$treeview $search $mathjax
Eigen  3.2.5
$projectbrief
$projectbrief
$searchbox

ArrayWrapper< ExpressionType > Class Template Reference
[Core module]

Expression of a mathematical vector or matrix as an array object. More...

Inheritance diagram for ArrayWrapper< ExpressionType >:

List of all members.

Public Types

typedef internal::traits
< ArrayWrapper< ExpressionType >
>::Index 
Index
 The type of indices.

Public Member Functions

const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
abs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
abs2 () const
const CwiseUnaryOp
< internal::scalar_acos_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
acos () const
const CwiseUnaryOp
< internal::scalar_asin_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
asin () const
const CwiseBinaryOp
< CustomBinaryOp, const
ArrayWrapper< ExpressionType >
, const OtherDerived > 
binaryExpr (const Eigen::ArrayBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
const Block< const
ArrayWrapper< ExpressionType >
, BlockRows, BlockCols > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
Block< ArrayWrapper
< ExpressionType >, BlockRows,
BlockCols > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols)
const Block< const
ArrayWrapper< ExpressionType >
, BlockRows, BlockCols > 
block (Index startRow, Index startCol) const
Block< ArrayWrapper
< ExpressionType >, BlockRows,
BlockCols > 
block (Index startRow, Index startCol)
const Block< const
ArrayWrapper< ExpressionType > > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
Block< ArrayWrapper
< ExpressionType > > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols)
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
bottomLeftCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
bottomLeftCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
bottomLeftCorner () const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
bottomLeftCorner ()
const Block< const
ArrayWrapper< ExpressionType > > 
bottomLeftCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType > > 
bottomLeftCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
bottomRightCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
bottomRightCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
bottomRightCorner () const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
bottomRightCorner ()
const Block< const
ArrayWrapper< ExpressionType > > 
bottomRightCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType > > 
bottomRightCorner (Index cRows, Index cCols)
ConstNRowsBlockXpr< N >::Type bottomRows (Index n=N) const
NRowsBlockXpr< N >::Type bottomRows (Index n=N)
ConstRowsBlockXpr bottomRows (Index n) const
RowsBlockXpr bottomRows (Index n)
internal::cast_return_type
< ArrayWrapper< ExpressionType >
, const CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< ArrayWrapper< ExpressionType >
>::Scalar, NewType >, const
ArrayWrapper< ExpressionType >
> >::type 
cast () const
ConstColXpr col (Index i) const
ColXpr col (Index i)
ConjugateReturnType conjugate () const
const CwiseUnaryOp
< internal::scalar_cos_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cos () const
const CwiseUnaryOp
< internal::scalar_cube_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cube () const
const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cwiseAbs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cwiseAbs2 () const
const CwiseScalarEqualReturnType cwiseEqual (const Scalar &s) const
const CwiseBinaryOp
< std::equal_to< Scalar >
, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseEqual (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cwiseInverse () const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
ConstantReturnType > 
cwiseMax (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseMax (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
ConstantReturnType > 
cwiseMin (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseMin (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseNotEqual (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_product_op
< typename ArrayWrapper
< ExpressionType >::Scalar,
typename OtherDerived::Scalar >
, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseProduct (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseQuotient (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cwiseSqrt () const
EvalReturnType eval () const
const CwiseUnaryOp
< internal::scalar_exp_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
exp () const
ConstFixedSegmentReturnType< N >
::Type 
head (Index n=N) const
FixedSegmentReturnType< N >::Type head (Index n=N)
ConstSegmentReturnType head (Index n) const
SegmentReturnType head (Index n)
NonConstImagReturnType imag ()
const ImagReturnType imag () const
Index innerSize () const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
inverse () const
ConstNColsBlockXpr< N >::Type leftCols (Index n=N) const
NColsBlockXpr< N >::Type leftCols (Index n=N)
ConstColsBlockXpr leftCols (Index n) const
ColsBlockXpr leftCols (Index n)
const CwiseUnaryOp
< internal::scalar_log_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
log () const
MatrixWrapper< ArrayWrapper
< ExpressionType > > 
matrix ()
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
CwiseNullaryOp
< internal::scalar_constant_op
< Scalar >, PlainObject > > 
max (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
max (const Eigen::ArrayBase< OtherDerived > &other) const
ConstNColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N) const
NColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N)
ConstColsBlockXpr middleCols (Index startCol, Index numCols) const
ColsBlockXpr middleCols (Index startCol, Index numCols)
ConstNRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N) const
NRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N)
ConstRowsBlockXpr middleRows (Index startRow, Index n) const
RowsBlockXpr middleRows (Index startRow, Index n)
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
CwiseNullaryOp
< internal::scalar_constant_op
< Scalar >, PlainObject > > 
min (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
min (const Eigen::ArrayBase< OtherDerived > &other) const
Index nonZeros () const
const CwiseBinaryOp
< internal::scalar_boolean_and_op,
const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator&& (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_product_op
< typename ArrayWrapper
< ExpressionType >::Scalar,
typename OtherDerived::Scalar >
, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator* (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const ArrayWrapper
< ExpressionType > > 
operator* (const std::complex< Scalar > &scalar) const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const CwiseUnaryOp
< internal::scalar_add_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
operator+ (const Scalar &scalar) const
const CwiseBinaryOp
< internal::scalar_sum_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator+ (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_add_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
operator- (const Scalar &scalar) const
const CwiseBinaryOp
< internal::scalar_difference_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator- (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< ArrayWrapper< ExpressionType >
>::Scalar >, const
ArrayWrapper< ExpressionType > > 
operator- () const
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator/ (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< ArrayWrapper< ExpressionType >
>::Scalar >, const
ArrayWrapper< ExpressionType > > 
operator/ (const Scalar &scalar) const
const CwiseBinaryOp
< internal::scalar_boolean_or_op,
const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator|| (const Eigen::ArrayBase< OtherDerived > &other) const
Index outerSize () const
const CwiseUnaryOp
< internal::scalar_pow_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
pow (const Scalar &exponent) const
NonConstRealReturnType real ()
RealReturnType real () const
void resize (Index nbRows, Index nbCols)
void resize (Index newSize)
ConstNColsBlockXpr< N >::Type rightCols (Index n=N) const
NColsBlockXpr< N >::Type rightCols (Index n=N)
ConstColsBlockXpr rightCols (Index n) const
ColsBlockXpr rightCols (Index n)
ConstRowXpr row (Index i) const
RowXpr row (Index i)
ConstFixedSegmentReturnType< N >
::Type 
segment (Index start, Index n=N) const
FixedSegmentReturnType< N >::Type segment (Index start, Index n=N)
ConstSegmentReturnType segment (Index start, Index n) const
SegmentReturnType segment (Index start, Index n)
const CwiseUnaryOp
< internal::scalar_sin_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
sin () const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
sqrt () const
const CwiseUnaryOp
< internal::scalar_square_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
square () const
void swap (PlainObjectBase< OtherDerived > &other)
void swap (const DenseBase< OtherDerived > &other, int=OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
ConstFixedSegmentReturnType< N >
::Type 
tail (Index n=N) const
FixedSegmentReturnType< N >::Type tail (Index n=N)
ConstSegmentReturnType tail (Index n) const
SegmentReturnType tail (Index n)
const CwiseUnaryOp
< internal::scalar_tan_op
< Scalar >, ArrayWrapper
< ExpressionType > > 
tan () const
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
topLeftCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
topLeftCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
topLeftCorner () const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
topLeftCorner ()
const Block< const
ArrayWrapper< ExpressionType > > 
topLeftCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType > > 
topLeftCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
topRightCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
topRightCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
topRightCorner () const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
topRightCorner ()
const Block< const
ArrayWrapper< ExpressionType > > 
topRightCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType > > 
topRightCorner (Index cRows, Index cCols)
ConstNRowsBlockXpr< N >::Type topRows (Index n=N) const
NRowsBlockXpr< N >::Type topRows (Index n=N)
ConstRowsBlockXpr topRows (Index n) const
RowsBlockXpr topRows (Index n)
const CwiseUnaryOp
< CustomUnaryOp, const
ArrayWrapper< ExpressionType > > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
const CwiseUnaryView
< CustomViewOp, const
ArrayWrapper< ExpressionType > > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
CoeffReturnType value () const

Detailed Description

template<typename ExpressionType>
class Eigen::ArrayWrapper< ExpressionType >

Expression of a mathematical vector or matrix as an array object.

This class is the return type of MatrixBase::array(), and most of the time this is the only way it is use.

See also:
MatrixBase::array(), class MatrixWrapper

Member Typedef Documentation

typedef internal::traits<ArrayWrapper< ExpressionType > >::Index Index [inherited]

The type of indices.

To change this, #define the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE.

See also:
Preprocessor directives.

Member Function Documentation

const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const ArrayWrapper< ExpressionType > > abs (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise absolute value of *this

Example:

Array3d v(1,-2,-3);
cout << v.abs() << endl;

Output:

1
2
3
See also:
abs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const ArrayWrapper< ExpressionType > > abs2 (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise squared absolute value of *this

Example:

Array3d v(1,-2,-3);
cout << v.abs2() << endl;

Output:

1
4
9
See also:
abs(), square()
const CwiseUnaryOp<internal::scalar_acos_op<Scalar>, const ArrayWrapper< ExpressionType > > acos (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise arc cosine of *this.

Example:

Array3d v(0, sqrt(2.)/2, 1);
cout << v.acos() << endl;

Output:

 1.57
0.785
    0
See also:
cos(), asin()
const CwiseUnaryOp<internal::scalar_asin_op<Scalar>, const ArrayWrapper< ExpressionType > > asin (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise arc sine of *this.

Example:

Array3d v(0, sqrt(2.)/2, 1);
cout << v.asin() << endl;

Output:

    0
0.785
 1.57
See also:
sin(), acos()
const CwiseBinaryOp<CustomBinaryOp, const ArrayWrapper< ExpressionType > , const OtherDerived> binaryExpr ( const Eigen::ArrayBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const [inline, inherited]
Returns:
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
  EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
  typedef complex<Scalar> result_type;
  complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
  cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
  return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See also:
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
const Block<const ArrayWrapper< ExpressionType > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const [inline, inherited]

This is the const version of block<>(Index, Index, Index, Index).

Block<ArrayWrapper< ExpressionType > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) [inline, inherited]
Returns:
an expression of a block in *this.
Template Parameters:
BlockRows number of rows in block as specified at compile-time
BlockCols number of columns in block as specified at compile-time
Parameters:
startRow the first row in the block
startCol the first column in the block
blockRows number of rows in block as specified at run-time
blockCols number of columns in block as specified at run-time

This function is mainly useful for blocks where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, blockRows should equal BlockRows unless BlockRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol 
) const [inline, inherited]

This is the const version of block<>(Index, Index).

Block<ArrayWrapper< ExpressionType > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol 
) [inline, inherited]
Returns:
a fixed-size expression of a block in *this.

The template parameters BlockRows and BlockCols are the number of rows and columns in the block.

Parameters:
startRow the first row in the block
startCol the first column in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl;
m.block<2,2>(1,1).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block<2,2>(1,1):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note:
since block is a templated member, the keyword template has to be used if the matrix type is also a template parameter:
 m.template block<3,3>(1,1); 
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > > block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const [inline, inherited]

This is the const version of block(Index,Index,Index,Index).

Block<ArrayWrapper< ExpressionType > > block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a block in *this.
Parameters:
startRow the first row in the block
startCol the first column in the block
blockRows the number of rows in the block
blockCols the number of columns in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl;
m.block(1, 1, 2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block(1, 1, 2, 2):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size matrix, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> bottomLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomLeftCorner<int, int>(Index, Index).

Block<ArrayWrapper< ExpressionType > , CRows, CCols> bottomLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
an expression of a bottom-left corner of *this.
Template Parameters:
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters:
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomLeftCorner<2,Dynamic>(2,2) << endl;
m.bottomLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,Dynamic>(2,2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> bottomLeftCorner (  )  const [inline, inherited]

This is the const version of bottomLeftCorner<int, int>().

Block<ArrayWrapper< ExpressionType > , CRows, CCols> bottomLeftCorner (  )  [inline, inherited]
Returns:
an expression of a fixed-size bottom-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,2>():" << endl;
cout << m.bottomLeftCorner<2,2>() << endl;
m.bottomLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,2>():
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > > bottomLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomLeftCorner(Index, Index).

Block<ArrayWrapper< ExpressionType > > bottomLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a bottom-left corner of *this.
Parameters:
cRows the number of rows in the corner
cCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner(2, 2):" << endl;
cout << m.bottomLeftCorner(2, 2) << endl;
m.bottomLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner(2, 2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> bottomRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomRightCorner<int, int>(Index, Index).

Block<ArrayWrapper< ExpressionType > , CRows, CCols> bottomRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
an expression of a bottom-right corner of *this.
Template Parameters:
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters:
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomRightCorner<2,Dynamic>(2,2) << endl;
m.bottomRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,Dynamic>(2,2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also:
class Block
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> bottomRightCorner (  )  const [inline, inherited]

This is the const version of bottomRightCorner<int, int>().

Block<ArrayWrapper< ExpressionType > , CRows, CCols> bottomRightCorner (  )  [inline, inherited]
Returns:
an expression of a fixed-size bottom-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,2>():" << endl;
cout << m.bottomRightCorner<2,2>() << endl;
m.bottomRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,2>():
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > > bottomRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomRightCorner(Index, Index).

Block<ArrayWrapper< ExpressionType > > bottomRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a bottom-right corner of *this.
Parameters:
cRows the number of rows in the corner
cCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner(2, 2):" << endl;
cout << m.bottomRightCorner(2, 2) << endl;
m.bottomRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner(2, 2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type bottomRows ( Index  n = N  )  const [inline, inherited]

This is the const version of bottomRows<int>().

NRowsBlockXpr<N>::Type bottomRows ( Index  n = N  )  [inline, inherited]
Returns:
a block consisting of the bottom rows of *this.
Template Parameters:
N the number of rows in the block as specified at compile-time
Parameters:
n the number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows<2>():" << endl;
cout << a.bottomRows<2>() << endl;
a.bottomRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows<2>():
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr bottomRows ( Index  n  )  const [inline, inherited]

This is the const version of bottomRows(Index).

RowsBlockXpr bottomRows ( Index  n  )  [inline, inherited]
Returns:
a block consisting of the bottom rows of *this.
Parameters:
n the number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows(2):" << endl;
cout << a.bottomRows(2) << endl;
a.bottomRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows(2):
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also:
class Block, block(Index,Index,Index,Index)
internal::cast_return_type<ArrayWrapper< ExpressionType > ,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<ArrayWrapper< ExpressionType > >::Scalar, NewType>, const ArrayWrapper< ExpressionType > > >::type cast (  )  const [inline, inherited]
Returns:
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also:
class CwiseUnaryOp
ConstColXpr col ( Index  i  )  const [inline, inherited]

This is the const version of col().

ColXpr col ( Index  i  )  [inline, inherited]
Returns:
an expression of the i-th column of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.col(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 4 0
0 5 0
0 6 1
See also:
row(), class Block
ConjugateReturnType conjugate (  )  const [inline, inherited]
Returns:
an expression of the complex conjugate of *this.
See also:
adjoint()
const CwiseUnaryOp<internal::scalar_cos_op<Scalar>, const ArrayWrapper< ExpressionType > > cos (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise cosine of *this.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.cos() << endl;

Output:

      -1
6.12e-17
     0.5
See also:
sin(), acos()
const CwiseUnaryOp<internal::scalar_cube_op<Scalar>, const ArrayWrapper< ExpressionType > > cube (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise cube of *this.

Example:

Array3d v(2,3,4);
cout << v.cube() << endl;

Output:

 8
27
64
See also:
square(), pow()
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const ArrayWrapper< ExpressionType > > cwiseAbs (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See also:
cwiseAbs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const ArrayWrapper< ExpressionType > > cwiseAbs2 (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See also:
cwiseAbs()
const CwiseScalarEqualReturnType cwiseEqual ( const Scalar &  s  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise == operator of *this and a scalar s
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also:
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseBinaryOp<std::equal_to<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseEqual ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise == operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See also:
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const ArrayWrapper< ExpressionType > > cwiseInverse (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,   
     3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

  0.5     2     1
0.333     4     1
See also:
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const ArrayWrapper< ExpressionType > , const ConstantReturnType> cwiseMax ( const Scalar &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseMax ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const ArrayWrapper< ExpressionType > , const ConstantReturnType> cwiseMin ( const Scalar &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseMin ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See also:
class CwiseBinaryOp, max()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseNotEqual ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise != operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See also:
cwiseEqual(), isApprox(), isMuchSmallerThan()
const CwiseBinaryOp<internal::scalar_product_op<typename ArrayWrapper< ExpressionType > ::Scalar, typename OtherDerived ::Scalar >, const ArrayWrapper< ExpressionType > , const OtherDerived > cwiseProduct ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See also:
class CwiseBinaryOp, cwiseAbs2
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseQuotient ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

 0.5
 1.5
1.33
See also:
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const ArrayWrapper< ExpressionType > > cwiseSqrt (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

   1
1.41
   2
See also:
cwisePow(), cwiseSquare()
EvalReturnType eval (  )  const [inline, inherited]
Returns:
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

const CwiseUnaryOp<internal::scalar_exp_op<Scalar>, const ArrayWrapper< ExpressionType > > exp (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise exponential of *this.

Example:

Array3d v(1,2,3);
cout << v.exp() << endl;

Output:

2.72
7.39
20.1
See also:
pow(), log(), sin(), cos()
ConstFixedSegmentReturnType<N>::Type head ( Index  n = N  )  const [inline, inherited]

This is the const version of head<int>().

FixedSegmentReturnType<N>::Type head ( Index  n = N  )  [inline, inherited]
Returns:
a fixed-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters:
N the number of coefficients in the segment as specified at compile-time
Parameters:
n the number of coefficients in the segment as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head<2>() << endl;
v.head<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
See also:
class Block
ConstSegmentReturnType head ( Index  n  )  const [inline, inherited]

This is the const version of head(Index).

SegmentReturnType head ( Index  n  )  [inline, inherited]
Returns:
a dynamic-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
n the number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head(2) << endl;
v.head(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
NonConstImagReturnType imag (  )  [inline, inherited]
Returns:
a non const expression of the imaginary part of *this.
See also:
real()
const ImagReturnType imag (  )  const [inline, inherited]
Returns:
an read-only expression of the imaginary part of *this.
See also:
real()
Index innerSize (  )  const [inline, inherited]
Returns:
the inner size.
Note:
For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension with respect to the storage order, i.e., the number of rows for a column-major matrix, and the number of columns for a row-major matrix.
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const ArrayWrapper< ExpressionType > > inverse (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise inverse of *this.

Example:

Array3d v(2,3,4);
cout << v.inverse() << endl;

Output:

  0.5
0.333
 0.25
See also:
operator/(), operator*()
ConstNColsBlockXpr<N>::Type leftCols ( Index  n = N  )  const [inline, inherited]

This is the const version of leftCols<int>().

NColsBlockXpr<N>::Type leftCols ( Index  n = N  )  [inline, inherited]
Returns:
a block consisting of the left columns of *this.
Template Parameters:
N the number of columns in the block as specified at compile-time
Parameters:
n the number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols<2>():" << endl;
cout << a.leftCols<2>() << endl;
a.leftCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols<2>():
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr leftCols ( Index  n  )  const [inline, inherited]

This is the const version of leftCols(Index).

ColsBlockXpr leftCols ( Index  n  )  [inline, inherited]
Returns:
a block consisting of the left columns of *this.
Parameters:
n the number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols(2):" << endl;
cout << a.leftCols(2) << endl;
a.leftCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols(2):
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
const CwiseUnaryOp<internal::scalar_log_op<Scalar>, const ArrayWrapper< ExpressionType > > log (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise logarithm of *this.

Example:

Array3d v(1,2,3);
cout << v.log() << endl;

Output:

    0
0.693
  1.1
See also:
exp()
MatrixWrapper<ArrayWrapper< ExpressionType > > matrix (  )  [inline, inherited]
Returns:
an Matrix expression of this array
See also:
MatrixBase::array()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const ArrayWrapper< ExpressionType > , const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > max ( const Scalar &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and scalar other
See also:
min()
const CwiseBinaryOp< internal::scalar_max_op <Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> max ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and other

Example:

Array3d v(2,3,4), w(4,2,3);
cout << v.max(w) << endl;

Output:

4
3
4
See also:
min()
ConstNColsBlockXpr<N>::Type middleCols ( Index  startCol,
Index  n = N 
) const [inline, inherited]

This is the const version of middleCols<int>().

NColsBlockXpr<N>::Type middleCols ( Index  startCol,
Index  n = N 
) [inline, inherited]
Returns:
a block consisting of a range of columns of *this.
Template Parameters:
N the number of columns in the block as specified at compile-time
Parameters:
startCol the index of the first column in the block
n the number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(:,1..3) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr middleCols ( Index  startCol,
Index  numCols 
) const [inline, inherited]

This is the const version of middleCols(Index,Index).

ColsBlockXpr middleCols ( Index  startCol,
Index  numCols 
) [inline, inherited]
Returns:
a block consisting of a range of columns of *this.
Parameters:
startCol the index of the first column in the block
numCols the number of columns in the block

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type middleRows ( Index  startRow,
Index  n = N 
) const [inline, inherited]

This is the const version of middleRows<int>().

NRowsBlockXpr<N>::Type middleRows ( Index  startRow,
Index  n = N 
) [inline, inherited]
Returns:
a block consisting of a range of rows of *this.
Template Parameters:
N the number of rows in the block as specified at compile-time
Parameters:
startRow the index of the first row in the block
n the number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-2 -3  3  3 -5
 6  6 -3  5 -8
 6 -5  0 -8  6
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr middleRows ( Index  startRow,
Index  n 
) const [inline, inherited]

This is the const version of middleRows(Index,Index).

RowsBlockXpr middleRows ( Index  startRow,
Index  n 
) [inline, inherited]
Returns:
a block consisting of a range of rows of *this.
Parameters:
startRow the index of the first row in the block
n the number of rows in the block

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(2..3,:) =
 6  6 -3  5 -8
 6 -5  0 -8  6
See also:
class Block, block(Index,Index,Index,Index)
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const ArrayWrapper< ExpressionType > , const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > min ( const Scalar &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and scalar other
See also:
max()
const CwiseBinaryOp< internal::scalar_min_op <Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> min ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and other

Example:

Array3d v(2,3,4), w(4,2,3);
cout << v.min(w) << endl;

Output:

2
2
3
See also:
max()
Index nonZeros (  )  const [inline, inherited]
Returns:
the number of nonzero coefficients which is in practice the number of stored coefficients.
const CwiseBinaryOp<internal::scalar_boolean_and_op, const ArrayWrapper< ExpressionType > , const OtherDerived> operator&& ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise && operator of *this and other
Warning:
this operator is for expression of bool only.

Example:

Array3d v(-1,2,1), w(-3,2,3);
cout << ((v<w) && (v<0)) << endl;

Output:

0
0
0
See also:
operator||(), select()
const CwiseBinaryOp<internal::scalar_product_op<typename ArrayWrapper< ExpressionType > ::Scalar, typename OtherDerived ::Scalar >, const ArrayWrapper< ExpressionType > , const OtherDerived > operator* ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient wise product of *this and other
See also:
MatrixBase::cwiseProduct
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const ArrayWrapper< ExpressionType > > operator* ( const std::complex< Scalar > &  scalar  )  const [inline, inherited]

Overloaded for efficient real matrix times complex scalar value

const ScalarMultipleReturnType operator* ( const Scalar &  scalar  )  const [inline, inherited]
Returns:
an expression of *this scaled by the scalar factor scalar
const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const ArrayWrapper< ExpressionType > > operator+ ( const Scalar &  scalar  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise < operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v<w) << endl;

Output:

1
0
0
See also:
all(), any(), operator>(), operator<=()
Returns:
an expression of the coefficient-wise <= operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v<=w) << endl;

Output:

1
1
0
See also:
all(), any(), operator>=(), operator<()
Returns:
an expression of the coefficient-wise > operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v>w) << endl;

Output:

0
0
1
See also:
all(), any(), operator>=(), operator<()
Returns:
an expression of the coefficient-wise >= operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v>=w) << endl;

Output:

0
1
1
See also:
all(), any(), operator>(), operator<=()
Returns:
an expression of the coefficient-wise == operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v==w) << endl;

Output:

0
1
0
See also:
all(), any(), isApprox(), isMuchSmallerThan()
Returns:
an expression of the coefficient-wise != operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v!=w) << endl;

Output:

1
0
1
See also:
all(), any(), isApprox(), isMuchSmallerThan()
Returns:
an expression of *this with each coeff incremented by the constant scalar

Example:

Array3d v(1,2,3);
cout << v+5 << endl;

Output:

6
7
8
See also:
operator+=(), operator-()
const CwiseBinaryOp< internal::scalar_sum_op <Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> operator+ ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the sum of *this and other
Note:
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also:
class CwiseBinaryOp, operator+=()
const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const ArrayWrapper< ExpressionType > > operator- ( const Scalar &  scalar  )  const [inline, inherited]
Returns:
an expression of *this with each coeff decremented by the constant scalar

Example:

Array3d v(1,2,3);
cout << v-5 << endl;

Output:

-4
-3
-2
See also:
operator+(), operator-=()
const CwiseBinaryOp< internal::scalar_difference_op <Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> operator- ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the difference of *this and other
Note:
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also:
class CwiseBinaryOp, operator-=()
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<ArrayWrapper< ExpressionType > >::Scalar>, const ArrayWrapper< ExpressionType > > operator- (  )  const [inline, inherited]
Returns:
an expression of the opposite of *this
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> operator/ ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient wise quotient of *this and other
See also:
MatrixBase::cwiseQuotient
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<ArrayWrapper< ExpressionType > >::Scalar>, const ArrayWrapper< ExpressionType > > operator/ ( const Scalar &  scalar  )  const [inline, inherited]
Returns:
an expression of *this divided by the scalar value scalar
const CwiseBinaryOp<internal::scalar_boolean_or_op, const ArrayWrapper< ExpressionType > , const OtherDerived> operator|| ( const Eigen::ArrayBase< OtherDerived > &  other  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise || operator of *this and other
Warning:
this operator is for expression of bool only.

Example:

Array3d v(-1,2,1), w(-3,2,3);
cout << ((v<w) || (v<0)) << endl;

Output:

1
0
1
See also:
operator&&(), select()
Index outerSize (  )  const [inline, inherited]
Returns:
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
 rows()==1 || cols()==1 
See also:
rows(), cols(), IsVectorAtCompileTime.
Returns:
the outer size.
Note:
For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension with respect to the storage order, i.e., the number of columns for a column-major matrix, and the number of rows for a row-major matrix.
const CwiseUnaryOp<internal::scalar_pow_op<Scalar>, const ArrayWrapper< ExpressionType > > pow ( const Scalar &  exponent  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise power of *this to the given exponent.

Example:

Array3d v(8,27,64);
cout << v.pow(0.333333) << endl;

Output:

2
3
4
See also:
exp(), log()
NonConstRealReturnType real (  )  [inline, inherited]
Returns:
a non const expression of the real part of *this.
See also:
imag()
RealReturnType real (  )  const [inline, inherited]
Returns:
a read-only expression of the real part of *this.
See also:
imag()
void resize ( Index  nbRows,
Index  nbCols 
) [inline]

Forwards the resizing request to the nested expression

See also:
DenseBase::resize(Index,Index)

Reimplemented from DenseBase< ArrayWrapper< ExpressionType > >.

void resize ( Index  newSize  )  [inline]

Forwards the resizing request to the nested expression

See also:
DenseBase::resize(Index)

Reimplemented from DenseBase< ArrayWrapper< ExpressionType > >.

ConstNColsBlockXpr<N>::Type rightCols ( Index  n = N  )  const [inline, inherited]

This is the const version of rightCols<int>().

NColsBlockXpr<N>::Type rightCols ( Index  n = N  )  [inline, inherited]
Returns:
a block consisting of the right columns of *this.
Template Parameters:
N the number of columns in the block as specified at compile-time
Parameters:
n the number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols<2>():" << endl;
cout << a.rightCols<2>() << endl;
a.rightCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols<2>():
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr rightCols ( Index  n  )  const [inline, inherited]

This is the const version of rightCols(Index).

ColsBlockXpr rightCols ( Index  n  )  [inline, inherited]
Returns:
a block consisting of the right columns of *this.
Parameters:
n the number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols(2):" << endl;
cout << a.rightCols(2) << endl;
a.rightCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols(2):
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstRowXpr row ( Index  i  )  const [inline, inherited]

This is the const version of row().

RowXpr row ( Index  i  )  [inline, inherited]
Returns:
an expression of the i-th row of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.row(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 0 0
4 5 6
0 0 1
See also:
col(), class Block
ConstFixedSegmentReturnType<N>::Type segment ( Index  start,
Index  n = N 
) const [inline, inherited]

This is the const version of segment<int>(Index).

FixedSegmentReturnType<N>::Type segment ( Index  start,
Index  n = N 
) [inline, inherited]
Returns:
a fixed-size expression of a segment (i.e. a vector block) in *this

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters:
N the number of coefficients in the segment as specified at compile-time
Parameters:
start the index of the first element in the segment
n the number of coefficients in the segment as specified at compile-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl;
v.segment<2>(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment<2>(1):
-2  6
Now the vector v is:
 7 -2  0  0
See also:
class Block
ConstSegmentReturnType segment ( Index  start,
Index  n 
) const [inline, inherited]

This is the const version of segment(Index,Index).

SegmentReturnType segment ( Index  start,
Index  n 
) [inline, inherited]
Returns:
a dynamic-size expression of a segment (i.e. a vector block) in *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
start the first coefficient in the segment
n the number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment(1, 2):" << endl << v.segment(1, 2) << endl;
v.segment(1, 2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment(1, 2):
-2  6
Now the vector v is:
7 0 0 6
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, segment(Index)
const CwiseUnaryOp<internal::scalar_sin_op<Scalar>, const ArrayWrapper< ExpressionType > > sin (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise sine of *this.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.sin() << endl;

Output:

1.22e-16
       1
   0.866
See also:
cos(), asin()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const ArrayWrapper< ExpressionType > > sqrt (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise square root of *this.

Example:

Array3d v(1,2,4);
cout << v.sqrt() << endl;

Output:

   1
1.41
   2
See also:
pow(), square()
const CwiseUnaryOp<internal::scalar_square_op<Scalar>, const ArrayWrapper< ExpressionType > > square (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise square of *this.

Example:

Array3d v(2,3,4);
cout << v.square() << endl;

Output:

 4
 9
16
See also:
operator/(), operator*(), abs2()
void swap ( PlainObjectBase< OtherDerived > &  other  )  [inline, inherited]

swaps *this with the matrix or array other.

void swap ( const DenseBase< OtherDerived > &  other,
int  = OtherDerived::ThisConstantIsPrivateInPlainObjectBase 
) [inline, inherited]

swaps *this with the expression other.

ConstFixedSegmentReturnType<N>::Type tail ( Index  n = N  )  const [inline, inherited]

This is the const version of tail<int>.

FixedSegmentReturnType<N>::Type tail ( Index  n = N  )  [inline, inherited]
Returns:
a fixed-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters:
N the number of coefficients in the segment as specified at compile-time
Parameters:
n the number of coefficients in the segment as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl;
v.tail<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
See also:
class Block
ConstSegmentReturnType tail ( Index  n  )  const [inline, inherited]

This is the const version of tail(Index).

SegmentReturnType tail ( Index  n  )  [inline, inherited]
Returns:
a dynamic-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
n the number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail(2) << endl;
v.tail(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
const CwiseUnaryOp<internal::scalar_tan_op<Scalar>, ArrayWrapper< ExpressionType > > tan (  )  const [inline, inherited]
Returns:
an expression of the coefficient-wise tan of *this.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.tan() << endl;

Output:

-1.22e-16
 1.63e+16
     1.73
See also:
cos(), sin()
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> topLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topLeftCorner<int, int>(Index, Index).

Block<ArrayWrapper< ExpressionType > , CRows, CCols> topLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
an expression of a top-left corner of *this.
Template Parameters:
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters:
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.topLeftCorner<2,Dynamic>(2,2) << endl;
m.topLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,Dynamic>(2,2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also:
class Block
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> topLeftCorner (  )  const [inline, inherited]

This is the const version of topLeftCorner<int, int>().

Block<ArrayWrapper< ExpressionType > , CRows, CCols> topLeftCorner (  )  [inline, inherited]
Returns:
an expression of a fixed-size top-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,2>():" << endl;
cout << m.topLeftCorner<2,2>() << endl;
m.topLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,2>():
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > > topLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topLeftCorner(Index, Index).

Block<ArrayWrapper< ExpressionType > > topLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a top-left corner of *this.
Parameters:
cRows the number of rows in the corner
cCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner(2, 2):" << endl;
cout << m.topLeftCorner(2, 2) << endl;
m.topLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner(2, 2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> topRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topRightCorner<int, int>(Index, Index).

Block<ArrayWrapper< ExpressionType > , CRows, CCols> topRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
an expression of a top-right corner of *this.
Template Parameters:
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters:
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.topRightCorner<2,Dynamic>(2,2) << endl;
m.topRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,Dynamic>(2,2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> topRightCorner (  )  const [inline, inherited]

This is the const version of topRightCorner<int, int>().

Block<ArrayWrapper< ExpressionType > , CRows, CCols> topRightCorner (  )  [inline, inherited]
Returns:
an expression of a fixed-size top-right corner of *this.
Template Parameters:
CRows the number of rows in the corner
CCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,2>():" << endl;
cout << m.topRightCorner<2,2>() << endl;
m.topRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,2>():
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block<int,int>(Index,Index)
const Block<const ArrayWrapper< ExpressionType > > topRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topRightCorner(Index, Index).

Block<ArrayWrapper< ExpressionType > > topRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a top-right corner of *this.
Parameters:
cRows the number of rows in the corner
cCols the number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner(2, 2):" << endl;
cout << m.topRightCorner(2, 2) << endl;
m.topRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner(2, 2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type topRows ( Index  n = N  )  const [inline, inherited]

This is the const version of topRows<int>().

NRowsBlockXpr<N>::Type topRows ( Index  n = N  )  [inline, inherited]
Returns:
a block consisting of the top rows of *this.
Template Parameters:
N the number of rows in the block as specified at compile-time
Parameters:
n the number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows<2>():" << endl;
cout << a.topRows<2>() << endl;
a.topRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows<2>():
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr topRows ( Index  n  )  const [inline, inherited]

This is the const version of topRows(Index).

RowsBlockXpr topRows ( Index  n  )  [inline, inherited]
Returns:
a block consisting of the top rows of *this.
Parameters:
n the number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows(2):" << endl;
cout << a.topRows(2) << endl;
a.topRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows(2):
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const CwiseUnaryOp<CustomUnaryOp, const ArrayWrapper< ExpressionType > > unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()  )  const [inline, inherited]

Apply a unary operator coefficient-wise.

Parameters:
[in] func Functor implementing the unary operator
Template Parameters:
CustomUnaryOp Type of func
Returns:
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define function to be applied coefficient-wise
double ramp(double x)
{
  if (x > 0)
    return x;
  else 
    return 0;
}

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const ArrayWrapper< ExpressionType > > unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()  )  const [inline, inherited]
Returns:
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp
CoeffReturnType value (  )  const [inline, inherited]
Returns:
the unique coefficient of a 1x1 expression

The documentation for this class was generated from the following file: