$treeview $search $mathjax
Eigen  3.2.5
$projectbrief
$projectbrief
$searchbox

SimplicialCholesky< _MatrixType, _UpLo, _Ordering > Class Template Reference
[SparseCholesky module]

Inheritance diagram for SimplicialCholesky< _MatrixType, _UpLo, _Ordering >:

List of all members.

Public Member Functions

void analyzePattern (const MatrixType &a)
SimplicialCholeskycompute (const MatrixType &matrix)
void factorize (const MatrixType &a)
ComputationInfo info () const
 Reports whether previous computation was successful.
const PermutationMatrix
< Dynamic, Dynamic, Index > & 
permutationP () const
const PermutationMatrix
< Dynamic, Dynamic, Index > & 
permutationPinv () const
SimplicialCholesky
< _MatrixType, _UpLo,
_Ordering > & 
setShift (const RealScalar &offset, const RealScalar &scale=1)
const
internal::sparse_solve_retval
< SimplicialCholeskyBase, Rhs > 
solve (const SparseMatrixBase< Rhs > &b) const
const internal::solve_retval
< SimplicialCholeskyBase, Rhs > 
solve (const MatrixBase< Rhs > &b) const

Protected Member Functions

void compute (const MatrixType &matrix)

Detailed Description

template<typename _MatrixType, int _UpLo, typename _Ordering>
class Eigen::SimplicialCholesky< _MatrixType, _UpLo, _Ordering >

Deprecated:
use SimplicialLDLT or class SimplicialLLT
See also:
class SimplicialLDLT, class SimplicialLLT

Member Function Documentation

void analyzePattern ( const MatrixType &  a  )  [inline]

Performs a symbolic decomposition on the sparcity of matrix.

This function is particularly useful when solving for several problems having the same structure.

See also:
factorize()
void compute ( const MatrixType &  matrix  )  [inline, protected, inherited]

Computes the sparse Cholesky decomposition of matrix

SimplicialCholesky& compute ( const MatrixType &  matrix  )  [inline]

Computes the sparse Cholesky decomposition of matrix

void factorize ( const MatrixType &  a  )  [inline]

Performs a numeric decomposition of matrix

The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.

See also:
analyzePattern()
ComputationInfo info (  )  const [inline, inherited]

Reports whether previous computation was successful.

Returns:
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.
const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP (  )  const [inline, inherited]
Returns:
the permutation P
See also:
permutationPinv()
const PermutationMatrix<Dynamic,Dynamic,Index>& permutationPinv (  )  const [inline, inherited]
Returns:
the inverse P^-1 of the permutation P
See also:
permutationP()
SimplicialCholesky< _MatrixType, _UpLo, _Ordering > & setShift ( const RealScalar &  offset,
const RealScalar &  scale = 1 
) [inline, inherited]

Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization.

During the numerical factorization, the diagonal coefficients are transformed by the following linear model:
d_ii = offset + scale * d_ii

The default is the identity transformation with offset=0, and scale=1.

Returns:
a reference to *this.
const internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs> solve ( const SparseMatrixBase< Rhs > &  b  )  const [inline, inherited]
Returns:
the solution x of $ A x = b $ using the current decomposition of A.
See also:
compute()
const internal::solve_retval<SimplicialCholeskyBase, Rhs> solve ( const MatrixBase< Rhs > &  b  )  const [inline, inherited]
Returns:
the solution x of $ A x = b $ using the current decomposition of A.
See also:
compute()

The documentation for this class was generated from the following file: