Point Cloud Library (PCL)  1.8.1
sac_model_line.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #ifndef PCL_SAMPLE_CONSENSUS_MODEL_LINE_H_
42 #define PCL_SAMPLE_CONSENSUS_MODEL_LINE_H_
43 
44 #include <pcl/sample_consensus/sac_model.h>
45 #include <pcl/sample_consensus/model_types.h>
46 #include <pcl/common/eigen.h>
47 
48 namespace pcl
49 {
50  /** \brief SampleConsensusModelLine defines a model for 3D line segmentation.
51  * The model coefficients are defined as:
52  * - \b point_on_line.x : the X coordinate of a point on the line
53  * - \b point_on_line.y : the Y coordinate of a point on the line
54  * - \b point_on_line.z : the Z coordinate of a point on the line
55  * - \b line_direction.x : the X coordinate of a line's direction
56  * - \b line_direction.y : the Y coordinate of a line's direction
57  * - \b line_direction.z : the Z coordinate of a line's direction
58  *
59  * \author Radu B. Rusu
60  * \ingroup sample_consensus
61  */
62  template <typename PointT>
64  {
65  public:
71 
75 
76  typedef boost::shared_ptr<SampleConsensusModelLine> Ptr;
77 
78  /** \brief Constructor for base SampleConsensusModelLine.
79  * \param[in] cloud the input point cloud dataset
80  * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
81  */
82  SampleConsensusModelLine (const PointCloudConstPtr &cloud, bool random = false)
83  : SampleConsensusModel<PointT> (cloud, random)
84  {
85  model_name_ = "SampleConsensusModelLine";
86  sample_size_ = 2;
87  model_size_ = 6;
88  }
89 
90  /** \brief Constructor for base SampleConsensusModelLine.
91  * \param[in] cloud the input point cloud dataset
92  * \param[in] indices a vector of point indices to be used from \a cloud
93  * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
94  */
96  const std::vector<int> &indices,
97  bool random = false)
98  : SampleConsensusModel<PointT> (cloud, indices, random)
99  {
100  model_name_ = "SampleConsensusModelLine";
101  sample_size_ = 2;
102  model_size_ = 6;
103  }
104 
105  /** \brief Empty destructor */
107 
108  /** \brief Check whether the given index samples can form a valid line model, compute the model coefficients from
109  * these samples and store them internally in model_coefficients_. The line coefficients are represented by a
110  * point and a line direction
111  * \param[in] samples the point indices found as possible good candidates for creating a valid model
112  * \param[out] model_coefficients the resultant model coefficients
113  */
114  bool
115  computeModelCoefficients (const std::vector<int> &samples,
116  Eigen::VectorXf &model_coefficients);
117 
118  /** \brief Compute all squared distances from the cloud data to a given line model.
119  * \param[in] model_coefficients the coefficients of a line model that we need to compute distances to
120  * \param[out] distances the resultant estimated squared distances
121  */
122  void
123  getDistancesToModel (const Eigen::VectorXf &model_coefficients,
124  std::vector<double> &distances);
125 
126  /** \brief Select all the points which respect the given model coefficients as inliers.
127  * \param[in] model_coefficients the coefficients of a line model that we need to compute distances to
128  * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
129  * \param[out] inliers the resultant model inliers
130  */
131  void
132  selectWithinDistance (const Eigen::VectorXf &model_coefficients,
133  const double threshold,
134  std::vector<int> &inliers);
135 
136  /** \brief Count all the points which respect the given model coefficients as inliers.
137  *
138  * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
139  * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
140  * \return the resultant number of inliers
141  */
142  virtual int
143  countWithinDistance (const Eigen::VectorXf &model_coefficients,
144  const double threshold);
145 
146  /** \brief Recompute the line coefficients using the given inlier set and return them to the user.
147  * @note: these are the coefficients of the line model after refinement (e.g. after SVD)
148  * \param[in] inliers the data inliers found as supporting the model
149  * \param[in] model_coefficients the initial guess for the model coefficients
150  * \param[out] optimized_coefficients the resultant recomputed coefficients after optimization
151  */
152  void
153  optimizeModelCoefficients (const std::vector<int> &inliers,
154  const Eigen::VectorXf &model_coefficients,
155  Eigen::VectorXf &optimized_coefficients);
156 
157  /** \brief Create a new point cloud with inliers projected onto the line model.
158  * \param[in] inliers the data inliers that we want to project on the line model
159  * \param[in] model_coefficients the *normalized* coefficients of a line model
160  * \param[out] projected_points the resultant projected points
161  * \param[in] copy_data_fields set to true if we need to copy the other data fields
162  */
163  void
164  projectPoints (const std::vector<int> &inliers,
165  const Eigen::VectorXf &model_coefficients,
166  PointCloud &projected_points,
167  bool copy_data_fields = true);
168 
169  /** \brief Verify whether a subset of indices verifies the given line model coefficients.
170  * \param[in] indices the data indices that need to be tested against the line model
171  * \param[in] model_coefficients the line model coefficients
172  * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
173  */
174  bool
175  doSamplesVerifyModel (const std::set<int> &indices,
176  const Eigen::VectorXf &model_coefficients,
177  const double threshold);
178 
179  /** \brief Return an unique id for this model (SACMODEL_LINE). */
180  inline pcl::SacModel
181  getModelType () const { return (SACMODEL_LINE); }
182 
183  protected:
186 
187  /** \brief Check if a sample of indices results in a good sample of points
188  * indices.
189  * \param[in] samples the resultant index samples
190  */
191  bool
192  isSampleGood (const std::vector<int> &samples) const;
193  };
194 }
195 
196 #ifdef PCL_NO_PRECOMPILE
197 #include <pcl/sample_consensus/impl/sac_model_line.hpp>
198 #endif
199 
200 #endif //#ifndef PCL_SAMPLE_CONSENSUS_MODEL_LINE_H_
SampleConsensusModel< PointT >::PointCloud PointCloud
bool computeModelCoefficients(const std::vector< int > &samples, Eigen::VectorXf &model_coefficients)
Check whether the given index samples can form a valid line model, compute the model coefficients fro...
SampleConsensusModelLine defines a model for 3D line segmentation.
SampleConsensusModel< PointT >::PointCloudPtr PointCloudPtr
SampleConsensusModelLine(const PointCloudConstPtr &cloud, const std::vector< int > &indices, bool random=false)
Constructor for base SampleConsensusModelLine.
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances)
Compute all squared distances from the cloud data to a given line model.
bool doSamplesVerifyModel(const std::set< int > &indices, const Eigen::VectorXf &model_coefficients, const double threshold)
Verify whether a subset of indices verifies the given line model coefficients.
unsigned int model_size_
The number of coefficients in the model.
Definition: sac_model.h:575
SampleConsensusModel< PointT >::PointCloudConstPtr PointCloudConstPtr
virtual int countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold)
Count all the points which respect the given model coefficients as inliers.
SampleConsensusModelLine(const PointCloudConstPtr &cloud, bool random=false)
Constructor for base SampleConsensusModelLine.
SampleConsensusModel represents the base model class.
Definition: sac_model.h:66
std::string model_name_
The model name.
Definition: sac_model.h:534
pcl::PointCloud< PointT >::Ptr PointCloudPtr
Definition: sac_model.h:71
void optimizeModelCoefficients(const std::vector< int > &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients)
Recompute the line coefficients using the given inlier set and return them to the user...
boost::shared_ptr< SampleConsensusModelLine > Ptr
PointCloud represents the base class in PCL for storing collections of 3D points. ...
SacModel
Definition: model_types.h:48
pcl::PointCloud< PointT >::ConstPtr PointCloudConstPtr
Definition: sac_model.h:70
void projectPoints(const std::vector< int > &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true)
Create a new point cloud with inliers projected onto the line model.
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, std::vector< int > &inliers)
Select all the points which respect the given model coefficients as inliers.
pcl::SacModel getModelType() const
Return an unique id for this model (SACMODEL_LINE).
A point structure representing Euclidean xyz coordinates, and the RGB color.
virtual ~SampleConsensusModelLine()
Empty destructor.
bool isSampleGood(const std::vector< int > &samples) const
Check if a sample of indices results in a good sample of points indices.
unsigned int sample_size_
The size of a sample from which the model is computed.
Definition: sac_model.h:572