Entertainer - Developer’s documentation

Lauri Taimila

05,/27/2007

Contents
1 INTRODUCTION
2 HIGH LEVEL ARCHITECTURE

3 CACHE
3.1 Descriptions
3.1.1 Imagecache
3.1.2 Musiccache
3.1.3 Videocache
314 Feedcache
3.2 ER-diagrams

4 BACKEND

4.1.1 Message bus
4.1.2 Message
4.1.3 Message scheduler
4.1.4 Connection server
4.1.5 Message bus proxy
4.2 Components
4.2.1 System tray icono
4.2.2 Notification system
4.2.3 Feed manager

5 FRONTEND
5.1 Architecture
5.2 Graphical User Interface

6 EXTRA TOOLS FOR ENTERTAINER
6.1 Preferences GUL.
6.2 Content management GUI
6.3 Message bus notifier oL

10
10
10

1 INTRODUCTION

This document is written for those, who are interested in technical side of the Enter-
tainer Media Center application. Entertainer aims to be a full solution for accessing
your multimedia easily via remote control right from your livingroom couch. In this
document multimedia refers to music, photographs and videos. Entertainer also in-
cludes a private video recorder, which means that Entertainer can be used to watch

Live TV and it records your favourite shows for later viewing.

Entertainer is designed to be easily extensible, robust, easy to use and install. The
most important keywords of the prject are simplicity and usability. Media Center
application shouldn’t require any config file modifications from user. That’s why
Entertainer provides easy to use GUI-applications for this purpose. Entertainer
uses GTK-library for graphical user interface, which means that it’s most suitable for
GNOME and XFce environments, but it also works on other desktop environments
like KDE. Why I chose GTK over QT... well Kentertainer just sounds stupid. ;)

Entertainer uses many existing projects like Gstreamer, Clutter, SQLite and
Universal feed parser just to name few. Most of the external projects are im-
plemented with C, but Entertainer itself is implemented with a high level language
called Python. The whole application is implemented strictly in object-oriented

manner. This means that everything is modeled as an object.

Entertainer is an open source project released under GPL-licence version 2. This
means that you don’t have to pay for it and you are allowed to modify the source
code and redistribute it under certain limitations. Please, see GPL-licence for more

information.

2 HIGH LEVEL ARCHITECTURE

Entertainer uses client-server achitecture and it has two main components called
frontend and backend. The backend is a daemon (kind of) server process that
runs in the background all the time. It is respossible of keeping the media library
cache, RSS-feeds and TV-Guide up to date and recording scheduled TV-shows. In
other words, backend is respossible of everything else, but displaying media on the
screen and interacting with the user. Frontend is a GUI part of the application
and it displays photographs, plays music and videos. Frontend can be used via
remote control and keyboard. Figure 1 illustrates the high level architecture of the
Entertainer media center application. There are also other processes included to
the Entertainer. Those extra processes offer stuff like system tray icon and GTK-

interfaces for preferences.

<<processs>
Confighpp GUI

—>
read
read Jwrite
config . . .
file Configuration file [«
<<processs>> <<process=>
Frontend < o |Backend
get media dirs <<thread>>
sQLite Indexer
o - add indexed scan set dirs and index
get file information - files to cache + generate thumbs for
& MediaFile / . -
- RSS f other all media. Download infc
from internet if needed
cache
Med;(:entetr G|UI and —— c<threadss
remote control receiver sQLite Recorder
oS .
add scheduled < update status Exec schduled recordings
recordings Recading and update status when
information o | | finished
o~ getscheduled Check recs when nctified.
recordings
Socket connection
. L
)
Client Client sends notifications Server

and action requests

Figure 1: High-level architecure

As figure 1 shows, the high-level components of the Entertainer are Frontend, Back-
end, Media library Cache and Configuration tools. Backend can communicate with
other processes via sockets. Frontend connects to backend when it’s executed. It

sends simple messages to backend as needed. For example, when user selects a TV-

show for recording the frontend sends a message to the backend, which handels the
scheduling and recording of the show. Also configration tools notify backend that
config files has been changed. This way backend knows to read them again and

update it’s internal state.

Content can be imagined in between of backend and frontend processes. Backend
process indexes files, downloads metadata and generates thumbnails. This activity
keeps cache files, which are SQLite databases, up to date. Frontend reads the cache
and doesn’t care about backend. Backend does also scheduled operations including

updating feed cache and guide, which both are SQLite databases as well.

3 CACHE

Entertainer has a cache almost for every data type that it handles including images,
videos, music, feeds, tv-guide and recordings. All caches are implemented as SQLite
databases. Every cache is stored in it’s own file that has db extension. Caches are

stored in the following directory: ~/.entertainer/cache.

3.1 Descriptions

3.1.1 Image cache

Image cache contains all information of the images. It has two tables: Image and
Album. Album has a title and description and it contains images. Image table con-
tains information on images. One row matches to one file. Entertainer considers
folder as an album and images in that folder belog to that album. Subfolder are own
albums and there is no deep hierarcy in image cache. In figure 7?7 is ER-diagram of

the image cache database. This database is stored in ~/.entertainer/cache/image.db.

3.1.2 Music cache

Music cache contains everything related to the music library. Entertainer’s music
library contains Albums, Tracks, Artists and Playlists. All this data is stored in
music cache database, which is stored in ~/.entertainer/cache/music.db -file.
In figure 77 you can see the structure of the cache. Asyou can see, there is only Track
and Playlist tables. MusicLibrary handels the abstraction of albums and artists.

This cache is created in backend/components/mediacache/music_cache.py.

3.1.3 Video cache

Video cache contains information on video files. These do NOT include recorded
TV-shows, but only the files that are in video library. Video cache contains two
tabels videofile and metadata (actually these should be merged). Videofile ta-
ble contains basic information on video and metadata some extrnal information.
Metadata table contains type field, which determinse the type of the videofile. Al-
lowed values are MOVIE, CLIP and TV-SERIES. According to this field the video is
represnted as a Movie, TVEpisode or VideoClip object in VideoLibrary (client side).

This cache database is stored in ~/.entertainer/cache/video.db. In figure ??

3.1.4 Feed cache

Feed cache includes all feeds and entries of those feeds. Entry is a one "post” of the
feed. Backend fetches feeds time to time and updates the cache. Cache keeps up to
50 entries per feed. In figure 77 you can see the structure of the Feed cache. Cache

is stored in ~/.entertainer/cache/feed.db

3.2 ER-diagrams

4 BACKEND

4.1 Core

Backend uses message-bus architecure. Core of the backend consists of message
bus, messages, message scheduler, connection server and message bus proxy. All
components of the backend are registered to message bus. Backend components
communicate with each other by sending messages to the message bus. Also client
processes can register them selves to the message bus via message-bus proxy. This
way clients can trasparently communicate with backend components. Behind the
curtains this communication is implemented using sockets, but clients doesn’t need
to know that. All they know is that they can send and receive messages. Figure 2
illustrates the architecture with a high level diagram. In the following sections we

dicuss each component in more detail.

Messages can be registered
to the Timer. Timer generates
registered messages to the bus.

Index media folders.
Fill DB with metadata,

Change icon when

Each registered message has time recording. Has menu create thumbnails,
interval that determines when for executing frontend || Fetch all RSS-feeds Record DVEB stream download metadata from
messages are generated. and config GUI-tools and update feed cache to file. the Internet
| MessageScheduler SysTrayIcon | RSS-manager | DvbRecrorder Media Indexer
A A
Messagelisteners are
registered to the bus.
v Message bus v [
4 A A A A
Send/ Receive
all messages
Y
k y h y
Socket server R R
Notify | WeatherManager | | TV-Guide updater | RecordingManager
Socket is a message Display notification update weather Download XMLTV data This is responsible
bus to other processes bubbles on desktop conditions and fill Guide DB of recording conflicts
etc.

Server that can handle
many socket connections
simultaneously. Frontend
can send messages to the
backend's message bus.

Figure 2: Backend architecure

4.1.1 Message bus

Message bus is an object (type of MessageBus) that is resposible of transmit-
ting messages between registered components. Every component has to implement
MessageHandler interface so that it can receive messages properly. MessageBus has
more also more advanced features than just trasmitting messages to all components.
Every component has to determine message types that it is interested in. Compo-
nents also determine the priority level for each message type. This way MessageBus
doesn’t have to transmit all messages to all components. Instead, it notifies only
those components that are really interested in some particular message type. For
more, MessageBus notifies those components in the order of priorites. For example,
it is more critical to start recording as soon as possible than display notification bub-
ble that recording has been started. That’s why DVB-recorder tells the MessageBus
that it has VERY_HIGH priority for START _RECORDING message type and similary no-
tification system says that it has VERY_LOW priority. Now, when START RECORDING
message occurs, the MessageBus knows that it should first notify DVB-recorder and
after that notification system. MessageBus is locked in such a way that only one

message can occur at the time on the bus.

4.1.2 Message

Message is an object of Message type. These are the objects that are transmitted
via MessageBus. Each Message has a message type and possibly some user data.
Data part can contain arbitary data or it can be empty. Message types are defined
in MessageType class. I suggest to take a look of that class, because it provides
more information about the meaning of different message types. When component
wants to send a Message to the MessageBus it needs to create a Message object and

after that call MessageBus-object’s notifyMessage (message_obj) method.

4.1.3 Message scheduler

MessageScheduler object generates messages to the message bus. When backend

starts, it registers message types and intervals to the MessageScheduler. After that

7

messages are generated to the message bus in given time intervals. When message
types are registered to the MessageScheduler, it creates a random time interval
for each message type. This prevents all messages to be generated at the same
time to the message bus. Random time interval is waited only the first time. After
this messages are generated with given time interval. This scheduler is used for
updateing guide and feed cache every now and then. It is also easy to add new

features that require frequent updates.

4.1.4 Connection server

ConnectionServer listens incoming client connections and binds connected clients
to the MessageBus. Every client is handled in it’s own thread. This class is strictly

binded to the MessageBusProxy class which we will discuss in next section.

4.1.5 Message bus proxy

MessageBusProxy object hides the complexity of sockets. MessageBusProxy is
used in client process (Frontend for example) and it is abstraction of backend’s
MessageBus. In other words, client processes can act like backend components sim-
ply by using object of this class. This makes communication between components

very easy no matter in which process the components are actually running.

4.2 Components

4.2.1 System tray icon

(Partly depricated information) System tray icon is a small icon that is usually
displayed in notification area. SystemTrayIcon class implements this icon and it’s

pop-up menu, which allows user to manage Entertainer media center. Pop-up menu

contains Log viewer, which can be used to see Entertainer’s log. It also allowes easy
way to execute configuration GUIs and frontend process. SystemTraylcon class
implements MessageHandler and it is interested of messages RECORDING_STARTED
and RECORDING_STOPPED. When Entertainer is recording a TV-show the system tray
icon changes to the recording icon. This way user can easily see that Entertainer is

currently recording.

4.2.2 Notification system

Notification system displays notification bubbels on the desktop. Notification system
is implemented with Notify class that uses libnotify library. Notification bubbles
are displayed when Entertainer backend begins or ends recording and also if there
are conflicts between scheduled recordings. It’s easy to add new notifications by
modifying the Notify class. Notify implements MessageHandler and it’s registered

to the message bus when backend starts.

4.2.3 Feed manager

Feed manager is responsible of updateing feed cache. At the moment, only RSS-
feeds are supported. FeedManager and FeedFetcher classes implements this feature.
FeedManager implements MessageHandler interface and it is registered to the mes-
sage bus. When FeedManager receives UPDATE_FEEDS message, it executes a new
FeedFetcher thread that does the actually cache updating. When update is done,
FEED_CACHE_UPDATED message is emitted to the message bus.

5 FRONTEND

5.1 Architecture

Not written yet...

5.2 Graphical User Interface

Graphical user interface is one of the most important parts of the Media Center appli-
cation. Entertainer user interface is implemented with Clutter and GTK. Frontend
consists of GTK-window that contains toolbar, menu bar, status bar and the most
important part ,Clutter stage, which is displayed via Clutter-GTK widget. Fron-
tend also includes preferences dialog, content management dialog and log viewer.
All these three sub components can be also executed as separated processes without

executing the whole frontend. These dialogs are discussed more depth in chapter 6.

In this chapter we concentrate to the Clutter part of the GUI. The main class of the
GUI is UserInterface that is responsible of managing screen changes and creating
all screens. UserlInterface object also receives all user actions. When key press is
received, Userlnterface object method handle key press_event() is called. This
method decides how to react to key press action. Usually it just forwards event to

the current screen. Current screen has internal logic for events.

Entertainer Ul layers

Entertainer Ul can be thinked as a set of layers that are piled on to each other. This

screen stack is illustrated in the figure 3.

Figure above shows how video is always displayd under menu overlay and screen

widgets. If video is not running the whole layer doesn’t exists. In this case the

10

background
Video / TV
Menu overlay

Screen
(widgets)

Figure 3: Entertainer GUI layers.

background layer is displayed through menu overlay image. If current screen is OSD
type, then menu overlay layer is hidden. This way OSD screens allow user to see
video playback on screen as it should be seen. Menu overlay layer is drawn only
when user is navigating in menus. This figure omits the possibility of two screens
to be displayed at the same time. This happends when another screen is type of

DIALOG. Dialogs are shown on top of the current screen.

Screen life cycle

Entertainer has two important concepts: Screen and Transition. These both are
also interfaces that many classes implement. Screen is a set of Clutter actors, which
together create one view. View is what users sees on screen. Transition is a mecha-
nism to animate screen switches. Say, when user selects photo album from the photo
album list, we need to switch from the photo screen to the album screen. When this
happens. We call UserInterface objects’s changeScreen(). This call creates a new
screen (in this case album screen) and then gives current screen and new screen to

the Transition object, which animates screen switch.

11

Screen is created when it is needed, in other words, when user enters to that screen.
When screen object is created it is added to the Clutter stage object. It’s also
pushed into the Screen history, which is a stack of Screen objects. ScreenHistory
object keeps record of recent screens. This allows user to navigate "back” just like
in web-browsers. History size can be changed from the preferences dialog. Screen
is added to the stage when it is created, but when we remove it? There are two
possibilites: When history size is exceeded the oldest screen is removed. Also when
user navigates to "back”, the current screen is NOT added into the history and it
is removed from stage immediately. If we would add screens into the history when

navigating back, then we would create an endless loop of two screens.

Creating a new Screen or Transition effect

If you want to create a new view to the Entertainer, say e-mail reader, you need
to write a new EmailScreen class that implements Screen interface. If you want
to create a new transition effect you just implement Transition interface which
contains only two methods. It’s recommended to look into the FadeTransition
class to get the idea how transitions effects work. Notice that if animation direction
is "backwards” then you need to remove old screen from the stage after animation
has been displayed. This can be done by using 'completed’ signal with Clutter

Timeline object.

12

6 EXTRA TOOLS FOR ENTERTAINER

6.1 Preferences GUI

Preferences GUI allows user to configure Entertainer the easy way. Actually it’s just
a simple GUI for editing /.entertainer/preferences.cfg -configuration file and
all the same things can be done with text editor directly. Regardless of this, it is
still recommended to use GUI application, because it notifies the backend process
that changes has been made. This way backend knows to reload configurations. If
changes are made by hand with the text editor, then backend needs to be restarted
to changes take effect. Preferences GUI is a standalone application and it can be

used even if Entertainer is not running.

6.2 Content management GUI

Content Management GUI is exactly like Preferences GUI, but it is used to man-
age content of the Entertainer. This GUI application allows user to add and
remove content of the Entertainer easily. Content Management GUI edits the
/.entertainer/content.cfg -file and also notifies the backend when changes oc-
cur. Just like the Preferences GUIL.

6.3 Message bus notifier

This is a small command-line application that allows user (or other processes) to
send messages to the backend’s message bus. This was written mainly for debug
purposes, but it can be used for other things too. The usage of this application is
straight forward. Command line tool takes only one paramter, which is the type of
the message that will be emitted to the message bus. Here is an example how to

force feed cache to be updated immediately:

entertainer-messagebus-notifier.py --message=UPDATE_FEEDS

13

