$treeview $search $mathjax
Eigen
3.2.5
$projectbrief
|
$projectbrief
|
$searchbox |
00001 // This file is part of Eigen, a lightweight C++ template library 00002 // for linear algebra. 00003 // 00004 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> 00005 // 00006 // This Source Code Form is subject to the terms of the Mozilla 00007 // Public License v. 2.0. If a copy of the MPL was not distributed 00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 00009 00010 #ifndef EIGEN_FUNCTORS_H 00011 #define EIGEN_FUNCTORS_H 00012 00013 namespace Eigen { 00014 00015 namespace internal { 00016 00017 // associative functors: 00018 00024 template<typename Scalar> struct scalar_sum_op { 00025 EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) 00026 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } 00027 template<typename Packet> 00028 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 00029 { return internal::padd(a,b); } 00030 template<typename Packet> 00031 EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const 00032 { return internal::predux(a); } 00033 }; 00034 template<typename Scalar> 00035 struct functor_traits<scalar_sum_op<Scalar> > { 00036 enum { 00037 Cost = NumTraits<Scalar>::AddCost, 00038 PacketAccess = packet_traits<Scalar>::HasAdd 00039 }; 00040 }; 00041 00047 template<typename LhsScalar,typename RhsScalar> struct scalar_product_op { 00048 enum { 00049 // TODO vectorize mixed product 00050 Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul 00051 }; 00052 typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type; 00053 EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) 00054 EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } 00055 template<typename Packet> 00056 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 00057 { return internal::pmul(a,b); } 00058 template<typename Packet> 00059 EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const 00060 { return internal::predux_mul(a); } 00061 }; 00062 template<typename LhsScalar,typename RhsScalar> 00063 struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > { 00064 enum { 00065 Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate! 00066 PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable 00067 }; 00068 }; 00069 00075 template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op { 00076 00077 enum { 00078 Conj = NumTraits<LhsScalar>::IsComplex 00079 }; 00080 00081 typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type; 00082 00083 EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op) 00084 EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const 00085 { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); } 00086 00087 template<typename Packet> 00088 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 00089 { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); } 00090 }; 00091 template<typename LhsScalar,typename RhsScalar> 00092 struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > { 00093 enum { 00094 Cost = NumTraits<LhsScalar>::MulCost, 00095 PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul 00096 }; 00097 }; 00098 00104 template<typename Scalar> struct scalar_min_op { 00105 EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op) 00106 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); } 00107 template<typename Packet> 00108 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 00109 { return internal::pmin(a,b); } 00110 template<typename Packet> 00111 EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const 00112 { return internal::predux_min(a); } 00113 }; 00114 template<typename Scalar> 00115 struct functor_traits<scalar_min_op<Scalar> > { 00116 enum { 00117 Cost = NumTraits<Scalar>::AddCost, 00118 PacketAccess = packet_traits<Scalar>::HasMin 00119 }; 00120 }; 00121 00127 template<typename Scalar> struct scalar_max_op { 00128 EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op) 00129 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); } 00130 template<typename Packet> 00131 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 00132 { return internal::pmax(a,b); } 00133 template<typename Packet> 00134 EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const 00135 { return internal::predux_max(a); } 00136 }; 00137 template<typename Scalar> 00138 struct functor_traits<scalar_max_op<Scalar> > { 00139 enum { 00140 Cost = NumTraits<Scalar>::AddCost, 00141 PacketAccess = packet_traits<Scalar>::HasMax 00142 }; 00143 }; 00144 00150 template<typename Scalar> struct scalar_hypot_op { 00151 EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op) 00152 // typedef typename NumTraits<Scalar>::Real result_type; 00153 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const 00154 { 00155 using std::max; 00156 using std::min; 00157 using std::sqrt; 00158 Scalar p = (max)(_x, _y); 00159 Scalar q = (min)(_x, _y); 00160 Scalar qp = q/p; 00161 return p * sqrt(Scalar(1) + qp*qp); 00162 } 00163 }; 00164 template<typename Scalar> 00165 struct functor_traits<scalar_hypot_op<Scalar> > { 00166 enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 }; 00167 }; 00168 00172 template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op { 00173 EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op) 00174 inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return numext::pow(a, b); } 00175 }; 00176 template<typename Scalar, typename OtherScalar> 00177 struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > { 00178 enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; 00179 }; 00180 00181 // other binary functors: 00182 00188 template<typename Scalar> struct scalar_difference_op { 00189 EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) 00190 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } 00191 template<typename Packet> 00192 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 00193 { return internal::psub(a,b); } 00194 }; 00195 template<typename Scalar> 00196 struct functor_traits<scalar_difference_op<Scalar> > { 00197 enum { 00198 Cost = NumTraits<Scalar>::AddCost, 00199 PacketAccess = packet_traits<Scalar>::HasSub 00200 }; 00201 }; 00202 00208 template<typename LhsScalar,typename RhsScalar> struct scalar_quotient_op { 00209 enum { 00210 // TODO vectorize mixed product 00211 Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv 00212 }; 00213 typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type; 00214 EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) 00215 EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; } 00216 template<typename Packet> 00217 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 00218 { return internal::pdiv(a,b); } 00219 }; 00220 template<typename LhsScalar,typename RhsScalar> 00221 struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > { 00222 enum { 00223 Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost), // rough estimate! 00224 PacketAccess = scalar_quotient_op<LhsScalar,RhsScalar>::Vectorizable 00225 }; 00226 }; 00227 00228 00229 00235 struct scalar_boolean_and_op { 00236 EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op) 00237 EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; } 00238 }; 00239 template<> struct functor_traits<scalar_boolean_and_op> { 00240 enum { 00241 Cost = NumTraits<bool>::AddCost, 00242 PacketAccess = false 00243 }; 00244 }; 00245 00251 struct scalar_boolean_or_op { 00252 EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op) 00253 EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; } 00254 }; 00255 template<> struct functor_traits<scalar_boolean_or_op> { 00256 enum { 00257 Cost = NumTraits<bool>::AddCost, 00258 PacketAccess = false 00259 }; 00260 }; 00261 00266 template<typename Scalar, ComparisonName cmp> struct scalar_cmp_op; 00267 00268 template<typename Scalar, ComparisonName cmp> 00269 struct functor_traits<scalar_cmp_op<Scalar, cmp> > { 00270 enum { 00271 Cost = NumTraits<Scalar>::AddCost, 00272 PacketAccess = false 00273 }; 00274 }; 00275 00276 template<ComparisonName Cmp, typename Scalar> 00277 struct result_of<scalar_cmp_op<Scalar, Cmp>(Scalar,Scalar)> { 00278 typedef bool type; 00279 }; 00280 00281 00282 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_EQ> { 00283 EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) 00284 EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a==b;} 00285 }; 00286 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LT> { 00287 EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) 00288 EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<b;} 00289 }; 00290 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LE> { 00291 EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) 00292 EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<=b;} 00293 }; 00294 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_UNORD> { 00295 EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) 00296 EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return !(a<=b || b<=a);} 00297 }; 00298 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_NEQ> { 00299 EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) 00300 EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a!=b;} 00301 }; 00302 00303 // unary functors: 00304 00310 template<typename Scalar> struct scalar_opposite_op { 00311 EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op) 00312 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } 00313 template<typename Packet> 00314 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 00315 { return internal::pnegate(a); } 00316 }; 00317 template<typename Scalar> 00318 struct functor_traits<scalar_opposite_op<Scalar> > 00319 { enum { 00320 Cost = NumTraits<Scalar>::AddCost, 00321 PacketAccess = packet_traits<Scalar>::HasNegate }; 00322 }; 00323 00329 template<typename Scalar> struct scalar_abs_op { 00330 EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op) 00331 typedef typename NumTraits<Scalar>::Real result_type; 00332 EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using std::abs; return abs(a); } 00333 template<typename Packet> 00334 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 00335 { return internal::pabs(a); } 00336 }; 00337 template<typename Scalar> 00338 struct functor_traits<scalar_abs_op<Scalar> > 00339 { 00340 enum { 00341 Cost = NumTraits<Scalar>::AddCost, 00342 PacketAccess = packet_traits<Scalar>::HasAbs 00343 }; 00344 }; 00345 00351 template<typename Scalar> struct scalar_abs2_op { 00352 EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op) 00353 typedef typename NumTraits<Scalar>::Real result_type; 00354 EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); } 00355 template<typename Packet> 00356 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 00357 { return internal::pmul(a,a); } 00358 }; 00359 template<typename Scalar> 00360 struct functor_traits<scalar_abs2_op<Scalar> > 00361 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; }; 00362 00368 template<typename Scalar> struct scalar_conjugate_op { 00369 EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op) 00370 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); } 00371 template<typename Packet> 00372 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } 00373 }; 00374 template<typename Scalar> 00375 struct functor_traits<scalar_conjugate_op<Scalar> > 00376 { 00377 enum { 00378 Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0, 00379 PacketAccess = packet_traits<Scalar>::HasConj 00380 }; 00381 }; 00382 00388 template<typename Scalar, typename NewType> 00389 struct scalar_cast_op { 00390 EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) 00391 typedef NewType result_type; 00392 EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); } 00393 }; 00394 template<typename Scalar, typename NewType> 00395 struct functor_traits<scalar_cast_op<Scalar,NewType> > 00396 { enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; }; 00397 00403 template<typename Scalar> 00404 struct scalar_real_op { 00405 EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op) 00406 typedef typename NumTraits<Scalar>::Real result_type; 00407 EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); } 00408 }; 00409 template<typename Scalar> 00410 struct functor_traits<scalar_real_op<Scalar> > 00411 { enum { Cost = 0, PacketAccess = false }; }; 00412 00418 template<typename Scalar> 00419 struct scalar_imag_op { 00420 EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op) 00421 typedef typename NumTraits<Scalar>::Real result_type; 00422 EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); } 00423 }; 00424 template<typename Scalar> 00425 struct functor_traits<scalar_imag_op<Scalar> > 00426 { enum { Cost = 0, PacketAccess = false }; }; 00427 00433 template<typename Scalar> 00434 struct scalar_real_ref_op { 00435 EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op) 00436 typedef typename NumTraits<Scalar>::Real result_type; 00437 EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); } 00438 }; 00439 template<typename Scalar> 00440 struct functor_traits<scalar_real_ref_op<Scalar> > 00441 { enum { Cost = 0, PacketAccess = false }; }; 00442 00448 template<typename Scalar> 00449 struct scalar_imag_ref_op { 00450 EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op) 00451 typedef typename NumTraits<Scalar>::Real result_type; 00452 EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); } 00453 }; 00454 template<typename Scalar> 00455 struct functor_traits<scalar_imag_ref_op<Scalar> > 00456 { enum { Cost = 0, PacketAccess = false }; }; 00457 00464 template<typename Scalar> struct scalar_exp_op { 00465 EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op) 00466 inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); } 00467 typedef typename packet_traits<Scalar>::type Packet; 00468 inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } 00469 }; 00470 template<typename Scalar> 00471 struct functor_traits<scalar_exp_op<Scalar> > 00472 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; }; 00473 00480 template<typename Scalar> struct scalar_log_op { 00481 EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op) 00482 inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); } 00483 typedef typename packet_traits<Scalar>::type Packet; 00484 inline Packet packetOp(const Packet& a) const { return internal::plog(a); } 00485 }; 00486 template<typename Scalar> 00487 struct functor_traits<scalar_log_op<Scalar> > 00488 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; }; 00489 00495 /* NOTE why doing the pset1() in packetOp *is* an optimization ? 00496 * indeed it seems better to declare m_other as a Packet and do the pset1() once 00497 * in the constructor. However, in practice: 00498 * - GCC does not like m_other as a Packet and generate a load every time it needs it 00499 * - on the other hand GCC is able to moves the pset1() outside the loop :) 00500 * - simpler code ;) 00501 * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) 00502 */ 00503 template<typename Scalar> 00504 struct scalar_multiple_op { 00505 typedef typename packet_traits<Scalar>::type Packet; 00506 // FIXME default copy constructors seems bugged with std::complex<> 00507 EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { } 00508 EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { } 00509 EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } 00510 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 00511 { return internal::pmul(a, pset1<Packet>(m_other)); } 00512 typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other; 00513 }; 00514 template<typename Scalar> 00515 struct functor_traits<scalar_multiple_op<Scalar> > 00516 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; }; 00517 00518 template<typename Scalar1, typename Scalar2> 00519 struct scalar_multiple2_op { 00520 typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type; 00521 EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { } 00522 EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { } 00523 EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } 00524 typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other; 00525 }; 00526 template<typename Scalar1,typename Scalar2> 00527 struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> > 00528 { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; }; 00529 00538 template<typename Scalar> 00539 struct scalar_quotient1_op { 00540 typedef typename packet_traits<Scalar>::type Packet; 00541 // FIXME default copy constructors seems bugged with std::complex<> 00542 EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { } 00543 EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {} 00544 EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } 00545 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 00546 { return internal::pdiv(a, pset1<Packet>(m_other)); } 00547 typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other; 00548 }; 00549 template<typename Scalar> 00550 struct functor_traits<scalar_quotient1_op<Scalar> > 00551 { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; }; 00552 00553 // nullary functors 00554 00555 template<typename Scalar> 00556 struct scalar_constant_op { 00557 typedef typename packet_traits<Scalar>::type Packet; 00558 EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } 00559 EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } 00560 template<typename Index> 00561 EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; } 00562 template<typename Index> 00563 EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); } 00564 const Scalar m_other; 00565 }; 00566 template<typename Scalar> 00567 struct functor_traits<scalar_constant_op<Scalar> > 00568 // FIXME replace this packet test by a safe one 00569 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; }; 00570 00571 template<typename Scalar> struct scalar_identity_op { 00572 EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op) 00573 template<typename Index> 00574 EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); } 00575 }; 00576 template<typename Scalar> 00577 struct functor_traits<scalar_identity_op<Scalar> > 00578 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; }; 00579 00580 template <typename Scalar, bool RandomAccess> struct linspaced_op_impl; 00581 00582 // linear access for packet ops: 00583 // 1) initialization 00584 // base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0]) 00585 // 2) each step (where size is 1 for coeff access or PacketSize for packet access) 00586 // base += [size*step, ..., size*step] 00587 // 00588 // TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp) 00589 // in order to avoid the padd() in operator() ? 00590 template <typename Scalar> 00591 struct linspaced_op_impl<Scalar,false> 00592 { 00593 typedef typename packet_traits<Scalar>::type Packet; 00594 00595 linspaced_op_impl(const Scalar& low, const Scalar& step) : 00596 m_low(low), m_step(step), 00597 m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)), 00598 m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {} 00599 00600 template<typename Index> 00601 EIGEN_STRONG_INLINE const Scalar operator() (Index i) const 00602 { 00603 m_base = padd(m_base, pset1<Packet>(m_step)); 00604 return m_low+Scalar(i)*m_step; 00605 } 00606 00607 template<typename Index> 00608 EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); } 00609 00610 const Scalar m_low; 00611 const Scalar m_step; 00612 const Packet m_packetStep; 00613 mutable Packet m_base; 00614 }; 00615 00616 // random access for packet ops: 00617 // 1) each step 00618 // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) 00619 template <typename Scalar> 00620 struct linspaced_op_impl<Scalar,true> 00621 { 00622 typedef typename packet_traits<Scalar>::type Packet; 00623 00624 linspaced_op_impl(const Scalar& low, const Scalar& step) : 00625 m_low(low), m_step(step), 00626 m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {} 00627 00628 template<typename Index> 00629 EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } 00630 00631 template<typename Index> 00632 EIGEN_STRONG_INLINE const Packet packetOp(Index i) const 00633 { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); } 00634 00635 const Scalar m_low; 00636 const Scalar m_step; 00637 const Packet m_lowPacket; 00638 const Packet m_stepPacket; 00639 const Packet m_interPacket; 00640 }; 00641 00642 // ----- Linspace functor ---------------------------------------------------------------- 00643 00644 // Forward declaration (we default to random access which does not really give 00645 // us a speed gain when using packet access but it allows to use the functor in 00646 // nested expressions). 00647 template <typename Scalar, bool RandomAccess = true> struct linspaced_op; 00648 template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> > 00649 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; }; 00650 template <typename Scalar, bool RandomAccess> struct linspaced_op 00651 { 00652 typedef typename packet_traits<Scalar>::type Packet; 00653 linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {} 00654 00655 template<typename Index> 00656 EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); } 00657 00658 // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since 00659 // there row==0 and col is used for the actual iteration. 00660 template<typename Index> 00661 EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const 00662 { 00663 eigen_assert(col==0 || row==0); 00664 return impl(col + row); 00665 } 00666 00667 template<typename Index> 00668 EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); } 00669 00670 // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since 00671 // there row==0 and col is used for the actual iteration. 00672 template<typename Index> 00673 EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const 00674 { 00675 eigen_assert(col==0 || row==0); 00676 return impl.packetOp(col + row); 00677 } 00678 00679 // This proxy object handles the actual required temporaries, the different 00680 // implementations (random vs. sequential access) as well as the 00681 // correct piping to size 2/4 packet operations. 00682 const linspaced_op_impl<Scalar,RandomAccess> impl; 00683 }; 00684 00685 // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta 00686 // to indicate whether a functor allows linear access, just always answering 'yes' except for 00687 // scalar_identity_op. 00688 // FIXME move this to functor_traits adding a functor_default 00689 template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; }; 00690 template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; }; 00691 00692 // In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication 00693 // where the mixing of different types is handled by scalar_product_traits 00694 // In particular, real * complex<real> is allowed. 00695 // FIXME move this to functor_traits adding a functor_default 00696 template<typename Functor> struct functor_is_product_like { enum { ret = 0 }; }; 00697 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; }; 00698 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; }; 00699 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_quotient_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; }; 00700 00701 00706 /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */ 00707 template<typename Scalar> 00708 struct scalar_add_op { 00709 typedef typename packet_traits<Scalar>::type Packet; 00710 // FIXME default copy constructors seems bugged with std::complex<> 00711 inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { } 00712 inline scalar_add_op(const Scalar& other) : m_other(other) { } 00713 inline Scalar operator() (const Scalar& a) const { return a + m_other; } 00714 inline const Packet packetOp(const Packet& a) const 00715 { return internal::padd(a, pset1<Packet>(m_other)); } 00716 const Scalar m_other; 00717 }; 00718 template<typename Scalar> 00719 struct functor_traits<scalar_add_op<Scalar> > 00720 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; }; 00721 00726 template<typename Scalar> struct scalar_sqrt_op { 00727 EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op) 00728 inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); } 00729 typedef typename packet_traits<Scalar>::type Packet; 00730 inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } 00731 }; 00732 template<typename Scalar> 00733 struct functor_traits<scalar_sqrt_op<Scalar> > 00734 { enum { 00735 Cost = 5 * NumTraits<Scalar>::MulCost, 00736 PacketAccess = packet_traits<Scalar>::HasSqrt 00737 }; 00738 }; 00739 00744 template<typename Scalar> struct scalar_cos_op { 00745 EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op) 00746 inline Scalar operator() (const Scalar& a) const { using std::cos; return cos(a); } 00747 typedef typename packet_traits<Scalar>::type Packet; 00748 inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } 00749 }; 00750 template<typename Scalar> 00751 struct functor_traits<scalar_cos_op<Scalar> > 00752 { 00753 enum { 00754 Cost = 5 * NumTraits<Scalar>::MulCost, 00755 PacketAccess = packet_traits<Scalar>::HasCos 00756 }; 00757 }; 00758 00763 template<typename Scalar> struct scalar_sin_op { 00764 EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op) 00765 inline const Scalar operator() (const Scalar& a) const { using std::sin; return sin(a); } 00766 typedef typename packet_traits<Scalar>::type Packet; 00767 inline Packet packetOp(const Packet& a) const { return internal::psin(a); } 00768 }; 00769 template<typename Scalar> 00770 struct functor_traits<scalar_sin_op<Scalar> > 00771 { 00772 enum { 00773 Cost = 5 * NumTraits<Scalar>::MulCost, 00774 PacketAccess = packet_traits<Scalar>::HasSin 00775 }; 00776 }; 00777 00778 00783 template<typename Scalar> struct scalar_tan_op { 00784 EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op) 00785 inline const Scalar operator() (const Scalar& a) const { using std::tan; return tan(a); } 00786 typedef typename packet_traits<Scalar>::type Packet; 00787 inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } 00788 }; 00789 template<typename Scalar> 00790 struct functor_traits<scalar_tan_op<Scalar> > 00791 { 00792 enum { 00793 Cost = 5 * NumTraits<Scalar>::MulCost, 00794 PacketAccess = packet_traits<Scalar>::HasTan 00795 }; 00796 }; 00797 00802 template<typename Scalar> struct scalar_acos_op { 00803 EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op) 00804 inline const Scalar operator() (const Scalar& a) const { using std::acos; return acos(a); } 00805 typedef typename packet_traits<Scalar>::type Packet; 00806 inline Packet packetOp(const Packet& a) const { return internal::pacos(a); } 00807 }; 00808 template<typename Scalar> 00809 struct functor_traits<scalar_acos_op<Scalar> > 00810 { 00811 enum { 00812 Cost = 5 * NumTraits<Scalar>::MulCost, 00813 PacketAccess = packet_traits<Scalar>::HasACos 00814 }; 00815 }; 00816 00821 template<typename Scalar> struct scalar_asin_op { 00822 EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op) 00823 inline const Scalar operator() (const Scalar& a) const { using std::asin; return asin(a); } 00824 typedef typename packet_traits<Scalar>::type Packet; 00825 inline Packet packetOp(const Packet& a) const { return internal::pasin(a); } 00826 }; 00827 template<typename Scalar> 00828 struct functor_traits<scalar_asin_op<Scalar> > 00829 { 00830 enum { 00831 Cost = 5 * NumTraits<Scalar>::MulCost, 00832 PacketAccess = packet_traits<Scalar>::HasASin 00833 }; 00834 }; 00835 00840 template<typename Scalar> 00841 struct scalar_pow_op { 00842 // FIXME default copy constructors seems bugged with std::complex<> 00843 inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { } 00844 inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {} 00845 inline Scalar operator() (const Scalar& a) const { return numext::pow(a, m_exponent); } 00846 const Scalar m_exponent; 00847 }; 00848 template<typename Scalar> 00849 struct functor_traits<scalar_pow_op<Scalar> > 00850 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; }; 00851 00856 template<typename Scalar> 00857 struct scalar_inverse_mult_op { 00858 scalar_inverse_mult_op(const Scalar& other) : m_other(other) {} 00859 inline Scalar operator() (const Scalar& a) const { return m_other / a; } 00860 template<typename Packet> 00861 inline const Packet packetOp(const Packet& a) const 00862 { return internal::pdiv(pset1<Packet>(m_other),a); } 00863 Scalar m_other; 00864 }; 00865 00870 template<typename Scalar> 00871 struct scalar_inverse_op { 00872 EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op) 00873 inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } 00874 template<typename Packet> 00875 inline const Packet packetOp(const Packet& a) const 00876 { return internal::pdiv(pset1<Packet>(Scalar(1)),a); } 00877 }; 00878 template<typename Scalar> 00879 struct functor_traits<scalar_inverse_op<Scalar> > 00880 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; }; 00881 00886 template<typename Scalar> 00887 struct scalar_square_op { 00888 EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op) 00889 inline Scalar operator() (const Scalar& a) const { return a*a; } 00890 template<typename Packet> 00891 inline const Packet packetOp(const Packet& a) const 00892 { return internal::pmul(a,a); } 00893 }; 00894 template<typename Scalar> 00895 struct functor_traits<scalar_square_op<Scalar> > 00896 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; }; 00897 00902 template<typename Scalar> 00903 struct scalar_cube_op { 00904 EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op) 00905 inline Scalar operator() (const Scalar& a) const { return a*a*a; } 00906 template<typename Packet> 00907 inline const Packet packetOp(const Packet& a) const 00908 { return internal::pmul(a,pmul(a,a)); } 00909 }; 00910 template<typename Scalar> 00911 struct functor_traits<scalar_cube_op<Scalar> > 00912 { enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; }; 00913 00914 // default functor traits for STL functors: 00915 00916 template<typename T> 00917 struct functor_traits<std::multiplies<T> > 00918 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; }; 00919 00920 template<typename T> 00921 struct functor_traits<std::divides<T> > 00922 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; }; 00923 00924 template<typename T> 00925 struct functor_traits<std::plus<T> > 00926 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; }; 00927 00928 template<typename T> 00929 struct functor_traits<std::minus<T> > 00930 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; }; 00931 00932 template<typename T> 00933 struct functor_traits<std::negate<T> > 00934 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; }; 00935 00936 template<typename T> 00937 struct functor_traits<std::logical_or<T> > 00938 { enum { Cost = 1, PacketAccess = false }; }; 00939 00940 template<typename T> 00941 struct functor_traits<std::logical_and<T> > 00942 { enum { Cost = 1, PacketAccess = false }; }; 00943 00944 template<typename T> 00945 struct functor_traits<std::logical_not<T> > 00946 { enum { Cost = 1, PacketAccess = false }; }; 00947 00948 template<typename T> 00949 struct functor_traits<std::greater<T> > 00950 { enum { Cost = 1, PacketAccess = false }; }; 00951 00952 template<typename T> 00953 struct functor_traits<std::less<T> > 00954 { enum { Cost = 1, PacketAccess = false }; }; 00955 00956 template<typename T> 00957 struct functor_traits<std::greater_equal<T> > 00958 { enum { Cost = 1, PacketAccess = false }; }; 00959 00960 template<typename T> 00961 struct functor_traits<std::less_equal<T> > 00962 { enum { Cost = 1, PacketAccess = false }; }; 00963 00964 template<typename T> 00965 struct functor_traits<std::equal_to<T> > 00966 { enum { Cost = 1, PacketAccess = false }; }; 00967 00968 template<typename T> 00969 struct functor_traits<std::not_equal_to<T> > 00970 { enum { Cost = 1, PacketAccess = false }; }; 00971 00972 template<typename T> 00973 struct functor_traits<std::binder2nd<T> > 00974 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; }; 00975 00976 template<typename T> 00977 struct functor_traits<std::binder1st<T> > 00978 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; }; 00979 00980 template<typename T> 00981 struct functor_traits<std::unary_negate<T> > 00982 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; }; 00983 00984 template<typename T> 00985 struct functor_traits<std::binary_negate<T> > 00986 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; }; 00987 00988 #ifdef EIGEN_STDEXT_SUPPORT 00989 00990 template<typename T0,typename T1> 00991 struct functor_traits<std::project1st<T0,T1> > 00992 { enum { Cost = 0, PacketAccess = false }; }; 00993 00994 template<typename T0,typename T1> 00995 struct functor_traits<std::project2nd<T0,T1> > 00996 { enum { Cost = 0, PacketAccess = false }; }; 00997 00998 template<typename T0,typename T1> 00999 struct functor_traits<std::select2nd<std::pair<T0,T1> > > 01000 { enum { Cost = 0, PacketAccess = false }; }; 01001 01002 template<typename T0,typename T1> 01003 struct functor_traits<std::select1st<std::pair<T0,T1> > > 01004 { enum { Cost = 0, PacketAccess = false }; }; 01005 01006 template<typename T0,typename T1> 01007 struct functor_traits<std::unary_compose<T0,T1> > 01008 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; }; 01009 01010 template<typename T0,typename T1,typename T2> 01011 struct functor_traits<std::binary_compose<T0,T1,T2> > 01012 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; }; 01013 01014 #endif // EIGEN_STDEXT_SUPPORT 01015 01016 // allow to add new functors and specializations of functor_traits from outside Eigen. 01017 // this macro is really needed because functor_traits must be specialized after it is declared but before it is used... 01018 #ifdef EIGEN_FUNCTORS_PLUGIN 01019 #include EIGEN_FUNCTORS_PLUGIN 01020 #endif 01021 01022 } // end namespace internal 01023 01024 } // end namespace Eigen 01025 01026 #endif // EIGEN_FUNCTORS_H