht

8 Crimson Editor - [£:\B) xpast\D5Summes\matrimandairy amatrimandie.]Il Click mouse to continue —

F\\; Edk Szarch Miew Document Preject Tooks Macros Windaw Hek
DELE @GR/ L L@o @ A8

& amatrinandieds |

+mu * (dx(ul) *dx(vi)
+ dx{uz) Tdx (v2)
+ ptgti0.000001)

- prdxivl) - ptdy(vZ)
- dx{ul) *q - dy(uz)*q

]
5] sotvsindh + Aneld(Th, as, bk, dd) (u1Fvi0.1)

+ inL2d(Th] (eps’ (temp-35) vl -al
+ on{ff ul=1,uz=0]
+ onfee,ul=0,uz=0)
+ on(as,dd, uz=0)
+ on(bb, 2= -upl®H.¥/N.y)
+ enfecc,uz=0) :
//plot (coef=0.2, cw=" [ul,u2] et 1
{
real[int] ¥x(21),¥y(21),pp(21):
for (int i=0;i<Zl:i++)
¢
vy[il=i/20.:
wx[1]=ul(0.5,1/20.):
pplil=p(i/20.,0.599):

cout << "MLl gy <<

plot ([xx,vy], wait=1, cum="ul
s plot {[yy,.pp], wait=1, com="pre
;
de = 0.1:

int nbiter = 3;

real coefdt = 0.25" (1./nbiter):

real cosfout = 0.25° (1./nbiter] , c

real tol=0.5,cosftol = 0.5° (1./nbit

nu=1./reylnods;

temp=temp-10%((x<1] * {y<0.5] +{x>=1]

ul= [x<1)Fiy<0.5) +0.8%(x>=1] F (y+0.

uz=-0.17% (¥>=1) ¥ (y+0. 17 (x-1)<0.5) :

for [iter=1:iter<=nbiter;iter++

t

= E B in -0.8489437611
i 6 max 1.7571

7287395316
341978618
nin 24.6
upl=ul;
upz-uz;

templ=max (tewp,25) ¢
templ=min{templ,35]:

N3 TENPER;

u1=u1-2 % (x>LL-0.01) fmin{ul,0) ; nin —@
It iz min —@.7195433771
it [(1 {RE ul S

plOt (Coef=0.3,cmu="_ [ul,us]
int nwai i ifii==200) nwai
plot (Eemp, valus=1, Fili=trus

min

e s e o s

]

cout << "CPU " << clock()-s0 << "5 7 <<

it
7
i
i
&
8
8
8
&i
&
3
9
g
g

KN —]|
@ Directo ¢ | b |1

Ready

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris

http://www.freefem.org/ff++

FreeFem++

Third Edition, Version 3.11-1

http://www.freefem.org/ff++

Frédéric Hecht!+

mailto: frederic.hecht@upmc. fr
http://www.ann. jussieu. fr/~hecht

In collaboration with:

e Olivier Pironneau, mailto:olivier.pironneau@upmc. fr http://www.ann. jussieu.

fr/pironneau Olivier Pironneau is a professor of numerical analysis at the university of
Paris VI and at LJLL. His scientific contributions are in numerical methods for fluids. He is
a member of the Institut Universitaire de France and of the French Academy of Sciences

° Jacques MOI‘iCG, mailto:morice@ann. jussieu. fr. Jacaues Morice is a Post-Doct
at LJLL. His doing is Thesis in University of Bordeaux I on fast multipole method (FMM). In
this version, he do all three dimensions mesh generation and coupling with medit software.

« Antoine Le Hyaric, mailto:lehyaric@ann. jussieu. fr,http://www.ann. jussieu.

fr/~lehyaric/ Antoine Le Hyaric is a research engineer from the ”Centre National de la
Recherche Scientifique” (CNRS) at LJLL . He is an expert in software engineering for sci-
entific applications. He has applied his skills mainly to electromagnetics simulation, parallel
computing and three-dimensional visualization.

° KOh_]l Ohtsuka,mai lto:ohtsuka@hkg.ac.jp, http://www.comfos.org/ Kohji
Ohtsuka is a professor at the Hiroshima Kokusai Gakuin University, Japan and chairman of
the World Scientific and Engineering academy and Society, Japan chapter. His research is in
fracture dynamics, modeling and computing.

JiL uPmc

Acknowledgments We are very grateful to I’Ecole Polytechnique (Palaiseau, France) for printing the second

edition of this manual (http://www.polytechnique.fr), and to I’Agence Nationale de la Recherche
(Paris, France) for funding of the extension of FreeFem++ to a parallel tridimensional version (http:
//www.agence-nationale-recherche. fr) Référence : ANR-07-CIS7-002-01.

http://www.freefem.org/ff++
mailto:frederic.hecht@upmc.fr
http://www.ann.jussieu.fr/~hecht
mailto:olivier.pironneau@upmc.fr
http://www.ann.jussieu.fr/pironneau
http://www.ann.jussieu.fr/pironneau
mailto:morice@ann.jussieu.fr
mailto:lehyaric@ann.jussieu.fr
http://www.ann.jussieu.fr/~lehyaric/
http://www.ann.jussieu.fr/~lehyaric/
mailto:ohtsuka@hkg.ac.jp
http://www.comfos.org/
http://www.polytechnique.fr
http://www.agence-nationale-recherche.fr
http://www.agence-nationale-recherche.fr

v

Contents

L__Introduction|

(I.I.1 ~ Foreveryone:|
[1.1.2 For the pros: Installation from sources|.
1.2 H FreeFem++ |

1.3 Environment variables, and the mnit file] L.
7 a

2 Getting Started|
[2.0.1 FEM by FreeFem++ : howdoesitwork?

.02 Some Features of FreeFem++ |
2.1 ~ The Development Cycle: Edit—Run/Visualize—Revise|

3 Learning by Examples|

[3.6 Pure Convection : The Rotating Hilll
[3.7 A Projection Algorithm for the Navier-Stokes equations |
(3.8 The System of elasticity|. L
[3.9 The System of Stokes for Fluids|
[3.10 A Large Fluid Problem| o .
[3.11 An Example with Complex Numbers|.
[3.12 Optimal Control{. e

13 AFl ith Shocks|.

.1 DatalTypes|
4.2 Listof majortypes| e

11
12
16
16

i CONTENTS

KBS Arithmetics] 58
4.6 Functions of one Variablel oL 61
4.7 Functions of two Variables| oL 63
M71 Formulal. 63
4’72 FE-functionsl 63

4.8 ATTAYS| 64
4.8.1 Arrays with two integer indices versus matrices| 70

#4.8.2 Matrix construction and setting| 71

4.8.3 Matrix Operations| e e e 72
4.8.4 Otherarrays|. 76

4.9 Loops| 77
4.10 Input/Output]. 78
4. 10.1 Scriptarguments| e e e e 79

.11 preprocessor v i i e e e e e e e e e e e 79
[4.12 Exception handling| L 81
5 Mesh Generation| 85
5.1 Commands for Mesh Generation| 85
[5.1.1 Square| 85
D12 Border 86

[5.1.3 Data Structures and Read/Write Statements foraMesh| 89
[5.1.4 Mesh Connectivity| 91

[5.1.5 The keyword “triangulate™ o oo 94

[5.2 Boundary FEM Spaces Built as Empty Meshes| 95
[5.3 Remeshing| 96
0.3.1 Movemeshl 96

[5.4 Regular Triangulation: hTriangle|. 98
[5.5 Adaptmesh| 98
B Trund . . . oo oo 103
[5.7 Sphitmesh| 104
[5.8 Meshing Examples|o 104
[5.9 How to change the label of elements and border elements of a mesh in FreeFem++ 7110
[5.10 Meshinthree dimensionsl o o oL 111
[5.10.1 Read/Write Statements fora Meshin3D| 111
[5.10.2 TeGen: A tetrahedral mesh generator| 111
[5.10.3 Reconstruct/Refine a three dimensional mesh with TetGen| 115
[5.10.4 Moving mesh in three dimensions | 117
[5.10.5 Layermesh| 117

[5.1T Meshing examples| 122
D.11.1 Build a 3d mesh of a cube with a balloonl 124

[5.12 The output solution formats .soland .solb| 125
BI3medil oo 127
5.14 Mshmetl e 130
D15 FreeYams| o o o 132
6 o3d| .. 134

CONTENTS

& Finitc El |

[6.1 Useof “fespace” in2d|
6.2 Useoffespacemn3d. e
[6.3 Lagrangian Finite Elements|. o000

[6.4 PI1 Nonconforming Element|
[6.5 Other FE-space|
r valued FE-functionl oo,

I Rawviart-Thomaselement|

[6.7 A Fast Finite Element Interpolator)
[6.8 Keywords: Problem and Solve| o0 L.
[6.8.1 Weak form and Boundary Condition|

[6.9 Parameters affecting solve and problem L.
[6.10 Problem definition| L
[6.11 Numerical Integration|.
[6.12 Variational Form, Sparse Matrix, PDE Data Vector]
[6.13 Interpolation matrix|
[6.14 Finite elements connectivity| L

(7.2 lmkwithgnuplotl
(/.3 lImkwithmeditl e

18

Algorithms|

[8.1 conjugate Gradient/ GMRES|
[8.2 Optimization| e e e

9__Mathematical Models!

1 icProblems|
O0.1.1 Soapkilm|.
0.1.2 Electrostatics|
[0.1.3 Aerodynamics| L
0.1.4 Errorestimationl e e e
[9.1.5 Periodic Boundary Conditions |.
[9.1.6 Poisson Problems with mixed boundary condition|.

1 Poisson with mixte finite elementlo,

[0.1.8 Metric Adaptation and residual error indicator].
[9.1.9 Adaptation using residual error indicator]

(9.2 Elasticity] e

[9.3.1 Newton-Raphson algorithm|
[9.4 Eigenvalue Problems| o o oo

11

139
141
142
143
143
143
144
145
146
147
147
149
151
151
153
154
155
158
162
163

165
165
169
169

171
171
174

v CONTENTS

[9.5.1 Mathematical Theory on Time Difference Approximations.. 206

2 nvection| e 208

[9.5.3 2D Black-Scholes equation for an European Putoption| 210

[9.6 Navier-Stokes Equation| oL Lo oo 211
0.6.1 Stokes and Navier-Stokes| 211
[9.6.2 Uzawa Algorithm and Conjugate Gradients| 216

[9.6.3 NSUzawaCahouetChabartedp| 217

[9.7 Variational inequality| L 219
[9.8 Domain decomposition| 221
[9.8.1 Schwarz Overlap Scheme| 221
[9.8.2 Schwarz non Overlap Scheme| 223
[9.8.3 Schwarz-gc.edp|. 225

[9.9 Fluid/Structures Coupled Problem| 227
10 Transmission Probleml 229
[0.11 Free Boundary Problem|. 233
[9.12 Non linear Elasticity (nolinear-elas.edp) 235
[9.13 Compressible Neo-Hookean Materials: Computational Solutions| 239
0.13.1 Notationl e 239
[9.13.2 A Neo-Hookean Compressible Material] 239
[9.13.3 An Approach to Implementation in FreeFem++ 240
[10_MPT Parallel version | 243
(10.1 MPI keywords| e e e 243
0.2 MPTconstantsl 243
(0.3 MPI ConstruCtor o v v it e e e e e e e 243
(10.4 MPIfunctionsl o o i e e 244
(10.5 MPI communiCator OPErator]. v v v v v vt e et e e e e 244
(10.6 Schwarz example mparallell 245
(10.6.1 True parallel Schwarz example|. 247

(11 Parallel sparse solvers| 253
[IT.1 Using parallel sparse solvers in FreeFem++ | 253
[11.2 Sparse directsolver| 256
................................ 256
(11.2.2 SuperLU distributed solver| 259
(11.2.3 Pastixsolvenl 261

(11.3 Parallel sparse iterative solver] 262
(11.3.1 pARMSsolver] 263
(11.3.2 Interfacing with HIPS| 265
(11.3.3 Interfacing with HYPRE| 269
(I1.3.4 Conclusionl 272

(11.4 Domain decomposition| L 272
(1T.4.1 Communicators and groups| 275
ML42 Processl o oo 276

11.4.3 Poin Poin mmunicatorsl 276

[1T.4.4 Global operations|., 276

CONTENTS

12 Mesh Files|

(12.2 bb File type for Store Solutions|. o oL

(12.3 BB File Type for Store Solutions|

24 MetricFilelo

[B__Grammar]

[B.1 Thebisongrammar|

[B.2 The Types of the languages, andcast|

[B.3 Allthe operators| e

(C Dynamical link|

[C.1 A first example myfunction.cpp| Lo

[C.2 Example: Discrete Fast Fourier Transtorm|

[C.3 Load Module for Dervieux” PO-P1 Finite Volume Method

[C.4 More on Adding a new finite element| oo

[C.5 Addanewsparsesolver]

. 74

281
281
282
282
283
283

287
287
288

293
293
293
294
294
295
295

297
297
301
301

307
307
310
312
315
318

329

vi

CONTENTS

Preface

3 qUHE: qUTHE qUiTd qUrEEsad |
wﬁwwﬁqmzrwﬁa'raﬁrw?r I
2 orTfeT: W SR

Fruit of a long maturing process, freefem, in its last avatar, FreeFem++, is a high level integrated
development environment (IDE) for numerically solving partial differential equations (PDE). It is
the ideal tool for teaching the finite element method but it is also perfect for research to quickly
test new ideas or multi-physics and complex applications.

FreeFem++ has an advanced automatic mesh generator, capable of a posteriori mesh adaptation;
it has a general purpose elliptic solver interfaced with fast algorithms such as the multi-frontal
method UMFPACK, SuperLU . Hyperbolic and parabolic problems are solved by iterative algo-
rithms prescribed by the user with the high level language of FreeFem++. It has several triangular
finite elements, including discontinuous elements. Finally everything is there in FreeFem++ to pre-
pare research quality reports: color display online with zooming and other features and postscript
printouts.

This manual is meant for students at Master level, for researchers at any level, and for engineers
(including financial engineering) with some understanding of variational methods for partial dif-
ferential equations.

Vil

viil CONTENTS

Chapter 1

Introduction

A partial differential equation is a relation between a function of several variables and its (partial)
derivatives. Many problems in physics, engineering, mathematics and even banking are modeled
by one or several partial differential equations.

FreeFem++ is a software to solve these equations numerically. As its name implies, it is a free
software (see the copyrights for full detail) based on the Finite Element Method; it is not a package,
it is an integrated product with its own high level programming language. This software runs on
all UNIX OS (with g++ 3.3 or later, and X11R6) , on Window 2000, NT, XP, Vista and 7 and on
MacOS 10 (powerpc, intel)

Moreover FreeFem++ is highly adaptive. Many phenomena involve several coupled systems, for
example: fluid-structure interactions, Lorentz forces for aluminium casting and ocean-atmosphere
problems are three such systems. These require different finite element approximations and poly-
nomial degrees, possibly on different meshes. Some algorithms like Schwarz’ domain decompo-
sition method also require data interpolation on multiple meshes within one program. FreeFem++
can handle these difficulties, i.e. arbitrary finite element spaces on arbitrary unstructured and
adapted bi-dimensional meshes.

The characteristics of FreeFem++ are:

e Problem description (real or complex valued) by their variational formulations, with access
to the internal vectors and matrices if needed.

e Multi-variables, multi-equations, bi-dimensional and three-dimensional static or time de-
pendent, linear or nonlinear coupled systems; however the user is required to describe the
iterative procedures which reduce the problem to a set of linear problems.

e Easy geometric input by analytic description of boundaries by pieces; however this part is
not a CAD system; for instance when two boundaries intersect, the user must specify the
intersection points.

e Automatic mesh generator, based on the Delaunay-Voronoi algorithm; the inner point den-
sity is proportional to the density of points on the boundaries [7].

1

2 CHAPTER 1. INTRODUCTION

e Metric-based anisotropic mesh adaptation. The metric can be computed automatically from
the Hessian of any FreeFem++ function [9].

e High level user friendly typed input language with an algebra of analytic and finite element
functions.

e Multiple finite element meshes within one application with automatic interpolation of data
on different meshes and possible storage of the interpolation matrices.

e A large variety of triangular finite elements : linear, quadratic Lagrangian elements and
more, discontinuous P1 and Raviart-Thomas elements, elements of a non-scalar type, the
mini-element,. .. (but no quadrangles).

e Tools to define discontinuous Galerkin finite element formulations P®, P1dc, P2dc and
keywords: jump, mean, intalledges.

e A large variety of linear direct and iterative solvers (LU, Cholesky, Crout, CG, GMRES,
UMFPACK) and eigenvalue and eigenvector solvers.

e Near optimal execution speed (compared with compiled C++ implementations programmed
directly).

e Online graphics, generation of , . txt, .eps, .gnu, mesh files for further manipulations of
input and output data.

e Many examples and tutorials: elliptic, parabolic and hyperbolic problems, Navier-Stokes
flows, elasticity, Fluid structure interactions, Schwarz’s domain decomposition method, eigen-

value problem, residual error indicator, ...

e A parallel version using mpi

1.1 Installation

1.1.1 For everyone:

First open the following web page
http://www. freefem.org/ff++/

And choose your platform: Linux, Windows, MacOS X, or go to the end of the page to get the full
list of downloads.

Remark 1 : Binaries are available for Microsoft Windows, Apple Mac OS X and some Linux
systems.

Install by double click on the appropriate file.

http://www.freefem.org/ff++/

1.1. INSTALLATION 3

Windows binaries install First download the windows installation executable, then double click
it. to install FreeFem++. In most cases just answer yes (or typr return) to all questions. Otherwise
in the Additional Task windows, check the box ”Add application directory to your system path
your system path .” This is required otherwise the program ffglut.exe will not be found.

By now you should have two new icons on your desktop:

o FreeFem++ (VERSION).exe the FreeFem++ application.
e FreeFem++ (VERSION) Examples alink to the FreeFem++ folder of examples.

where (VERSION) is the version of the files (for example 3.3-0-P4).
By default, the installed files are in

C:\Programs Files\FreeFem++

In this directory, you have all the .d11 files and other applications: FreeFem++-nw. exe,ffglut.exe,
... the FreeFem++ application without graphic windows.

The syntax for the command-line tools are the same as those of FreeFem.exe.

MacOS X binaries install Download the MacOS X binary version file, extract all the files with
a double click on the icon of the file, go the the directory and put the FreeFem+. app application
in the /Applications directory. If you want a terminal access to FreeFem++ just copy the file
FreeFem++ in a directory of your $PATH shell environment variable.

If you want to automatically launch the FreeFem++. app, double click on a .edp file icon. Un-
der the finder pick a .edp in directory examples++-tutorial for example, select menu File
-> Get Info an change Open with: (choose FreeFem++.app) and click on button change
All....

Where to go from here An integrated environment called FreeFem++-cs, written by Antoine
Le Hyaric, is provided with FreeFem++ . Unless you wish to profile now your own development
environment, you may proceed to the next paragraph "How to use FreeFem++".

1.1.2 For the pros: Installation from sources

This section is for those who for some reason do not wish to use the binaries and hence need to
recompile FreeFem++ or install it from the source code:

The documentation archive : The documentation is also open source; to regenerate it you need
a TEX environment capable of compiling a CVS archive; under MS-Windows you will have to
use cygwin

http://www.cygwin.com

and under MacOS X we have used Apple’s Developer Tools ”Xcode” and KTgX from http:
//www.ctan.org/system/mac/texmac.

http://www.cygwin.com
http://www.ctan.org/system/mac/texmac
http://www.ctan.org/system/mac/texmac

4 CHAPTER 1. INTRODUCTION

The C++ archive : FreeFem++ must be compiled from the source archive, as indicated in
http://www.freefem.org/ff++/index.htm
To extract files from the compressed archive freefem++- (VERSION) . tar.gz to a directory called
freefem++- (VERSION)

enter the following commands in a shell window :

tar zxvf freefem++-(VERSION).tar.gz
cd freefem++-(VERSION)

To compile and install FreeFem++ , just follow the INSTALL and README files. The following
programs are produced, depending on the system you are running :

1. FreeFem++, standard version, with a graphical interface based on GLUT/OpenGL (use ffglut
visualization tool) or not just add -nw parameter.

2. ffglut the visualization tools through a pipe of freefem++ (remark: if ffglut is not in the
system path, you will have no plot)

3. FreeFem++-nw, postscript plot output only (batch version, no graphics windows via ffglut

)

4. FreeFem++-mpi, parallel version, postscript output only
5. /Applications/FreeFem++.app, the Drag and Drop CoCoa MacOSX Application
6. bamg , the bamg mesh generator
7. cvmsh2 , a mesh file convertor
8. drawbdmesh , a mesh file viewer
9. ffmedit the freefem++ version of medit software (thanks to P. Frey)
The FreeFem++ parameter command:

Brochet-2:" hecht$ FreeFem++

Syntaxe:

FreeFem++ [-v verbosity] [-fglut filepath] [-glut command] [-nw] [-f] filename
-v verbosity : 0 -- 1000000 level of freefem output
-fglut filepath : the file name of save all plots (replot with ffglut command)
-glut command : change the command ffglut
-gff command : change the command ffglut with space quotting
-nowait : nowait at the end on window
-wait : wait at the end on window
-nw : no ffglut (=> no graphics windows)
-ne : no edp script output
-cd : Change directory to script dir

with default ffglut : ffglut

http://www.freefem.org/ff++/index.htm

1.1. INSTALLATION 5

Remark 2 In most cases you can set the level of output (verbosity) to value nn by adding the
parameters -v nn on the command line.

As an installation test, under unix: go into the directory examples++-tutorial and run FreeFem++
on the example script LaplaceP1.edp with the command :

FreeFem++ LaplacePl.edp

If you are using nedit as your text editor, do one time nedit -import edp.nedit to have

coloring syntax for your .edp files.
The syntax of tools FreeFem++,FreeFem++-nw on the command-line are

e FreeFem++ [-?] [-vnn] [-fglut filel] [-glut file2] [-f] edpfilepath where the

e orFreeFem++-nw -? [-vnn] [-fglut filel] [-glut file2] [-f] edpfilepath where
the
-7 show the usage.
-fglut filename to store all the data for graphicin file filename, and toreplay do ffglut filename.
-glut ffglutprogam to change the visualisator program’s.
-nw no call to ffglut
-v nn set the level of verbosity to nn before execution of the script.

if no file path then you get a dialog box to choose the edp file on windows systeme.

The notation [] means “optional”.

Link with other text editors

notepad++ athttp://notepad-plus.sourceforge.net/uk/site.htm

e Open Notepad++ and Enter F5
e In the new window enter the command FreeFem++ "$(FULL_CURRENT_PATH)"

e Click on Save, and enter FreeFem++ in the box "Name”, now choose the short cut key
to launch directly FreeFem++ (for example alt+shift+R)

e To add Color Syntax Compatible with FreeFem++ In Notepad++,

— InMenu "Parameters"->"Configuration of the Color Syntax" proceed
as follows:

— In the list "Language" select C++
— Add ”edp” in the field "add ext"

— Select "INSTRUCTION WORD" in the list "Description" and in the field "supple
mentary key word", cut and past the following list:
PO P1 P2 P3 P4 P5 Pldc P2dc P3dc P4dc P5dc RTO RT1 RT2 RT3 RT4 RTS
macro plot intld int2d solve movemesh adaptmesh trunc checkmovemesh on func
buildmesh square Eigenvalue min max imag exec LinearCG NLCG Newton BFGS
LinearGMRES catch try intalledges jump average mean load savemesh convect
abs sin cos tan atan asin acos cotan sinh cosh tanh cotanh atanh asinh acosh pow
exp log log10 sqrt dx dy endl cout

http://notepad-plus.sourceforge.net/uk/site.htm

6 CHAPTER 1. INTRODUCTION

— Select "TYPE WORD?” in the list "Description” and ... ” ”supplementary key
word”, cut and past the following list
mesh real fespace varf matrix problem string border complex ifstream ofstream

— Click on Save & Close. Now nodepad++ is configured.

Crimson Editor availble at http://www.crimsoneditor.com/ and adapted as follows:

e Gotothe Tools/Preferences/File association menu and add the .edp extension set

e In the same panel in Tools/User Tools, add a FreeFem++ item (1st line) with the path
to freefem++.exe on the second line and $(FilePath) and $(FileDir) on third
and fourth lines. Tick the 8.3 box.

e for color syntax, extract file from crimson-freefem.zip and put files in the corre-
sponding sub-folder of Crimson folder (C:\Program Files\Crimson Editor).

winedt for Windows : this is the best but it could be tricky to set up. Download it from
http://www.winedt.com

this is a multipurpose text editor with advanced features such as syntax coloring; a macro
is available on www . freefem.org to localize winedt to FreeFem++ without disturbing the
winedt functional mode for LateX, TeX, C, etc. However winedt is not free after the trial
period.

TeXnicCenter for Windows: this is the easiest and will be the best once we find a volunteer to
program the color syntax. Download it from

http://www.texniccenter.org/

It is also an editor for TeX/LaTeX. It has a ”‘tool”” menu which can be configured to launch
FreeFem++ programs as in:

e Select the Tools/Customize item which will bring up a dialog box.

e Select the Tools tab and create a new item: call it freefem.

e in the 3 lines below,

1. search for FreeFem++. exe
2. select Main file with further option then Full path and click also on the 8.3 box
3. select main file full directory path with 8.3

nedit on the Mac OS, Cygwin/Xfree and linux, to import the color syntax do

nedit -import edp.nedit

Smultron on the Mac, available at http://smultron. sourceforge.net. It comes ready with
color syntax for .edp file. To teach it to launch FreeFem++ files, do a "command B” (i.e.
the menu Tools/Handle Command/new command) and create a command which does

/usr/local/bin/FreeFem++-CoCoa %%p

http://www.crimsoneditor.com/
http://www.winedt.com
www.freefem.org
http://www.texniccenter.org/
http://smultron.sourceforge.net

1.1. INSTALLATION

M Click mouse to continue | &' crimson Editor - [C\Bixpast’055ummer'\Linuxfreefem++ 1.47-38 o] 3

FiI_E Edit Search View Document Project Tools Macros ‘window Helﬂ_ _|5|5|
DELe HE SR s b@jc - B(ani» OEE wYiE e

& solveedp | & borderedp I & problemedp I & meshedp @ adaptedn |

Blrhorder a(t=0,1.0){==t; v=0: label=1:}:// comment
border b (t=0,0.5) {x=1; b o

c(t=0,0.58) {x=1-t;

d{t=0.5,1) {x=0.5: v=t:
border = (t=0.5,1){x=1-t; wv=1:
dborder f£(t=0.0,1) {x=0; v=1l-t:label=62):

fimesh Th = buildmesh (2(6) + k(4] + ci4) +d(4) + e(4) + £(6)):

-

real serror=0.01;
problem Probeml (u, v, 5ol =CG,eps=1.0e-08) =

int2d (Th, gforder=2) [u*v*1.0e-10+ dxiu) *dx(v) + dy(u) *dyi:
+ int2d(Th,gforder=2) [(x-¥)*v): b
int 1i:

for (i=0:i< 4:i++)

Froheml;

cout << uf].min << " " << u[] .max << endl;
plot{u, sait=1):
Th=adaptmesh (Th, u,err=error);

plot (Th, sait=1);

u=u;

ELror = error/i;

Ln1, Ch2 | 26 | ASEIL LINI
i # i i

_IDlzﬂ
min —B.116868 max B.113293
242, Mb of VUertices 144

Nb of edges-nn Mox é
44, neb = 44

Hb of edges on Boundary
44

= min -8.120132 max B.116518
—-8.128132 B.116518
Mh of Triangles a 547. Nbh of Uertices 389

69. neb = 69

min —B.1280988 max B.117362

1899, Hb of Uertices 681

Hb of edges on Boundary 81, neb = 181
Nh Of Modes = GB1

So

lue : min —@.121289 max B.117744
—8.12128% B8.117744

Figure 1.1: Integrated environment for FreeFem++ development with Windows

8 CHAPTER 1. INTRODUCTION
1.2 How to use FreeFem++

Under MacOS X with Graphic Interfaces To test an . edp file, just drag and drop the file icon
on the MacOS application icon FreeFem++.app. You can also launch this application and use the
menu: File — Open.

One of the best ways however on the Mac is to use a text editor like Smultron. app (see above).

" @ mi File Ecit Find Option Jump [ECTIN Window Help
8660 i Viea Run #R

*/Brochet/Usars/hecht/wark/freefam- +/examples - tutoriai¥l-adap.ed, Cument -edp) 2006/3/27 231116
——

FEERRRNREOEREE

26| matrix M=vli{uh, \/h)
37: rhe = a(@,Yh,tov=tav);
39} Teal[int] Aiifn), Ann(n) AhL{n),bin);

40{ Aii=h.diog; ¢ get the diogonal of the matrix
atl floout << " A= " << Al << endl;
a2} bh =8;
43 uhp=a,
44 Vh heB;
a5} ink kadapt=8,kkadapt=0;
46 for(int iter=n;iterclod;rsiter)
{

P suwe the problen plot{uh); // to ses the result

50 B e

S1: 4/ odd new lack condition on i o (Ah[\] =1}

52{ dhl= 1.; shl -= &h[]; /¢ Ahl

S5 b-An[] o umas[]; b %= tav; b -= ANl ¥ rhs;
sS4 Aiin = Ah[] * tgv; Alin 4= Ahl K ALY

55 A.diag = Aiing

561 set{h,solver=(}; // inportant o changs precondicorning
571 uh[] = AM-1K b3

530 Lh[] = AA * uh[];

591 Ih[] += rhs;

&0 " mnt(m,wmt_i),

£17 Aho= Lh+ co%(uhax- uh}) < 8.3

631 4/ plot(ah, woit=1,com=" lock " value=1 J;
641 plot{uh,wait=1,cum="uh"};

65 real[int] din),Mdfn};

6 u, uh[]—uhp[

58 reul err = sarteid e
691 Md=MHuR[];

ECHI

711 real intuh = (ARL'MMd); /7 int uh;

72 cout << " Brr norm L2 ' <c 87 << " "

73 < ! int uh = " e intuh

74 ex ! RRadopt =" ee kkodapt cssrdl
75 res = intuh;

76! if{err< eps S& kkadapt) breok.

77 bool odopt - err= eps || (\ter%s =4
Kl if{odapt)

79 i

a0 kadapt++

a1 The=i uduptmesh(Th uherr=tol};

a2 kkodopt = £l == tolning 4/ we reacht the bound

ks tul mux(tul/z toluin);

24 ol =" estol ox " o kadapt < <c kkadopt <sndl;

v
Line:64/126 [&] alr
e graphics display mus suwerﬁ'ﬂ &l T i
i There are other ways to have an inte
usually an editor installed: if it is wing
Tex Input: be programmed to handle the edit-ry

Figure 1.2: The 3 panels of the integrated environment built with the Smultron Editor with
FreeFem++ in action. The Tools menu has an item to launch FreeFem++ by a Ctrl+1 command.

In Terminal mode Choose the type of application from FreeFem++, FreeFem++-nw, FreeFem++-mpi,
.according to your needs. Add at least the path name; for example

FreeFem++ your-edp-file-path

1.3 Environment variables, and the init file

FreeFem++ reads a user’s init file named freefem++.pref toinitialize global variables: verbosity,
includepath, loadpath.

Remark 3 The variable verbosity changes the level of internal printing (0, nothing (unless
there are syntax errors), 1 few, 10 lots, etc. ...), the default value is 2.

The include files are searched from the includepath list and the load files are searched from
loadpath list.

1.4. HISTORY 9

The syntax of the file is:

verbosity= 5

loadpath += "/Library/FreeFem++/1lib"

loadpath += "/Users/hecht/Library/FreeFem++/1ib"
includepath += "/Library/FreeFem++/edp"

includepath += "/Users/hecht/Library/FreeFem++/edp"
comment

load += "funcTemplate"

load += "myfunction"

The possible paths for this file are

e under unix and MacOs

/etc/freefem++.pref
$(HOME) /. freefem++.pref
freefem++.pref

e under windows
freefem++.pref

We can also use shell environment variable to change verbosity and the search rule before the init
files.

export FF_VERBOSITY=50
export FF_INCLUDEPATH="dir;;dir2"
export FF_LOADPATH="dir;;dir3""

99,99 99,99

Remark: the separator between directories must be ”;” and not ”:” because :” is used under
Windows.
Remark, to show the list of init of freefem++, do

export FF_VERBOSITY=100; ./FreeFem++-nw
-- verbosity is set to 100
insert init-files /etc/freefem++.pref §

1.4 History

The project has evolved from MacFem, PCfem, written in Pascal. The first C version lead to
freefem 3.4; it offered mesh adaptativity on a single mesh only.

A thorough rewriting in C++ led to freefem+ (freefem+ 1.2.10 was its last release), which
included interpolation over multiple meshes (functions defined on one mesh can be used on any
other mesh); this software is no longer maintained but still in use because it handles a problem

10 CHAPTER 1. INTRODUCTION

description using the strong form of the PDEs. Implementing the interpolation from one unstruc-
tured mesh to another was not easy because it had to be fast and non-diffusive; for each point, one
had to find the containing triangle. This is one of the basic problems of computational geometry
(see Preparata & Shamos[18]] for example). Doing it in a minimum number of operations was the
challenge. Our implementation is O(nlog n) and based on a quadtree. This version also grew out
of hand because of the evolution of the template syntax in C++.

We have been working for a few years now on FreeFem++ , entirely re-written again in C++ with
a thorough usage of template and generic programming for coupled systems of unknown size at
compile time. Like all versions of freefem it has a high level user friendly input language which
is not too far from the mathematical writing of the problems.

The freefem language allows for a quick specification of any partial differential system of equa-
tions. The language syntax of FreeFem++ is the result of a new design which makes use of the
STL [26], templates and bison for its implementation; more detail can be found in [12]. The
outcome is a versatile software in which any new finite element can be included in a few hours; but
a recompilation is then necessary. Therefore the library of finite elements available in FreeFem++
will grow with the version number and with the number of users who program more new ele-
ments. So far we have discontinuous P, elements,linear P, and quadratic P, Lagrangian elements,
discontinuous P; and Raviart-Thomas elements and a few others like bubble elements.

Chapter 2

Getting Started

To illustrate with an example, let us explain how FreeFem++ solves Poisson’s equation: for a
given function f(x,V), find a function u(x,y) satisfying

— Au(x,y) f(x,y) forall (x,y) € Q, (2.1)

u(x,y) = 0 forall (x,y) on 0Q,. (2.2)
Here AQ is the boundary of the bounded open set Q € R? and Au = % + 3273‘.
The following is a FreeFem++ program which computes u when f(x,y) = xy and Q is the unit
disk. The boundary C = 0Q is

C ={(x,y)| x =cos(t), y = sin(¢t), 0 < t < 2n}

Note that in FreeFem++ the domain Q is assumed to described by its boundary that is on the left
side of its boundary oriented by the parameter. As illustrated in Fig. [2.2] we can see the isovalue
of u by using plot (see line 13 below).

Figure 2.1: mesh Th by build(C(50)) Figure 2.2: isovalue by plot (u)

Example 2.1

// defining the boundary
1: border C(t=0,2%pi){x=cos(t); y=sin(t);}

11

12 CHAPTER 2. GETTING STARTED

// the triangulated domain Th is on the left side of its boundary
2: mesh Th = buildmesh (C(50));
// the finite element space defined over Th is called here Vh

3; fespace Vh(Th,P1);

4: Vh u,v; // defines u and v as piecewise-P1 continuous functions
5: func f= x*y; // definition of a called f function
6: real cpu=clock(); // get the clock in second
7: solve Poisson(u,v,solver=LU) = // defines the PDE
8: int2d(Th) (dx(u)*dx(v) + dy(u)*dy(v)) // bilinear part
9: - int2d(Th) (£f*v) // right hand side
10: + on(C,u=0) ; // Dirichlet boundary condition
11: plot(w;

12: cout << " CPU time = " << clock()-cpu << endl;

Note that the qualifier solver=LU is not required and by default a multi-frontal LU would have
been used. Note also that the lines containing clock are equally not required. Finally note how
close to the mathematics FreeFem++ input language is. Line 8 and 9 correspond to the mathe-
matical variational equation

8u@ ou Ov

—— + ——)dxdy = vdxd
T, 0x0x ayﬁy) Y fThf Y

for all v which are in the finite element space V), and zero on the boundary C.

Exercise : Change P1 into P2 and run the program.

2.0.1 FEM by FreeFem++ : how does it work?

This first example shows how FreeFem++ executes with no effort all the usual steps required by
the finite element method (FEM). Let us go through them one by one.

1st line: the boundary I' is described analytically by a parametric equation for x and for y. When
I = f:o I'; then each curve I';, must be specified and crossings of I'; are not allowed except at
end points .
The keyword “label” can be added to define a group of boundaries for later use (boundary con-
ditions for instance). Hence the circle could also have been described as two half circle with the
same label:

border Gammal(t=0,pi) {x=cos(t); y=sin(t); label=C}
border Gamma2(t=pi,2*pi){x=cos(t); y=sin(t); label=C}

Boundaries can be referred to either by name (Gammal for example) or by label (C here) or even
by its internal number here 1 for the first half circle and 2 for the second (more examples are in

Section [5.8).

2nd line: the triangulation 7, of Q is automatically generated by buildmesh(C(50)) using 50
points on C as in Fig. 2.1]

The domain is assumed to be on the left side of the boundary which is implicitly oriented by the
parametrization. So an elliptic hole can be added by

13

border C(t=2%pi,0){x=0.1+0.3*cos(t); y=0.5*sin(t);}

If by mistake one had written

border C(t=0,2*pi){x=0.1+0.3*cos(t); y=0.5*sin(t);}

then the inside of the ellipse would be triangulated as well as the outside.

Automatic mesh generation is based on the Delaunay-Voronoi algorithm. Refinement of the mesh
are done by increasing the number of points on I', for example, buildmesh(C(100)), because
inner vertices are determined by the density of points on the boundary. Mesh adaptation can be
performed also against a given function £ by calling adaptmesh(Th, f).

Now the name 7, (Th in FreeFem++) refers to the family {7} .. ,, of triangles shown in figure
[2.1] Traditionally 4 refers to the mesh size, n, to the number of triangles in 77, and n, to the number
of vertices, but it is seldom that we will have to use them explicitly. If Q is not a polygonal domain,
a “skin” remains between the exact domain € and its approximation €2, = UZ’: Tr. However, we
notice that all corners of I', = 0€;, are on I".

3rd line: A finite element space is, usually, a space of polynomial functions on elements, triangles
here only, with certain matching properties at edges, vertices etc. Here fespace Vh(Th,P1)
defines V), to be the space of continuous functions which are affine in x, y on each triangle of 7).
As it is a linear vector space of finite dimension, basis can be found. The canonical basis is made
of functions, called the hat functions ¢, which are continuous piecewise affine and are equal to 1
on one vertex and O on all others. A typical hat function is shown on figure ﬂ Then

Vi(Th, P1) = {w(x, y)

M
w(x,y) = Z wirdr(x,y), wy are real numbers} (2.3)

k=1

where M is the dimension of V), i.e. the number of vertices. The w, are called the degree of
freedom of w and M the number of the degree of freedom.

It is said also that the nodes of this finite element method are the vertices.

Currently FreeFem++ implements the following elements in 2d, (see section [f] for the full de-
scription)

PO piecewise constant,

P1 continuous piecewise linear,

P2 continuous piecewise quadratic,

RTO Raviart-Thomas piecewise constant,

P1nc piecewise linear non-conforming,

P1dc piecewise linear discontinuous,

P2dc piecewise quadratic discontinuous,

P1b piecewise linear continuous plus bubble,

! The easiest way to define ¢ is by making use of the barycentric coordinates Ai(x,y), i = 1,2,3 of a point
q = (x,y) € T, defined by
D=1, Y ugd=gq

where ¢', i = 1,2,3 are the 3 vertices of 7. Then it is easy to see that the restriction of ¢ on T is precisely 4.

14 CHAPTER 2. GETTING STARTED

g 3

Figure 2.3: mesh Th Figure 2.4: Graph of ¢, (left) and ¢

P2b piecewise quadratic continuous plus bubble.

Currently FreeFem++ implements the following elements in 3d, (see section [6] for the full de-
scription)

P03d piecewise constant,

P13d continuous piecewise linear,

P23d continuous piecewise quadratic,

RTO3d Raviart-Thomas piecewise constant,

Edge03d The Nedelec Edge element

P1b3d piecewise linear continuous plus bubble,

To get the full list, in a unix terminal, in directory examples++-tutorial do
FreeFem++ dumptable.edp
grep TypeOfFE lestables

Note that other elements can be added fairly easily.

Step3: Setting the problem
4th line: Vh u, v declares that # and v are approximated as above, namely

M-1

u(x,y) = wi(x,y) =) i(x,) (24)

k=0

Sth line: the right hand side f is defined analytically using the keyword func.
7th-9th lines: defines the bilinear form of equation (2.1)) and its Dirichlet boundary conditions

@2).

This variational formulation is derived by multiplying (2.1I) by v(x, y) and integrating the result

over :
- f vAu dxdy = fvfdxdy
Q Q

Then, by Green’s formula, the problem is converted into finding u such that
a(u,v) —€(f,v) =0 Vv satisfying v = 0 on 0. (2.5)
with a(u,v) = f Vu - Vvdxdy, (f,v)= ffv dxdy (2.6)
Q Q

15

In FreeFem++ the Poisson problem can be declared only as in

Vh u,v; problem Poisson(u,v) =

and solved later as in

Poisson; // the problem is solved here

or declared and solved at the same time as in
Vh u,v; solve Poisson(u,v) =int(...

and (2.5) is written with dx(u) = du/dx, dy(u) = du/dy and
f Vu - Vvdxdy — int2d(Th) (dx(u)*dx(v) + dy(u)*dy(v))
Q

f fvdxdy — int2d(Th) (f*v) (Notice here, u is unused)
Q

In FreeFem++ bilinear terms and linear terms should not be under the same integral; indeed
to construct the linear systems FreeFem++ finds out which integral contributes to the bilinear form
by checking if both terms , the unknown (here u) and test functions (here v) are present.

Step4: Solution and visualization

6th line: The current time in seconds is stored into the real-valued variable cpu.

7th line The problem is solved.

11th line: The visualization is done as illustrated in Fig. [2.2] (see Section for zoom, postscript
and other commands).

12th line: The computing time (not counting graphics) is written on the console Notice the C++-
like syntax; the user needs not study C++ for using FreeFem++ , but it helps to guess what is
allowed in the language.

Access to matrices and vectors
Internally FreeFem++ will solve a linear system of the type

M-1
YA F=0. =0 M-t = [o)

Jj= Q

which is found by using (2.4) and replacing v by ¢; in (2.5). And the Dirichlet conditions are
implemented by penalty, namely by setting A; = 10*° and F; = 10°° + 0 if i is a boundary degree of
freedom. Note, that the number 10% is called tgv (trés grande valeur) and it is generally possible
to change this value , see the index item solve!tgv=.

The matrix A = (A;)) 1s called stiffness matrix .
If the user wants to access A directly he can do so by using (see section [6.12] page for details)

varf a(u,v) = int2d(Th) (dx(u)*dx(v) + dy(u)*dy(v))

16 CHAPTER 2. GETTING STARTED

+ on(C,u=0) ;
matrix A=a(Vh,Vh); // stiffness matrix,

The vector F in (2.7)) can also be constructed manually

varf l(unused,v) = int2d(Th) (f*v)+on(C,u=0);
Vh F; F[] = 1(0,Vh); // F[] is the vector associated to the function F

The problem can then be solved by

ul]=A"-1*F[]; // u[] is the vector associated to the function u

Note 2.1 Here u and F are finite element function, and u[] and F[] give the array of value
u-1). So we have

M-1 M-1
u(r.y) =y ullligxy), Feoy) = . Fllg(x.y)
i=0 i=0
where ¢;,i = 0...,, M — 1 are the basis functions of Vh like in equation , and M = Vh.ndof is
the number of degree of freedom (i.e. the dimension of the space Vh).

The linear system (2.7)) is solved by UMFPACK unless another option is mentioned specifically as in
Vh u,v; problem Poisson(u,v,solver=CG) = int2d(...

meaning that Poisson is declared only here and when it is called (by simply writing Poisson;)
then (2.7) will be solved by the Conjugate Gradient method.

2.0.2 Some Features of FreeFem++

The language of FreeFem++ is typed, polymorphic and reentrant with macro generation (see
[0.12). Every variable must be typed and declared in a statement each statement separated from
the next by a semicolon ”;”. The syntax is that of C++ by default augmented with something that
is more akin to TgX. For the specialist, one key guideline is that FreeFem++ rarely generates
an internal finite element array; this was adopted for speed and consequently FreeFem++ could
be hard to beat in terms of execution speed, except for the time lost in the interpretation of the
language (which can be reduced by a systematic usage of varf and matrices instead of problem.

2.1 The Development Cycle: Edit—-Run/Visualize-Revise

An integrated environment is provided with FreeFem++ by A. Le Hyaric; Many examples and
tutorials are also given along with this documentation and it is best to study them and learn by
example. Explanations for some of these examples are given in this documentation in the next
chapter. If you are a FEM beginner, you may also have to read a book on variational formulations.
The development cycle will have the following steps:

Modeling: From strong forms of PDE to weak forms, one must know the variational formulation
to use FreeFem++ ; one should also have an eye on the reusability of the variational formu-
lation so as to keep the same internal matrices; a typical example is the time dependent heat
equation with an implicit time scheme: the internal matrix can be factorized only once and
FreeFem++ can be taught to do so.

2.1. THE DEVELOPMENT CYCLE: EDIT-RUN/VISUALIZE-REVISE 17

Programming: Write the code in FreeFem++ language using a text editor such as the one pro-
vided in the integrated environment.

Run: Run the code (here written in file mycode.edp). note that this can also be done in terminal
mode by :
% FreeFem++ mycode.edp

Visualization: Use the keyword plot to display functions while FreeFem++ is running. Use the

plot-parameter wait=1 to stop the program at each plot. Use the plot-parameter ps="toto.eps'
to generate a postscript file to archive the results.

Debugging: A global variable “debug” (for example) can help as in wait=true t0 wait=false.

bool debug = true;
border a(t=0,2*pi){ x=cos(t); y=sin(t);label=1;}
border b(t=0,2*pi){ x=0.8+0.3%cos(t); y=0.3*sin(t);label=2;}

plot (a(50)+b(-30),wait=debug); // plot the borders to see the intersection
// (so change (0.8 in 0.3 in b) then needs a mouse click

mesh Th = buildmesh(a(50)+b(-30));

plot (Th,wait=debug); // plot Th then needs a mouse click

fespace Vh(Th,P2);
Vh f = sin(pi*x)*cos(pi*y);

plot (f,wait=debug); // plot the function f
Vh g = sin(pi*x + cos(pi*y));
plot(g,wait=debug); // plot the function g

Changing debug to false will make the plots flow continuously; watching the flow of graphs
on the screen (while drinking coffee) can then become a pleasant experience.

Error messages are displayed in the console window. They are not always very explicit
because of the template structure of the C++ code, (we did our best)! Nevertheless they are
displayed at the right place. For example, if you forget parenthesis as in

bool debug = true;
mesh Th = square(10,10;
plot(Th);

then you will get the following message from FreeFem++,

2 : mesh Th = square(10,10;
Error line number 2, in file bb.edp, before token ;
parse error
current line = 2
Compile error : parse error
line number :2, ;
error Compile error : parse error
line number :2, ;
code =1

If you use the same symbol twice as in

18 CHAPTER 2. GETTING STARTED

real aaa =1;
real aaa;

then you will get the message

2 : real aaa; The identifier aaa exists
the existing type is <Pd>
the new type is <Pd>

If you find that the program isn’t doing what you want you may also use cout to display in
text format on the console window the value of variables, just as you would do in C++.

The following example works:

fespace Vh...; Vh u;...

cout<<u;...
matrix A=a(Vh,Vh);...
Cout<<A;

Another trick is to comment in and out by using the* //” as in C++. For example

real aaa =1;
// real aaa;

Chapter 3

Learning by Examples

This chapter is for those, like us, who don’t like to read manuals. A number of simple examples
cover a good deal of the capacity of FreeFem++ and are self-explanatory. For the modeling part
this chapter continues at Chapter 9 where some PDEes of physics, engineering and finance are
studied in greater depth.

3.1 Membranes

Summary Here we shall learn how to solve a Dirichlet and/or mixed Dirichlet Neumann prob-
lem for the Laplace operator with application to the equilibrium of a membrane under load. We
shall also check the accuracy of the method and interface with other graphics packages.

An elastic membrane € is attached to a planar rigid support I', and a force f(x)dx is exerted on
each surface element dx = dx;dx,. The vertical membrane displacement, ¢(x), is obtained by
solving Laplace’s equation:

—Ap = f in Q.

As the membrane is fixed to its planar support, one has:
¢lr = 0.

If the support wasn’t planar but at an elevation z(x;, x,) then the boundary conditions would be of
non-homogeneous Dirichlet type.

¢lr = z.

If a part I'; of the membrane border I is not fixed to the support but is left hanging, then due to the
membrane’s rigidity the angle with the normal vector 7 is zero; thus the boundary conditions are

Op

o —0
6n|r2

elr, =z,

where I'} = I' — I';; recall that g—f = Vg - n. Let us recall also that the Laplace operator A is defined
by:
i i
Ap = 79,79
ox; 0x;

19

20 CHAPTER 3. LEARNING BY EXAMPLES

With such “mixed boundary conditions” the problem has a unique solution (see (1987), Dautray-
Lions (1988), Strang (1986) and Raviart-Thomas (1983)); the easiest proof is to notice that ¢ is
the state of least energy, i.e.

E(¢) = min E(v), with E(@v) = f(l|Vv|2 - fv)
o—z€V Q 2

and where V is the subspace of the Sobolev space H'(Q) of functions which have zero trace on I';.
Recall that (x € R?, d = 2 here)

HY(Q) = {u e L*(Q) : Vue (L*(Q)%}

Calculus of variation shows that the minimum must satisfy, what is known as the weak form of the
PDE or its variational formulation (also known here as the theorem of virtual work)

fch-Vw:ffw YweV
Q Q

Next an integration by parts (Green’s formula) will show that this is equivalent to the PDE when
second derivatives exist.

WARNING Unlike freefem+ which had both weak and strong forms, FreeFem++ implements
only weak formulations. It is not possible to go further in using this software if you don’t know
the weak form (i.e. variational formulation) of your problem: either you read a book, or ask help
form a colleague or drop the matter. Now if you want to solve a system of PDE like A(u,v) =
0, B(u,v) = 0 don’t close this manual, because in weak form it is

f(A(u, vwr + B(u, v)w,) =0 Ywy, ws...
Q

Example Let an ellipse have the length of the semimajor axis a = 2, and unitary the semiminor
axis Let the surface force be f = 1. Programming this case with FreeFem++ gives:

Example 3.1 (membrane.edp) // file membrane.edp
real theta=4.%*pi/3.;

real a=2.,b=1.; // the length of the semimajor axis and semiminor axis
func z=x;

border Gammal(t=0,theta) { x=a* cos(t); y = b*sin(t); }

border Gamma2(t=theta,2*pi) { x = a * cos(t); y = b*sin(t); }

mesh Th=buildmesh(Gammal (100)+Gamma2(50));

fespace Vh(Th,P2); // P2 conforming triangular FEM

Vh phi,w, f=1;

solve Laplace(phi,w)=int2d(Th) (dx(phi)*dx(w) + dy(phi)*dy(w))

- int2d(Th) (f*w) + on(Gammal,phi=z);
plot (phi,wait=true, ps="membrane.eps"); // Plot phi
plot(Th,wait=true, ps="membraneTh.eps"); // Plot Th

savemesh(Th, "Th.msh");

21

3.1. MEMBRANES

VA);
AV

VA VAZAYAN

N

O
;

N
%

A

(VA74Y)
A
EEVAVA
s
R

K
mwnuvmfé
Al
y)'A
D

N/

AVAVAVAVIAWAVAVZAVAVIIN

N\

N
N
N
A

NNINN
AN

\VAVZ\VAVAY|
NNN

VVVANINANIN
NNNA/

IANNAZNSN

AAVAIN

OVAVAY
NN
XY

NN
N/

AN
VAVAVZ\YAVANVAVANN N,V
NS

7/

&

V4

2y

74
v

N
SRR
>

SI

N
<]
YAV
NS

NSASN
=
ANA"AV

Vavavavy

"phi.txt"

3D drawn by

m

: the same 1

. Below

10n

f the membrane deformat

mes o

Mesh and level 1

1

3

Figure

gnuplot from a file generated by FreeFem++ .

22 CHAPTER 3. LEARNING BY EXAMPLES

A triangulation is built by the keyword buildmesh. This keyword calls a triangulation subroutine
based on the Delaunay test, which first triangulates with only the boundary points, then adds
internal points by subdividing the edges. How fine the triangulation becomes is controlled by
the size of the closest boundary edges.

The PDE is then discretized using the triangular second order finite element method on the tri-
angulation; as was briefly indicated in the previous chapter, a linear system is derived from the
discrete formulation whose size is the number of vertices plus the number of mid-edges in the
triangulation. The system is solved by a multi-frontal Gauss LU factorization implemented in the
package UMFPACK. The keyword plot will display both T, and ¢ (remove Th if ¢ only is desired)
and the qualifier fill=true replaces the default option (colored level lines) by a full color display.
Results are on figure

plot (phi,wait=true,fill=true); // Plot phi with full color display

Next we would like to check the results!
One simple way is to adjust the parameters so as to know the solutions. For instance on the unit
circle a=1, ¢, = sin(x* + y* — 1) solves the problem when

z=0, f=—4(cos(x* +y* — 1) — (x* + yH) sin(x* + y* — 1))

except that on I'; 9,0 = 2 instead of zero. So we will consider a non-homogeneous Neumann

condition and solve
f(Vgo-Vw:fwarf 2w YweV
Q Q I,

We will do that with two triangulations, compute the L? error:

€:f|(,0—goe|2
Q

and print the error in both cases as well as the log of their ratio an indication of the rate of conver-
gence.

Example 3.2 (membranerror.edp) // file membranerror.edp
verbosity =0; // to remove all default output
real theta=4.*pi/3.;

real a=1.,b=1.; // the length of the semimajor axis and semiminor axis
border Gammal(t=0,theta) { x=a * cos(t); y = b*sin(t); }

border Gamma2(t=theta,2*pi) { x = a * cos(t); y = b*sin(t); }

func f=-4*(cos(x"2+y"2-1) -(x"2+y"2)*sin(x"2+y"2-1));
func phiexact=sin(x"2+y"2-1);

reallint] L2error(2); // an array two values
for(int n=0;n<2;n++)
{
mesh Th=buildmesh(Gammal(20*(n+1))+Gamma2 (10*(n+1)));
fespace Vh(Th,P2);
Vh phi,w;

solve laplace(phi,w)=int2d(Th) (dx(phi)*dx(w) + dy(phi)*dy(w))
- int2d(Th) (f*w) - int1d(Th,Gamma2) (2*w)+ on(Gammal,phi=0);

3.1. MEMBRANES 23

plot (Th,phi,wait=true,ps="membrane.eps"); // Plot Th and phi

L2error[n]= sqrt(int2d(Th) ((phi-phiexact)"2));
}

for(int n=0;n<2;n++)
cout << " L2error "

<< n << = "<< L2error[n] <<endl;

cout <<" convergence rate = "<< log(L2error[0]/L2error[1])/log(2.) <<endl;

the output is

L2error 0 = 0.00462991

L2error 1 = 0.00117128

convergence rate = 1.9829

times: compile 0.02s, execution 6.94s

We find a rate of 1.93591, which is not close enough to the 3 predicted by the theory. The Geometry
is always a polygon so we lose one order due to the geometry approximation in O(h?)

Now if you are not satisfied with the .eps plot generated by FreeFem++ and you want to use
other graphic facilities, then you must store the solution in a file very much like in C++. It will be
useless if you don’t save the triangulation as well, consequently you must do

{
ofstream ff("phi.txt");
ff << phi[];

}
savemesh(Th, "Th.msh");

For the triangulation the name is important: it is the extension that determines the format.
Still that may not take you where you want. Here is an interface with gnuplot to produce the right

part of figure[3.2]

// to build a gnuplot data file

{ ofstream ff("graph.txt");

for (int i=0;i<Th.nt;i++)

{ for (int j=0; j <3; j++)

ff<<Th[i][j].x << " "<< Th[i][j].y<< " '"<<phi[][Vh(i,j)]<<endl;

ff<<Th[i][0].x << " "<< Th[i][0].y<< " ‘"<<phi[][Vh(i,®)]<<"\n\n\n"

}
}

We use the finite element numbering, where Wh(i, j) is the global index of j7" degrees of freedom
of triangle number i.
Then open gnuplot and do

set palette rgbformulae 30,31,32
splot "graph.txt" w 1 pal

This works with P2 and P1, but not with P1nc because the 3 first degrees of freedom of P2 or
P2 are on vertices and not with Plnc.

24 CHAPTER 3. LEARNING BY EXAMPLES
3.2 Heat Exchanger

Summary Here we shall learn more about geometry input and triangulation files, as well as
read and write operations.

The problem Let {C;},,, be 2 thermal conductors within an enclosure Cy. The first one is held
at a constant temperature u; the other one has a given thermal conductivity «, 5 times larger than
the one of Cy. We assume that the border of enclosure Cj is held at temperature 20°C and that we
have waited long enough for thermal equilibrium.

In order to know u(x) at any point x of the domain €2, we must solve

V-«WVu)=0 in Q, uyr=g
where Q is the interior of Cy minus the conductors C; and I' is the boundary of Q, that is Cy U C,
Here g is any function of x equal to u; on C;. The second equation is a reduced form for:
u=u; on C,’, i:O,l.
The variational formulation for this problem is in the subspace H(l) (Q) ¢ H'(Q) of functions which
have zero traces on I'.
u—geH)(Q) : fVqu =0 Vve HyQ)
Q

Let us assume that Cj, is a circle of radius 5 centered at the origin, C; are rectangles, C; being at
the constant temperature u; = 60°C.

Example 3.3 (heatex.edp) // file heatex.edp
int C1=99, (C2=98; // could be anything such that #0 and C1 # C2
border CO(t=0,2*pi){x=5*cos(t); y=5*sin(t);}

border C11(t=0,1){ x=1+t; y=3; label=C1;}
border C12(t=0,1){ x=2; y=3-6*t; label=Cl;}
border C13(t=0,1){ x=2-t; y=-3; label=C1;}
border C14(t=0,1){ x=1; y=-3+6*t; label=Cl1;}
border C21(t=0,1){ x=-2+t; y=3; label=C2;}
border C22(t=0,1){ x=-1; y=3-6*t; label=C2;}
border C23(t=0,1){ x=-1-t; y=-3; label=C2;}

border C24(t=0,1){ x=-2; y=-3+6*t; label=C2;}

plot(Co(50) // to see the border of the domain
+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20),
wait=true, ps="heatexb.eps™);

mesh Th=buildmesh(CO(50)

+ C11(5)+C12(20)+C13(5)+C14(20)

+ C21(-5)+C22(-20)+C23(-5)+C24(-20));
plot(Th,wait=1);

fespace Vh(Th,P1); Vh u,v;

3.2. HEAT EXCHANGER 25

Vh kappa=1+2*(x<-1)*(x>-2)*(y<3)*(y>-3);

solve a(u,v)= int2d(Th) (kappa*(dx(u)*dx(v)+dy(u)*dy(v)))
+on(CO,u=20)+on(C1,u=60);

plot(u,wait=true, value=true, fill=true, ps="heatex.eps");

Note the following:

e (O is oriented counterclockwise by ¢, while C1 is oriented clockwise and C2 is oriented
counterclockwise. This is why C1 is viewed as a hole by buildmesh.

e C1 and C2 are built by joining pieces of straight lines. To group them in the same logical unit
to input the boundary conditions in a readable way we assigned a label on the boundaries.
As said earlier, borders have an internal number corresponding to their order in the program
(check it by adding a cout<<C22; above). This is essential to understand how a mesh can
be output to a file and re-read (see below).

e As usual the mesh density is controlled by the number of vertices assigned to each boundary.
It is not possible to change the (uniform) distribution of vertices but a piece of boundary can
always be cut in two or more parts, for instance C12 could be replaced by C121+C122:

// border C12(t=0,1) x=2; y=3-6*t; label=Cl;
border C121(t=0,0.7){ x=2; y=3-6*t; label=Cl;}
border C122(t=0.7,1){ x=2; y=3-6*t; label=Cl;}
. buildmesh(.../* C12(20) */ + C121(12)+C122(8)+...);

\RRQNANLKS 7AVAVAYA
raval \/

%
&

Q
3
%
&
o
<1
%
<

X

Z

Figure 3.2: The heat exchanger

Exercise Use the symmetry of the problem with respect to the axes; triangulate only one half
of the domain, and set Dirichlet conditions on the vertical axis, and Neumann conditions on the
horizontal axis.

26 CHAPTER 3. LEARNING BY EXAMPLES

Writing and reading triangulation files Suppose that at the end of the previous program we
added the line

savemesh(Th, "condensor.msh") ;

and then later on we write a similar program but we wish to read the mesh from that file. Then this
is how the condenser should be computed:

mesh Sh=readmesh("condensor.msh");

fespace Wh(Sh,P1); Wh us,vs;

solve b(us,vs)= int2d(Sh) (dx(us)*dx(vs)+dy(us)*dy(vs))
+on(1,us=0)+on(99,us=1)+on(98,us=-1);

plot(us);

Note that the names of the boundaries are lost but either their internal number (in the case of C0)
or their label number (for C1 and C2) are kept.

3.3 Acoustics

Summary Here we go to grip with ill posed problems and eigenvalue problems
Pressure variations in air at rest are governed by the wave equation:
Fu
— —c"Au=0.
or
When the solution wave is monochromatic (and that depend on the boundary and initial condi-
tions), u is of the form u(x, f) = Re(v(x)e’*") where v is a solution of Helmholtz’s equation:

Kv+c?Av=0in Q,
ov

=g. 3.1
oar =8 (3.1)

where g is the source. Note the “+” sign in front of the Laplace operator and that k > 0 is real.
This sign may make the problem ill posed for some values of £, a phenomenon called “resonance”.
At resonance there are non-zero solutions even when g = 0. So the following program may or may
not work:

Example 3.4 (sound.edp) // file sound.edp
real kc2=1;
func g=y*(1-y);

border al0(t=0,1)
border al(t=0,1)
border a2(t=0,1)
border a3(t=0,1)
border a4(t=0,1)
border a5(t=0,1)
border a6(t=0,1)

x= 5; y= 1+2*%t ;}
x=5-2%t; y= 3 ;}

x= 3-2%t; y=3-2%t ;}
x= 1-t; y= 1 ;}
x=0; y= 1-t ;}
x=t; y=0 ;}
x= 1+4*%t; y=t ;}

N I e N e

mesh Th=buildmesh(a0(20) + al(20) + a2(20)
+ a3(20) + a4(20) + a5(20) + a6(20));
fespace Vh(Th,P1);

3.3. ACOUSTICS 27

Vh u,v;

solve sound(u,v)=int2d(Th) (u*v * kc2 - dx(u)*dx(v) - dy(u)*dy(v))
- int1d(Th,a4) (g*Vv);
plot(u, wait=1, ps="sound.eps");

Results are on Figure [3.3] But when kc2 is an eigenvalue of the problem, then the solution is not
unique: if u, # 0 is an eigen state, then for any given solution u + u, is another a solution. To find
all the u, one can do the following

real sigma = 20; // value of the shift
// OP = A - sigma B ; // the shifted matrix

varf op(ul,u2)= int2d(Th)(dx(ul)*dx(u2) + dy(ul)*dy(u2) - sigma* ul*u2);

varf b([ul]l, [u2]) = int2d(Th) (ul*u2) ; // no Boundary condition see note (9.1

matrix OP= op(Vh,Vh,solver=Crout, factorize=1);
matrix B= b(Vh,Vh,solver=CG,eps=1e-20);

int nev=2; // number of requested eigenvalues near sigma
reall[int] ev(nev); // to store the nev eigenvalue
Vh[int] eV(nev); // to store the nev eigenvector

int k=EigenValue(OP,B,sym=true,sigma=sigma,value=ev,vector=eV,
tol=1e-10,maxit=0,ncv=0);

cout<<ev(0)<<" 2 eigen values "<<ev(l)<<endl;

v=eV[0];

plot(v,wait=1,ps="eigen.eps");

Figure 3.3: Left:Amplitude of an acoustic signal coming from the left vertical wall. Right: first
eigen state (1 = (k/c)> = 19.4256) close to 20 of eigenvalue problem :—A¢ = Ag and g—‘fl =0onTl

28 CHAPTER 3. LEARNING BY EXAMPLES

3.4 Thermal Conduction

Summary Here we shall learn how to deal with a time dependent parabolic problem. We shall
also show how to treat an axisymmetric problem and show also how to deal with a nonlinear
problem.

How air cools a plate We seek the temperature distribution in a plate (0, Lx) X (0, Ly) X (0, Lz)
of rectangular cross section Q = (0,6) X (0, 1); the plate is surrounded by air at temperature u,
and initially at temperature u = uo + u;. In the plane perpendicular to the plate at z = Lz/2, the
temperature varies little with the coordinate z; as a first approximation the problem is 2D.

We must solve the temperature equation in Q in a time interval (0,T).

ou—V-«Vu)=0in Q x (0, T),
u(x,y,0) = uy + xuy
0
K@—” +a(-u)=00onTx(0,T). (3.2)
n

Here the diffusion « will take two values, one below the middle horizontal line and ten times less
above, so as to simulate a thermostat. The term a(u — u,) accounts for the loss of temperature by
convection in air. Mathematically this boundary condition is of Fourier (or Robin, or mixed) type.

The variational formulation is in L2(0,T; H'(Q)); in loose terms and after applying an implicit
Euler finite difference approximation in time; we shall seek u"(x, y) satisfying for all w € H'(Q):

u' — un—l
f(—w + «Vu"Vw) + fa/(u" —ue)yw=0
Q ot r

func u® =10+90*x/6;
func k = 1.8%(y<0.5)+0.2;
real ue = 25, alpha=0.25, T=5, dt=0.1 ;

mesh Th=square(30,5,[6*x,y]);
fespace Vh(Th,P1);
Vh u=u0,v,uold;

problem thermic(u,v)= int2d(Th) (u*v/dt + k*(dx(u) * dx(v) + dy(uw) * dy(v)))
+ int1d(Th, 1, 3) (alpha*u*v)
- int1d(Th, 1, 3) (alpha*ue*v)
- int2d(Th) (uold*v/dt) + on(2,4,u=uf);
ofstream ff("thermic.dat");
for(real t=0;t<T;t+=dt){
uold=u; // uold ="' =" =u

thermic; // here solve the thermic problem
ff<<u(3,0.5)<<endl;
plot(u);

}

Notice that we must separate by hand the bilinear part from the linear one.

3.4. THERMAL CONDUCTION 29
Notice also that the way we store the temperature at point (3,0.5) for all times in file thermic.dat.
Should a one dimensional plot be required, the same procedure can be used. For instance to print

X - g—;(x, 0.9) one would do

for(int i=0;i<20;i++) cout<<dy(u)(6.0%*i/20.0,0.9)<<endl;

Results are shown on Figure (3.4

56

T T
"thermic.dat" +

541

52 *

50
48

46

44
42
40
38

T
B
+ 4
N
B
36 ey R
RIS
e

34

L L L L L L L
0 0.5 1 15 2 25 3 35 4 4.5

Figure 3.4: Temperature at T=4.9. Right: decay of temperature versus time at x=3, y=0.5

3.4.1 Axisymmetry: 3D Rod with circular section

Let us now deal with a cylindrical rod instead of a flat plate. For simplicity we take x = 1. In
cylindrical coordinates, the Laplace operator becomes (r is the distance to the axis, z is the distance
along the axis, 6 polar angle in a fixed plane perpendicular to the axis):

1 1
Au = ;Br(r(?ru) + ﬁaégu +02,.

Symmetry implies that we loose the dependence with respect to 6; so the domain € is again a
rectangle]0, R[]0, |[. We take the convention of numbering of the edges as in square() (1 for
the bottom horizontal ...); the problem is now:

rou — 0,(ro,u) — 0,(ro,u) = 0in Q,

W:m:%+iw—m

ou
ulr, = up, U, =uy;, a(u—u,)+ %hun =0. (3.3)

Note that the PDE has been multiplied by r.

30 CHAPTER 3. LEARNING BY EXAMPLES

After discretization in time with an implicit scheme, with time steps dt, in the FreeFem++ syntax
r becomes x and z becomes y and the problem is:

problem thermaxi(u,v)=int2d(Th) ((u*v/dt + dx(u)*dx(v) + dyw)*dy(v))*x)
+ int1d(Th, 3) (alpha*x*u*v) - int1d(Th,3) (alpha*x*ue*v)
- int2d(Th) (uold*v*x/dt) + on(2,4,u=ul);

Notice that the bilinear form degenerates at x = 0. Still one can prove existence and uniqueness
for u and because of this degeneracy no boundary conditions need to be imposed on I'y.

3.4.2 A Nonlinear Problem : Radiation

Heat loss through radiation is a loss proportional to the absolute temperature to the fourth power
(Stefan’s Law). This adds to the loss by convection and gives the following boundary condition:

KZ_M + au — u,) + c[(u +273)* = (u, +273)*] = 0
n

The problem is nonlinear, and must be solved iteratively. If m denotes the iteration index, a semi-
linearization of the radiation condition gives

aumﬂ
on

+ o™ —u) + ™! = u)W™ + u, + 546)(U™ +273)* + (u, + 273)*) = 0,

because we have the identity a* — b* = (a — b)(a + b)(a® + b?). The iterative process will work with
V=u-—u,.

fespace Vh(Th,P1); // finite element space
real rad=1e-8, uek=ue+273; // def of the physical constants
Vh vold,w,v=ul-ue,b;
problem thermradia(v,w)
= int2d(Th) (v*w/dt + k*(dx(v) * dx(w) + dy(v) * dy(w)))
+ int1d(Th,1,3) (b*v*w)
- int2d(Th) (vold*w/dt) + on(2,4,v=ul-ue);

for(real t=0;t<T;t+=dt){
vold=v;
for(int m=0;m<5;m++){
b= alpha + rad * (v + 2*uek) * ((v+uek)"2 + uek"2);
thermradia;
}

}
vold=v+ue; plot(vold);

3.5 Irrotational Fan Blade Flow and Thermal effects

Summary Here we will learn how to deal with a multi-physics system of PDEs on a Complex
geometry, with multiple meshes within one problem. We also learn how to manipulate the region
indicator and see how smooth is the projection operator from one mesh to another.

3.5. IRROTATIONAL FAN BLADE FLOW AND THERMAL EFFECTS 31

Incompressible flow Without viscosity and vorticity incompressible flows have a velocity given
by:

.
U= (o2) , where y is solution of Ay =0
T oxy

This equation expresses both incompressibility (V - u = 0) and absence of vortex (V X u = 0).
As the fluid slips along the walls, normal velocity is zero, which means that ¢ satisfies:

Y constant on the walls.

One can also prescribe the normal velocity at an artificial boundary, and this translates into non
constant Dirichlet data for .

Airfoil Let us consider a wing profile S in a uniform flow. Infinity will be represented by a large
circle C where the flow is assumed to be of uniform velocity; one way to model this problem is to
write

Ay =0 in Q, Uls =0, Yle = usy, (3.4)
where 0Q =CU S

The NACAO0012 Airfoil An equation for the upper surface of a NACAOO012 (this is a classical
wing profile in aerodynamics) is:

y =0.17735 Vx — 0.075597x — 0.212836x% + 0.17363x — 0.06254x".

Example 3.5 (potential.edp) // file potential.edp

real S=99;
border C(t=0,2%pi) { x=5*cos(t); y=5%*sin(t);}
border Splus(t=0,1){ x = t; yv = 0.17735%sqrt(t)-0.075597*t
- 0.212836*(t"2)+0.17363*(t"3)-0.06254*(t"4); label=S;}
border Sminus(t=1,0){ x =t; y= -(0.17735%sqrt(t)-0.075597*t
-0.212836%(t"2)+0.17363*(t"3)-0.06254*(t"4)); label=S;}
mesh Th= buildmesh(C(50)+Splus(70)+Sminus(70));
fespace Vh(Th,P2); Vh psi,w;

solve potential(psi,w)=int2d(Th) (dx(psi)*dx(w)+dy(psi)*dy(w))+
on(C,psi = y) + on(S,psi=0);

plot(psi,wait=1);

A zoom of the streamlines are shown on Figure [3.5]

32 CHAPTER 3. LEARNING BY EXAMPLES

\\\\\\\\\

Figure 3.5: Zoom around the NACAOQO12 airfoil showing the streamlines (curve ¢ = constant). To
obtain such a plot use the interactive graphic command: “+” and p. Right: temperature distribution
at time T=25 (now the maximum is at 90 instead of 120). Note that an incidence angle has been
added here (see Chapter 9).

3.5.1 Heat Convection around the airfoil

Now let us assume that the airfoil is hot and that air is there to cool it. Much like in the previous
section the heat equation for the temperature u is

0
0v—=V-&Vv)+u-Vv=0, v(t =0) = v, G_ZICZO

But now the domain is outside AND inside S and k takes a different value in air and in steel.
Furthermore there is convection of heat by the flow, hence the term u - Vv above. Consider the
following, to be plugged at the end of the previous program:

border D(t=0,2){x=1+t;y=0;} // added to have a fine mesh at trail
mesh Sh = buildmesh(C(25)+Splus(-90)+Sminus(-90)+D(200));
fespace Wh(Sh,P1); Wh v,vv;
int steel=Sh(0.5,0).region, air=Sh(-1,0).region;
fespace WO(Sh,PO);
WO k=0.01*(region==air)+0.1*(region==steel);
WO ul=dy(psi)*(region==air), u2=-dx(psi)*(region==air);
Wh vold = 120*(region==steel);
real dt=0.05, nbT=50;
int 1i;
problem thermic(v,vv,init=i,solver=LU)= int2d(Sh) (v*vv/dt
+ k*(dx(v) * dx(vv) + dy(v) * dy(vv))
+ 10* (ul*dx(v)+u2*dy(v))*vv)- int2d(Sh) (vold*vv/dt);
for(i=0;i<nbT;i++){
v=vold; thermic;

3.6. PURE CONVECTION : THE ROTATING HILL 33

plot(v);
}

Notice here

e how steel and air are identified by the mesh parameter region which is defined when buildmesh
is called and takes an integer value corresponding to each connected component of Q;

e how the convection terms are added without upwinding. Upwinding is necessary when the
Pecley number |u|L/k is large (here is a typical length scale), The factor 10 in front of the
convection terms is a quick way of multiplying the velocity by 10 (else it is too slow to see
something).

e The solver is Gauss’ LU factorization and when init# 0O the LU decomposition is reused
so it is much faster after the first iteration.

3.6 Pure Convection : The Rotating Hill

Summary Here we will present two methods for upwinding for the simplest convection prob-
lem. We will learn about Characteristics-Galerkin and Discontinuous-Galerkin Finite Element
Methods.

Let Q be the unit disk centered at O; consider the rotation vector field
u=[ul,u2], uy =y, U, =—x.
Pure convection by u is
dc+uVe=0in Qx(0,7) ct=0)=c"in Q.
The exact solution c(x;,, f) at time ¢ en point x, is given by
c(x, 1) = P(x,0)
where x; is the particle path in the flow starting at point x at time 0. So x, are solutions of

d(t - x,)

Xt = l/l(x,),) xt:() = X, Where xt = dl’

The ODE are reversible and we want the solution at point x at time ¢ (not at point x;) the initial
point is x_;, and we have

c(x, 1) = (x_,,0)

The game consists in solving the equation until 7" = 2z, that is for a full revolution and to compare
the final solution with the initial one; they should be equal.

34 CHAPTER 3. LEARNING BY EXAMPLES

Solution by a Characteristics-Galerkin Method In FreeFem++ there is an operator called
convect([ul,u2],dt,c) which compute co X with X is the convect field defined by X(x) = x4
and where x; is particule path in the steady state velocity field u = [ul, u2] starting at point x at
time 7 = 0, so x; is solution of the following ODE:

dr = u(xs), Xe= = X.

When u is piecewise constant; this is possible because x; is then a polygonal curve which can
be computed exactly and the solution exists always when u is divergence free; convect returns
c(xgr) =CoX.

Example 3.6 (convects.edp) // file convects.edp

border C(t=0, 2*pi) { x=cos(t); y=sin(t); };
mesh Th = buildmesh(C(100));

fespace Uh(Th,P1);

Uh cold, c = exp(-10*((x-0.3)"2 +(y-0.3)72));

real dt = 0.17,t=0;
Uh ul =y, u2 = -x;
for (int m=0; m<2*pi/dt ; m++) {

t += dt; cold=c;
c=convect([ul,u2],-dt,cold);
plot(c,cm=" t="+t + ", min=" + c[].min + ", max=" + c[].max);

Remark 4 3D plots can be done by adding the qualifyer "dim=3" to the plot instruction.

The method is very powerful but has two limitations: a/ it is not conservative, b/ it may diverge in
rare cases when |u| is too small due to quadrature error.

Solution by Discontinuous-Galerkin FEM Discontinuous Galerkin methods take advantage of
the discontinuities of ¢ at the edges to build upwinding. There are may formulations possible. We
shall implement here the so-called dual-P?C formulation (see Ern[11l]):

Cn+] — "

1
f(—+u-Vc)w+f(a|n-u|——n-u)[c]w=f |n - ulew Yw
o Ot E 2 Ef

where E is the set of inner edges and E is the set of boundary edges where u - n < 0 (in our case
there is no such edges). Finally [c] is the jump of ¢ across an edge with the convention that ¢*
refers to the value on the right of the oriented edge.

Example 3.7 (convects_end.edp) // file convects.edp
fespace Vh(Th,Pldc);

Vh w, ccold, vl =y, v2 = -x, cc = exp(-10*((x-0.3)"2 +(y-0.3)72));
real u, al=0.5; dt = 0.05;

3.6. PURE CONVECTION : THE ROTATING HILL 35

macro n() (N.x*v1+N.y*v2) // Macro without parameter
problem Adual(cc,w) =
int2d(Th) ((cc/dt+(v1*dx(cc)+v2*dy(cc))) *w)
+ intalledges(Th) ((1-nTonEdge) *w* (al*abs(n)-n/2) * jump(cc))
// - intl1d(Th,C) ((n<0®) *abs(n) *cc*w) // unused because cc=0 on 0Q~
- int2d(Th) (ccold*w/dt);

for (t=0; t< 2*pi ; t+=dt)

{

ccold=cc; Adual;

plot(cc,fill=1,cnm="t="+t + ", min=" + cc[].min + ", max=" + cc[].max);
};
real [int] viso=[-0.2,-0.1,0,0.1,60.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1];
plot(c,wait=1,fill=1,ps="convectCG.eps",viso=viso);
plot(c,wait=1,fill=1,ps="convectDG.eps",viso=viso);

Notice the new keywords, intalledges to integrate on all edges of all triangles

intalledges(Th) = Z f 3.5)

TeTh YT

(so all internal edges are see two times), nTonEdge which is one if the triangle has a boundary
edge and zero otherwise, jump to implement [c]. Results of both methods are shown on Figure 3.6]
with identical levels for the level line; this is done with the plot-modifier viso.

Notice also the macro where the parameter u is not used (but the syntax needs one) and which ends
with a //; it simply replaces the name n by (N.x*v1+N.y*v2). As easily guessed N.x,N.y is the
normal to the edge.

wwwwwwwwwwwwwww

Figure 3.6: The rotated hill after one revolution, left with Characteristics-Galerkin, on the right
with Discontinuous P; Galerkin FEM.

Now if you think that DG is too slow try this

36 CHAPTER 3. LEARNING BY EXAMPLES

// the same DG very much faster
varf aadual(cc,w) = int2d(Th) ((cc/dt+(v1*dx(cc)+v2*dy(cc)))*w)
+ intalledges(Th) ((1-nTonEdge) *w* (al*abs(n)-n/2)*jump(cc)) ;

varf bbdual(ccold,w) = - int2d(Th) (ccold*w/dt);
matrix AA= aadual(Vh,Vh);
matrix BB = bbdual(Vh,Vh);
set (AA,init=t,solver=sparsesolver);
Vh rhs=0;
for (t=0; t< 2%pi ; t+=dt)
{

ccold=cc;

rhs[] = BB* ccold[];

cc[] = AA"-1*rhs[];

plot(cc,fill=0,cmm="t="+t + ", min=" + cc[].min +

1

, max=" + cc[].max);

Notice the new keyword set to specify a solver in this framework; the modifier init is used to tel
the solver that the matrix has not changed (init=true), and the name parameter are the same that in
problem definition (see. [6.9) .

Finite Volume Methods can also be handled with FreeFem++ but it requires programming. For
instance the Py — P, Finite Volume Method of Dervieux et al associates to each P, function ¢! a P,
function ¢® with constant value around each vertex ¢’ equal to c¢!(g') on the cell o; made by all the
medians of all triangles having ¢ as vertex. Then upwinding is done by taking left or right values

at the median: :
f —(cln+1 - +f u-nc =0 Vi
(o} 5t (90'1'

load "mat_dervieux"; // external module in C++ must be loaded
border a(t=0, 2*pi){ x = cos(t); y = sin(t); 1}

mesh th = buildmesh(a(100));

fespace Vh(th,P1);

It can be programmed as

Vh vh,vold,ul =y, u2 = -x;
Vh v = exp(-10*((x-0.3)"2 +(y-0.3)"2)), vWall=0, rhs =0;

real dt = 0.025;
// qflpTlump means mass lumping is used
problem FVM(v,vh) = int2d(th,qft=qflpTlump) (v*vh/dt)
- int2d(th,qft=qfl1pTlump) (vold*vh/dt)
+ intld(th,a) (((ul*N.x+u2*N.y)<0)* (ul*N.x+u2*N.y) *viWall*vh)
+ rhs[] ;

matrix A;
MatUpWindO® (A, th,vold, [ul,u2]);

for (int t=0; t< 2*pi ; t+=dt){
vold=v;
rhs[] = A * vold[] ; FVM;
plot(v,wait=0);

3

3.7. A PROJECTION ALGORITHM FOR THE NAVIER-STOKES EQUATIONS 37

the mass lumping parameter forces a quadrature formula with Gauss points at the vertices so as
to make the mass matrix diagonal; the linear system solved by a conjugate gradient method for
instance will then converge in one or two iterations.

The right hand side rhs is computed by an external C++ function MatUpWind®(...) which is
programmed as

// computes matrix a on a triangle for the Dervieux FVM

int fvmP1P0O (double q[3][2], // the 3 vertices of a triangle T
double u[2], // convection velocity on T

double c[3], // the P1 function on T

double a[3][3], // output matrix

double where[3]) // where>0 means we’re on the boundary

{
for(int i=0;i<3;i++) for(int j=0;j<3;j++) al[il[j]1=0;

for(int i=0;i<3;i++){
int ip = (A+1)%3, ipp =(ip+1)%3;
double unl =-((q[ip][1]+q[i][1]1-2*q[ipp][1])*ul0]
-(alip] [0]1+q[i]1[0]-2*q[ipp] [01)*u[1])/6;
if(unl>0) { a[i][i] += unL; a[ip][i]-=unL;}
else{ a[i][ip] += unL; alip][ip]-=unL;}
if(where[i]&&where[ip]){ // this is a boundary edge
unL=C(q[ipl[11-q[i]1[11)*ul®] -(qlipl[®1-q[il[01)*ul11)/2;
if(unL>0) { a[i][i]+=unL; a[ip][ip]+=unL;}
}
}

return 1;

¥

It must be inserted into a larger .cpp file, shown in Appendix A, which is the load module linked
to FreeFem++ .

3.7 A Projection Algorithm for the Navier-Stokes equations

Summary Fluid flows require good algorithms and good triangultions. We show here an exam-
ple of a complex algorithm and or first example of mesh adaptation.

An incompressible viscous fluid satisfies:
ou+u-Vu+Vp—-vAu=0, V-u=0 inQx]0,T],

0
U =u’, ulr=ur.

A possible algorithm, proposed by Chorin, is

1
_[um+l —u"oX"+ Vp" —vAu" =0, ulr = ur,

ot
_Apm+1 - _V. MmOXm, anpm+1 — O,

where uoX(x) = u(x — u(x)ot) since 0,u + u - Vu is approximated by the method of characteristics,
as in the previous section.

38 CHAPTER 3. LEARNING BY EXAMPLES

An improvement over Chorin’s algorithm, given by Rannacher, is to compute a correction, ¢, to
the pressure (the overline denotes the mean over Q)

-Aq=V-u-V-u

and define
I/lm+l:ﬁ+VQ(5l, pm+1:pm_q_m

m+1

where it is the (u™*!,v"*!) of Chorin’s algorithm.

The backward facing step The geometry is that of a channel with a backward facing step so that
the inflow section is smaller than the outflow section. This geometry produces a fluid recirculation
zone that must be captured correctly.

This can only be done if the triangulation is sufficiently fine, or well adapted to the flow.

Example 3.8 (NSprojection.edp) // file NSprojection.edp
border al0(t=1,0){ x=0; y=t; label=1;}

border al(t=0,1){ x=2*t; y=0; label=2;}

border a2(t=0,1){ x=2; y=-t/2; label=2;}

border a3(t=0,1){ x=2+18*t"1.2; y=-0.5; label=2;}

border a4(t=0,1){ x=20; y=-0.5+1.5%t; label=3;}

border a5(t=1,0){ x=20%t; y=1; label=4;}

int n=1;

mesh Th= buildmesh(a®(3*n)+al(20*n)+a2(10*n)+a3(150*n)+a4(5*n)+a5(100%*n));

plot(Th);

fespace Vh(Th,P1);

real nu = 0.0025, dt = 0.2; // Reynolds=400

Vh w,u = 4%y*(1-y)*(y>0)*(x<2), v =0, p = 0, q=0;
real area= int2d(Th)(1l.);

for(int n=0;n<100;n++){
Vh uold = u, vold = v, pold=p;
Vh f=convect([u,v],-dt,uold), g=convect([u,v],-dt,vold);

solve pb4u(u,w,init=n,solver=LU)
=int2d(Th) (u*w/dt +nu*(dx(u) *dx(w)+dy (u) *dy (w)))
-int2d(Th) ((£/dt-dx(p))*w)
+ on(l,u = 4*y*(1-y)) + on(2,4,u = 0+ on(3,u=£);
plot(u);

solve pb4v(v,w,init=n,solver=LU)
= int2d(Th) (v*w/dt +nu*(dx(v)*dx(w)+dy(v)*dy(w)))
-int2d(Th) ((g/dt-dy(p))*w)
+on(1,2,3,4,v = 0);

real meandiv = int2d(Th) (dx(u)+dy(v))/area;

solve pb4p(q,w,init=n,solver=LU)= int2d(Th) (dx(q)*dx(w)+dy(q)*dy(w))
- int2d(Th) ((dx(wW+ dy(v)-meandiv)*w/dt)+ on(3,q=0);

real meanpq = int2d(Th) (pold - q)/area;
if(n==50){

3.8. THE SYSTEM OF ELASTICITY 39

Th = adaptmesh(Th,u,v,q); plot(Th, wait=true);

pold-g-meanpq;
u + dx(q)*dt;
v + dy(q)*dt;

< € T <
1l

AVAY ANY
KRS 55 A OVATATA

TAVAVANS 4 NN NNV AN,

Y AVA) T AV NAAVAVAVAVAVAVAS A VAN ZaVaYavy
\VAVAVAY. SWAWAV, V5
7 WANAVL AV VA SVAVAY, 7/ (W)
BOARGSIAAKKDN

Figure 3.7: Rannacher’s projection algorithm: result on an adapted mesh (top) showing the pres-
sure (middle) and the horizontal velocity u at Reynolds 400.

We show in figure the numerical results obtained for a Reynolds number of 400 where mesh
adaptation is done after 50 iterations on the first mesh.

3.8 The System of elasticity

Elasticity Solid objects deform under the action of applied forces: a point in the solid, originally
at (x,y,z) will come to (X, Y, Z) after some time; the vector u = (uy, us,u3) = (X —x,Y —y,Z —2)
is called the displacement. When the displacement is small and the solid is elastic, Hooke’s law
gives a relationship between the stress tensor o-(u) = (o;;(«)) and the strain tensor €(u) = €;(u)

O','j(l/l) = /15,~jV.u + 2/.16,'](14),
where the Kronecker symbol 6;; = 1 if i = j, 0 otherwise, with

€)= =(— + —),

l]() 2(6xj ax,‘
and where A, u are two constants that describe the mechanical properties of the solid, and are
themselves related to the better known constants E, Young’s modulus, and v, Poisson’s ratio:

E Ev

K= 30y AT T2

40 CHAPTER 3. LEARNING BY EXAMPLES

Lamé’s system Let us consider a beam with axis Oz and with perpendicular section Q. The
components along x and y of the strain u(x) in a section {2 subject to forces f perpendicular to the
axis are governed by

—pAu - (u+ DHV(Va) = f in Q,

where A, u are the Lamé coeflicients introduced above.
Remark, we do not used this equation because the associated variationnal form does not give the
right boundary condition, we simply use

—div(oc) =f inQ

where the corresponding variationnal form is:

fcr(u):e(v)dx—fvfdx:O;
Q Q

where : denote the tensor scalar product, i.e. a : b =), ; a;;b;;.
So the variationnal form can be written as :

f/lV.uV.v + 2ue(u) : €(v) dx — fvf dx =0;
Q

Q

Example Consider elastic plate with the undeformed rectangle shape [0, 20] x [-1, 1]. The body
force is the gravity force f and the boundary force g is zero on lower, upper and right sides. The
left vertical sides of the beam is fixed. The boundary conditions are

on = g=0 on I',T4,TI3,
0 on I,

Here u = (&, v) has two components.

The above two equations are strongly coupled by their mixed derivatives, and thus any iterative
solution on each of the components is risky. One should rather use FreeFem++ ’s system approach
and write:

Example 3.9 (lame.edp) // file lame.edp
mesh Th=square(10,10, [20%x,2*y-1]);

fespace Vh(Th,P2);

Vh u,v,uu,vv;

real sqrt2=sqrt(2.);

macro epsilon(ul,u2) [dx(ul),dy(u2), (dy(ul)+dx(u2))/sqrt2] // EOM
// the sqrt2 is because we want: epsilon(ul,u2)’* epsilon(vl,v2) == €e(u): e(v)
macro div(u,v) (dx(uw)+dy(v)) // EOM

real E = 21e5, nu = 0.28, mu= E/(2*(1+nu));
real lambda = E*nu/((1+nuw)*(1-2*nu)), £ = -1; //

solve lame([u,v], [uu,vv])= int2d(Th) (
lambda*div(u,v)*div(uu,vv)

3.9. THE SYSTEM OF STOKES FOR FLUIDS 41

+2.*mu*(epsilon(u,v)’*epsilon(uu,vv)))
- int2d(Th) (£f*vv)
+ on(4,u=0,v=0);

real coef=100;
plot([u,v],wait=1,ps="1lamevect.eps",coef=coef);

mesh thl = movemesh(Th, [x+u*coef, y+v*coef]);
plot(thl,wait=1,ps="1lamedeform.eps");

real dxmin = u[].min;

real dymin = v[].min;

cout << " - dep. max x = "<< dxmin<< " y=" << dymin << endl;
cout << " dep. (20,0) =" << u(20,0) << " " << v(20,0) << endl;

The numerical results are shown on figure [3.8|and the output is:

-- square mesh : nb vertices =121 , nb triangles = 200 , nb boundary edges 40
-- Solve : min -0.00174137 max 0.00174105
min -0.0263154 max 1.47016e-29
- dep. max x = -0.00174137 y=-0.0263154
dep. (20,0) = -1.8096e-07 -0.0263154
times: compile 0.010219s, execution 1.5827s

Figure 3.8: Solution of Lamé’s equations for elasticity for a 2D beam deflected by its own weight
and clamped by its left vertical side; result are shown with a amplification factor equal to 100.
Remark: the size of the arrow is automatically bound, but the color gives the real length

3.9 The System of Stokes for Fluids

42 CHAPTER 3. LEARNING BY EXAMPLES

In the case of a flow invariant with respect to the third coordinate (two-dimensional flow), flows at
low Reynolds number (for instance micro-organisms) satisfy,

-Au+Vp=0
V-u=0

where u = (u;, u,) is the fluid velocity and p its pressure.

The driven cavity is a standard test. It is a box full of liquid with its lid moving horizontally at
speed one. The pressure and the velocity must be discretized in compatible fintie element spaces
for the LBB conditions to be satisfied:

v
sup (u,Vp)

DPEPy |p|

> Blul Vu € U,

// file stokes.edp
int n=3;
mesh Th=square(10+*n, 10*n);
fespace Uh(Th,Plb); Uh u,v,uu,vv;
fespace Ph(Th,P1); Ph p,pp;

solve stokes([u,v,p], [uu,vv,ppl) =
int2d(Th) (dx(u) *dx (uw) +dy (u) *dy (uu) + dx(v)*dx(vv)+ dy(v)*dy(vv)
+ dx(p)*uu + dy(p)*vv + pp*(dx(u)+dy(v))
- le-10*p*pp)
+ on(1,2,4,u=0,v=0) + on(3,u=1,v=0);
plot([u,v],p,wait=1);

Remark, we add a stabilization term -10e-10*p*pp to fixe the constant part of the pressure.

///// T T e e e
. 7
| NS

=

B e

NN Y

-
SNNNSSe— T ,/; //(/ é
Pe

N e e .

AN L T

RN NN

Figure 3.9: Solution of Stokes’ equations for the driven cavity problem, showing the velocity field
and the pressure level lines.

Results are shown on figure 3.9

3.10. A LARGE FLUID PROBLEM 43

3.10 A Large Fluid Problem

A friend of one of us in Auroville-India was building a ramp to access an air conditioned room.
As I was visiting the construction site he told me that he expected to cool air escaping by the door
to the room to slide down the ramp and refrigerate the feet of the coming visitors. I told him ”no
way” and decided to check numerically. The results are on the front page of this book.

The fluid velocity and pressure are solution of the Navier-Stokes equations with varying density
function of the temperature.

The geometry is trapezoidal with prescribed inflow made of cool air at the bottom and warm air
above and so are the initial conditions; there is free outflow, slip velocity at the top (artificial)
boundary and no-slip at the bottom. However the Navier-Stokes cum temperature equations have
a RANS & — € model and a Boussinesq approximation for the buoyancy. This comes to

0,0 +uVo -V - (k;V0) =0
ou+uVu—V - (urVu) + Vp +e(@ —6p)es, V-u=0
k2
M1 = C,J?, Kt = KUt
Ok + uVk + € — V - (urVk) = %Wu + VuTP
e ¢ c To
0,6 + uVe + c2; - —V . (urVe) = Eleu +Vu' =0 (3.6)
Cu

We use a time discretization which preserves positivity and uses the method of characteristics
(X™(x) =~ x — u™(x)o1)

1
5(9'"” —@" o X") -V - (Ve =0

_(um+l —u"o Xm) -V. (/JrTnVum+l) + me+l + e(0m+l _ 90)e27 V. um+1 =0

ot
1 m m m m 6m m m Mm m m

E(k ko XM+ k ”k—m;V-(,uTVk 1y = 7T|Vu + Vu"?
5_I(Em+] _ Em oxm) + C2€m+1]i_m _ z_;V(ﬂ’;Vém+l) — %kmlvum + VumT|2

m+12

M= G g = k! (3.7)

T H entl’
In variational form and with appropriated boundary conditions the problem is:

real L=6;

border aa(t=0,1){x=t; y=0 ;}

border bb(t=0,14){x=1+t; y= - 0.1*t ;}

border cc(t=-1.4,L){x=15; y=t ;}

border dd(t=15,0){x=t ; y = L;}

border ee(t=L,0.5){ x=0; y=t ;}

border f£f(t=0.5,0){ x=0; y=t ;}

int n=8;

mesh Th=buildmesh(aa(n)+bb(9*n) + cc(4*n) + dd(10*n)+ee(6*n) + ff(n));
real sO=clock();

fespace Vh2(Th,Plb); // velocity space
fespace Vh(Th,P1); // pressure space
fespace VOh(Th,PO®); // for gradients

44 CHAPTER 3. LEARNING BY EXAMPLES

Vh2 u2,v2,upl=0,up2=0;
Vh2 ul,vl;
Vh ulx=0,uly,u2x,uly, vv;

real reylnods=500;
// cout << " Enter the reynolds number :"
assert(reylnods>1 && reylnods < 100000);
upl=0;
up2=0;
func g=(x)*(1-x)*4; // inflow
Vh p=0,q, templ,temp=35, k=0.001,kl,ep=0.0001,epl;
VOh muT=1,prodk,prode, kappa=0.25e-4, stress;
real alpha=0, eee=9.81/303, clm = 1.3/0.09 ;
real nu=1, numu=nu/sqrt(0.09), nuep=pow(nu,1.5)/4.1;
int i=0,iter=0;
real dt=0;
problem TEMPER(temp,q) = // temperature equation
int2d(Th) (
alpha*temp*q + kappa * (dx(temp)*dx(q) + dy(temp)*dy(q)))
// + intl1d(Th, aa,bb) (temp*q* 0.1)
+ int2d(Th) (-alpha*convect([upl,up2],-dt,templ)*q)
+ on(ff, temp=25)
+ on(aa,bb, temp=35) ;

; cin >> reylnods;

problem kine(k,q)= // get the kinetic turbulent energy
int2d(Th) (
(epl/kl+alpha)*k*q + muT * (dx(k)*dx(q) + dyk)*dy(q)))
// + int1d(Th,aa,bb) (temp*q*0.1)
+ int2d(Th) (prodk*qg-alpha*convect([upl,up2],-dt,kl)*q)
+ on(f£f,k=0.0001) + on(aa,bb,k=numu*stress) ;

problem viscturb(ep,q)= // get the rate of turbulent viscous energy
int2d(Th)
(1.92*epl/kl+alpha)*ep*q + clm*muT * (dx(ep)*dx(q) + dy(ep)*dy(a)))
// + int1d(Th,aa,bb) (temp*q*0.1)
+ int2d(Th) (prode*q-alpha*convect([upl,up2],-dt,epl)*q)
+ on(ff,ep= 0.0001) + on(aa,bb,ep=nuep*pow(stress,1.5)) ;

solve NS ([ul,u2,p],[vl,v2,q]) = // Navier-Stokes k-epsilon and Boussinesq
int2d(Th)(
alpha*(ul*vl + u2*v2)
+ muT * (dx(ul)*dx(v1)+dy(ul)*dy(v1)+dx(u2)*dx(v2)+dy(u2) *dy(v2))
// (2%dx(ul)*dx(v1) + 2*dy(u2)*dy(v2)+(dy(ul)+dx(u2))*(dy(vl)+dx(v2)))
+ p*q*(0.000001)
- p*dx(vl) - p*dy(v2)
- dx(ul)*q - dy(u2)*q
)
+ int1d(Th,aa,bb,dd) (ul*vl* 0.1)
+ int2d(Th) (eee*(temp-35)*vl -alpha*convect([upl,up2],-dt,upl)*vl
-alpha*convect ([upl,up2],-dt,up2)*v2)
+ on(£ff,ul=3,u2=0)
on(ee,ul=0,u2=0)
on(aa,dd,u2=0)
on(bb,u2= -upl*N.x/N.y)
on(cc,u2=0) ;

+ o+ o+ o+

3.10. A LARGE FLUID PROBLEM 45

plot(coef=0.2,cmm=" [ul,u2] et p ",p,[ul,u2],ps="StokesP2P1.eps",value=1,wait=1);
{
reallint] xx(21),yy(21),pp(21);
for (int i=0;i<21;i++)
{
yy[i]=1/20.;
xx[1]=ul(0.5,1/20.);
ppl[il=p(i/20.,0.999);
}

cout <<

<< yy << endl;
// plot([xx,yy],wait=1,cmm="ul x=0.5 cup");
// plot([yy,ppl,wait=1,cmm="pressure y=0.999 cup");
}

dt = 0.05;

int nbiter = 3;

real coefdt = 0.257(1./nbiter);

real coefcut = 0.25"(1l./nbiter) , cut=0.01;
real tol=0.5,coeftol = 0.5 (1./nbiter);
nu=1./reylnods;

for (iter=1;iter<=nbiter;iter++)

{
cout << " dt = " << dt << " mmmmmmmm - " << endl;
alpha=1/dt;
for (i=0;i<=500;i++)
{
upl=ul;
up2=u2;

templ=max(temp,25);
templ=min(templ,35);

kl=k; epl=ep;
muT=0.09*%k*k/ep;
NS; plot([ul,u2],wait=1); // Solves Navier-Stokes

prode =0.126%k* (pow(2*dx(ul),2)+pow(2*dy(u2),2)+2*pow(dx (u2)+dy(ul),2))/2;
prodk= prode*k/ep*0.09/0.126;
kappa=muT/0.41;
stress=abs(dy(ul));
kine; plot(k,wait=1);
viscturb; plot(ep,wait=1);
TEMPER; // solves temperature equation
if (! % 5)){
plot(temp,value=1,fill=true,ps="temp_"+iter+"_"+i+".ps");
plot(coef=0.2,cmm=" [ul,u2] et p ",p,[ul,u2],ps="plotNS_"+iter+"_"+i+".ps");
}

cout << "CPU " << clock()-s0® << "s " << endl;

}

if (iter>= nbiter) break;
Th=adaptmesh(Th, [dx(ul),dy(ul),dx(ul),dy(u2)],splitpbedge=1,
abserror=0,cutoff=cut,err=tol, inquire=0,ratio=1.5,hmin=1./1000);
plot (Th,ps="ThNS.eps");
dt = dt*coefdt;
tol = tol *coeftol;
cut = cut *coefcut;

46 CHAPTER 3. LEARNING BY EXAMPLES

cout << "CPU " <<elock()-s0 << "s << endl;

3.11 An Example with Complex Numbers

In a microwave oven heat comes from molecular excitation by an electromagnetic field. For a
plane monochromatic wave, amplitude is given by Helmholtz’s equation:

Bv+ Av =0.

We consider a rectangular oven where the wave is emitted by part of the upper wall. So the
boundary of the domain is made up of a part 'y where v = 0 and of another part I'; = [c, d] where
for instance v = sin(72=).

Within an object to be cooked, denoted by B, the heat source is proportional to v*. At equilibrium,
one has

A =VIz, Or=0

where I3 is 1 in the object and 0 elsewhere.

Figure 3.10: A microwave oven: real (left) and imaginary (middle) parts of wave and temperature
(right).

Results are shown on figure [3.10]
In the program below S = 1/(1 — 1/2) in the air and 2/(1 — I/2) in the object (i = V-1):

Example 3.10 (muwave.edp) // file muwave.edp
real a=20, b=20, c=15, d=8, e=2, 1=12, f=2, g=2;

border a0(t=0,1) {x=a*t; y=0;label=1;}

border al(t=1,2) {x=a; y= b*(t-1);label=1;}

border a2(t=2,3) { x=a*(3-t);y=b;label=1;}

border a3(t=3,4){x=0;y=b-(b-c)*(t-3);label=1;}

border a4(t=4,5){x=0;y=c-(c-d)*(t-4);label=2;}

border a5(t=5,6){ x=0; y= d*(6-t);label=1;}

border bO(t=0,1) {x=a-f+e*(t-1);y=g; label=3;}

3.12. OPTIMAL CONTROL 47

border bl(t=1,4) {x=a-f; y=g+1*(t-1)/3; label=3;}
border b2(t=4,5) {x=a-f-e*(t-4); y=1l+g; label=3;}
border b3(t=5,8) {x=a-e-f; y= 1+g-1*(t-5)/3; label=3;}
int n=2;
mesh Th = buildmesh(a®(10*n)+al(10*n)+a2(10*n)+a3(10*n)
+a4 (10*n)+a5(10*n)+b®(5*n)+b1(10*n)+b2(5*n)+b3(10%n));
plot(Th,wait=1);
fespace Vh(Th,P1);
real meat = Th(a-f-e/2,9+1/2).region, air= Th(0.01,0.01).region;
Vh R=(region-air)/(meat-air);

Vh<complex> v,w;
solve muwave(v,w) = int2d(Th) (v*w*(1+R)
-(dx(v)*dx(w)+dy (v) *dy (w)) *(1-0.51))
+ on(1,v=0) + on(2, v=sin(pi*(y-c)/(c-d)));
Vh vr=real(v), vi=imag(v);
plot(vr,wait=1,ps="rmuonde.ps", fill=true);
plot(vi,wait=1,ps="imuonde.ps", fill=true);
fespace Uh(Th,P1); Uh u,uu, ff=1e5*(vr"2 + vi“"2)*R;
solve temperature(u,uu)= int2d(Th) (dx(uw)* dx(uw)+ dy(u)* dy(uu))

- int2d(Th) (ff*uu) + on(1,2,u=0);
plot(u,wait=1,ps="tempmuonde.ps", fill=true);

3.12 Optimal Control

Thanks to the function BFGS it is possible to solve complex nonlinear optimization problem within
FreeFem++. For example consider the following inverse problem

min J = f(u —uy)? : = V(k(b,c,d)-Vu) =0, ulr = ur
E

b,c,deR

where the desired state u,, the boundary data ur and the observation set E C € are all given.
Furthermore let us assume that

k(x) =1+ blg(x) + clc(x) +dIp(x) YxeQ

where B, C, D are separated subsets of).

To solve this problem by the quasi-Newton BFGS method we need the derivatives of J with respect
to b, ¢, d. We self explanatory notations, if 6b, dc, dd are variations of b, ¢, d we have

oJ =2 f(u —ug)ou, —V(k-Voéu)~V(©k-Vu) dulr =0
E
Obviously J; is equal to 6J when 6b = 1,6c = 0,6d = 0, and so on for J/ and J/,.

All this is implemented in the following program

// file optimcontrol.edp

48 CHAPTER 3. LEARNING BY EXAMPLES

border aa(t=0, 2*pi) { X = 5%cos(t); y = 5*sin(t); };
border bb(t=0, 2*pi) { x = cos(t); y = sin(t); };

border cc(t=0, 2*pi) { X = -3+cos(t); y = sin(t); 1};
border dd(t=0, 2*pi) { x = cos(t); y = -3+sin(t); };

mesh th = buildmesh(aa(70)+bb(35)+cc(35)+dd(35));
fespace Vh(th,P1);
Vh Tb=((x"2+y~2)<1.0001),
Ic=(((x+3) "2+ y"2)<1.0001),
Id=((x"2+(y+3)"2)<1.0001),
Te=(((x-1)"2+ y"2)<=4),
ud,u,uh,du;
reallint] z(3);
problem A(u,uh) =int2d(th) ((1+z[0]*Ib+z[1]*Ic+z[2]*Id)*(dx(u)*dx(uh)
+dy (uw) *dy(uh))) + on(aa,u=x"3-y"3);
z[0]1=2; z[1]1=3; z[2]=4;
A; ud=u;
ofstream f("J.txt");
func real J(real[int] & Z)

{
for (int i=0;i<z.n;i++)z[i]=Z[i];
A; real s= int2d(th) (Ie*(u-ud)"2);
f<<s<<™ "; return s;

}

reallint] dz(3), didz(3);

problem B(du,uh)
=int2d(th) ((1+z[0]*Ib+z[1]*Ic+z[2]*Id)* (dx(du)*dx (uh)+dy (du) *dy(uh)))
+int2d(th) ((dz[0]*Ib+dz[1]*Ic+dz[2]*Id)* (dx (u)*dx(uh)+dy(u)*dy(uh)))
+on(aa,du=0);

func real[int] DJ(reall[int] &Z)
{
for(int i=0;i<z.n;i++)
{ for(int j=0;j<dz.n;j++) dz[j]=0;
dz[i]=1; B;
dldz[i]= 2*int2d(th) (Ie*(u-ud)*du);
}

return dldz;

3

reall[int] Z(3);

for(int j=0;j<z.n;j++) Z[jl=1;
BFGS(J,DJ,Z,eps=1.e-6,nbiter=15,nbiterline=20);
cout << "BFGS: J(z) = " << J(2Z) << endl;
for(int j=0;j<z.n;j++) cout<<z[jl<<endl;

plot (ud,value=1,ps="u.eps");

In this example the sets B, C, D, E are circles of boundaries bb, cc,dd, ee are the domain € is the
circle of boundary aa. The desired state u, is the solution of the PDE for b = 2,¢ = 3,d = 4. The
unknowns are packed into array z. Notice that it is necessary to recopy Z into z because one is a
local variable while the other one is global. The program found » = 2.00125,c¢ = 3.00109,d =
4.00551. Figure 3.11| shows u at convergence and the successive function evaluations of J. Note
that an adjoint state could have been used. Define p by

=V - (kVp) =2Ig(u—-uy), plr=0

3.13. A FLOW WITH SHOCKS 49

Figure 3.11: On the left the level lines of . On the right the successive evaluations of J by BFGS
(5 values above 500 have been removed for readability)

Consequently

oJ = —f(V - (kVp))ou
Q
= f(Kvp-V(sM) = —f(6KVp-Vu) (3.8)
Q Q

Then the derivatives are found by setting 6b = 1, 6c = éd = 0 and so on:
Jl',:—pr-Vu, Jé:—pr~Vu, J;,:—pr-Vu
B c D

Remark As BFGS stores an M X M matrix where M is the number of unknowns, it is dan-
gerously expensive to use this method when the unknown x is a Finite Element Function. One
should use another optimizer such as the NonLinear Conjugate Gradient NLCG (also a key word of
FreeFem++). See the file algo.edp in the examples folder.

3.13 A Flow with Shocks

Compressible Euler equations should be discretized with Finite Volumes or FEM with flux up-
winding scheme but these are not implemented in FreeFem++ . Nevertheless acceptable results
can be obtained with the method of characteristics provided that the mean values f = %(ff+f)
are used at shocks in the scheme, and finally mesh adaptation .

dp+uVp+pV-u=0
p(Ou + p—_uVu +Vp=0
p
op+uVp+(y-1DpV-u=0 (3.9)

One possibility is to couple u, p and then update p, i.e.

1

G Do TP X V=0

50 CHAPTER 3. LEARNING BY EXAMPLES

%(um+l _ l/lm o)’Zm) + me+l — O
pm+1 :pm o XM 4+ p—_(pm+l _pm
(y=Dp"

o X™) (3.10)

A numerical result is given on Figure[3.12]and the FreeFem++ script is

Figure 3.12: Pressure for a Euler flow around a disk at Mach 2 computed by

verbosity=1;

int anew=1;

real x0=0.5,y0=0, rr=0.2;

border ccc(t=0,2){x=2-t;y=1;};

border ddd(t=0,1){x=0;y=1-t;};

border aaal(t=0,x0-rr){x=t;y=0;};

border cercle(t=pi,0){ x=x0+rr*cos(t);y=y0+rr*sin(t);}
border aaa2(t=x0+rr,2){x=t;y=0;};

border bbb(t=0,1){x=2;y=t;};

int m=5; mesh Th;

if(anew) Th = buildmesh (ccc(5*m) +ddd(3*m) + aaal(2*m) + cercle(5*m)

+ aaa2(5*m) + bbb(2*m));
else Th = readmesh("Th_circle.mesh"); plot(Th,wait=0);

real dt=0.01, u®=2, err0=0.00625, pena=2;
fespace Wh(Th,P1);

fespace Vh(Th,P1);

Wh u,v,ul,vl,uh,vh;

Vh r,rh,ri;

3.14. CLASSIFICATION OF THE EQUATIONS 51

macro dn(u) (N.x*dx(u)+N.y*dy(u)) // def the normal derivative

ifCanew){ ul= ud; vi=0; rl = 1;}

else {
ifstream g("u.txt");g>>ull[];
ifstream gg('v.txt");gg>>v1[];
ifstream ggg("r.txt");ggg>>r1[];
plot(ul,ps="eta.eps", value=1,wait=1);
err®=err®/10; dt = dt/10;

}

problem eul(u,v,r,uh,vh,rh)
= int2d(Th) ((u*uh+v*vh+r*rh)/dt
+ ((dx(r)*uh+ dy(r)*vh) - (dx(rh)*u + dy(rh)*v))
)
+ int2d(Th) (-(rh*convect([ul,vl],-dt,r1) + uh*convect([ul,vl],-dt,ul)
+ vh*convect([ul,vl],-dt,v1l))/dt)
+int1d(Th, 6) (rh*u) // +int1d(Th, 1) (rh*v)
+ on(2,r=0) + on(2,u=ud®) + on(2,v=0);

int j=80;

for(int k=0;k<3;k++)

{

if(k==20){ err®=err0/10; dt = dt/10; j=5;}

for(int i=0;i<j;i++){
eul; ul=u; vl=v; rl=abs(r);
cout<<"k="<<k<<" E="<<int2d(Th) (u"2+v"2+r)<<endl;
plot(r,wait=0,value=1);

}

Th = adaptmesh (Th,r, nbvx=40000,err=err0,
abserror=1,nbjacoby=2, omega=1.8,ratio=1.8, nbsmooth=3,
splitpbedge=1, maxsubdiv=5,rescaling=1) ;

plot(Th,wait=0);
U=u;Vv=v;r=r;

savemesh(Th,"Th_circle.mesh");
ofstream f("u.txt");f<<ul]l;
ofstream ff("v.txt");ff<<v[];
ofstream fff("r.txt");fff<<r[];
rl = sgqrt(u*u+v+*v);
plot(rl,ps="mach.eps", value=1);
rl=r;

}

3.14 Classification of the equations

Summary [t is usually not easy to determine the type of a system. Yet the approximations and
algorithms suited to the problem depend on its type:

e Finite Elements compatible (LBB conditions) for elliptic systems

e Finite difference on the parabolic variable and a time loop on each elliptic subsystem of
parabolic systems; better stability diagrams when the schemes are implicit in time.

52 CHAPTER 3. LEARNING BY EXAMPLES

e Upwinding, Petrov-Galerkin, Characteristics-Galerkin, Discontinuous-Galerkin, Finite Vol-
umes for hyperbolic systems plus, possibly, a time loop.

When the system changes type, then expect difficulties (like shock discontinuities)!

Elliptic, parabolic and hyperbolic equations A partial differential equation (PDE) is a relation
between a function of several variables and its derivatives.
0"

,ax,;(x))zo Vxe Qc R

0 0 0*
Fle(x), 6—)‘;"1(x>, e a—i(xx 6—;;@), -

The range of x over which the equation is taken, here €, is called the domain of the PDE. The
highest derivation index, here m, is called the order. If F and ¢ are vector valued functions, then
the PDE is actually a system of PDEs.

Unless indicated otherwise, here by convention one PDE corresponds to one scalar valued F' and

@. If F is linear with respect to its arguments, then the PDE is said to be linear.
i
8x,-0xj

The general form of a second order, linear scalar PDE is and A : B means Zg =1 i ibij.

ap+a-Vo+B:V(Vo)=f in QcR,

where f(x),a(x) € R,a(x) € R?, B(x) € R are the PDE coefficients. If the coefficients are
independent of x, the PDE is said to have constant coefficients.
To a PDE we associate a quadratic form, by replacing ¢ by 1, dp/dx; by z; and 8*¢/dx;0x; by ziz;,
where z is a vector in R¢ :

a+a-z+7 Bz=f.

If it is the equation of an ellipse (ellipsoid if d > 2), the PDE is said to be elliptic; if it is the
equation of a parabola or a hyperbola, the PDE is said to be parabolic or hyperbolic. If A = 0, the
degree is no longer 2 but 1, and for reasons that will appear more clearly later, the PDE is still said
to be hyperbolic.

These concepts can be generalized to systems, by studying whether or not the polynomial system
P(z) associated with the PDE system has branches at infinity (ellipsoids have no branches at infin-
ity, paraboloids have one, and hyperboloids have several).

If the PDE is not linear, it is said to be non linear. Those are said to be locally elliptic, parabolic,
or hyperbolic according to the type of the linearized equation.

For example, for the non linear equation

P _dpd¢ _
o Oxox:

we have d = 2, x| = t, x, = x and its linearized form is:

u oudp Opdu _

— T _ T2,

o2 Ox0x: OxO0x:

. . . e .~ D . o0 O
which for the unknown u is locally elliptic if a—ﬁ < 0 and locally hyperbolic if a—f > 0.

3.14. CLASSIFICATION OF THE EQUATIONS 53

Examples Laplace’s equation is elliptic:

oo & 9
sz—f+_f+--.+—f:f, VxeQc R
ox; 0x; ox;

The heat equation is parabolic in Q = Qx]0, T[C RI*! :

0
a_f —uhp=f VxeQc R Vrelo,Tl.
If u > 0, the wave equation is hyperbolic:

0% .
e —pAp=f in Q.

The convection diffusion equation is parabolic if u # 0 and hyperbolic otherwise:

0y
— +aVo —uAp = f.
ata‘P/J‘Pf

The biharmonic equation is elliptic:

AlAp)=f in Q.

Boundary conditions A relation between a function and its derivatives is not sufficient to define
the function. Additional information on the boundary I' = dQ of Q, or on part of I is necessary.
Such information is called a boundary condition. For example,

¢(x) given, Yx €T,
is called a Dirichlet boundary condition. The Neumann condition is
dp
on

where 7 is the normal at x € I" directed towards the exterior of Q (by definition g—‘fl’ = Vp - n).
Another classical condition, called a Robin (or Fourier) condition is written as:

(x) givenon I' (or n- BV, given on I for a general second order PDE)

o(x) + ,B(x)g—g:(x) givenon I

Finding a set of boundary conditions that defines a unique ¢ is a difficult art.

In general, an elliptic equation is well posed (i.e. ¢ is unique) with one Dirichlet, Neumann or
Robin conditions on the whole boundary.

Thus, Laplace’s equations is well posed with a Dirichlet or Neumann condition but also with

0 : .
¢ givenon Iy, 8_80 givenonl,, TZul,=I, I 1nNnI;=0.
n
Parabolic and hyperbolic equations rarely require boundary conditions on all of I'x]0, T'[. For
instance, the heat equation is well posed with
¢ given at t = 0 and Dirichlet or Neumann or mixed conditions on dQ.

Here ¢ is time so the first condition is called an initial condition. The whole set of conditions are
also called Cauchy conditions.
The wave equation is well posed with

0
¢ and a—f given at ¢ = 0 and Dirichlet or Neumann or mixed conditions on dQ2.

54

CHAPTER 3. LEARNING BY EXAMPLES

Chapter 4

Syntax

4.1 Data Types

In essence FreeFem++ is a compiler: its language is typed, polymorphic, with exception and
reentrant. Every variable must be declared of a certain type, in a declarative statement; each state-
ment are separated from the next by a semicolon ¢;’. The language allows the manipulation of
basic types integers (int), reals (real), strings (string), arrays (example: real[int]), bidi-
mensional (2D) finite element meshes (mesh), 2D finite element spaces (fespace) , analytical
functions (func), arrays of finite element functions (func[basic_type]), linear and bilinear opera-
tors, sparse matrices, vectors , etc. For instance

int 1i,n=20; // i,n are integer.
reall[int] xx(),yy(n); // two array of size n
for (i=0;i<=20;i++) // which can be used in statements such as

{ xx[i]= cos(i*pi/18); yyl[il= sin(i*pi/10); }

The life of a variable is the current block {. . .}, except the fespace variable, and the variables local
to a block are destroyed at the end of the block as follows.

Example 4.1

real r= 0.01;

mesh Th=square(10,10); // unit square mesh
fespace Vh(Th,P1); // P1 lagrange finite element space

Vh u = x+ exp(y);
func f =z * x + r * log(y);
plot(u,wait=true);

{ // new block
real r = 2; // not the same r
fespace Vh(Th,P1); // error because Vh is a global name

} // end of block

// here r back to 0.01

The type declarations are compulsory in FreeFem++ ; in the end this feature is an asset because
it is easy to make bugs in a language with many implicit types. The variable name is just an

alphanumeric string, the underscore character “_” is not allowed, because it will be used as an
operator in the future.

55

56 CHAPTER 4. SYNTAX
4.2 List of major types

bool is used for logical expression and flow-control. The result of a comparison is a boolean type
as in

bool fool=(1<2);

which makes fool to be true. Similar examples can be built with ==, <=,>=,<,>,! =
int declares an integer.
string declare the variable to store a text enclosed within double quotes, such as:

"This is a string in double quotes."

real declares the variable to store a number such as “12.345.

complex Complex numbers, such as 1 + 2i, FreeFem++ understand thati = V—1.

complex a = 1li, b = 2 + 3i;

cout << "a + b =" << a+ b << endl;
cout << "a - b =" << a+ b << endl;
cout << "a * b =" << a * b << endl;
cout << "a / b="<<a/ b < endl;

Here’s the output;

+

= (2,9

= (-2,-2)

= (-3,2)

= (0.230769,0.153846)

[SE VI U 1]
|
oo T T

~N %

ofstream to declare an output file .
ifstream to declare an input file .

real[int] declares a variable that stores multiple real numbers with integer index.

reall[int] a(5);
al[0] = 1; a[l] = 2; a[2] = 3.3333333; a[3] = 4; a[4] = 5;
cout << "a = " << a << endl;

This produces the output;

2 3.33333 4 5

ol

real[string] declares a variable that store multiple real numbers with string index.

string[string] declares a variable that store multiple strings with string index.

4.3. GLOBAL VARIABLES 57
func defines a function without argument, if independent variables are x, y. For example

func f=cos(x)+sin(y) ;

Remark that the function’s type is given by the expression’s type. Raising functions to a
numerical power is done, for instance, by x"1, y"0.23.

mesh creates the triangulation, see Section

fespace defines a new type of finite element space, see Section Section [6]
problem declares the weak form of a partial differential problem without solving it.
solve declares a problem and solves it.

varf defines a full variational form.

matrix defines a sparse matrix.

4.3 Global Variables

The names x,y,z,label,region,P,N,nu_triangle... are reserved words used to link the
language to the finite element tools:

X is the x coordinate of the current point (real value)
y is the y coordinate of the current point (real value)
z 1s the z coordinate of the current point (real value) , but is reserved for future use.

label contains the label number of a boundary if the current point is on a boundary, 0 otherwise
(int value).

region returns the region number of the current point (x,y) (int value).

P gives the current point (R? value.). By P.x, P.y, we can get the x, y components of P . Also
P.z is reserved and can be used in 3D.

N gives the outward unit normal vector at the current point if it is on a curve defined by border
(R? value). N.x and N.y are x and y components of the normal vector. N. z is reserved. .

lenEdge gives the length of the current edge
lenEdge = |¢' — ¢’| if the current edge is [¢', ¢’]
hTriangle gives the size of the current triangle

nuTriangle gives the index of the current triangle (int value).

nuEdge gives the index of the current edge in the triangle (int value).

58 CHAPTER 4. SYNTAX

nTonEdge gives the number of adjacent triangle of the current edge (integer).
area give the area of the current triangle (real value).
volume give the volume of the current tetrahedra (real value).

cout is the standard output device (default is console). On MS-Windows, the standard output is
only the console, at this time. ostream

cin is the standard input device (default is keyboard). (istreamvalue).
endl adds an end of line” to the input/output flow.

true means “true” in bool value.

false means “false” in bool value.

pi is the realvalue approximation value of x.

4.4 System Commands
Here is how to show all the types, and all the operator and functions of a FreeFem++ program:

dumptable(cout);

To execute a system command in the string (not implemented on Carbon MacOS)

exec("shell command");

This is useful to launch another executable from within FreeFem++ . On MS-Windows, the
full path of the executable. For example, if there is the command “Is.exe” in the subdirectory
“c:\cygwin\bin\”, then we must write

exec("c:\\cygwin\\bin\\1ls.exe");

Another useful system command is assert() to make sure something is true.

assert (version>=1.40);

4.5 Arithmetics

On integers , +, —, * are the usual arithmetic summation (plus), subtraction (minus) and mul-
tiplication (times), respectively,The operators / and % yield the quotient and the remainder from
the division of the first expression by the second. If the second number of / or % is zero the be-
havior is undefined. The maximum or minimum of two integers a, b are obtained by max(a,b)
or min(a,b). The power a’ of two integers a, b is calculated by writing a"b. The classical C++
“arithmetical if” expression a ? b : cis equal to the value of expression b if the value of
expression a is true otherwise is equal to value of expression c.

4.5. ARITHMETICS 59
Example 4.2 Computations with the integers

int a = 12, b = 5;

cout <<"plus, minus of "<<a<<" and "<<b<<" are "<<a+b<<", "<<a-b<<endl;

cout <<"multiplication, quotient of them are "<<a*b<<", "<<a/b<<endl;

cout <<"remainder from division of "<<a<<" by "<<b<<" is "<<a¥%b<<endl;

cout <<"the minus of "<<a<<" is "<< -a << endl;

cout <<a<<" plus -"<<b<<" need bracket:'<<a<<"+(-"<<b<<")="<<a+(-b)<<endl;

cout <<"max and min of "<<a<<" and "<<b<<" is "<<max(a,b)<<","<<min(a,b)<< endl;
cout <<b<<"th power of "<<a<<" is "<<a"b<< endl;

cout << "

"

min == (a<b?a:b) is << (a<b?a:b) << endl;

b=0;
cout <<a<<"/0"<<" is "<< a/b << endl;
cout <<a<<"%0"<<" is "<< a%b << endl;

produce the following result:

plus, minus of 12 and 5 are 17, 7
multiplication, quotient of them are 60, 2
remainder from division of 12 by 5 is 2
the minus of 12 is -12

12 plus -5 need bracket :12+(-5)=7

max and min of 12 and 5 is 12,5

5th power of 12 is 248832

min == (a <b ? a : b) is 5

12/0 : long long long

Fatal error : ExecError Div by 0 at exec line 9
Exec error : exit

By the relation integer C real, the operators “+, —, %, /, %” and “ max, min, "7 are extended
to real numbers or variables. However, % calculates the remainder of the integer parts of two real
numbers.

The following are examples similar to Example

real a=sqrt(2.), b = pi;

cout <<"plus, minus of "<<a<<" and "<<pi<<" are "<< a+b <<", "<< a-b << endl;
cout <<"multiplication, quotient of them are "<<a*b<<", "<<a/b<< endl;

cout <<"remainder from division of "<<a<<" by "<<b<<" is "<< a%b << endl;

cout <<"the minus of "<<a<<" is "<< -a << endl;

cout <<a<<" plus -"<<b<<" need bracket :"<<a<<"+(-"<<b<<")="<<a + (-b) << endl;

It gives the following output:

plus, minus of 1.41421 and 3.14159 are 4.55581, -1.72738
multiplication, quotient of them are 4.44288, 0.450158
remainder from division of 1.41421 by 3.14159 is 1

the minus of 1.41421 is -1.41421

1.41421 plus -3.14159 need bracket :1.41421+(-3.14159)=-1.72738

By the relation
bool C int C real C complex,

60 CHAPTER 4. SYNTAX

the operators “+, —, *, /7 and “ " are also applicable on complex-typed variables, but “%, max,
min” cannot be used. Complex numbers such as 5+9i, i= V-1, are valid expressions. With real
variables a=2.45, b=5.33,complex numbers like @ + i b and a + i V2.0 must be declared by

complex zl1 = a+b*1i, z2=a+sqrt(2.0)*1i;

The imaginary and real parts of a complex number z can be obtained with imag and real. The
conjugate of a+bi (a, b are reals) is defined by a—bi, which can also be computed with the operator
”conj”, by conj(a+b*1i) in FreeFem++ .

Internally the complex number z = a + ib is considered as the pair (a, b) of real numbers a, b. We
can attach to it the point (a, b) in the Cartesian plane where the x-axis is for the real part and the y-
axis for the imaginary part. The same point (a, b) has a representation with polar coordinate (r, ¢),
So z his also z = r(cos ¢ + ising), r = Va? + b? and ¢ = tan™'(b/a); r is called the modulus and ¢
the argument of z. In the following example, we shall show them using FreeFem++ programming,
and de Moivre’s formula 7" = r"(cos n¢ + i sin n¢).

Example 4.3

real a=2.45, b=5.33;
complex zl=a+b*1i, z2 = a+sqrt(2.)*1i;
func string pc(complex z) // printout complex to (real)+i(imaginary)
{
string r = "("+real(z);
if (imag(z)>=0) r = r+"+";
return r+imag(z)+"i)";
}

// printout complex to |z|*(cos(arg(z))+i*sin(arg(z)))
func string toPolar(complex z)

{
return abs(z)+"*(cos("+arg(z)+")+i*sin("+arg(z)+"))";
}
cout <<"Standard output of the complex "<<pc(zl)<<" is the pair "
<<zl<<endl;
cout <<"Plus, minus of "<<pc(zl)<<" and "<<pc(z2)<<" are "<< pc(zl+z2)
<<", "<< pc(zl-z2) << endl;

"

cout <<"Multiplication, quotient of them are "<<pc(zl*z2)<<",
<<pc(zl/z2)<< endl;

cout <<"Real/imaginary part of "<<pc(zl)<<" is "<<real(zl)<<",
<<imag(zl)<<endl;

cout <<"Absolute of "<<pc(zl)<<" is "<<abs(zl)<<endl;

cout <<pc(z2)<<" = "<<toPolar(z2)<<endl;

cout <<" and polar('<<abs(z2)<<",'"<<arg(z2)<<") ="
<< pc(polar(abs(z2),arg(z2)))<<endl;

cout <<"de Moivre’s formula: "<<pc(z2)<<""3 = "<<toPolar(z2"3)<<endl;

cout <<"conjugate of "<<pc(z2)<<" is "<<pc(conj(z2))<<endl;

cout <<pc(zl)<<"""<<pc(z2)<<" is "<< pc(zl”z2) << endl;

Here’s the output from Example

Standard output of the complex (2.45+5.33i) is the pair (2.45,5.33)

Plus, minus of (2.45+5.33i) and (2.45+1.41421i) are (4.9+6.74421i), (0+3.91579i)
Multiplication, quotient of them are (-1.53526+16.5233i), (1.692+1.19883i)
Real/imaginary part of (2.45+5.33i) is 2.45, 5.33

Absolute of (2.45+5.33i) is 5.86612

4.6. FUNCTIONS OF ONE VARIABLE 61

(2.45+1.41421i) = 2.82887*(cos(0.523509)+i*sin(0.523509))
and polar(2.82887,0.523509) = (2.45+1.414211i)
de Moivre’s formula: (2.45+1.41421i)°3
= 22.638%(cos(1.57053)+i*sin(1.57053))
conjugate of (2.45+1.41421i) is (2.45-1.41421i)
(2.45+5.331)7(2.45+1.414211) is (8.37072-12.70781i)

4.6 Functions of one Variable

Fundamental functions are builtinto FreeFem++ as well as The power function x* y = pow(x,y)=
x';, the exponent function exp(x) (= e*), the logarithmic function 1log(x)(= Inx) or
log10(x) (= log,, x); the trigonometric functions sin(x), cos(x), tan(X) assume an-
gles measured in radians; the inverse of sin x, cos x, tan x (called circular function or inverse
trigonometric function) asin(x)(=arcsin x), acos(X)(=arccos x), atan(x)(=arctan x) are
also implemented; the atan2(x,y) function computes the principal value of the arc tangent
of y/x, using the signs of both arguments to determine the quadrant of the return value;

the hyperbolic functions,
sinhx = (e* —e™) /2, coshx = (e* +e7™) /2.

and tanh x = sinh x/ cosh x called by sinh(x), cosh(x), tanh(X), asinh(X), acosh(x)
and atanh(X).

sinh_lx:ln[x+ x2 + 1], Cosh_]len[x+ Vx2 — 1].

The real function which rounds a real to an integer £loor(x) rounds to largest integral
value not greater than X, ceil(x) round to smallest integral value not less than x; similarly
rint(x) returns the integral value nearest to x (according to the prevailing rounding mode)
in floating-point format)..

Elementary Functions denotes for us the class of functions presented above (polynomials,
exponential, logarithmic, trigonometric, circular) and the functions obtained from those by
the four arithmetic operations

F(x) + g(x), f(x) = g(x), f(X)g(x), f(x)/g(x)

and by composition f(g(x)), each applied a finite number of times. In FreeFem++ , all
elementary functions can thus be created. The derivative of an elementary function is also
an elementary function; however, the indefinite integral of an elementary function cannot
always be expressed in terms of elementary functions.

Example 4.4 The following is an example where an elementary function is used to build the
border of a domain. Cardioid

real b = 1.;
real a = b;
func real phix(real t)

{

62 CHAPTER 4. SYNTAX

return (a+b)*cos(t)-b*cos(t*(a+b)/b);
}
func real phiy(real t)

{
return (a+b)*sin(t)-b*sin(t*(a+b)/b);
}
border C(t=0,2%pi) { x=phix(t); y=phiy(t); }
mesh Th = buildmesh(C(50));

Taking the principal value, we can define log z for z # 0 by
Inz=In|z| +iargz.

Using FreeFem++ , we calculated exp(1+41i), sin(pi+1i), cos(pi/2-1i) and log(1+21),
we then have

-1.77679 - 2.0572i, 1.88967107'¢ — 1.1752i,
9.44833107"7 + 1.1752i, 0.804719 + 1.10715i.

Random Functions can be define as FreeFem++ has a Mersenne Twister function (see page
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for full detail). It
is a very fast and accurate random number generator Of period 22!%°*7 — 1, and the functions
which calls it are:

e randint32() generates unsigned 32-bit integers.

e randint31() generates unsigned 31-bit integers.

e randreall() generates uniform real in [0, 1] (32-bit resolution).

e randreal2() generates uniform real in [0, 1) (32-bit resolution).

e randreal3 () generates uniform real in (0, 1) (32-bit resolution).

e randres53() generates uniform real in [0, 1) with 53-bit resolution.

e randinit(seed) initializes the state vector by using one 32-bit integer ’seed”’, which
may be zero.

Library Functions form the mathematical library (version 2.17).

e the functions jO(x), jl(x), jn(n,x), y0(x), yl(x), yn(n,x) are the Bessel
functions of first and second kind.
The functions jO®(x) and j1(x) compute the Bessel function of the first kind of the
order 0 and the order 1, respectively; the function jn(n, x) computes the Bessel
function of the first kind of the integer order n.

The functions y0 (x) and y1(x) compute the linearly independent Bessel function of
the second kind of the order O and the order 1, respectively, for the positive integer
value x (expressed as a real); the function yn(n, x) computes the Bessel function of
the second kind for the integer order n for the positive integer value x (expressed as a
real).

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

4.7. FUNCTIONS OF TWO VARIABLES 63

e the function tgamma(x) calculates the I" function of x. lgamma(x) calculates the
natural logorithm of the absolute value of the I" function of x.

e The erf(x) function calculates the error function, where erf(x) = %m) fox exp(—t*)dt.

The erfc(x) = function calculates the complementary error function of x, i.e. erfc(x) =
1 — erf(x).

4.7 Functions of two Variables

4.7.1 Formula

The general form of real functions of two independent variables a, b is usually written as ¢ =
f(a,b). In FreeFem++ , x, y and z are reserved word as explained in in Section @ So when
the two variables of the function are x and y, we may define the function without its argument,
for example

func f=cos(x)+sin(y) ;

Remark that the function type is given by the expression type. The power operator can be used in
functions such as x"1, y"0.23. In func, we can write an elementary function as follows

func f = sin(X)*cos(y);
func g = (x"2+3*y"2)*exp(l-x"2-y"2);
func h = max(-0.5,0.1*1log(£"2+g"2));

Complex valued function create functions with 2 variables x, y as follows,

mesh Th=square(20,20, [-pi+2*pi*x,-pi+2*pi*y]); // 1 -, >
fespace Vh(Th,P2);

func z=x+y*1i; // z=Xx+1iy
func f=imag(sqrt(z)); // f=34
func g=abs(sin(z/10)*exp(z"2/10)); // g= |sinz/l()expz2/10|
Vh fh = f; plot(fh); // contour lines of f
Vh gh = g; plot(gh); // contour lines of g

We call also construct elementary functions of two variables from elementary functions f(x) or
g(y) by the four arithmetic operations plus composition applied a finite number of times.

4.7.2 FE-functions

Finite element functions are also constructed like elementary functions by an arithmetic formula
involving elementary functions. The difference is that they are evaluated at declaration time and
FreeFem++ stores the array of its values at the places associated with he degree of freedom of the
finite element type. By opposition elementary functions are evaluated only when needed. Hence
FE-functions are not defined only by their formula but also by the mesh and the finite element
which enter in their definitions. If the value of a FE-function is requested at a point which is not a
degree of freedom, an interpolation is used, leading to an interpolation error, while by contrast, an
elementary function can be evaluated at any point exactly.

64 CHAPTER 4. SYNTAX

func £=x"2*(1+y) "3+y"2;

mesh Th = square(20,20,[-2+2*x,-2+2%y]); // square]-2,2[>

fespace Vh(Th,P1);

Vh fh=f; // fh is the projection of f to Vh (real value)

func zf=(x"2*(1+y) "3+y"2) *exp(x+1i*y);

Vh<complex> zh = zf; // zh is the projection of zf
// to complex value Vh space

The construction of fh (=f},) is explained in Section @

Note 4.1 The command plot applies only for real or complex FE-functions (2d or 3d) and not to
elementary functions.

Complex valued functions create functions with 2 variables x, y as follows,

2

mesh Th=square(20,20, [-pi+2*pi*x,-pi+2*pi*y]); // | —m, x|
fespace Vh(Th,P2);

func z=x+y*1i; // Z=x+1iy
func f=imag(sqrt(z)); // f=3z
func g=abs(sin(z/10)*exp(z"2/10)); // g= |sinz/lOexpz2/10|
Vh fh = f; plot(fh); // Fig. isovalue of f
Vh gh = g; plot(gh); // Fig. isovalue of g

Figure 4.1: J /7 has branch Figure 4.2: |sin(z/10) exp(z>/10)|

4.8 Arrays

An array stores multiple objects, and there are 2 kinds of arrays: The first is similar to vector, i.e.
arrays with with integer indices and the second type is arrays with string indices.

In the first case, the size of the array must be known at execution time, and implementation is done
with the KN<> class and all the vector operator of KN<> are implemented. For instance

real [int] tab(10), tabl1(10); // 2 array of 10 real
real [int] tab2; // bug array with no size
tab = 1.03; // set all the array to 1.03

tab[1]=2.15;

4.8. ARRAYS 65

cout << tab[l] << << tab[9] << " size of tab = "

<< tab.n << " min: " << tab.min << " max:" << tab.max
<< " sum : " << tab.sum << endl; //
tab.resize(12); // change the size of array tab
// to 12 with preserving first value
tab(10:11)=3.14; // set unset value

cout <<" resize tab:
real [string] tt;

<< tab << endl;

tt["+"]=1.5;

cout<<tt["a"]<<" "<<tt["+"]<<endl;

reall[int] a(5),b(5),c(5),d(5);

a=1;

b = 2;

c = 3;

a[2]=0;

d=(Ca?b:c); // for i =0, n-1 : d[i] = a[i] ? b[i] : c[i] ,
cout << "d=(Ca?b:c) is " << d << endl;

d=(Ca?1:c); // for i =0, n-1: d[i] = a[i] ? 1 : c[i] , (v2.23-1)
d=Ca?b:0); // for i =0, n-1: d[i] = a[i] ? b[i] : 0 , (v2.23-1)
d=Ca?1:0); // for i =0, n-1: d[i] = a[i] ? 0O : 1, (v2.23-1)
tab.sort ; // sort the array tab (version 2.18)
cout << " tab (after sort) " << tab << endl;

int[int] i1ii(0:d.n-1); // set array ii to 0,1, ..., d.n-1 (v3.2)
d=-1:-5; // set d to -1,-2, .. -5 (v3.2)
sort(d,ii); // sort array d and ii in parallel
cout << "d " << d << "\n ii = " << ii << endl;

produces the output

2.15 1.03 size of tab = 10 min: 1.03 max:2.15 sum : 11.42
resize tab: 12
1.03 2.15 1.03 1.03 1.03
1.03 1.03 1.03 1.03 1.03
3.14 3.14
® 1.5
d=Ca?b:c) is 5
3 3 2 3 3
tab (after sort) 12
1.03 1.603 1.63 1.03 1.03
1.03 1.03 1.03 1.03 2.15
3.14 3.14
d>5
-5 -4 -3 -2 -1

Arrays can be set like in matlab or scilab with the operator ::, the array generator of a:c is
equivalent to a: 1:c, and the array set by a:b:cis set to size ||(b —a)/c| + 1] and the value i is set
by a +i(b—a)/c.

There are int,real, complex arrays with, in the third case, two operators (.in, .re) to generate
the real and imaginary real array from the complex array (without copy) :

// version 3.2 mai 2009

66 CHAPTER 4. SYNTAX

// like matlab. and scilab
{
int[int] tt(2:10); // 2,3,4,5,6,7,8,9,10
int[int] t1(2:3:10); // 2,5,8,
cout << " tt(2:10)= " << tt << endl;
cout << " t1(2:3:10)= " << tl1 << endl;
tt=1:2:5;
cout << " 1.:2:5 => " << tt << endl;
}
{
real[int] tt(2:10); // 2,3,4,5,6,7,8,9,10
real[int] t1(2.:3:10.); // 2,5,8,
cout << " tt(2:10)= " << tt << endl;
cout << " t1(2:3:10)= " << tl << endl;
tt=1.:0.5:3.999;
cout << " 1.:0.5:3.999 => " << tt << endl;
}
{
complex[int] tt(2.+0i:10.+01i); // 2,3,4,5,6,7,8,9,10
complex[int] t1(2.:3.:10.); // 2,5,8,
cout << " tt(2.+01:10.+40i)= " << tt << endl;
cout << " t1(2.:3.:10.)= " << tl1 << endl;
cout << " tt.re real part array " << tt.re << endl ;

// the real part array of the complex array
cout << " tt.im imag part array " << tt.im << endl ;
// the imag part array of the complex array

}
The output is :

tt(2:10)= 9
2 3 4 5 6
7 8 9 10
t1(2:3:10)= 3
2 5 8
1.:2:5 = 3
1 3 5
tt(2:10) = =
2 3 4 5 6
7 8 9 10
t1(2.:3:10.)= 3
2 5 8
1.:0.5:3.999 => 6
11.5 2 2.5 3
3.5

tt(2.+0i:10.+0i)= 9

(2,0) (3,0) (4,0) (5,0) (6,0
(7,0) (8,0 (9,0) (10,0)
t1(2.:3.:10.);=3

(2,0) (5,0) (8,0)

tt.re real part array 9
2 3 4 5 6
7 8 9 10

4.8. ARRAYS

tt.im imag part array 9
O 0 6 0 O
O 0 0 ©

2

the all integer array operators are :

{

int N=5;
reallint]
a =1;
a(0:4:2) =
a(3:4) = 4;
cout <<" a
b = a+ a;
cout <<" b
b += a;
cout <<" b
b += 2*a;
cout <<" b
b /= 2;
cout <<" b
b *= a;
cout << "b
b /= a;
cout << "b
c = a+b;
cout <<

a(),b(MN),c();

2;

= " << a << endl;

= at+ta : " << b << endl;
+=a : << b << endl;
+= 2%a : " << b << endl;
/=2 : " << b << endl;
*za; b =" << b << endl;
/=a; b =" << b << endl;

c =a+b : c=" << c << endl;

Cc = 2%a+4%b;

cout <<
c = a+4*b;
cout << "
c = -a+4*b;
cout << "
c = -a-4%b;
cout << "
c = -a-b;
cout << "
c=a .* b;
cout << "
c=a ./ b;
cout << "
c =2 *b;
cout << "
c = b*2 ;
cout << "

c =2%a+4b : c= " << c << endl;

c =a+d4b : c= << € << endl;

c =-a+4b : c= << € << endl;

c =-a-4b : c= " << ¢ << endl;

c =-a-b : c= << € << endl;

c =a.*b : c= " << c << endl;
c =a./b : c=" << c << endl;
c =2%b 1 c= " << ¢ << endl;
c =b*2 1 c= " << c << endl;

/% this operator do not exist

c= b/2;

cout << " ¢ =b/2 1 c= " << € << endl;

:':/

cout << " |lal|_1 =" << a.ll << endl;

Vs

Vs

Vs

67
same b =b .* a
same b =b ./ a

---- the methods --
//

68

cout << " |lal|_2 =
cout << " |]al|_infty =
cout << " sum a_i =
cout << " max a_i =
cout << " min a_i =
cout << " a’*a =
cout << " a quantile 0.2 =
}

produce the output

b += a 5
3
b +=2%a : 5
10 5
b /=2 5
5 2.5
b*=a; b =5
10 2.5
b/=a; b =5
5 2.5
c =a+b : c=5
7 3.5

c =2*%a+4b : c= 5
24 12

c =a+4b : c= 5
22 11

c =-a+4b : c= 5
18 9

c =-a-4b : c= 5
-22 -11

c =—a-b : c=5

c=a.*b :c=5
10 2.5

<<
<<
<<
<<
<<
<<

10

10

24

22

18

-22

10

<<

12
linfty
.sum
.max
.min
(a’*a)

[V <V <V <V <

12

20

10

40

10

14

48

44

36

-44

-14

40

<< endl;
<< endl;
<< endl;
<< endl;
<< endl;
<< endl;

a.quantile(0.2) << endl;

12

20

10

40

10

14

48

44

36

-44

-14

40

CHAPTER 4. SYNTAX

//
s
//
//
//
s
//

4.8. ARRAYS 69

c=a./b :c=5

0.4 0.4 0.4 0.4 0.4

c =2%b 1 c=5

10 5 10 20 20
c =b*2 1 c=5

10 5 10 20 20
[lall_1 = 13
[lall_2 = 6.403124237
|la]|_infty = 4
sum a_i =13
max a_i =4
min a_i =1
a’:’:a - 41

a quantile 0.2 = 2

Note 4.2 Quantiles are points taken at regular intervals from the cumulative distribution function
of a random variable. Here the array values are random.

This statisticial function a.quantile(q) computes v from an array a of size n for a given number
q €10, 1[such that

#li/alil] <v}~qg=*n

; it is equivalent to v = alq * n] when the array a is sorted.

Example of array with renumbering (version 2.3 or better) . The renumbering is always given
by an integer array, and if a value in the array is negative, the mapping is not imaged, so the value
is not set.

int[int] I=[2,3,4,-1,0]; // the integer mapping to set the renumbering
b=c=-3;

b= a(I); // for(i=0;i<b.n;i++) if(I[i] >=0) b[i]=a[I[i]];
c(D= a; // for(i=0;i<I.n;i++) 1if(I[i] >=0) C(I[i])=ali];
cout << " b=a(@) : "<<<b<<x<"™\n c(I) =a " << c << end]l;

The output is

b=a(@ :5

c(I) =asb

70

CHAPTER 4. SYNTAX

4.8.1 Arrays with two integer indices versus matrices

Some example are given below to transform full matrices into sparse matrices.

int N=3,M=4;

real[int,int] A(N,M);
real[int] b(N),c(M);
b=[1,2,3];
c=[4,5,6,7];
complex[int,int] C(N,M);
complex[int]

b=[1,2,3];

int [int] I=[2,0,1];
int [int] J=[2,0,1,3];

A=1;
AC2,:) =
AC:,D =
A(®:N-1

4;

5;
,2) = 2;
AC1,0:2) =

3;
cout << " A = " << A << endl;
C = cb¥*cc’;

C += 3%*cb*cc’;

C -= 5i*cb*cc’;
cout << " C = " << C << endl;

matrix B;

B = A;
B=A(I,));
B=A(I"-1,1"-1);

A = 2.%b*c’;

cout << " A = " << A << endl;
B = b*c’;

B = b*c’;

B = (2%b*c’)(I,1);
B = (3.%b*c’)(I"-1,1"-1);

cout << "B = (3.*b*c’)(1"°-1,1"-1) =

the output is

b=a(@ :5
2 4 4

c(I) =as5
4 -3 2

cb=[1,2,3],cc=[101,201,301,40i];

// set the all matrix
// the full line 2
// the full column 1
// set the column 2

2

// set the line 1 from 0 to

// outer product

// this transforms an array into a sparse matrix

//
//

//
//

// B(i,j)= A(I(1),I(J))
/7 B(I(1),J(j))= A(1,]))

// outer product

outer product B(i,j) = b(i)*c(j)
outer product B(i,j) = b(i)*c(j)

outer product B(i,j) = b(I(i))*c(I(j))
outer product B(I(i),J(j)) = b(i)*c(j)

<< B << endl;

4.8. ARRAYS 71

A=34
1 5 2 1
3 3 3 1
4 5 2 4
C=314

(-50,-40) (-100,-80) (-150,-120) (-200,-160)
(-100,-80) (-200,-160) (-300,-240) (-400,-320)
(-150,-120) (-300,-240) (-450,-360) (-600,-480)

8§ 10 12 14
16 20 24 28
24 30 36 42

4.8.2 Matrix construction and setting

e To change the linear system solver associated to a matrix do

set (M, solver=sparsesolver);
The default solver is GMRES.

e from a variational form: (see section[6.12] page[I59| for details)

varf vDD(u,v) = int2d(Thm) (u*v*1le-10);
matrix DD=vDD(Lh,Lh);

e To set from a constant matrix

matrix A =

[, 1, 0, 10],
, 0, 2, 0],
, 0, 0, 3],

0
0
0, 0,
4,0 , 0, 0]];

Lo B e B s B |

e To set from a block matrix

matrix M=[
[Asd[0] ,0 ,0 ,0 ,Csd[0] 1,
[O ,Asd[1] ,0 ,0 ,Csd[1] 1,
[O ,0 ,Asd[2] ,0 ,Csd[2] 1,
[O ,0 ,0 ,Asd[3] ,Csd[3] 1,
[Csd[0]’,Csd[1]’,Csd[2]’,Csd[3]’,DD]

// to now to pack the right hand side
reall[int] bb =[rhssd[0][], rhssd[1][],rhssd[2][],rhssd[3][],rhs1[] 1;
set (M,solver=sparsesolver);
xx = M"-1 * bb;
[usd[®0][],usd[1]1[],usd[2][],usd[3]1[],1h[]] = xx; // to dispatch
// the solution on each part.

72 CHAPTER 4. SYNTAX

where Asd and Csd are arrays of matrices (from example mortar-DN-4. edp of examples++-tuturial

e To set or get all the indices and coefficients of the sparse matrix A, let I, J, C be respectively
two int[int] arrays and a real[int] array. The three arrays define the matrix as follows

A= Z Clk]IM 1,31 where My, = (6ia0 jp)ij
%

one has: M, a basic matrix with the only non zero term m,;, = 1.

One can write [I,J,C]=A ; to getall the term of the matrix A (the arrays are automatically
resized), and A=[I,J],C] ; tochange all the term matrices. Note that the size of the matrix
is with n= I.max and m=J].max. Remark that I,J] is forgotten to build a diagonal matrix,
and similarly for the n, m of the matrix.

e matrix renumbering

int[int] I(15),J(15); // two array for renumbering
//

// the aim is to transform a matrix into a sparse matrix

matrix B;

B =A; // copie matrix A

B=A(I,1); // B(i,j) = A(I(1),3(3))

B=A(I"-1,1"-1); // B(I(i),J(j))= A(i,5)

B.resize(10,20); // resize the sparse matrix and remove out of bound terms

where A i1s a given matrix.

4.8.3 Matrix Operations
The multiplicative operators *, /, and % group left to right.

e ’ is the (unary) right transposition for arrays, the matrix in real cases and Hermitian trans-
pose in complex cases.

e .* is the term to term multiply operator.

e ./ is the term to term divide operator.

there are some compound operators also:

e "-1is for solving the linear system (example: b = A"-1 x)

e ’ *ig the compound of transposition and matrix product, so it is the dot product (example
real DotProduct=a’*b), in complex case you get the Hermitian product, so mathemati-
cally we have a’*b=a'b .

e a*b’ is the outer product (example matrix B=a’*b)

4.8. ARRAYS 73
Example 4.5

mesh Th = square(2,1);
fespace Vh(Th,P1);
Vh £,9;
f = x*y;
g = sin(pi*x);
Vh<complex> ff,gg; // a complex valued finite element function
ff= x*(y+1i);
gg = exp(pi*x*1i);
varf mat(u,v) =
int2d(Th) (1*dx (u) *dx(v)+2*dx (u) *dy (v)+3*dy (u) *dx (v) +4*dy (u) *dy (v))
+ on(1,2,3,4,u=1);
varf mati(u,v) =
int2d(Th) (1*dx (u) *dx(v)+2i*dx (u) *dy (v) +3*dy (u) *dx (v)+4*dy (w) *dy (v))
+ on(1,2,3,4,u=1);
matrix A = mat(Vh,Vh); matrix<complex> AA = mati(Vh,Vh); // a complex sparse matrix

Vh m0; mO[] = A*f[];

Vh m01; mO1[] = A’*f[];

Vh ml; mi[] = £[].%*g[];

Vh m2; m2[] = £[1./9[1;

cout << "f = " << f[] << endl;
cout << "g = " << ¢g[] << endl;
cout << "A = << A << endl;

cout << "m@® = " << mO[] << endl;

cout << "m@1 = " << mO1l[] << endl;

cout << "ml = "<< ml[] << endl;

cout << "m2 = "<< m2[] << endl;

cout << "dot Product = "<< f[]’*g[] << endl;

cout << "hermitien Product = "<< ff[]’*gg[] << endl;

cout << "outer Product = "<< (A=ff[]*gg[]’) << endl;
cout << "hermitien outer Product = "<< (AA=ff[]l*gg[]’) << endl;
real[int] diagofA(A.n);

diagofA = A.diag; // get the diagonal of the matrix
A.diag = diagofA ; // set the diagonal of the matrix
// version 2.17 or better ---
int[int] I(1),]J(1); reall[int] C(1);
[I,],Cl=A; // get of the sparse term of the matrix A (the array are resized)
cout << " I= " << I << endl;
cout << " J= " << J << endl;
cout << " C= " << C << endl;
A=[1,],C]; // set a new matrix
matrix D=[diagofA] ; // set a diagonal matrix D from the array diagofA.
cout << " D = " << D << endl;

The resizing of a sparse matrix A is also allowed:

A.resize(10,100);

Note that the new size can be greater or smaller than the previous size; all new term are set to
zero.

74

On the triangulation of Figure this produces the following:

10 05 0. 30. -25 0.
0. 10 05 0. 05 =25
A~ | 0010 0 0. 05
105 o0 0 10 0 o0
-25 05 0. 05 10% 0.
0. =25 0. 0. 05 10%
T
v} = £[] =(00051)
wh=gl] = (0 1 12x107 0 1 1.2x107)
A*£[] = (-125 225 05 0 5x10® 10%)
AT*E[] = (125 -225 0 025 5x10® 10%)T
T
£[1.%gf] = (0 0 0 0 05 12x107)
£[1./90] = (-NaN 0 0 -NaN 0.5 8.1x10")T
£f[1°*g[1 = 05 (= {wh={v}{w)
The output of the 1, J, C array:
I= 18
0 0 0 1
1 1 2 3
3 4 4 4
5 5 5
J= 18
0 1 4 2
4 5 2 0
3 0 1 4
1 4 5
C= 18
le+30 0.5 -2.5 le+30 0.5
0.5 -2.5 le+30 0.5 0.5
le+30 -2.5 0.5 0.5 le+30
-2.5 0.5 le+30

= (viw

CHAPTER 4. SYNTAX

(=A{)
(=A"v))
VMWM)T

= i/wy - v/wu)"

The output of a diagonal sparse matrix D (Warning du to fortran interface the indices start on the
output at one, but in FreeFem++ in index as in C begin at zero);

D = # Sparce Matrix (Morse)

first line: n m (is symmetic) nbcoef
after for each nonzero coefficient:
661 6

i j a_ij where (i,j) \in {1

VT A WN =
VT A WN R

1.0000000000000000199e+30
1.0000000000000000199e+30
1.0000000000000000199e+30
1.0000000000000000199e+30
1.0000000000000000199e+30
1.0000000000000000199e+30

4.8. ARRAYS 75

Note 4.3 The operators ~-1 cannot be used to create a matrix; the following gives an error

matrix AAA = A™-1;

In examples++-loadflapack.edp a full matrix is inverted using the lapack library and this small
dynamic link interface (see for more detail section|Cpage [307).

load "lapack"
load "fflapack"
int n=5;
real[int,int] A(n,n),Al1(n,n),B(n,n);
for(int i=0;i<n;++1i)
for(int j=0;j<n;++j)
A(i,j)= (A==j) ? n+l : 1;
cout << A << endl;
Al=A"-1; // def in load "lapack"
cout << Al << endl;

B=0;
for(int i=0;i<n;++1i)
for(int j=0;j<n;++j)
for(int k=0;k<n;++k)
B(i,j) +=A(,k)*Al(k,]j);
cout << B << endl;
// Al+A"-1; attention ne marche pas

inv(Al); // def in load "fflapack"
cout << Al << endl;

and the output is:

55

== = O
e e a2 M
i N o) B e
A N e i
[I

error: dgesv_ 0

55

0.18 -0.02 -0.02 -0.02 -0.02
-0.02 0.18 -0.02 -0.02 -0.02
-0.02 -0.02 0.18 -0.02 -0.02
-0.02 -0.02 -0.02 0.18 -0.02
-0.02 -0.02 -0.02 -0.02 0.18

55

1 -1.387778781e-17 -1.040834086e-17 3.469446952e-17 O
-1.040834086e-17 1 -1.040834086e-17 -2.081668171e-17 O
3.469446952e-18 -5.551115123e-17 1 -2.081668171e-17 -2.775557562e-17
1.387778781e-17 -4.510281038e-17 -4.857225733e-17 1 -2.775557562e-17
-1.387778781e-17 -9.714451465e-17 -5.551115123e-17 -4.163336342e-17 1

55

76 CHAPTER 4. SYNTAX

to compile lapack.cpp or fflapack.cpp you must have the library lapack on you system and
try in directory examples++-1load

ff-c++ lapack.cpp -1llapack
ff-c++ fflapack.cpp -llapack

4.8.4 Other arrays

It is also possible to make an array of FE functions, with the same syntax, and we can treat them
as vector valued function if we need them.

Example 4.6 In the following example, Poisson’s equation is solved for 3 different given functions
f =1, sin(zrx) cos(my), |x — 1|ly — 1|, whose solutions are stored in an array of FE function.

mesh Th=square(20,20,[2%x,2*y]);

fespace Vh(Th,P1);

Vh u, v, f;

problem Poisson(u,v) =
int2d(Th) (dx(u)*dx(v) + dyu)*dy(v))
+ int2d(Th) (-f*v) + on(1,2,3,4,u=0) ;

Vhlint] wu(3); // an array of FE function
f=1; // probleml
Poisson; uul[0®] = u;
f=sin(pi*x)*cos(pi*y); // problem2
Poisson; uul[l] = u;
f=abs(x-1)*abs(y-1); // problem3
Poisson; uul[2] = u;
for (int i=0; i<3; i++) // plots all solutions

plot(uul[i], wait=true);

For the second case, it is just a map of the STI[][26] s0 no operations on vector are allowed, except
the selection of an item .

The transpose or Hermitian conjugation operator is * as in Matlab or Scilab, so the way to compute
the dot product of two array a,bis real ab= a’*b.

int 1i;

real [int] tab(10), tabl1(10); // 2 array of 10 real
real [int] tab2; // Error: array with no size

tab = 1; // set all the array to 1

tab[1]=2;

non

cout << tab[l] << << tab[9] << " size of tab = "
<< tab.n << " " << tab.min << " " << tab.max << << endl;
tabl=tab; tab=tab+tabl; tab=2*tab+tabl*5; tabl=2*tab-tabl*5;
tab+=tab; cout << " dot product " << tab’*tab << endl; // T'tabtab
cout << tab << endl; cout << tab[l] << " "

non

!'Standard template Library, now part of standard C++

4.9. LOOPS 77

<< tab[9] << endl; real[string] map; // a dynamic array
for (i=0;i<10;i=i+1)
{
tab[i] = i*i;
cout << 1 <<

non

<< tab[i] << "\n";

1
map["1"]=2.0;
map[2]=3.0; // 2 is automatically cast to the string "2"
cout << " map[\"I1\"] = " << map["1"] << "; "<< endl;
cout << " map[2] = " << map[2] << "; "<< endl;

4.9 Loops

The for and while loops are implemented in FreeFem++ together with break and continue
keywords.
In for-loop, there are three parameters; the INITIALIZATION of a control variable, the CON-
DITION to continue, the CHANGE of the control variable. While CONDITION is true, for-loop
continue.

for (INITIALIZATION; CONDITION; CHANGE)
{ BLOCK of calculations }

An example below shows a sum from 1 to 10 with result is in sum,

int sum=0;
for (int i=1; i<=10; i++)
sum += i;

The while-loop

while (CONDITION) {
BLOCK of calculations or change of control variables

}

is executed repeatedly until CONDITION become false. The sum from 1 to 10 can also be com-
puted by while as follows,

int i=1, sum=0;
while (i<=10) {
sum += i; i++;

}

We can exit from a loop in midstream by break. The continue statement will pass the part from
continue to the end of the loop.

Example 4.7

for (int i=0;i<10;i=i+1)
cout << i << "\n";

real eps=1;

while (eps>le-5)

78 CHAPTER 4. SYNTAX

{ eps = eps/2;
if(i++ <100) break;
cout << eps << endl;}

for (int j=0; j<20; j++) {
if (j<10) continue;
cout << "j = " << j << endl;

4.10 Input/Output

The syntax of input/output statements is similar to C++ syntax. It uses cout, cin, endl, <<,>>.
To write to (resp. read from) a file, declare a new variable ofstream ofile("filename"); or
ofstream ofile("filename",append); (resp. ifstream ifile("filename");) and use
ofile (resp. ifile) as cout (resp. cin).

The word append in ofstream ofile("filename",append) ; means openning a file in append
mode.

Note 4.4 The file is closed at the exit of the enclosing block,
Example 4.8

int i;
cout << " std-out" << endl;

cout << enter i= 7?7 ";
cin >> 1 ;

ofstream f("toto.txt");
f << i << "coucou’\n";

}; // close the file f because the variable f is delete
{
ifstream f("toto.txt");
f >> i
}
{

ofstream f("toto.txt",append);
// to append to the existing file "toto.txt"
f << i << "coucou’\n";
}; // close the file f because the variable f is delete

cout << 1 << endl;

Some functions are available to format the output.
e int nold=f.precision(n) Sets the number of digits printed to the right of the decimal
point. This applies to all subsequent floating point numbers written to that output stream.

However, this won’t make floating-point ”integers” print with a decimal point. It’s necessary
to use fixed for that effect.

e f.scientific Formats floating-point numbers in scientific notation (d.dddEdd)

4.11. PREPROCESSOR 79

e f.fixed Used fixed point notation (d.ddd) for floating-point numbers. Opposite of scien-

tific.

f.showbase Converts insertions to an external form that can be read according to the C++
lexical conventions for integral constants. By default, showbase is not set.

e f.noshowbase unset showbase flags

e f.showpos inserts a plus sign (+) into a decimal conversion of a positive integral value.

f.noshowpos unset showpos flags
o f.default reset all the previous flags (fmtflags) to the default expect precision.

Where f£is output stream descriptor, for example cout.
Remark, all these methods except the first return the stream f, so they can be chained as in

cout.scientific.showpos << 3 << endl;

4.10.1 Script arguments

There is a very useful predefined array in Freefem++ ARGV that contains all the arguments of the
script used in the command line. The following code prints out the first three of these arguments:

// version 3.8-1
for(int i=0;i<ARGV.n;++i)
{
cout << ARGV[i] << endl;

}

And to get argument unused in getARGV . idp include script file,

getARGV(n,defaultvalue) // get the nth parameter unused if exist (n =1, ...)
getARGV(after,defaultvalue) // get the arg after the string after if exist

The type of default value can be int, real, string,

4.11 preprocessor

The preprocessor handles directives for source file inclusion (include script-name.idp”), macro
definitions.

There are two types of macros, object-like and function-like. Object-like macros do not take
parameters; function-like macros do. The generic syntax for declaring an identifier as a macro of
each type is, respectively,

macro <identifier>() <replacement token list> // EOM a // comment to end the macro
macro <identifier>(<parameter list>) <replacement token list> // EOM

An example of macro without parameter

80 CHAPTER 4. SYNTAX

macro xxx() {real i=0;int j=0;cout << i << << j << endl;} //
XXX /* replace xxx by the <replacement token list> */

The freefem++ code associated:

: // macro without parameter
macro xxx {real i=0;int j=0;cout << i << " " << j << endl;}//

1
2
3
4 {real i=0;int j=0;cout << i << " " << j << endl;}

An example of macro parameter

macro toto(i) i //
// quoting parameter the {} are remove
toto({real i=0;int j=0;cout << i << " " << j << endl;})
// and only one level of {} are remove
toto({{real i=0;int j=0;cout << i << " " << j << endl;}})

The freefem++ code created :

6 macro toto(i) i//

8 : // quoting parameter the \{\} are remove

9 : real i=0;int j=0;cout << 1 <<
10 : // and only one level of \{\} are remove

11 : {real i=0;int j=0;cout << i <<

<< j << endl;

" mn

<< j << endl;}

Use a macro as parameter of macro to transforme full matrix in formal array like in :

reallint,int] CC(7,7),EE(6,3),EEps(4,4);

macro VIL6(v,i) [v(1,1i), v(2,i),v(4,1), v(5,i),v(6,i) 1] // EOM
macro VIL3(v,i) [v(1,i), v(2,1)] // EOM

// apply v on array element :
macro VV6(v,vv) [v(vv,1), v(vv,2),

v(vv,4), v(vv,5), v(vv,6)] // EOM
macro VV3(v,vv) [v(vv,1), v(vv,2)] // EOM

// so formal matrix to build problem. .
funec C5x5 VV6 (VIL6,CO);

func E5x2 VV6 (VIL3,EE);
func Eps = VV3(VIL3,EEps);

The freefem++ code created :

16 : reallint,int] CC(7,7),EE(6,3),EEps(4,4);

17 :

18 : macro VIL6(v,i) [v(1,1), v(2,i),v(4,1), v(5,i),v(6,i) 1 // EOM
19 : macro VIL3(v,i) [v(1,i1), v(2,1) 1 // EOM

20 : // apply v on array element :

21 : macro VV6(v,vv) [vivv,1), v(vv,2),

22 : v(vv,4), v(vv,5), v(vv,6) 1 // EOM

23 : macro VV3(v,vv) [v(ivv,1), v(vv,2)] // EOM

24 : // so formal matrix to build problem..
25 : func C5x5 =

4.12. EXCEPTION HANDLING 81

1: [[CC(1,1), C€C(2,1),CC(4,1), CC(5,1),CC(6,1) 1
[CC(1,2), CC(2,2),CC(4,2), CC(5,2),CC(6,2) 1 ,
1: [CC(1,4), CC(2,4),CC(4,4), CC(5,4),CC(6,4) 1 ,

[CC(1,5), CC(2,5),CC(4,5), CC(5,5),CC(6,5 1 ,
[CC(1,6), CC(2,6),CC(4,6), CC(5,6),CC(6,6)] 1
26 : func E5x2 =

1: L [EE(1,1), EEC2,1)] , [EE(1,2), EE(2,2)] ,
1: [EE(1,4), EE(2,4)] , [EE(1,5), EE(2,5)] ,
[EE(1,6), EE(2,6)] 1
27 : func Eps = [[EEps(1,1), EEps(2,1) 1 ,
[EEps(1,2), EEps(2,2)] 1
28 :

finally the operator # to do concatenation of parameter: to build vectorial operation, like in

macro div(u) (dx(u#l)+ dy(u#2)) // EOM
mesh Th=square(2,2); fespace Vh(Th,P1);

Vh vi1=x,v2=y;

cout << int2d(Th) (div(v)) << endl;

The freefem++ code created :

31 : macro div(u) (dx(u#1)+ dy(u#2)) //EOM

32 : mesh Th=square(2,2); fespace Vh(Th,P1);

33 : Vh vl=x,v2=y;

34 : cout << int2d(Th)((dx(v1)+ dy(v2))) << endl;

And to finish a amazing test to verified the quoting :

macro foo(i,j,k) i j k // EOM
foo(,,) // empty line
foo({int [}, {int] a(10},{);}

the result:

36 : macro foo(i,j,k) i j k//EOM
37 // empty line
38 : int [int] a(10);

4.12 Exception handling

In the version 2. 3 of FreeFem++, exception handing was added as in C++. But today only the C++
exceptions are caught. Note that in C++ all the errors attached to ExecError, assert, exit,

. call exceptions too so it may be hard to find the cause of the error. The exceptions handle all
ExecError:

82 CHAPTER 4. SYNTAX
Example 4.9 A simple example: catch a division by zero:

real a;
try {
a=1./0.;
}
catch (...) // in versions > 2.3 all exceptions can be caught
{
cout <<
a =0;

¥

Catch an ExecError << endl;

The output is

1/0 : ddd
current line = 3
Exec error : Div by 0
-- number :1

Try:: catch (...) exception
Catch an ExecError

Example 4.10 : a more realistic example with a none invertible matrix:

int nn=5 ;
mesh Th=square(nn,nn);
verbosity=5;

fespace Vh(Th,P1); // P1 FE space
Vh uh,vh; // unkown and test function.
func f=1; // right hand side function
func g=0; // boundary condition function
real cpu=clock();
problem laplace(uh,vh,solver=Cholesky,tolpivot=1e-6) = // definion
of the problem
int2d(Th) (dx(uh)*dx(vh) + dy(uh)*dy(vh)) // bilinear form
+ int2d(Th) (-f*vh) // linear form
try {
cout << " Try Cholesky \n";
laplace; // solve the problem
plot(uh); // to see the result
cout << "-- lap Cholesky " << nn << "x" << nn << " : " << -cpu+clock()
<< "' s, max =" << uh[].max << endl;
}
catch(...) { // catch all
cout << " Catch cholesky PB " << endl;
}

The output is

4.12. EXCEPTION HANDLING

-- square mesh : nb vertices =36 , nb triangles = 50 ...
Nb of edges on Mortars = 0
Nb of edges on Boundary = 20, neb = 20
Nb Mortars 0
number of real boundary edges 20
Number of Edges 85
Number of Boundary Edges 20 neb = 20
Number of Mortars Edges =0
Nb Of Mortars with Paper Def O Nb Of Mortars =0 ...
Nb Of Nodes = 36
Nb of DF = 36
Try Cholesky
-- Change of Mesh ® 0x312e9e8
Problem(): initmat 1 VF (discontinuous Galerkin) = 0
-- SizeOfSkyline =210
-- size of Matrix 196 Bytes skyline =1
-- discontinous Galerkin =0 size of Mat =196 Bytes
-- int in Optimized =1,
all
-- boundary int Optimized = 1, all
ERREUR choleskypivot (35)= -1.23124e-13 < le-06
current line = 28
Exec error : FATAL ERREUR dans ../femlib/MatriceCreuse_tpl.hpp
cholesky line:
-- number :545
catch an erreur in solve => set sol =0 !!!lll]
Try:: catch (...) exception
Catch cholesky PB

83

84

CHAPTER 4. SYNTAX

Chapter 5

Mesh Generation

5.1 Commands for Mesh Generation

Let us begin with the two important keywords border and buildmesh
All examples in this section come from the files mesh.edp and tablefunction.edp.

5.1.1 Square
The command‘“square” triangulates the unit square. The following

mesh Th = square(4,5);

generates a 4 X 5 grid in the unit square [0, 1]>. The labels of the boundaries are shown in Fig.
To construct a n X m grid in the rectangle [xo, x;] X [yo, y1], proceeds as follows: write

label=3
/

label label

/|

label=1

Figure 5.1: Boundary labels of the mesh by square(10, 10)

real x0=1.2,x1=1.8;

real y0=0,yl=1;

int n=5,m=20;

mesh Th=square(n,m, [x0+(x1-x0)*x,y0+(y1l-y0)*y]);

85

86 CHAPTER 5. MESH GENERATION

Note 5.1 Adding the named parameter flags=icase with icase:

0 will produce a mesh where all quads are split with diagonal x —y = cte

1 will produce Union Jack flag type of mesh.

2 will produce a mesh where all quads are split with diagonal x +y = cte (v 3.8)

3 same as case 0 except in two corners such that no triangle with 3 vertices on boundary (v 3.8)

4 same as case 2 except in two corners such that no triangle with 3 vertices on boundary (v 3.8)

mesh Th=square(n,m, [x0+(x1-x0)*x,y0+(yl-y0)*y],flags=icase);

Adding the named parameter 1abel=1abs will change the 4 default label numbers to labs[i-1],
for example int[int] labs=[11,12,13,14],

and adding the named parameter region=10 will change the region number to 10, for instance (v
3.8).

To see all these fags at work, try the file examples++/square-mesh. edp :

for (int i=0;i<5;++1i)
{
int[int] labs=[11,12,13,14];
mesh Th=square(3,3,flags=i,label=labs,region=10);
plot(Th,wait=1,cmm=" square flags = "+i);

}

5.1.2 Border

Boundaries are defined piecewise by parametrized curves. The pieces can only intersect at their
endpoints, but it is possible to join more than two endpoints. This can be used to structure the
mesh if an area thouches a border and create new regions by dividing larger ones:

int upper = 1;
int others = 2;
int inner = 3;

border CO1(t=0,1){x = 0; y = -1+t; label = upper;}
border C02(t=0,1){x = 1.5-1.5%t; y = -1; label = upper;}
border CO3(t=0,1){x = 1.5; y = -t; label = upper;}
border C04(t=0,1){x = 1+0.5%t; y =0; label = others;}
border CO5(t=0,1){x = 0.5+0.5*t; y = 0; label = others;}
border CO6(t=0,1){x = 0.5%t; y = 0; label = others;}
border C11(t=0,1){x = 0.5; y = -0.5%t; label = inner;}
border C12(t=0,1){x = 0.5+0.5*%t; y = -0.5; label = inner;}
border C13(t=0,1){x = 1; y = -0.5+0.5%t; label = inner;}

int n = 10;
plot (CO1(-n)+CO2(-n)+CO3(-n)+CO4(-n)+CO5(-n)+CO6(-n)+
Cll1(n)+C12(n)+C13(n), wait=true);

mesh Th = buildmesh(C01(-n)+CO2(-n)+CO3(-n)+CO4(-n)+CO5(-n)+CO6(-n)+

5.1. COMMANDS FOR MESH GENERATION 87

Cll1(n)+C12(M)+C13(n));
plot(Th, wait=true); // figure

cout << "Part 1 has region number " << Th(0.75, -0.25).region << endl;
cout << "Part 2 has redion number " << Th(0.25, -0.25).region << endl;

Figure 5.2: Multiple border ends intersect Figure 5.3: Generated mesh

Triangulation keywords assume that the domain is defined as being on the left (resp right) of its
oriented parameterized boundary

T = {0))| x = @), y = @), a; <t < by)

To check the orientation plot # = (.(1), ¢,(1)), to < t < ;. If it is as in Fig. [5.4} then the domain
lies on the shaded area, otherwise it lies on the opposite side

Figure 5.4: Orientation of the boundary defined by (¢.(?), ¢,(1))

The general expression to define a triangulation with buildmesh is
mesh Mesh_Name = buildmesh(rl(ml) + -+ Iy(mj) OptionalParameter);

where m; are positive or negative numbers to indicate how many vertices should be on I';, I' =
Ulel" 7, and the optional parameter (separed with comma) can be

88 CHAPTER 5. MESH GENERATION

nbvx=<int value> , to set the maximal number of vertices in the mesh.

fixeborder=<bool value> , to say if the mesh generator can change the boundary mesh or not
(by default the boundary mesh can change; beware that with periodic boundary conditions
(see. |§|), it can be dangerous .

The orientation of boundaries can be changed by changing the sign of m;. The following example
shows how to change the orientation. The example generates the unit disk with a small circular
hole, and assign “1” to the unit disk (“2” to the circle inside). The boundary label must be non-zero,
but it can also be omitted.

1: border a(t=0,2*pi){ x=cos(t); y=sin(t);label=1;}

2: border b(t=0,2*pi){ x=0.3+0.3*cos(t); y=0.3*sin(t);label=2;}

3: plot(a(50)+b(+30)) ; // to see a plot of the border mesh
4: mesh Thwithouthole= buildmesh(a(50)+b(+30));

5: mesh Thwithhole = buildmesh(a(50)+b(-30));

6: plot(Thwithouthole,wait=1,ps="Thwithouthole.eps™); // figure
7: plot(Thwithhole,wait=1,ps="Thwithhole.eps"); // figure

Note 5.2 Notice that the orientation is changed by “b(-30) ” in 5th line. In 7th line, ps="fileName"
is used to generate a postscript file with identification shown on the figure.

A A
VAVAV st
DRSASKTT L
SPORPARRSOASY O VDR
SRR ORI
ORI KRB
V%‘N?@%@}%ﬁ" \ ﬁé?wv &Q@;@éﬁg%ﬂ K %ﬁ%
IS
SRR e NN
KPS
VAT s
DR

Figure 5.5: mesh without hole Figure 5.6: mesh with hole

Note 5.3 Borders are evaluated only at the time plot or buildmesh is called so the global vari-
able are defined at this time andhere since r is changed between the two border calls the following
code will not work because the first border will be computed with r=0.3:

real r=1; border a(t=0,2*pi){ x=r*cos(t); y=r*sin(t);label=1;}
r=0.3 ; border b(t=0,2*%pi){ x=r*cos(t); y=r*sin(t);label=1;}
mesh Thwithhole = buildmesh(a(50)+b(-30)); // bug (a trap) because

// the two circle have the same radius = 0.3

5.1. COMMANDS FOR MESH GENERATION 89

5.1.3 Data Structures and Read/Write Statements for a Mesh

Users who want to read a triangulation made elsewhere should see the structure of the file generated
below:

border C(t=0,2*pi) { x=cos(t); y=sin(t); }
mesh Th = buildmesh(C(10));
savemesh("mesh_sample.msh");

the mesh is shown on Fig.

The informations about Th are saved in the file “mesh_sample.msh”. whose structure is shown on
Table
There n, denotes the number of vertices, n, number of triangles and n; the number of edges on
boundary.

For each vertex ¢', i = 1,--- ,n,, denote by (¢', q;) the x-coordinate and y-coordinate.
Each triangle Ty, k = 1,--- , 10 has three vertices 4", ¢©, ¢* that are oriented counterclockwise.
The boundary consists of 10 lines L;, i = 1,--- , 10 whose end points are ¢!, ¢”.

In the left figure, we have the following.
n, =14, n, = 16, ny, = 10

q' = (-0.309016994375, 0.951056516295)

g™ = (-0.309016994375, —0.951056516295)

The vertices of T, are ¢°, ¢'2, ¢'°.

The vertices of T4 are ¢°, ¢'°, ¢°.

The edge of 1st side L, are ¢°, ¢°.

The edge of 10th side L, are ¢'°, ¢°.

Figure 5.7: mesh by buildmesh(C(10))

In FreeFem++ there are many mesh file formats available for communication with other tools
such as emc2, modulef.. (see Section , The extension of a file implies its format. More details
can be found on the file format .msh in the article by F. Hecht "bamg : a bidimentional anisotropic
mesh generator” (downloadable from the FreeFem web site.)

A mesh file can be read into FreeFem++ except that the names of the borders are lost and only
their reference numbers are kept. So these borders have to be referenced by the number which
corresponds to their order of appearance in the program, unless this number is overwritten by the
keyword “label”. Here are some examples:

border floor(t=0,1){ x=t; y=0; label=1;}; // the unit square
border right(t=0,1){ x=1; y=t; label=5;};

90 CHAPTER 5. MESH GENERATION

Content of the file Explanation

14 16 10 n, n; n,
-0.309016994375 0.951056516295 1 | ¢! q, boundary label=1
0.309016994375 0.951056516295 1 | ¢> qﬁ boundary label=1

-0.309016994375 -0.951056516295 1 | ¢ q;“ boundary label=1

912100 1, 1, 13 region label=0
5960 2y 2, 25 region label=0
91060 16; 16, 165 region label=0
651 1; 1, boundary label=1
521 2y 2, boundary label=1
1061 10, 10, boundary label=1

Table 5.1: The structure of “mesh_sample.msh”

border ceiling(t=1,0){ x=t; y=1; label=5;};
border left(t=1,0){ x=0; y=t; label=5;};

int n=10;

mesh th= buildmesh(floor(n)+right(n)+ceiling(n)+left(n));

savemesh(th, "toto.am_fmt"); // "formatted Marrocco" format
savemesh(th, "toto.Th"); // "bamg"-type mesh
savemesh(th, "toto.msh"); // freefem format
savemesh(th, "toto.nopo"); // modulef format see [10]
mesh th2 = readmesh("toto.msh"); // read the mesh
Example 5.1 (Readmesh.edp) border floor(t=0,1){ x=t; y=0; label=1;}; // the unit
square

border right(t=0,1){ x=1; y=t; label=5;};
border ceiling(t=1,0){ x=t; y=1; label=5;};
border left(t=1,0){ x=0; y=t; label=5;};

int n=10;

mesh th= buildmesh(floor(n)+right(n)+ceiling(n)+left(n));

savemesh(th, "toto.am_fmt"); // format "formated Marrocco"
savemesh(th, "toto.Th"); // format database db mesh "bamg"
savemesh(th, "toto.msh"); // format freefem
savemesh(th, "toto.nopo"); // modulef format see [10]

mesh th2 = readmesh("toto.msh");

fespace fempl(th,P1);

fempl £ = sin(x)*cos(y),g;

{ // save solution
ofstream file("f.txt");

file << f[] << endl;

} // close the file (end block)
{ // read
ifstream file("f.txt");

file >> g[] ;

5.1. COMMANDS FOR MESH GENERATION

}

fespace Vh2(th2,P1);

Vh2 u,v;

plot(9);

// find u such that

// u+Au=g in Q ,

// u=0 on I and%:gonl"z

solve pb(u,v) =
int2d(th) (u*v - dx(u)*dx(v)-dy(uw)*dy(v))
+ int2d(th) (-g*v)
+ int1d(th,5)(g*v)
+ on(1,u=0) ;
plot (th2,u);

5.1.4 Mesh Connectivity

/7

91

close reading file (end block)

/o Gi=gonly

on

The following example explains methods to obtain mesh information.

{ //
mesh Th=square(2,2);

int nbtriangles=Th.nt;
cout << " nb of Triangles =
for (int i=0;i<nbtriangles;i++)
for (int j=0; j <3; j++)
cout << 1 << " " << j << " Th[i][j] ="
<< Th[i][j] << "
<< ", label=" << Th[i][j].label << endl;

Th(i) return the vextex i of Th
Th[k] return the triangle k of Th

//
//

fespace fempl(Th,P1l);

get mesh information (version 1.37)

// get data of the mesh

<< nbtriangles << endl;

x = "<< Th[il[j].x << " , y= "<< Th[i][jl.y

fempl Thx=x,Thy=y; // hack of get vertex coordinates
// get vertices information :
int nbvertices=Th.nv;
cout << " nb of vertices = " << nbvertices << endl;
for (int i=0;i<nbvertices;i++)
cout << "Th(" <<i << ") " // << endl;
<< Th(i).x << " " << Th().y << " " << Th(i).label // v 2.19
<< " old method: " << Thx[][i] << " " << Thy[][i] << endl;

// method to find information of point (0.55,0.6)
int it00 = Th(0.55,0.6).nuTriangle; // then triangle number
int nr00 = Th(0.55,0.6).region; //

// info of a triangle
real area®® = Th[it00].area; // new in version 2.19
real nrr0®0® = Th[it00].region; // new in version 2.19

real nll00 = Th[it00].label;

//

Hack to get a triangle containing point x,y

/7

same as region in this case.

92 CHAPTER 5. MESH GENERATION

// or region number (old method)

/)
fespace femp®(Th,PO);
fempO0 nuT; // a PO function to get triangle numbering
for (int i=0;i<Th.nt;i++)
nuT[1[i]=1;
femp® nuReg=region; // a PO function to get the region number
// inquire
int it0=nuT(0.55,0.6); // number of triangle Th’s containing (0.55,0,6);
int nr0=nuReg(0.55,0.6); // number of region of Th’s containing (0.55,0,6);
// dump
)
cout << " point (0.55,0,6) :triangle number " << it®0 << " " << it00®
<< ", region = " << nr@ << " == " << nr@® << ", area K " << area®® << endl;
// new method to get boundary information and mesh adjacent

int k=0,1=1,e=1;

Th.nbe ; // return the number of boundary element

Th.be(k); // return the boundary element k € {0,...,Th.nbe — 1}
Th.be(k) [1]; // return the vertices 1 €{0,1} of boundary elmt k

Th.be(k) .Element ; // return the triangle containing the boundary elmt k
Th.be(k) .whoinElement ; // return the edge number of triangle containing
// the boundary elmt k

Th[k].adj(e) ; // return adjacent triangle to k by edge e, and change

// the value of e to the corresponding edge in the adjacent triangle
Th[k] == Thlk].adj(e) // non adjacent triangle return the same
Th[k] !'= Th[k].adj(e) // true adjacent triangle
cout << " print mesh connectivity " << endl;

int nbelement = Th.nt;
for (int k=0;k<nbelement;-++k)
cout << k << " 1 " << int(Th[k][0]) << " " << int(Th[k][1])
<< " " << int(Th[k]I[2])
<< ", label " << Th[k].label << endl;
//

for (int k=0;k<nbelement;++k)
for (int e=0,ee;e<3;++e)
// remark FH hack: set ee to e, and ee is change by method adj,
// in () to make difference with named parameters.
<< e << <=> " << int(Thl[k].adj((ee=e))) << " " << ee
adj: " << (Th[k].adj((ee=e)) !'= Th[k]) << endl;
// note : 1if k == int(Th[k].adj(ee=e)) not adjacent element

cout << k <<
"

int nbboundaryelement = Th.nbe;

for (int k=0;k<nbboundaryelement;++k)
cout << k << " : " << Th.be(k)[0] << " " << Th.be(k)[1] << " , label "
<< Th.be(k).label << " tria " << int(Th.be(k).Element)
<< " " << Th.be(k) .whoinElement << endl;

5.1. COMMANDS FOR MESH GENERATION

}

the output is:

-- square mesh : nb vertices =9 , nb triangles = 8 , nb boundary edges 8
Nb of Vertices 9 , Nb of Triangles 8
Nb of edge on user boundary 8 , Nb of edges on true boundary 8

number of real boundary edges 8
nb of Triangles = 8
® 0 Th[i][j] 0 x=0, y=0, label=4

0 1 Thl[i][jl] =1 x =0.5, y=0, label=1

0 2 Th[i][j] =4 x =0.5, y= 0.5, label=0
6 0 Th[i][j] =4 x =0.5, y= 0.5, label=0
6 1 Th[i][jl] =5 x=1, y= 0.5, label=2

6 2 Th[i][j] =8 x =1, y=1, label=3

7 ®0 Th[i][jl] =4 x =0.5, y= 0.5, label=0
7 1 Th[i][j] =8 x =1, y=1, label=3

7 2 Th[il[jl1 =7 x=0.5, y=1, label=3
Nb Of Nodes = 9

Nb of DF = 9

-- vector function’s bound 0 1
-- vector function’s bound 0 1
nb of vertices = 9

Th(®) : 0 0 4 old method: 0 0
Th(l) : 0.5 0 1 old method: 0.5 0
Th(7) : 0.5 1 3 old method: 0.5 1
Th(8) : 113 old method: 1 1

Nb Of Nodes = 8

Nb of DF = 8

print mesh connectivity

0 : 014, label ©

1: 043, label ©®

6 : 458, label ©

7 : 487 , label ©

00 <=> 31 adj: 1

0 1<= 12 adj: 1
®2<=> 02 adj: ®

6 2 <= 30 adj: 1

70 <=> 70 adj: 0
71<=> 40 adj: 1
72<=> 61 adj: 1

O : 01, label 1 tria 0 2
1 :12, label 1 tria 2 2
6 : ® 3, label 4 tria 11

7 : 36, label 4 tria

94 CHAPTER 5. MESH GENERATION

5.1.5 The keyword ’triangulate”

FreeFem++ is able to build a triangulation from a set of points. This triangulation is a Delaunay
mesh of the convex hull of the set of points. It can be useful to build a mesh form a table function.
The coordinates of the points and the value of the table function are defined separately with rows
of the form: x y f£(x,y) in a file such as:

0.51387 0.175741 0.636237
0.308652 0.534534 0.746765
0.947628 0.171736 0.899823
0.702231 0.226431 0.800819
0.494773 0.12472 0.580623
0.0838988 0.389647 0.456045

Figure 5.8: Delaunay mesh of the convex hull Figure 5.9: Isovalue of table function
of point set in file xyf

The third column of each line is left untouched by the triangulate command. But you can use
this third value to define a table function with rows of the form: x y f(x,y).
The following example shows how to make a mesh from the file “xyf” with the format stated just
above. The command triangulate command use only use 1st and 2nd rows.

mesh Thxy=triangulate("xyf"); // build the Delaunay mesh of the convex hull

// points are defined by the first 2 columns of file xyf
plot (Thxy,ps="Thxyf.ps"); // (see figure [5.8)
fespace Vhxy(Thxy,P1); // create a P1 interpolation
Vhxy fxy; // the function

// reading the 3rd row to define the function
{ ifstream file("xyf");
real XX,yV;
for(int i=0;i<fxy.n;i++)
file >> xx >>yy >> fxy[][i]; // to read third row only.
// xx and yy are just skipped
}
plot (fxu,ps="xyf.eps"); // plot the function (see figure

One new way to build a mesh is to have two arrays one the x values and the other for the y values
(version 2.23-2):

5.2. BOUNDARY FEM SPACES BUILT AS EMPTY MESHES 95

Vhxy xx=X,yy=y; // to set two arrays for the x’s and y’s
mesh Th=triangulate(xx[],yy[1);

5.2 Boundary FEM Spaces Built as Empty Meshes

To define a Finite Element space on a boundary, we came up with the idea of a mesh with no
internal points (call empty mesh). It can be useful to handle Lagrange multipliers in mixed and
mortar methods.

So the function emptymesh remove all the internal points of a mesh except points on internal
boundaries.

{ // new stuff 2004 emptymesh (version 1.40)
// -- useful to build Multiplicator space

// build a mesh without internal point

// with the same boundary

/o -

assert(version>=1.40);
border a(t=0,2%pi){ x=cos(t); y=sin(t);label=1;}
mesh Th=buildmesh(a(20));
Th=emptymesh(Th) ;
plot (Th,wait=1,ps="emptymesh-1.eps"); // see figure
}

It is also possible to build an empty mesh of a pseudo subregion with emptymesh(Th, ssd) using
the set of edges of the mesh Th; a edge e is in this set if with the two adjacent triangles e = 1 N 12
and ssd[T 1] # ssd[T2] where ssd refers to the pseudo region numbering of triangles, when they
are stored in an int[int] array of size the number of triangles.

{ // new stuff 2004 emptymesh (version 1.40)
// -- useful to build Multiplicator space
// build a mesh without internal point

// of peusdo sub domain

/o -

assert (version>=1.40);

mesh Th=square(10,10);

int[int] ssd(Th.nt);

for(int i=0;i<ssd.n;i++) // build the pseudo region numbering
{ int ig=i/2; // because 2 triangle per quad
int ix=1q%10; //
int iy=iq/10; //
ssd[i]= 1 + (Ax>=5) + ([Gy>=5)%2;
}
Th=emptymesh(Th,ssd); // build emtpy with
// all edge e=T1NT2 and ssd[T1] # ssd[T2]
plot(Th,wait=1,ps="emptymesh-2.eps"); // see figure [5.11]

savemesh(Th, "emptymesh-2.msh");

96 CHAPTER 5. MESH GENERATION

Figure 5.11: An empty mesh defined from a
Figure 5.10: The empty mesh with boundary pseudo region numbering of triangle

5.3 Remeshing

5.3.1 Movemesh

Meshes can be translated, rotated and deformed by movemesh,; this is useful for elasticity to watch
the deformation due to the displacement ®(x, y) = (O;(x,y), ©»(x, y)) of shape. It is also useful to
handle free boundary problems or optimal shape problems.

If Q is triangulated as 7,(Q2), and @ is a displacement vector then ®(7},) is obtained by

mesh Th=movemesh(Th, [D1,D2]);

Sometimes the transformed mesh is invalid because some triangle have flip over (now has negative
area).To spot such problems one may check the minimum triangle area in the transformed mesh
with checkmovemesh before any real transformation.

Example 5.2 ®(x,y) = x + k = sin(y * m)/10), ®(x,y) = y + k = cos(yn)/10) for a big number
k> 1.

verbosity=4;

border a(t=0,1){x=t;y=0;label=1;};
border b(t=0,0.5){x=1;y=t;label=1;};
border c(t=0,0.5){x=1-t;y=0.5;1abel=1;};
border d(t=0.5,1){x=0.5;y=t;label=1;};
border e(t=0.5,1){x=1-t;y=1;1label=1;};
border f£(t=0,1){x=0;y=1-t;label=1;};
func uu= sin(y*pi)/10;

func vv= cos(x*pi)/10;

mesh Th = buildmesh (a(6) + b(4) + c(4) +d(4) + e(4) + £(6));
plot(Th,wait=1,fill=1,ps="Lshape.eps"); // see figure [5.1
real coef=1;

real minTO= checkmovemesh(Th, [x,y]); // the min triangle area

5.3. REMESHING 97

while(l) // find a correct move mesh

{
real minT=checkmovemesh(Th, [x+coef*uu,y+coef*vv]); // the min triangle area
if (minT > minT0®/5) break ; // if big enough
coef=/1.5;

}

Th=movemesh(Th, [x+coef*uu, y+coef*vv]);
plot(Th,wait=1,fill=1,ps="movemesh.eps"); // see figure |5.1

Figure 5.12: L-shape Figure 5.13: moved L-shape

Note 5.4 Consider a function u defined on a mesh Th. A statement like Th=movemesh(Th. . .)
does not change u and so the old mesh still exists. It will be destroyed when no function use it. A
statement like u = u redefines u on the new mesh Th with interpolation and therefore destroys the
old Th if u was the only function using it.

Example 5.3 (movemesh.edp) Now, we given an example of moving mesh with a lagrangian
function u defined on the moving mesh.

// simple movemesh example
mesh Th=square(10,10);
fespace Vh(Th,P1);
real t=0;
/-
// the problem is how to build data without interpolation
// so the data u is moving with the mesh as you can see in the plot
VR
Vh u=y;
for (int i=0;i<4;i++)
{
t=i*0.1;
Vh f= x*t;

real minarea=checkmovemesh(Th, [x,y+£f]);
if (minarea >0) // movemesh will be ok

98 CHAPTER 5. MESH GENERATION

Th=movemesh(Th, [x,y+f]);

cout << " Min area << minarea << endl;

real[int] tmp(Cul[].n);

tmp=ul[]; // save the value
u=0; // to change the FEspace and mesh associated with u
ul]=tmp; // set the value of u without any mesh update
plot(Th,u,wait=1);

};

// In this program, since u is only defined on the last mesh, all the

// previous meshes are deleted from memory.

VZZRREEEE

5.4 Regular Triangulation: hTriangle
For a set §, we define the diameter of § by
diam(S) = sup{lx —y|; x, y € S}
The sequence {7 }n0 of Q is called regular if they satisfy the following:
1.

1}%1 max{diam(T)| T, € 75} =0

2. There is a number o > 0 independent of 4 such that

p(Ty)
P for all T, € 7
diam(Tp - 7 TR kST

where p(T;) are the diameter of the inscribed circle of 7.

We put h(7},) = max{diam(T})| T, € 7}, which is obtained by

mesh Th = H
fespace Ph(Th,P®);
Ph h = hTriangle;

cout << "size of mesh = " << h[].max << endl;

5.5 Adaptmesh
The function
f(x,y) = 10.0x° + y* + tan"'[&/(sin(5.0y) — 2.0x)] e = 0.0001

sharply varies in value and the initial mesh given by one of the commands of Section [5.1] cannot
reflect its sharp variations.

5.5. ADAPTMESH 99
Example 5.4

real eps = 0.0001;

real h=1;

real hmin=0.05;

func f = 10.0%x"3+y"3+h*atan2(eps,sin(5.0%y)-2.0%x);

mesh Th=square(5,5,[-1+2*%x,-1+2*y]);
fespace Vh(Th,P1);
Vh fh=f;
plot(fh);
for (int i=0;i<2;i++)
{
Th=adaptmesh(Th, fh);
fh=f; // old mesh is deleted
plot(Th,fth,wait=1);
}

Initial First) Second
mesh adaptation adaptation

Figure 5.14: 3D graphs for the initial mesh and 1st and 2nd mesh adaptation

FreeFem++ uses a variable metric/Delaunay automatic meshing algorithm. The command

mesh ATh = adaptmesh(Th, f);

create the new mesh ATh adapted to the Hessian

D*f = (0°f]8x°, 0° f|8xDy, 8 f9y*)

100 CHAPTER 5. MESH GENERATION
of a function (formula or FE-function). Mesh adaptation is a very powerful tool when the solution
of a problem varies locally and sharply.

Here we solve the problem (2.1))-(2.2), when f = 1 and Q is a L-shape domain.

be

-bd
- bc

bf]

ba

Figure 5.15: L-shape domain and its boundary Figure 5.16: Final solution after 4-times adap-
name tation

Example 5.5 (Adapt.edp) The solution has the singularity r*'*, r = |x — y| at the point y of the
intersection of two lines bc and bd (see Fig. [5.15)).

border ba(t=0,1.0){x=t; y=0; label=1;};
border bb(t=0,0.5){x=1; y=t; label=1;};
border bc(t=0,0.5){x=1-t; y=0.5;label=1;};
border bd(t=0.5,1){x=0.5; y=t; label=1;};
border be(t=0.5,1){x=1-t; y=1; 1label=1;};

border bf(t=0.0,1){x=0; y=1-t;label=1;};
mesh Th = buildmesh (ba(6)+bb(4)+bc(4)+bd(4)+be(4)+bf(6));

fespace Vh(Th,P1); // set FE space
Vh u,v; // set unknown and test function
func £ = 1;

real error=0.1; // level of error

problem Poisson(u,v,solver=CG,eps=1.0e-6) =
int2d(Th) (dx(w*dx(v) + dy(u)*dy(v))
- int2d(Th) (f*v)
+ on(1l,u=0) ;
for (int i=0;i< 4;i++)
{
Poisson;
Th=adaptmesh(Th,u,err=error) ;
error = error/2;
Y
plot(w;

To speed up the adaptation the default parameter err of adaptmesh is changed by hand; it speci-
fies the required precision, so as to make the new mesh finer or coarser.

The problem is coercive and symmetric, so the linear system can be solved with the conjugate gra-
dient method (parameter solver=CG with the stopping criteria on the residual, here eps=1.0e-6).

5.5. ADAPTMESH 101

By adaptmesh, the slope of the final solution is correctly computed near the point of intersection
of bc and bd as in Fig. [5.16]

This method is described in detail in [9]. It has a number of default parameters which can be
modified :

Si £1, £2 sont des functions et thold, Thnew des maillages.

Thnew = adaptmesh(Thold, f1 ...);
Thnew = adaptmesh(Thold, f1,f2 ... 1);
Thnew = adaptmesh(Thold, [fl,f2] ...);

2 2

The additional paramters of adaptmesh not written here, hence the ...

hmin= Minimum edge size. (val is a real. Its default is related to the size of the domain to be
meshed and the precision of the mesh generator).

hmax= Maximum edge size. (val is a real. It defaults to the diameter of the domain to be meshed)

err= P, interpolation error level (0.01 is the default).

errg= Relative geometrical error. By default this error is 0.01, and in any case it must be lower
than 1/ V2. Meshes created with this option may have some edges smaller than the ~hmin
due to geometrical constraints.

nbvx= Maximum number of vertices generated by the mesh generator (9000 is the default).
nbsmooth= number of iterations of the smoothing procedure (5 is the default).

nbjacoby= number of iterations in a smoothing procedure during the metric construction, 0
means no smoothing (6 is the default).

ratio= ratio for a prescribed smoothing on the metric. If the value is O or less than 1.1 no
smoothing is done on the metric (1.8 is the default).

If ratio > 1.1, the speed of mesh size variations is bounded by log(ratio). Note: As
ratio gets closer to 1, the number of generated vertices increases. This may be useful to
control the thickness of refined regions near shocks or boundary layers .

omega= relaxation parameter for the smoothing procedure (1.0 is the default).
iso= If true, forces the metric to be isotropic (false is the default).

abserror= If false, the metric is evaluated using the criterium of equi-repartion of relative error
(false is the default). In this case the metric is defined by

1 |H|)p
M= 5.1
(err coef? max(CutOff,|n)) G-

otherwise, the metric is evaluated using the criterium of equi-distribution of errors. In this
case the metric is defined by

1 |H|)p
err coef? sup(n) —inf(y))

M= ((5.2)

102 CHAPTER 5. MESH GENERATION

cutoff= lower limit for the relative error evaluation (1.0e-6 is the default).

verbosity= informational messages level (can be chosen between 0 and o)