$treeview $search $mathjax
Eigen
3.2.5
$projectbrief
|
$projectbrief
|
$searchbox |
The matrix class, also used for vectors and row-vectors. More...
Public Types | |
typedef PlainObjectBase< Matrix > | Base |
Base class typedef. | |
typedef internal::traits < Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Index | Index |
The type of indices. | |
typedef Base::PlainObject | PlainObject |
The plain matrix type corresponding to this expression. | |
Public Member Functions | |
ArrayWrapper< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | array () |
const CwiseBinaryOp < CustomBinaryOp, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived > | binaryExpr (const Eigen::MatrixBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , BlockRows, BlockCols > | block (Index startRow, Index startCol, Index blockRows, Index blockCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, BlockRows, BlockCols > | block (Index startRow, Index startCol, Index blockRows, Index blockCols) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , BlockRows, BlockCols > | block (Index startRow, Index startCol) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, BlockRows, BlockCols > | block (Index startRow, Index startCol) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | block (Index startRow, Index startCol, Index blockRows, Index blockCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | block (Index startRow, Index startCol, Index blockRows, Index blockCols) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols > | bottomLeftCorner (Index cRows, Index cCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, CRows, CCols > | bottomLeftCorner (Index cRows, Index cCols) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols > | bottomLeftCorner () const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, CRows, CCols > | bottomLeftCorner () |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | bottomLeftCorner (Index cRows, Index cCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | bottomLeftCorner (Index cRows, Index cCols) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols > | bottomRightCorner (Index cRows, Index cCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, CRows, CCols > | bottomRightCorner (Index cRows, Index cCols) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols > | bottomRightCorner () const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, CRows, CCols > | bottomRightCorner () |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | bottomRightCorner (Index cRows, Index cCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | bottomRightCorner (Index cRows, Index cCols) |
ConstNRowsBlockXpr< N >::Type | bottomRows (Index n=N) const |
NRowsBlockXpr< N >::Type | bottomRows (Index n=N) |
ConstRowsBlockXpr | bottomRows (Index n) const |
RowsBlockXpr | bottomRows (Index n) |
internal::cast_return_type < Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, const CwiseUnaryOp < internal::scalar_cast_op < typename internal::traits < Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Scalar, NewType > , const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > >::type | cast () const |
ConstColXpr | col (Index i) const |
ColXpr | col (Index i) |
ConjugateReturnType | conjugate () const |
void | conservativeResize (Index size) |
void | conservativeResize (NoChange_t, Index nbCols) |
void | conservativeResize (Index nbRows, NoChange_t) |
void | conservativeResize (Index nbRows, Index nbCols) |
void | conservativeResizeLike (const DenseBase< OtherDerived > &other) |
const CwiseUnaryOp < internal::scalar_abs_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | cwiseAbs () const |
const CwiseUnaryOp < internal::scalar_abs2_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | cwiseAbs2 () const |
const CwiseScalarEqualReturnType | cwiseEqual (const Scalar &s) const |
const CwiseBinaryOp < std::equal_to< Scalar > , const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, const OtherDerived > | cwiseEqual (const Eigen::MatrixBase< OtherDerived > &other) const |
const CwiseUnaryOp < internal::scalar_inverse_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | cwiseInverse () const |
const CwiseBinaryOp < internal::scalar_max_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const ConstantReturnType > | cwiseMax (const Scalar &other) const |
const CwiseBinaryOp < internal::scalar_max_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived > | cwiseMax (const Eigen::MatrixBase< OtherDerived > &other) const |
const CwiseBinaryOp < internal::scalar_min_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const ConstantReturnType > | cwiseMin (const Scalar &other) const |
const CwiseBinaryOp < internal::scalar_min_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived > | cwiseMin (const Eigen::MatrixBase< OtherDerived > &other) const |
const CwiseBinaryOp < std::not_equal_to< Scalar > , const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, const OtherDerived > | cwiseNotEqual (const Eigen::MatrixBase< OtherDerived > &other) const |
const CwiseBinaryOp < internal::scalar_product_op < typename Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >::Scalar, typename OtherDerived::Scalar > , const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, const OtherDerived > | cwiseProduct (const Eigen::MatrixBase< OtherDerived > &other) const |
const CwiseBinaryOp < internal::scalar_quotient_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived > | cwiseQuotient (const Eigen::MatrixBase< OtherDerived > &other) const |
const CwiseUnaryOp < internal::scalar_sqrt_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | cwiseSqrt () const |
Scalar * | data () |
const Scalar * | data () const |
Index | diagonalSize () const |
EvalReturnType | eval () const |
ConstFixedSegmentReturnType< N > ::Type | head (Index n=N) const |
FixedSegmentReturnType< N >::Type | head (Index n=N) |
ConstSegmentReturnType | head (Index n) const |
SegmentReturnType | head (Index n) |
NonConstImagReturnType | imag () |
const ImagReturnType | imag () const |
Index | innerSize () const |
Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > & | lazyAssign (const DenseBase< OtherDerived > &other) |
ConstNColsBlockXpr< N >::Type | leftCols (Index n=N) const |
NColsBlockXpr< N >::Type | leftCols (Index n=N) |
ConstColsBlockXpr | leftCols (Index n) const |
ColsBlockXpr | leftCols (Index n) |
template<typename OtherDerived > | |
Matrix (const RotationBase< OtherDerived, ColsAtCompileTime > &r) | |
Constructs a Dim x Dim rotation matrix from the rotation r. | |
template<typename OtherDerived > | |
Matrix (const EigenBase< OtherDerived > &other) | |
Copy constructor for generic expressions. | |
template<typename OtherDerived > | |
Matrix (const ReturnByValue< OtherDerived > &other) | |
Copy constructor with in-place evaluation. | |
Matrix (const Matrix &other) | |
Copy constructor. | |
template<typename OtherDerived > | |
Matrix (const MatrixBase< OtherDerived > &other) | |
Constructor copying the value of the expression other. | |
Matrix (const Scalar &x, const Scalar &y, const Scalar &z, const Scalar &w) | |
Constructs an initialized 4D vector with given coefficients. | |
Matrix (const Scalar &x, const Scalar &y, const Scalar &z) | |
Constructs an initialized 3D vector with given coefficients. | |
Matrix (const Scalar &x, const Scalar &y) | |
Constructs an initialized 2D vector with given coefficients. | |
Matrix (Index rows, Index cols) | |
Constructs an uninitialized matrix with rows rows and cols columns. | |
Matrix (Index dim) | |
Constructs a vector or row-vector with given dimension. This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column. | |
Matrix () | |
Default constructor. | |
ConstNColsBlockXpr< N >::Type | middleCols (Index startCol, Index n=N) const |
NColsBlockXpr< N >::Type | middleCols (Index startCol, Index n=N) |
ConstColsBlockXpr | middleCols (Index startCol, Index numCols) const |
ColsBlockXpr | middleCols (Index startCol, Index numCols) |
ConstNRowsBlockXpr< N >::Type | middleRows (Index startRow, Index n=N) const |
NRowsBlockXpr< N >::Type | middleRows (Index startRow, Index n=N) |
ConstRowsBlockXpr | middleRows (Index startRow, Index n) const |
RowsBlockXpr | middleRows (Index startRow, Index n) |
Index | nonZeros () const |
bool | operator!= (const MatrixBase< OtherDerived > &other) const |
const CwiseUnaryOp < internal::scalar_multiple2_op < Scalar, std::complex< Scalar > >, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | operator* (const std::complex< Scalar > &scalar) const |
const ScalarMultipleReturnType | operator* (const Scalar &scalar) const |
const CwiseBinaryOp < internal::scalar_sum_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived > | operator+ (const Eigen::MatrixBase< OtherDerived > &other) const |
const CwiseBinaryOp < internal::scalar_difference_op < Scalar >, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived > | operator- (const Eigen::MatrixBase< OtherDerived > &other) const |
const CwiseUnaryOp < internal::scalar_opposite_op < typename internal::traits < Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Scalar >, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | operator- () const |
const CwiseUnaryOp < internal::scalar_quotient1_op < typename internal::traits < Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Scalar >, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | operator/ (const Scalar &scalar) const |
template<typename OtherDerived > | |
Matrix & | operator= (const RotationBase< OtherDerived, ColsAtCompileTime > &r) |
Set a Dim x Dim rotation matrix from the rotation r. | |
template<typename OtherDerived > | |
Matrix & | operator= (const EigenBase< OtherDerived > &other) |
Copies the generic expression other into *this. | |
Matrix & | operator= (const Matrix &other) |
Assigns matrices to each other. | |
bool | operator== (const MatrixBase< OtherDerived > &other) const |
Index | outerSize () const |
NonConstRealReturnType | real () |
RealReturnType | real () const |
void | resize (Index nbRows, NoChange_t) |
void | resize (NoChange_t, Index nbCols) |
void | resize (Index size) |
void | resize (Index nbRows, Index nbCols) |
void | resizeLike (const EigenBase< OtherDerived > &_other) |
ConstNColsBlockXpr< N >::Type | rightCols (Index n=N) const |
NColsBlockXpr< N >::Type | rightCols (Index n=N) |
ConstColsBlockXpr | rightCols (Index n) const |
ColsBlockXpr | rightCols (Index n) |
ConstRowXpr | row (Index i) const |
RowXpr | row (Index i) |
ConstFixedSegmentReturnType< N > ::Type | segment (Index start, Index n=N) const |
FixedSegmentReturnType< N >::Type | segment (Index start, Index n=N) |
ConstSegmentReturnType | segment (Index start, Index n) const |
SegmentReturnType | segment (Index start, Index n) |
void | swap (PlainObjectBase< OtherDerived > &other) |
void | swap (const DenseBase< OtherDerived > &other, int=OtherDerived::ThisConstantIsPrivateInPlainObjectBase) |
ConstFixedSegmentReturnType< N > ::Type | tail (Index n=N) const |
FixedSegmentReturnType< N >::Type | tail (Index n=N) |
ConstSegmentReturnType | tail (Index n) const |
SegmentReturnType | tail (Index n) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols > | topLeftCorner (Index cRows, Index cCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, CRows, CCols > | topLeftCorner (Index cRows, Index cCols) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols > | topLeftCorner () const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, CRows, CCols > | topLeftCorner () |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | topLeftCorner (Index cRows, Index cCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | topLeftCorner (Index cRows, Index cCols) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols > | topRightCorner (Index cRows, Index cCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, CRows, CCols > | topRightCorner (Index cRows, Index cCols) |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols > | topRightCorner () const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, CRows, CCols > | topRightCorner () |
const Block< const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | topRightCorner (Index cRows, Index cCols) const |
Block< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | topRightCorner (Index cRows, Index cCols) |
ConstNRowsBlockXpr< N >::Type | topRows (Index n=N) const |
NRowsBlockXpr< N >::Type | topRows (Index n=N) |
ConstRowsBlockXpr | topRows (Index n) const |
RowsBlockXpr | topRows (Index n) |
const CwiseUnaryOp < CustomUnaryOp, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const |
Apply a unary operator coefficient-wise. | |
const CwiseUnaryView < CustomViewOp, const Matrix < _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > | unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const |
CoeffReturnType | value () const |
Static Public Member Functions | |
Map | |
static StridedMapType< Stride < Outer, Inner > >::type | Map (Scalar *data, Index rows, Index cols, const Stride< Outer, Inner > &stride) |
static StridedConstMapType < Stride< Outer, Inner > >::type | Map (const Scalar *data, Index rows, Index cols, const Stride< Outer, Inner > &stride) |
static StridedMapType< Stride < Outer, Inner > >::type | Map (Scalar *data, Index size, const Stride< Outer, Inner > &stride) |
static StridedConstMapType < Stride< Outer, Inner > >::type | Map (const Scalar *data, Index size, const Stride< Outer, Inner > &stride) |
static StridedMapType< Stride < Outer, Inner > >::type | Map (Scalar *data, const Stride< Outer, Inner > &stride) |
static StridedConstMapType < Stride< Outer, Inner > >::type | Map (const Scalar *data, const Stride< Outer, Inner > &stride) |
static MapType | Map (Scalar *data, Index rows, Index cols) |
static ConstMapType | Map (const Scalar *data, Index rows, Index cols) |
static MapType | Map (Scalar *data, Index size) |
static ConstMapType | Map (const Scalar *data, Index size) |
static MapType | Map (Scalar *data) |
static ConstMapType | Map (const Scalar *data) |
static StridedAlignedMapType < Stride< Outer, Inner > >::type | MapAligned (Scalar *data, Index rows, Index cols, const Stride< Outer, Inner > &stride) |
static StridedConstAlignedMapType < Stride< Outer, Inner > >::type | MapAligned (const Scalar *data, Index rows, Index cols, const Stride< Outer, Inner > &stride) |
static StridedAlignedMapType < Stride< Outer, Inner > >::type | MapAligned (Scalar *data, Index size, const Stride< Outer, Inner > &stride) |
static StridedConstAlignedMapType < Stride< Outer, Inner > >::type | MapAligned (const Scalar *data, Index size, const Stride< Outer, Inner > &stride) |
static StridedAlignedMapType < Stride< Outer, Inner > >::type | MapAligned (Scalar *data, const Stride< Outer, Inner > &stride) |
static StridedConstAlignedMapType < Stride< Outer, Inner > >::type | MapAligned (const Scalar *data, const Stride< Outer, Inner > &stride) |
static AlignedMapType | MapAligned (Scalar *data, Index rows, Index cols) |
static ConstAlignedMapType | MapAligned (const Scalar *data, Index rows, Index cols) |
static AlignedMapType | MapAligned (Scalar *data, Index size) |
static ConstAlignedMapType | MapAligned (const Scalar *data, Index size) |
static AlignedMapType | MapAligned (Scalar *data) |
static ConstAlignedMapType | MapAligned (const Scalar *data) |
Protected Member Functions | |
Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > & | _set (const DenseBase< OtherDerived > &other) |
Copies the value of the expression other into *this with automatic resizing. |
The matrix class, also used for vectors and row-vectors.
The Matrix class is the work-horse for all dense (note) matrices and vectors within Eigen. Vectors are matrices with one column, and row-vectors are matrices with one row.
The Matrix class encompasses both fixed-size and dynamic-size objects (note).
The first three template parameters are required:
_Scalar | Numeric type, e.g. float, double, int or std::complex<float>. User defined sclar types are supported as well (see here). | |
_Rows | Number of rows, or Dynamic | |
_Cols | Number of columns, or Dynamic |
The remaining template parameters are optional -- in most cases you don't have to worry about them.
_Options | A combination of either RowMajor or ColMajor, and of either AutoAlign or DontAlign. The former controls storage order, and defaults to column-major. The latter controls alignment, which is required for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size. | |
_MaxRows | Maximum number of rows. Defaults to _Rows (note). | |
_MaxCols | Maximum number of columns. Defaults to _Cols (note). |
Eigen provides a number of typedefs covering the usual cases. Here are some examples:
Matrix2d
is a 2x2 square matrix of doubles (Matrix<double, 2, 2>
) Vector4f
is a vector of 4 floats (Matrix<float, 4, 1>
) RowVector3i
is a row-vector of 3 ints (Matrix<int, 1, 3>
)MatrixXf
is a dynamic-size matrix of floats (Matrix<float, Dynamic, Dynamic>
) VectorXf
is a dynamic-size vector of floats (Matrix<float, Dynamic, 1>
)Matrix2Xf
is a partially fixed-size (dynamic-size) matrix of floats (Matrix<float, 2, Dynamic>
) MatrixX3d
is a partially dynamic-size (fixed-size) matrix of double (Matrix<double, Dynamic, 3>
)See this page for a complete list of predefined Matrix and Vector typedefs.
You can access elements of vectors and matrices using normal subscripting:
Eigen::VectorXd v(10); v[0] = 0.1; v[1] = 0.2; v(0) = 0.3; v(1) = 0.4; Eigen::MatrixXi m(10, 10); m(0, 1) = 1; m(0, 2) = 2; m(0, 3) = 3;
This class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_MATRIX_PLUGIN
.
Some notes:
This Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array. This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.
Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime variables, and the array of coefficients is allocated dynamically on the heap.
Note that dense matrices, be they Fixed-size or Dynamic-size, do not expand dynamically in the sense of a std::map. If you want this behavior, see the Sparse module.
typedef PlainObjectBase<Matrix> Base |
Base class typedef.
Reimplemented from PlainObjectBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >.
typedef internal::traits<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Index Index [inherited] |
Reimplemented from DenseBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >.
typedef Base::PlainObject PlainObject |
The plain matrix type corresponding to this expression.
This is not necessarily exactly the return type of eval(). In the case of plain matrices, the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either PlainObject or const PlainObject&.
Reimplemented from MatrixBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >.
Matrix | ( | ) | [inline] |
Default constructor.
For fixed-size matrices, does nothing.
For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix is called a null matrix. This constructor is the unique way to create null matrices: resizing a matrix to 0 is not supported.
Matrix | ( | Index | dim | ) | [inline, explicit] |
Constructs a vector or row-vector with given dimension. This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Note that this is only useful for dynamic-size vectors. For fixed-size vectors, it is redundant to pass the dimension here, so it makes more sense to use the default constructor Matrix() instead.
Matrix | ( | Index | rows, | |
Index | cols | |||
) |
Constructs an uninitialized matrix with rows rows and cols columns.
This is useful for dynamic-size matrices. For fixed-size matrices, it is redundant to pass these parameters, so one should use the default constructor Matrix() instead.
Copy constructor for generic expressions.
Matrix | ( | const RotationBase< OtherDerived, ColsAtCompileTime > & | r | ) | [inline, explicit] |
Constructs a Dim x Dim rotation matrix from the rotation r.
This is defined in the Geometry module.
#include <Eigen/Geometry>
References RotationBase< Derived, _Dim >::toRotationMatrix().
Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > & _set | ( | const DenseBase< OtherDerived > & | other | ) | [inline, protected, inherited] |
Copies the value of the expression other into *this
with automatic resizing.
*this might be resized to match the dimensions of other. If *this was a null matrix (not already initialized), it will be initialized.
Note that copying a row-vector into a vector (and conversely) is allowed. The resizing, if any, is then done in the appropriate way so that row-vectors remain row-vectors and vectors remain vectors.
ArrayWrapper<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > array | ( | ) | [inline, inherited] |
const CwiseBinaryOp<CustomBinaryOp, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived> binaryExpr | ( | const Eigen::MatrixBase< OtherDerived > & | other, | |
const CustomBinaryOp & | func = CustomBinaryOp() | |||
) | const [inline, inherited] |
The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)
Here is an example illustrating the use of custom functors:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template binary functor template<typename Scalar> struct MakeComplexOp { EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp) typedef complex<Scalar> result_type; complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); } }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random(); cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl; return 0; }
Output:
(0.68,0.271) (0.823,-0.967) (-0.444,-0.687) (-0.27,0.998) (-0.211,0.435) (-0.605,-0.514) (0.108,-0.198) (0.0268,-0.563) (0.566,-0.717) (-0.33,-0.726) (-0.0452,-0.74) (0.904,0.0259) (0.597,0.214) (0.536,0.608) (0.258,-0.782) (0.832,0.678)
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , BlockRows, BlockCols> block | ( | Index | startRow, | |
Index | startCol, | |||
Index | blockRows, | |||
Index | blockCols | |||
) | const [inline, inherited] |
This is the const version of block<>(Index, Index, Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , BlockRows, BlockCols> block | ( | Index | startRow, | |
Index | startCol, | |||
Index | blockRows, | |||
Index | blockCols | |||
) | [inline, inherited] |
BlockRows | number of rows in block as specified at compile-time | |
BlockCols | number of columns in block as specified at compile-time |
startRow | the first row in the block | |
startCol | the first column in the block | |
blockRows | number of rows in block as specified at run-time | |
blockCols | number of columns in block as specified at run-time |
This function is mainly useful for blocks where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, blockRows should equal BlockRows unless BlockRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl; m.block<2, Dynamic>(1, 1, 2, 3).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl; m.block<2, Dynamic>(1, 1, 2, 3).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , BlockRows, BlockCols> block | ( | Index | startRow, | |
Index | startCol | |||
) | const [inline, inherited] |
This is the const version of block<>(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , BlockRows, BlockCols> block | ( | Index | startRow, | |
Index | startCol | |||
) | [inline, inherited] |
The template parameters BlockRows and BlockCols are the number of rows and columns in the block.
startRow | the first row in the block | |
startCol | the first column in the block |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl; m.block<2,2>(1,1).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.block<2,2>(1,1): -6 1 -3 0 Now the matrix m is: 7 9 -5 -3 -2 0 0 0 6 0 0 9 6 6 3 9
m.template block<3,3>(1,1);
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > block | ( | Index | startRow, | |
Index | startCol, | |||
Index | blockRows, | |||
Index | blockCols | |||
) | const [inline, inherited] |
This is the const version of block(Index,Index,Index,Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > block | ( | Index | startRow, | |
Index | startCol, | |||
Index | blockRows, | |||
Index | blockCols | |||
) | [inline, inherited] |
startRow | the first row in the block | |
startCol | the first column in the block | |
blockRows | the number of rows in the block | |
blockCols | the number of columns in the block |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl; m.block(1, 1, 2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.block(1, 1, 2, 2): -6 1 -3 0 Now the matrix m is: 7 9 -5 -3 -2 0 0 0 6 0 0 9 6 6 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> bottomLeftCorner | ( | Index | cRows, | |
Index | cCols | |||
) | const [inline, inherited] |
This is the const version of bottomLeftCorner<int, int>(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> bottomLeftCorner | ( | Index | cRows, | |
Index | cCols | |||
) | [inline, inherited] |
CRows | number of rows in corner as specified at compile-time | |
CCols | number of columns in corner as specified at compile-time |
cRows | number of rows in corner as specified at run-time | |
cCols | number of columns in corner as specified at run-time |
This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomLeftCorner<2,Dynamic>(2,2):" << endl; cout << m.bottomLeftCorner<2,Dynamic>(2,2) << endl; m.bottomLeftCorner<2,Dynamic>(2,2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomLeftCorner<2,Dynamic>(2,2): 6 -3 6 6 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 0 0 0 9 0 0 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> bottomLeftCorner | ( | ) | const [inline, inherited] |
This is the const version of bottomLeftCorner<int, int>().
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> bottomLeftCorner | ( | ) | [inline, inherited] |
The template parameters CRows and CCols are the number of rows and columns in the corner.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomLeftCorner<2,2>():" << endl; cout << m.bottomLeftCorner<2,2>() << endl; m.bottomLeftCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomLeftCorner<2,2>(): 6 -3 6 6 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 0 0 0 9 0 0 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > bottomLeftCorner | ( | Index | cRows, | |
Index | cCols | |||
) | const [inline, inherited] |
This is the const version of bottomLeftCorner(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > bottomLeftCorner | ( | Index | cRows, | |
Index | cCols | |||
) | [inline, inherited] |
cRows | the number of rows in the corner | |
cCols | the number of columns in the corner |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomLeftCorner(2, 2):" << endl; cout << m.bottomLeftCorner(2, 2) << endl; m.bottomLeftCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomLeftCorner(2, 2): 6 -3 6 6 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 0 0 0 9 0 0 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> bottomRightCorner | ( | Index | cRows, | |
Index | cCols | |||
) | const [inline, inherited] |
This is the const version of bottomRightCorner<int, int>(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> bottomRightCorner | ( | Index | cRows, | |
Index | cCols | |||
) | [inline, inherited] |
CRows | number of rows in corner as specified at compile-time | |
CCols | number of columns in corner as specified at compile-time |
cRows | number of rows in corner as specified at run-time | |
cCols | number of columns in corner as specified at run-time |
This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomRightCorner<2,Dynamic>(2,2):" << endl; cout << m.bottomRightCorner<2,Dynamic>(2,2) << endl; m.bottomRightCorner<2,Dynamic>(2,2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomRightCorner<2,Dynamic>(2,2): 0 9 3 9 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 6 -3 0 0 6 6 0 0
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> bottomRightCorner | ( | ) | const [inline, inherited] |
This is the const version of bottomRightCorner<int, int>().
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> bottomRightCorner | ( | ) | [inline, inherited] |
The template parameters CRows and CCols are the number of rows and columns in the corner.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomRightCorner<2,2>():" << endl; cout << m.bottomRightCorner<2,2>() << endl; m.bottomRightCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomRightCorner<2,2>(): 0 9 3 9 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 6 -3 0 0 6 6 0 0
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > bottomRightCorner | ( | Index | cRows, | |
Index | cCols | |||
) | const [inline, inherited] |
This is the const version of bottomRightCorner(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > bottomRightCorner | ( | Index | cRows, | |
Index | cCols | |||
) | [inline, inherited] |
cRows | the number of rows in the corner | |
cCols | the number of columns in the corner |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomRightCorner(2, 2):" << endl; cout << m.bottomRightCorner(2, 2) << endl; m.bottomRightCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomRightCorner(2, 2): 0 9 3 9 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 6 -3 0 0 6 6 0 0
ConstNRowsBlockXpr<N>::Type bottomRows | ( | Index | n = N |
) | const [inline, inherited] |
This is the const version of bottomRows<int>().
NRowsBlockXpr<N>::Type bottomRows | ( | Index | n = N |
) | [inline, inherited] |
N | the number of rows in the block as specified at compile-time |
n | the number of rows in the block as specified at run-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.bottomRows<2>():" << endl; cout << a.bottomRows<2>() << endl; a.bottomRows<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.bottomRows<2>(): 6 -3 0 9 6 6 3 9 Now the array a is: 7 9 -5 -3 -2 -6 1 0 0 0 0 0 0 0 0 0
ConstRowsBlockXpr bottomRows | ( | Index | n | ) | const [inline, inherited] |
This is the const version of bottomRows(Index).
RowsBlockXpr bottomRows | ( | Index | n | ) | [inline, inherited] |
n | the number of rows in the block |
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.bottomRows(2):" << endl; cout << a.bottomRows(2) << endl; a.bottomRows(2).setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.bottomRows(2): 6 -3 0 9 6 6 3 9 Now the array a is: 7 9 -5 -3 -2 -6 1 0 0 0 0 0 0 0 0 0
internal::cast_return_type<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > ,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Scalar, NewType>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > >::type cast | ( | ) | const [inline, inherited] |
The template parameter NewScalar is the type we are casting the scalars to.
ConstColXpr col | ( | Index | i | ) | const [inline, inherited] |
This is the const version of col().
ColXpr col | ( | Index | i | ) | [inline, inherited] |
Example:
Matrix3d m = Matrix3d::Identity(); m.col(1) = Vector3d(4,5,6); cout << m << endl;
Output:
1 4 0 0 5 0 0 6 1
ConjugateReturnType conjugate | ( | ) | const [inline, inherited] |
*this
.void conservativeResize | ( | Index | size | ) | [inline, inherited] |
Resizes the vector to size while retaining old values.
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.. This method does not work for partially dynamic matrices when the static dimension is anything other than 1. For example it will not work with Matrix<double, 2, Dynamic>.
When values are appended, they will be uninitialized.
void conservativeResize | ( | NoChange_t | , | |
Index | nbCols | |||
) | [inline, inherited] |
Resizes the matrix to rows x cols while leaving old values untouched.
As opposed to conservativeResize(Index rows, Index cols), this version leaves the number of rows unchanged.
In case the matrix is growing, new columns will be uninitialized.
void conservativeResize | ( | Index | nbRows, | |
NoChange_t | ||||
) | [inline, inherited] |
Resizes the matrix to rows x cols while leaving old values untouched.
As opposed to conservativeResize(Index rows, Index cols), this version leaves the number of columns unchanged.
In case the matrix is growing, new rows will be uninitialized.
void conservativeResize | ( | Index | nbRows, | |
Index | nbCols | |||
) | [inline, inherited] |
Resizes the matrix to rows x cols while leaving old values untouched.
The method is intended for matrices of dynamic size. If you only want to change the number of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or conservativeResize(Index, NoChange_t).
Matrices are resized relative to the top-left element. In case values need to be appended to the matrix they will be uninitialized.
void conservativeResizeLike | ( | const DenseBase< OtherDerived > & | other | ) | [inline, inherited] |
Resizes the matrix to rows x cols of other
, while leaving old values untouched.
The method is intended for matrices of dynamic size. If you only want to change the number of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or conservativeResize(Index, NoChange_t).
Matrices are resized relative to the top-left element. In case values need to be appended to the matrix they will copied from other
.
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > cwiseAbs | ( | ) | const [inline, inherited] |
*this
Example:
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseAbs() << endl;
Output:
2 4 6 5 1 0
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > cwiseAbs2 | ( | ) | const [inline, inherited] |
*this
Example:
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseAbs2() << endl;
Output:
4 16 36 25 1 0
const CwiseScalarEqualReturnType cwiseEqual | ( | const Scalar & | s | ) | const [inline, inherited] |
*this
and a scalar s const CwiseBinaryOp<std::equal_to<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived> cwiseEqual | ( | const Eigen::MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
Example:
MatrixXi m(2,2); m << 1, 0, 1, 1; cout << "Comparing m with identity matrix:" << endl; cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl; int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count(); cout << "Number of coefficients that are equal: " << count << endl;
Output:
Comparing m with identity matrix: 1 1 0 1 Number of coefficients that are equal: 3
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > cwiseInverse | ( | ) | const [inline, inherited] |
Example:
MatrixXd m(2,3); m << 2, 0.5, 1, 3, 0.25, 1; cout << m.cwiseInverse() << endl;
Output:
0.5 2 1 0.333 4 1
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const ConstantReturnType> cwiseMax | ( | const Scalar & | other | ) | const [inline, inherited] |
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived> cwiseMax | ( | const Eigen::MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
Example:
Vector3d v(2,3,4), w(4,2,3); cout << v.cwiseMax(w) << endl;
Output:
4 3 4
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const ConstantReturnType> cwiseMin | ( | const Scalar & | other | ) | const [inline, inherited] |
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived> cwiseMin | ( | const Eigen::MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
Example:
Vector3d v(2,3,4), w(4,2,3); cout << v.cwiseMin(w) << endl;
Output:
2 2 3
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived> cwiseNotEqual | ( | const Eigen::MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
Example:
MatrixXi m(2,2); m << 1, 0, 1, 1; cout << "Comparing m with identity matrix:" << endl; cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl; int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count(); cout << "Number of coefficients that are not equal: " << count << endl;
Output:
Comparing m with identity matrix: 0 0 1 0 Number of coefficients that are not equal: 1
const CwiseBinaryOp<internal::scalar_product_op<typename Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > ::Scalar, typename OtherDerived ::Scalar >, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived > cwiseProduct | ( | const Eigen::MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
Example:
Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random(); Matrix3i c = a.cwiseProduct(b); cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;
Output:
a: 7 6 -3 -2 9 6 6 -6 -5 b: 1 -3 9 0 0 3 3 9 5 c: 7 -18 -27 0 0 18 18 -54 -25
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived> cwiseQuotient | ( | const Eigen::MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
Example:
Vector3d v(2,3,4), w(4,2,3); cout << v.cwiseQuotient(w) << endl;
Output:
0.5 1.5 1.33
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > cwiseSqrt | ( | ) | const [inline, inherited] |
Example:
Vector3d v(1,2,4); cout << v.cwiseSqrt() << endl;
Output:
1 1.41 2
Scalar* data | ( | ) | [inline, inherited] |
const Scalar* data | ( | ) | const [inline, inherited] |
Index diagonalSize | ( | ) | const [inline, inherited] |
EvalReturnType eval | ( | ) | const [inline, inherited] |
Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.
ConstFixedSegmentReturnType<N>::Type head | ( | Index | n = N |
) | const [inline, inherited] |
This is the const version of head<int>().
FixedSegmentReturnType<N>::Type head | ( | Index | n = N |
) | [inline, inherited] |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
N | the number of coefficients in the segment as specified at compile-time |
n | the number of coefficients in the segment as specified at run-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.head(2):" << endl << v.head<2>() << endl; v.head<2>().setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.head(2): 7 -2 Now the vector v is: 0 0 6 6
ConstSegmentReturnType head | ( | Index | n | ) | const [inline, inherited] |
This is the const version of head(Index).
SegmentReturnType head | ( | Index | n | ) | [inline, inherited] |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
n | the number of coefficients in the segment |
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.head(2):" << endl << v.head(2) << endl; v.head(2).setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.head(2): 7 -2 Now the vector v is: 0 0 6 6
NonConstImagReturnType imag | ( | ) | [inline, inherited] |
*this
.const ImagReturnType imag | ( | ) | const [inline, inherited] |
*this
.Index innerSize | ( | ) | const [inline, inherited] |
Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > & lazyAssign | ( | const DenseBase< OtherDerived > & | other | ) | [inline, inherited] |
Reimplemented from DenseBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >.
ConstNColsBlockXpr<N>::Type leftCols | ( | Index | n = N |
) | const [inline, inherited] |
This is the const version of leftCols<int>().
NColsBlockXpr<N>::Type leftCols | ( | Index | n = N |
) | [inline, inherited] |
N | the number of columns in the block as specified at compile-time |
n | the number of columns in the block as specified at run-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.leftCols<2>():" << endl; cout << a.leftCols<2>() << endl; a.leftCols<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.leftCols<2>(): 7 9 -2 -6 6 -3 6 6 Now the array a is: 0 0 -5 -3 0 0 1 0 0 0 0 9 0 0 3 9
ConstColsBlockXpr leftCols | ( | Index | n | ) | const [inline, inherited] |
This is the const version of leftCols(Index).
ColsBlockXpr leftCols | ( | Index | n | ) | [inline, inherited] |
n | the number of columns in the block |
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.leftCols(2):" << endl; cout << a.leftCols(2) << endl; a.leftCols(2).setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.leftCols(2): 7 9 -2 -6 6 -3 6 6 Now the array a is: 0 0 -5 -3 0 0 1 0 0 0 0 9 0 0 3 9
ConstNColsBlockXpr<N>::Type middleCols | ( | Index | startCol, | |
Index | n = N | |||
) | const [inline, inherited] |
This is the const version of middleCols<int>().
NColsBlockXpr<N>::Type middleCols | ( | Index | startCol, | |
Index | n = N | |||
) | [inline, inherited] |
N | the number of columns in the block as specified at compile-time |
startCol | the index of the first column in the block | |
n | the number of columns in the block as specified at run-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; int main(void) { int const N = 5; MatrixXi A(N,N); A.setRandom(); cout << "A =\n" << A << '\n' << endl; cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl; return 0; }
Output:
A = 7 -6 0 9 -10 -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6 9 1 9 2 -7 A(:,1..3) = -6 0 9 -3 3 3 6 -3 5 -5 0 -8 1 9 2
ConstColsBlockXpr middleCols | ( | Index | startCol, | |
Index | numCols | |||
) | const [inline, inherited] |
This is the const version of middleCols(Index,Index).
ColsBlockXpr middleCols | ( | Index | startCol, | |
Index | numCols | |||
) | [inline, inherited] |
startCol | the index of the first column in the block | |
numCols | the number of columns in the block |
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; int main(void) { int const N = 5; MatrixXi A(N,N); A.setRandom(); cout << "A =\n" << A << '\n' << endl; cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl; return 0; }
Output:
A = 7 -6 0 9 -10 -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6 9 1 9 2 -7 A(1..3,:) = -6 0 9 -3 3 3 6 -3 5 -5 0 -8 1 9 2
ConstNRowsBlockXpr<N>::Type middleRows | ( | Index | startRow, | |
Index | n = N | |||
) | const [inline, inherited] |
This is the const version of middleRows<int>().
NRowsBlockXpr<N>::Type middleRows | ( | Index | startRow, | |
Index | n = N | |||
) | [inline, inherited] |
N | the number of rows in the block as specified at compile-time |
startRow | the index of the first row in the block | |
n | the number of rows in the block as specified at run-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; int main(void) { int const N = 5; MatrixXi A(N,N); A.setRandom(); cout << "A =\n" << A << '\n' << endl; cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl; return 0; }
Output:
A = 7 -6 0 9 -10 -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6 9 1 9 2 -7 A(1..3,:) = -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6
ConstRowsBlockXpr middleRows | ( | Index | startRow, | |
Index | n | |||
) | const [inline, inherited] |
This is the const version of middleRows(Index,Index).
RowsBlockXpr middleRows | ( | Index | startRow, | |
Index | n | |||
) | [inline, inherited] |
startRow | the index of the first row in the block | |
n | the number of rows in the block |
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; int main(void) { int const N = 5; MatrixXi A(N,N); A.setRandom(); cout << "A =\n" << A << '\n' << endl; cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl; return 0; }
Output:
A = 7 -6 0 9 -10 -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6 9 1 9 2 -7 A(2..3,:) = 6 6 -3 5 -8 6 -5 0 -8 6
Index nonZeros | ( | ) | const [inline, inherited] |
bool operator!= | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
*this
and other are not exactly equal to each other. const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > operator* | ( | const std::complex< Scalar > & | scalar | ) | const [inline, inherited] |
Overloaded for efficient real matrix times complex scalar value
const ScalarMultipleReturnType operator* | ( | const Scalar & | scalar | ) | const [inline, inherited] |
*this
scaled by the scalar factor scalar const CwiseBinaryOp< internal::scalar_sum_op <Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived> operator+ | ( | const Eigen::MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
*this
and other const CwiseBinaryOp< internal::scalar_difference_op <Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , const OtherDerived> operator- | ( | const Eigen::MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
*this
and other const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > operator- | ( | ) | const [inline, inherited] |
*this
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Scalar>, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > operator/ | ( | const Scalar & | scalar | ) | const [inline, inherited] |
*this
divided by the scalar value scalar Matrix< _Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols > & operator= | ( | const RotationBase< OtherDerived, ColsAtCompileTime > & | r | ) | [inline] |
Set a Dim x Dim rotation matrix from the rotation r.
This is defined in the Geometry module.
#include <Eigen/Geometry>
References RotationBase< Derived, _Dim >::toRotationMatrix().
Copies the generic expression other into *this.
The expression must provide a (templated) evalTo(Derived& dst) const function which does the actual job. In practice, this allows any user to write its own special matrix without having to modify MatrixBase
Reimplemented from PlainObjectBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >.
Matrix& operator= | ( | const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > & | other | ) | [inline] |
Assigns matrices to each other.
bool operator== | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline, inherited] |
*this
and other are all exactly equal. Index outerSize | ( | ) | const [inline, inherited] |
rows()==1 || cols()==1
NonConstRealReturnType real | ( | ) | [inline, inherited] |
*this
.RealReturnType real | ( | ) | const [inline, inherited] |
*this
.void resize | ( | Index | nbRows, | |
NoChange_t | ||||
) | [inline, inherited] |
Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value NoChange
as in the example below.
Example:
MatrixXd m(3,4); m.resize(5, NoChange); cout << "m: " << m.rows() << " rows, " << m.cols() << " cols" << endl;
Output:
m: 5 rows, 4 cols
void resize | ( | NoChange_t | , | |
Index | nbCols | |||
) | [inline, inherited] |
Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value NoChange
as in the example below.
Example:
MatrixXd m(3,4); m.resize(NoChange, 5); cout << "m: " << m.rows() << " rows, " << m.cols() << " cols" << endl;
Output:
m: 3 rows, 5 cols
void resize | ( | Index | size | ) | [inline, inherited] |
Resizes *this
to a vector of length size
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.. This method does not work for partially dynamic matrices when the static dimension is anything other than 1. For example it will not work with Matrix<double, 2, Dynamic>.
Example:
VectorXd v(10); v.resize(3); RowVector3d w; w.resize(3); // this is legal, but has no effect cout << "v: " << v.rows() << " rows, " << v.cols() << " cols" << endl; cout << "w: " << w.rows() << " rows, " << w.cols() << " cols" << endl;
Output:
v: 3 rows, 1 cols w: 1 rows, 3 cols
Reimplemented from DenseBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >.
void resize | ( | Index | nbRows, | |
Index | nbCols | |||
) | [inline, inherited] |
Resizes *this
to a rows x cols matrix.
This method is intended for dynamic-size matrices, although it is legal to call it on any matrix as long as fixed dimensions are left unchanged. If you only want to change the number of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t).
If the current number of coefficients of *this
exactly matches the product rows * cols, then no memory allocation is performed and the current values are left unchanged. In all other cases, including shrinking, the data is reallocated and all previous values are lost.
Example:
MatrixXd m(2,3); m << 1,2,3,4,5,6; cout << "here's the 2x3 matrix m:" << endl << m << endl; cout << "let's resize m to 3x2. This is a conservative resizing because 2*3==3*2." << endl; m.resize(3,2); cout << "here's the 3x2 matrix m:" << endl << m << endl; cout << "now let's resize m to size 2x2. This is NOT a conservative resizing, so it becomes uninitialized:" << endl; m.resize(2,2); cout << m << endl;
Output:
here's the 2x3 matrix m: 1 2 3 4 5 6 let's resize m to 3x2. This is a conservative resizing because 2*3==3*2. here's the 3x2 matrix m: 1 5 4 3 2 6 now let's resize m to size 2x2. This is NOT a conservative resizing, so it becomes uninitialized: 5.53e-317 2.12e-314 4.94e-324 4.94e-323
Reimplemented from DenseBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >.
void resizeLike | ( | const EigenBase< OtherDerived > & | _other | ) | [inline, inherited] |
Resizes *this
to have the same dimensions as other. Takes care of doing all the checking that's needed.
Note that copying a row-vector into a vector (and conversely) is allowed. The resizing, if any, is then done in the appropriate way so that row-vectors remain row-vectors and vectors remain vectors.
ConstNColsBlockXpr<N>::Type rightCols | ( | Index | n = N |
) | const [inline, inherited] |
This is the const version of rightCols<int>().
NColsBlockXpr<N>::Type rightCols | ( | Index | n = N |
) | [inline, inherited] |
N | the number of columns in the block as specified at compile-time |
n | the number of columns in the block as specified at run-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.rightCols<2>():" << endl; cout << a.rightCols<2>() << endl; a.rightCols<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.rightCols<2>(): -5 -3 1 0 0 9 3 9 Now the array a is: 7 9 0 0 -2 -6 0 0 6 -3 0 0 6 6 0 0
ConstColsBlockXpr rightCols | ( | Index | n | ) | const [inline, inherited] |
This is the const version of rightCols(Index).
ColsBlockXpr rightCols | ( | Index | n | ) | [inline, inherited] |
n | the number of columns in the block |
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.rightCols(2):" << endl; cout << a.rightCols(2) << endl; a.rightCols(2).setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.rightCols(2): -5 -3 1 0 0 9 3 9 Now the array a is: 7 9 0 0 -2 -6 0 0 6 -3 0 0 6 6 0 0
ConstRowXpr row | ( | Index | i | ) | const [inline, inherited] |
This is the const version of row().
RowXpr row | ( | Index | i | ) | [inline, inherited] |
Example:
Matrix3d m = Matrix3d::Identity(); m.row(1) = Vector3d(4,5,6); cout << m << endl;
Output:
1 0 0 4 5 6 0 0 1
ConstFixedSegmentReturnType<N>::Type segment | ( | Index | start, | |
Index | n = N | |||
) | const [inline, inherited] |
This is the const version of segment<int>(Index).
FixedSegmentReturnType<N>::Type segment | ( | Index | start, | |
Index | n = N | |||
) | [inline, inherited] |
*this
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
N | the number of coefficients in the segment as specified at compile-time |
start | the index of the first element in the segment | |
n | the number of coefficients in the segment as specified at compile-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl; v.segment<2>(2).setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.segment<2>(1): -2 6 Now the vector v is: 7 -2 0 0
ConstSegmentReturnType segment | ( | Index | start, | |
Index | n | |||
) | const [inline, inherited] |
This is the const version of segment(Index,Index).
SegmentReturnType segment | ( | Index | start, | |
Index | n | |||
) | [inline, inherited] |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
start | the first coefficient in the segment | |
n | the number of coefficients in the segment |
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.segment(1, 2):" << endl << v.segment(1, 2) << endl; v.segment(1, 2).setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.segment(1, 2): -2 6 Now the vector v is: 7 0 0 6
void swap | ( | PlainObjectBase< OtherDerived > & | other | ) | [inline, inherited] |
swaps *this with the matrix or array other.
void swap | ( | const DenseBase< OtherDerived > & | other, | |
int | = OtherDerived::ThisConstantIsPrivateInPlainObjectBase | |||
) | [inline, inherited] |
swaps *this with the expression other.
ConstFixedSegmentReturnType<N>::Type tail | ( | Index | n = N |
) | const [inline, inherited] |
This is the const version of tail<int>.
FixedSegmentReturnType<N>::Type tail | ( | Index | n = N |
) | [inline, inherited] |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
N | the number of coefficients in the segment as specified at compile-time |
n | the number of coefficients in the segment as specified at run-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl; v.tail<2>().setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.tail(2): 6 6 Now the vector v is: 7 -2 0 0
ConstSegmentReturnType tail | ( | Index | n | ) | const [inline, inherited] |
This is the const version of tail(Index).
SegmentReturnType tail | ( | Index | n | ) | [inline, inherited] |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
n | the number of coefficients in the segment |
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.tail(2):" << endl << v.tail(2) << endl; v.tail(2).setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.tail(2): 6 6 Now the vector v is: 7 -2 0 0
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> topLeftCorner | ( | Index | cRows, | |
Index | cCols | |||
) | const [inline, inherited] |
This is the const version of topLeftCorner<int, int>(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> topLeftCorner | ( | Index | cRows, | |
Index | cCols | |||
) | [inline, inherited] |
CRows | number of rows in corner as specified at compile-time | |
CCols | number of columns in corner as specified at compile-time |
cRows | number of rows in corner as specified at run-time | |
cCols | number of columns in corner as specified at run-time |
This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topLeftCorner<2,Dynamic>(2,2):" << endl; cout << m.topLeftCorner<2,Dynamic>(2,2) << endl; m.topLeftCorner<2,Dynamic>(2,2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topLeftCorner<2,Dynamic>(2,2): 7 9 -2 -6 Now the matrix m is: 0 0 -5 -3 0 0 1 0 6 -3 0 9 6 6 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> topLeftCorner | ( | ) | const [inline, inherited] |
This is the const version of topLeftCorner<int, int>().
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> topLeftCorner | ( | ) | [inline, inherited] |
The template parameters CRows and CCols are the number of rows and columns in the corner.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topLeftCorner<2,2>():" << endl; cout << m.topLeftCorner<2,2>() << endl; m.topLeftCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topLeftCorner<2,2>(): 7 9 -2 -6 Now the matrix m is: 0 0 -5 -3 0 0 1 0 6 -3 0 9 6 6 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > topLeftCorner | ( | Index | cRows, | |
Index | cCols | |||
) | const [inline, inherited] |
This is the const version of topLeftCorner(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > topLeftCorner | ( | Index | cRows, | |
Index | cCols | |||
) | [inline, inherited] |
cRows | the number of rows in the corner | |
cCols | the number of columns in the corner |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topLeftCorner(2, 2):" << endl; cout << m.topLeftCorner(2, 2) << endl; m.topLeftCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topLeftCorner(2, 2): 7 9 -2 -6 Now the matrix m is: 0 0 -5 -3 0 0 1 0 6 -3 0 9 6 6 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> topRightCorner | ( | Index | cRows, | |
Index | cCols | |||
) | const [inline, inherited] |
This is the const version of topRightCorner<int, int>(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> topRightCorner | ( | Index | cRows, | |
Index | cCols | |||
) | [inline, inherited] |
CRows | number of rows in corner as specified at compile-time | |
CCols | number of columns in corner as specified at compile-time |
cRows | number of rows in corner as specified at run-time | |
cCols | number of columns in corner as specified at run-time |
This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topRightCorner<2,Dynamic>(2,2):" << endl; cout << m.topRightCorner<2,Dynamic>(2,2) << endl; m.topRightCorner<2,Dynamic>(2,2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topRightCorner<2,Dynamic>(2,2): -5 -3 1 0 Now the matrix m is: 7 9 0 0 -2 -6 0 0 6 -3 0 9 6 6 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> topRightCorner | ( | ) | const [inline, inherited] |
This is the const version of topRightCorner<int, int>().
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > , CRows, CCols> topRightCorner | ( | ) | [inline, inherited] |
CRows | the number of rows in the corner | |
CCols | the number of columns in the corner |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topRightCorner<2,2>():" << endl; cout << m.topRightCorner<2,2>() << endl; m.topRightCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topRightCorner<2,2>(): -5 -3 1 0 Now the matrix m is: 7 9 0 0 -2 -6 0 0 6 -3 0 9 6 6 3 9
const Block<const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > topRightCorner | ( | Index | cRows, | |
Index | cCols | |||
) | const [inline, inherited] |
This is the const version of topRightCorner(Index, Index).
Block<Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > topRightCorner | ( | Index | cRows, | |
Index | cCols | |||
) | [inline, inherited] |
cRows | the number of rows in the corner | |
cCols | the number of columns in the corner |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topRightCorner(2, 2):" << endl; cout << m.topRightCorner(2, 2) << endl; m.topRightCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topRightCorner(2, 2): -5 -3 1 0 Now the matrix m is: 7 9 0 0 -2 -6 0 0 6 -3 0 9 6 6 3 9
ConstNRowsBlockXpr<N>::Type topRows | ( | Index | n = N |
) | const [inline, inherited] |
This is the const version of topRows<int>().
NRowsBlockXpr<N>::Type topRows | ( | Index | n = N |
) | [inline, inherited] |
N | the number of rows in the block as specified at compile-time |
n | the number of rows in the block as specified at run-time |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.topRows<2>():" << endl; cout << a.topRows<2>() << endl; a.topRows<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.topRows<2>(): 7 9 -5 -3 -2 -6 1 0 Now the array a is: 0 0 0 0 0 0 0 0 6 -3 0 9 6 6 3 9
ConstRowsBlockXpr topRows | ( | Index | n | ) | const [inline, inherited] |
This is the const version of topRows(Index).
RowsBlockXpr topRows | ( | Index | n | ) | [inline, inherited] |
n | the number of rows in the block |
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.topRows(2):" << endl; cout << a.topRows(2) << endl; a.topRows(2).setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.topRows(2): 7 9 -5 -3 -2 -6 1 0 Now the array a is: 0 0 0 0 0 0 0 0 6 -3 0 9 6 6 3 9
const CwiseUnaryOp<CustomUnaryOp, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > unaryExpr | ( | const CustomUnaryOp & | func = CustomUnaryOp() |
) | const [inline, inherited] |
Apply a unary operator coefficient-wise.
[in] | func | Functor implementing the unary operator |
CustomUnaryOp | Type of func |
The function ptr_fun()
from the C++ standard library can be used to make functors out of normal functions.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define function to be applied coefficient-wise double ramp(double x) { if (x > 0) return x; else return 0; } int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl; return 0; }
Output:
0.68 0.823 -0.444 -0.27 -0.211 -0.605 0.108 0.0268 0.566 -0.33 -0.0452 0.904 0.597 0.536 0.258 0.832 becomes: 0.68 0.823 0 0 0 0 0.108 0.0268 0.566 0 0 0.904 0.597 0.536 0.258 0.832
Genuine functors allow for more possibilities, for instance it may contain a state.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template unary functor template<typename Scalar> struct CwiseClampOp { CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {} const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); } Scalar m_inf, m_sup; }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl; return 0; }
Output:
0.68 0.823 -0.444 -0.27 -0.211 -0.605 0.108 0.0268 0.566 -0.33 -0.0452 0.904 0.597 0.536 0.258 0.832 becomes: 0.5 0.5 -0.444 -0.27 -0.211 -0.5 0.108 0.0268 0.5 -0.33 -0.0452 0.5 0.5 0.5 0.258 0.5
const CwiseUnaryView<CustomViewOp, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > unaryViewExpr | ( | const CustomViewOp & | func = CustomViewOp() |
) | const [inline, inherited] |
The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template unary functor template<typename Scalar> struct CwiseClampOp { CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {} const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); } Scalar m_inf, m_sup; }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl; return 0; }
Output:
0.68 0.823 -0.444 -0.27 -0.211 -0.605 0.108 0.0268 0.566 -0.33 -0.0452 0.904 0.597 0.536 0.258 0.832 becomes: 0.5 0.5 -0.444 -0.27 -0.211 -0.5 0.108 0.0268 0.5 -0.33 -0.0452 0.5 0.5 0.5 0.258 0.5
CoeffReturnType value | ( | ) | const [inline, inherited] |