$treeview $search $mathjax
$projectbrief
$projectbrief
$searchbox

MatrixFunction< MatrixType, AtomicType, IsComplex > Class Template Reference
[Matrix functions module]

Class for computing matrix functions. More...

List of all members.

Public Member Functions

template<typename ResultType >
void compute (ResultType &result)
 Compute the matrix function.
 MatrixFunction (const MatrixType &A, AtomicType &atomic)
 Constructor.

Detailed Description

template<typename MatrixType, typename AtomicType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
class Eigen::MatrixFunction< MatrixType, AtomicType, IsComplex >

Class for computing matrix functions.

Template Parameters:
MatrixType type of the argument of the matrix function, expected to be an instantiation of the Matrix class template.
AtomicType type for computing matrix function of atomic blocks.
IsComplex used internally to select correct specialization.

This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the matrix is divided in clustered of eigenvalues that lies close together. This class delegates the computation of the matrix function on every block corresponding to these clusters to an object of type AtomicType and uses these results to compute the matrix function of the whole matrix. The class AtomicType should have a compute() member function for computing the matrix function of a block.

See also:
class MatrixFunctionAtomic, class MatrixLogarithmAtomic

Constructor & Destructor Documentation

MatrixFunction ( const MatrixType &  A,
AtomicType &  atomic 
)

Constructor.

Parameters:
[in] A argument of matrix function, should be a square matrix.
[in] atomic class for computing matrix function of atomic blocks.

The class stores references to A and atomic, so they should not be changed (or destroyed) before compute() is called.


Member Function Documentation

void compute ( ResultType &  result  )  [inline]

Compute the matrix function.

Parameters:
[out] result the function f applied to A, as specified in the constructor.

See MatrixBase::matrixFunction() for details on how this computation is implemented.

Referenced by MatrixLogarithmReturnValue< Derived >::evalTo().


The documentation for this class was generated from the following file: