
My Project

Contents

1 Deprecated List 1

2 Hierarchical Index 3

2.1 Class Hierarchy . 3

3 Class Index 5

3.1 Class List . 5

4 File Index 7

4.1 File List . 7

5 Class Documentation 9

5.1 OGRDataSource Class Reference . 9

5.1.1 Detailed Description . 9

5.2 OGRLayer Class Reference . 10

5.2.1 Detailed Description . 12

5.2.2 Member Function Documentation . 12

5.2.2.1 AlterFieldDefn() . 13

5.2.2.2 begin() . 13

5.2.2.3 CommitTransaction() . 14

5.2.2.4 CreateFeature() . 14

5.2.2.5 CreateField() . 14

5.2.2.6 CreateGeomField() . 15

5.2.2.7 DeleteFeature() . 16

5.2.2.8 DeleteField() . 16

ii CONTENTS

5.2.2.9 Dereference() . 17

5.2.2.10 end() . 17

5.2.2.11 FindFieldIndex() . 17

5.2.2.12 FromHandle() . 18

5.2.2.13 GetExtent() [1/2] . 18

5.2.2.14 GetExtent() [2/2] . 18

5.2.2.15 GetFeature() . 19

5.2.2.16 GetFeatureCount() . 20

5.2.2.17 GetFIDColumn() . 20

5.2.2.18 GetGeometryColumn() . 21

5.2.2.19 GetGeomType() . 21

5.2.2.20 GetLayerDefn() . 22

5.2.2.21 GetName() . 22

5.2.2.22 GetNextFeature() . 23

5.2.2.23 GetRefCount() . 23

5.2.2.24 GetSpatialFilter() . 23

5.2.2.25 GetSpatialRef() . 24

5.2.2.26 GetStyleTable() . 24

5.2.2.27 ICreateFeature() . 24

5.2.2.28 ISetFeature() . 25

5.2.2.29 Reference() . 25

5.2.2.30 ReorderField() . 26

5.2.2.31 ReorderFields() . 26

5.2.2.32 ResetReading() . 27

5.2.2.33 RollbackTransaction() . 27

5.2.2.34 SetAttributeFilter() . 28

5.2.2.35 SetFeature() . 28

5.2.2.36 SetIgnoredFields() . 29

5.2.2.37 SetNextByIndex() . 29

5.2.2.38 SetSpatialFilter() [1/2] . 30

Generated by Doxygen

CONTENTS iii

5.2.2.39 SetSpatialFilter() [2/2] . 30

5.2.2.40 SetSpatialFilterRect() [1/2] . 31

5.2.2.41 SetSpatialFilterRect() [2/2] . 32

5.2.2.42 SetStyleTable() . 32

5.2.2.43 SetStyleTableDirectly() . 33

5.2.2.44 StartTransaction() . 33

5.2.2.45 SyncToDisk() . 34

5.2.2.46 TestCapability() . 34

5.2.2.47 ToHandle() . 35

5.2.3 Friends And Related Function Documentation . 36

5.2.3.1 begin . 36

5.2.3.2 end . 36

5.3 OGRSFDriver Class Reference . 36

5.3.1 Detailed Description . 37

5.4 OGRSFDriverRegistrar Class Reference . 37

5.4.1 Detailed Description . 37

6 File Documentation 39

6.1 ogrsf_frmts.h File Reference . 39

6.1.1 Detailed Description . 39

6.1.2 Function Documentation . 39

6.1.2.1 begin() . 40

6.1.2.2 end() . 40

Index 41

Generated by Doxygen

Chapter 1

Deprecated List

Class OGRDataSource

Class OGRSFDriver

Class OGRSFDriverRegistrar

2 Deprecated List

Generated by Doxygen

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

GDALDataset
OGRDataSource . 9

GDALDriver
OGRSFDriver . 36

GDALMajorObject
OGRLayer . 10

OGRSFDriverRegistrar . 37

4 Hierarchical Index

Generated by Doxygen

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

OGRDataSource . 9
OGRLayer . 10
OGRSFDriver . 36
OGRSFDriverRegistrar . 37

6 Class Index

Generated by Doxygen

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

ogr_attrind.h . ??
ogrsf_frmts.h . 39

8 File Index

Generated by Doxygen

Chapter 5

Class Documentation

5.1 OGRDataSource Class Reference

#include <ogrsf_frmts.h>

Inheritance diagram for OGRDataSource:

OGRDataSource

GDALDataset

5.1.1 Detailed Description

LEGACY class. Use GDALDataset in your new code ! This class may be removed in a later release.

This class represents a data source. A data source potentially consists of many layers (OGRLayer). A data source
normally consists of one, or a related set of files, though the name doesn't have to be a real item in the file system.

When an OGRDataSource is destroyed, all its associated OGRLayers objects are also destroyed.

NOTE: Starting with GDAL 2.0, it is NOT safe to cast the handle of a C function that returns a OGRDataSourceH to
a OGRDataSource∗. If a C++ object is needed, the handle should be cast to GDALDataset∗.

Deprecated

The documentation for this class was generated from the following file:

• ogrsf_frmts.h

10 Class Documentation

5.2 OGRLayer Class Reference

#include <ogrsf_frmts.h>

Inheritance diagram for OGRLayer:

OGRLayer

GDALMajorObject

Public Member Functions

• FeatureIterator begin ()
• FeatureIterator end ()
• virtual OGRGeometry ∗ GetSpatialFilter ()

This method returns the current spatial filter for this layer.

• virtual void SetSpatialFilter (OGRGeometry ∗)

Set a new spatial filter.

• virtual void SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)

Set a new rectangular spatial filter.

• virtual void SetSpatialFilter (int iGeomField, OGRGeometry ∗)

Set a new spatial filter.

• virtual void SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX, double df←↩

MaxY)

Set a new rectangular spatial filter.

• virtual OGRErr SetAttributeFilter (const char ∗)

Set a new attribute query.

• virtual void ResetReading ()=0

Reset feature reading to start on the first feature.

• virtual OGRFeature ∗ GetNextFeature () CPL_WARN_UNUSED_RESULT=0

Fetch the next available feature from this layer.

• virtual OGRErr SetNextByIndex (GIntBig nIndex)

Move read cursor to the nIndex'th feature in the current resultset.

• virtual OGRFeature ∗ GetFeature (GIntBig nFID) CPL_WARN_UNUSED_RESULT

Fetch a feature by its identifier.

• OGRErr SetFeature (OGRFeature ∗poFeature) CPL_WARN_UNUSED_RESULT

Rewrite an existing feature.

• OGRErr CreateFeature (OGRFeature ∗poFeature) CPL_WARN_UNUSED_RESULT

Create and write a new feature within a layer.

• virtual OGRErr DeleteFeature (GIntBig nFID) CPL_WARN_UNUSED_RESULT

Delete feature from layer.

• virtual const char ∗ GetName ()

Return the layer name.

• virtual OGRwkbGeometryType GetGeomType ()

Return the layer geometry type.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()=0

Fetch the schema information for this layer.

• virtual int FindFieldIndex (const char ∗pszFieldName, int bExactMatch)

Generated by Doxygen

5.2 OGRLayer Class Reference 11

Find the index of field in the layer.

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch the spatial reference system for this layer.

• virtual GIntBig GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce=TRUE) CPL_WARN_UNUSED_RESULT

Fetch the extent of this layer.

• virtual OGRErr GetExtent (int iGeomField, OGREnvelope ∗psExtent, int bForce=TRUE) CPL_WARN_UN←↩

USED_RESULT

Fetch the extent of this layer, on the specified geometry field.

• virtual int TestCapability (const char ∗)=0

Test if this layer supported the named capability.

• virtual OGRErr CreateField (OGRFieldDefn ∗poField, int bApproxOK=TRUE)

Create a new field on a layer.

• virtual OGRErr DeleteField (int iField)

Delete an existing field on a layer.

• virtual OGRErr ReorderFields (int ∗panMap)

Reorder all the fields of a layer.

• virtual OGRErr AlterFieldDefn (int iField, OGRFieldDefn ∗poNewFieldDefn, int nFlagsIn)

Alter the definition of an existing field on a layer.

• virtual OGRErr CreateGeomField (OGRGeomFieldDefn ∗poField, int bApproxOK=TRUE)

Create a new geometry field on a layer.

• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

• virtual OGRStyleTable ∗ GetStyleTable ()

Returns layer style table.

• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual OGRErr StartTransaction () CPL_WARN_UNUSED_RESULT

For datasources which support transactions, StartTransaction creates a transaction.

• virtual OGRErr CommitTransaction () CPL_WARN_UNUSED_RESULT

For datasources which support transactions, CommitTransaction commits a transaction.

• virtual OGRErr RollbackTransaction ()

For datasources which support transactions, RollbackTransaction will roll back a datasource to its state before the start
of the current transaction. If no transaction is active, or the rollback fails, will return OGRERR_FAILURE. Datasources
which do not support transactions will always return OGRERR_NONE.

• virtual const char ∗ GetFIDColumn ()

This method returns the name of the underlying database column being used as the FID column, or "" if not supported.

• virtual const char ∗ GetGeometryColumn ()

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

• virtual OGRErr SetIgnoredFields (const char ∗∗papszFields)

Set which fields can be omitted when retrieving features from the layer.

• OGRErr Intersection (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=nullptr,
GDALProgressFunc pfnProgress=nullptr, void ∗pProgressArg=nullptr)

• OGRErr Union (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=nullptr, GD←↩

ALProgressFunc pfnProgress=nullptr, void ∗pProgressArg=nullptr)
• OGRErr SymDifference (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions, G←↩

DALProgressFunc pfnProgress, void ∗pProgressArg)

Generated by Doxygen

12 Class Documentation

• OGRErr Identity (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=nullptr, G←↩

DALProgressFunc pfnProgress=nullptr, void ∗pProgressArg=nullptr)

• OGRErr Update (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=nullptr, G←↩

DALProgressFunc pfnProgress=nullptr, void ∗pProgressArg=nullptr)

• OGRErr Clip (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=nullptr, GDA←↩

LProgressFunc pfnProgress=nullptr, void ∗pProgressArg=nullptr)

• OGRErr Erase (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=nullptr, GD←↩

ALProgressFunc pfnProgress=nullptr, void ∗pProgressArg=nullptr)

• int Reference ()

Increment layer reference count.

• int Dereference ()

Decrement layer reference count.

• int GetRefCount () const

Fetch reference count.

• OGRErr ReorderField (int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer.

Static Public Member Functions

• static OGRLayerH ToHandle (OGRLayer ∗poLayer)

• static OGRLayer ∗ FromHandle (OGRLayerH hLayer)

Protected Member Functions

• virtual OGRErr ISetFeature (OGRFeature ∗poFeature) CPL_WARN_UNUSED_RESULT

Rewrite an existing feature.

• virtual OGRErr ICreateFeature (OGRFeature ∗poFeature) CPL_WARN_UNUSED_RESULT

Create and write a new feature within a layer.

Friends

• FeatureIterator begin (OGRLayer ∗poLayer)

• FeatureIterator end (OGRLayer ∗poLayer)

5.2.1 Detailed Description

This class represents a layer of simple features, with access methods.

5.2.2 Member Function Documentation

Generated by Doxygen

5.2 OGRLayer Class Reference 13

5.2.2.1 AlterFieldDefn()

OGRErr OGRLayer::AlterFieldDefn (

int iField,

OGRFieldDefn ∗ poNewFieldDefn,

int nFlags) [virtual]

Alter the definition of an existing field on a layer.

You must use this to alter the definition of an existing field of a real layer. Internally the OGRFeatureDefn for the
layer will be updated to reflect the altered field. Applications should never modify the OGRFeatureDefn used by a
layer directly.

This method should not be called while there are feature objects in existence that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCAlterFieldDefn
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existing features of the backing file/database should be updated accordingly. Some drivers might
also not support all update flags.

This function is the same as the C function OGR_L_AlterFieldDefn().

Parameters

iField index of the field whose definition must be altered.
poNewFieldDefn new field definition

nFlags combination of ALTER_NAME_FLAG, ALTER_TYPE_FLAG,
ALTER_WIDTH_PRECISION_FLAG, ALTER_NULLABLE_FLAG and
ALTER_DEFAULT_FLAG to indicate which of the name and/or type and/or width and
precision fields and/or nullability from the new field definition must be taken into account.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

5.2.2.2 begin()

FeatureIterator OGRLayer::begin ()

Return begin of feature iterator.

Using this iterator for standard range-based loops is safe, but due to implementation limitations, you shouldn't try to
access (dereference) more than one iterator step at a time, since the OGRFeatureUniquePtr reference is reused.

Only one iterator per layer can be active at a time.

Since

GDAL 2.3

Generated by Doxygen

14 Class Documentation

5.2.2.3 CommitTransaction()

OGRErr OGRLayer::CommitTransaction () [virtual]

For datasources which support transactions, CommitTransaction commits a transaction.

If no transaction is active, or the commit fails, will return OGRERR_FAILURE. Datasources which do not support
transactions will always return OGRERR_NONE.

This function is the same as the C function OGR_L_CommitTransaction().

Returns

OGRERR_NONE on success.

5.2.2.4 CreateFeature()

OGRErr OGRLayer::CreateFeature (

OGRFeature ∗ poFeature)

Create and write a new feature within a layer.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

Starting with GDAL 2.0, drivers should specialize the ICreateFeature() method, since CreateFeature() is no longer
virtual.

This method is the same as the C function OGR_L_CreateFeature().

Parameters

poFeature the feature to write to disk.

Returns

OGRERR_NONE on success.

5.2.2.5 CreateField()

OGRErr OGRLayer::CreateField (

OGRFieldDefn ∗ poField,

int bApproxOK = TRUE) [virtual]

Create a new field on a layer.

Generated by Doxygen

5.2 OGRLayer Class Reference 15

You must use this to create new fields on a real layer. Internally the OGRFeatureDefn for the layer will be updated
to reflect the new field. Applications should never modify the OGRFeatureDefn used by a layer directly.

This method should not be called while there are feature objects in existence that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existing features of the backing file/database should be updated accordingly.

Drivers may or may not support not-null constraints. If they support creating fields with not-null constraints, this is
generally before creating any feature to the layer.

This function is the same as the C function OGR_L_CreateField().

Parameters

poField field definition to write to disk.

bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of the
format driver.

Returns

OGRERR_NONE on success.

5.2.2.6 CreateGeomField()

OGRErr OGRLayer::CreateGeomField (

OGRGeomFieldDefn ∗ poField,

int bApproxOK = TRUE) [virtual]

Create a new geometry field on a layer.

You must use this to create new geometry fields on a real layer. Internally the OGRFeatureDefn for the layer will be
updated to reflect the new field. Applications should never modify the OGRFeatureDefn used by a layer directly.

This method should not be called while there are feature objects in existence that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateGeomField
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existing features of the backing file/database should be updated accordingly.

Drivers may or may not support not-null constraints. If they support creating fields with not-null constraints, this is
generally before creating any feature to the layer.

This function is the same as the C function OGR_L_CreateGeomField().

Parameters

poField geometry field definition to write to disk.

bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of the
format driver.

Generated by Doxygen

16 Class Documentation

Returns

OGRERR_NONE on success.

Since

OGR 1.11

5.2.2.7 DeleteFeature()

OGRErr OGRLayer::DeleteFeature (

GIntBig nFID) [virtual]

Delete feature from layer.

The feature with the indicated feature id is deleted from the layer if supported by the driver. Most drivers do
not support feature deletion, and will return OGRERR_UNSUPPORTED_OPERATION. The TestCapability() layer
method may be called with OLCDeleteFeature to check if the driver supports feature deletion.

This method is the same as the C function OGR_L_DeleteFeature().

Parameters

nFID the feature id to be deleted from the layer

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code (e.g OGRERR_NON_EXISTI←↩

NG_FEATURE if the feature does not exist).

5.2.2.8 DeleteField()

OGRErr OGRLayer::DeleteField (

int iField) [virtual]

Delete an existing field on a layer.

You must use this to delete existing fields on a real layer. Internally the OGRFeatureDefn for the layer will be updated
to reflect the deleted field. Applications should never modify the OGRFeatureDefn used by a layer directly.

This method should not be called while there are feature objects in existence that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCDeleteField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existing features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_DeleteField().

Generated by Doxygen

5.2 OGRLayer Class Reference 17

Parameters

iField index of the field to delete.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

5.2.2.9 Dereference()

int OGRLayer::Dereference ()

Decrement layer reference count.

This method is the same as the C function OGR_L_Dereference().

Returns

the reference count after decrementing.

5.2.2.10 end()

FeatureIterator OGRLayer::end ()

Return end of feature iterator.

5.2.2.11 FindFieldIndex()

int OGRLayer::FindFieldIndex (

const char ∗ pszFieldName,

int bExactMatch) [virtual]

Find the index of field in the layer.

The returned number is the index of the field in the layers, or -1 if the field doesn't exist.

If bExactMatch is set to FALSE and the field doesn't exists in the given form the driver might apply some changes
to make it match, like those it might do if the layer was created (eg. like LAUNDER in the OCI driver).

This method is the same as the C function OGR_L_FindFieldIndex().

Returns

field index, or -1 if the field doesn't exist

Generated by Doxygen

18 Class Documentation

5.2.2.12 FromHandle()

static OGRLayer∗ OGRLayer::FromHandle (

OGRLayerH hLayer) [inline], [static]

Convert a OGRLayerH to a OGRLayer∗.

Since

GDAL 2.3

5.2.2.13 GetExtent() [1/2]

OGRErr OGRLayer::GetExtent (

OGREnvelope ∗ psExtent,

int bForce = TRUE) [virtual]

Fetch the extent of this layer.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent().

Parameters

psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

5.2.2.14 GetExtent() [2/2]

OGRErr OGRLayer::GetExtent (

int iGeomField,

Generated by Doxygen

5.2 OGRLayer Class Reference 19

OGREnvelope ∗ psExtent,

int bForce = TRUE) [virtual]

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

Note to driver implementer: if you implement GetExtent(int,OGREnvelope∗,int), you must also implement
GetExtent(OGREnvelope∗, int) to make it call GetExtent(0,OGREnvelope∗,int).

This method is the same as the C function OGR_L_GetExtentEx().

Parameters

iGeomField the index of the geometry field on which to compute the extent.

psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

5.2.2.15 GetFeature()

OGRFeature ∗ OGRLayer::GetFeature (

GIntBig nFID) [virtual]

Fetch a feature by its identifier.

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID()) will be the
same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via GetFeature(); however, the call should always work if the feature exists as a fallback implementation just scans
all the features in the layer looking for the desired feature.

Sequential reads (with GetNextFeature()) are generally considered interrupted by a GetFeature() call.

The returned feature should be free with OGRFeature::DestroyFeature().

This method is the same as the C function OGR_L_GetFeature().

Generated by Doxygen

20 Class Documentation

Parameters

nFID the feature id of the feature to read.

Returns

a feature now owned by the caller, or NULL on failure.

5.2.2.16 GetFeatureCount()

GIntBig OGRLayer::GetFeatureCount (

int bForce = TRUE) [virtual]

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount().

Note: since GDAL 2.0, this method returns a GIntBig (previously a int)

Parameters

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

5.2.2.17 GetFIDColumn()

const char ∗ OGRLayer::GetFIDColumn () [virtual]

This method returns the name of the underlying database column being used as the FID column, or "" if not
supported.

This method is the same as the C function OGR_L_GetFIDColumn().

Returns

fid column name.

Generated by Doxygen

5.2 OGRLayer Class Reference 21

5.2.2.18 GetGeometryColumn()

const char ∗ OGRLayer::GetGeometryColumn () [virtual]

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

For layers with multiple geometry fields, this method only returns the name of the first geometry column. For other
columns, use GetLayerDefn()->OGRFeatureDefn::GetGeomFieldDefn(i)->GetNameRef().

This method is the same as the C function OGR_L_GetGeometryColumn().

Returns

geometry column name.

5.2.2.19 GetGeomType()

OGRwkbGeometryType OGRLayer::GetGeomType () [virtual]

Return the layer geometry type.

This returns the same result as GetLayerDefn()->OGRFeatureDefn::GetGeomType(), but for a few drivers, calling
GetGeomType() directly can avoid lengthy layer definition initialization.

For layers with multiple geometry fields, this method only returns the geometry type of the first geometry column.
For other columns, use GetLayerDefn()->OGRFeatureDefn::GetGeomFieldDefn(i)->GetType(). For layers without
any geometry field, this method returns wkbNone.

This method is the same as the C function OGR_L_GetGeomType().

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()->O←↩

GRFeatureDefn::GetGeomType().

Returns

the geometry type

Since

OGR 1.8.0

Generated by Doxygen

22 Class Documentation

5.2.2.20 GetLayerDefn()

OGRFeatureDefn ∗ OGRLayer::GetLayerDefn () [pure virtual]

Fetch the schema information for this layer.

The returned OGRFeatureDefn is owned by the OGRLayer, and should not be modified or freed by the application.
It encapsulates the attribute schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn().

Returns

feature definition.

5.2.2.21 GetName()

const char ∗ OGRLayer::GetName () [virtual]

Return the layer name.

This returns the same content as GetLayerDefn()->OGRFeatureDefn::GetName(), but for a few drivers, calling
GetName() directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetName().

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()->O←↩

GRFeatureDefn::GetName().

Returns

the layer name (must not been freed)

Since

OGR 1.8.0

Generated by Doxygen

5.2 OGRLayer Class Reference 23

5.2.2.22 GetNextFeature()

OGRFeature ∗ OGRLayer::GetNextFeature () [pure virtual]

Fetch the next available feature from this layer.

The returned feature becomes the responsibility of the caller to delete with OGRFeature::DestroyFeature(). It is
critical that all features associated with an OGRLayer (more specifically an OGRFeatureDefn) be deleted before
that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter()) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() method can be used to
start at the beginning again.

Features returned by GetNextFeature() may or may not be affected by concurrent modifications depending
on drivers. A guaranteed way of seeing modifications in effect is to call ResetReading() on layers where
GetNextFeature() has been called, before reading again. Structural changes in layers (field addition, deletion, ...)
when a read is in progress may or may not be possible depending on drivers. If a transaction is committed/aborted,
the current sequential reading may or may not be valid after that operation and a call to ResetReading() might be
needed.

This method is the same as the C function OGR_L_GetNextFeature().

Returns

a feature, or NULL if no more features are available.

5.2.2.23 GetRefCount()

int OGRLayer::GetRefCount () const

Fetch reference count.

This method is the same as the C function OGR_L_GetRefCount().

Returns

the current reference count for the layer object itself.

5.2.2.24 GetSpatialFilter()

OGRGeometry ∗ OGRLayer::GetSpatialFilter () [virtual]

This method returns the current spatial filter for this layer.

The returned pointer is to an internally owned object, and should not be altered or deleted by the caller.

This method is the same as the C function OGR_L_GetSpatialFilter().

Returns

spatial filter geometry.

Generated by Doxygen

24 Class Documentation

5.2.2.25 GetSpatialRef()

OGRSpatialReference ∗ OGRLayer::GetSpatialRef () [virtual]

Fetch the spatial reference system for this layer.

The returned object is owned by the OGRLayer and should not be modified or freed by the application.

Starting with OGR 1.11, several geometry fields can be associated to a feature definition. Each geome-
try field can have its own spatial reference system, which is returned by OGRGeomFieldDefn::GetSpatial←↩

Ref(). OGRLayer::GetSpatialRef() is equivalent to GetLayerDefn()->OGRFeatureDefn::GetGeomFieldDefn(0)-
>GetSpatialRef()

This method is the same as the C function OGR_L_GetSpatialRef().

Returns

spatial reference, or NULL if there isn't one.

5.2.2.26 GetStyleTable()

void OGRLayer::GetStyleTable () [virtual]

Returns layer style table.

This method is the same as the C function OGR_L_GetStyleTable().

Returns

pointer to a style table which should not be modified or freed by the caller.

5.2.2.27 ICreateFeature()

OGRErr OGRLayer::ICreateFeature (

OGRFeature ∗ poFeature) [protected], [virtual]

Create and write a new feature within a layer.

This method is implemented by drivers and not called directly. User code should use CreateFeature() instead.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

Parameters

poFeature the feature to write to disk.

Generated by Doxygen

5.2 OGRLayer Class Reference 25

Returns

OGRERR_NONE on success.

Since

GDAL 2.0

5.2.2.28 ISetFeature()

OGRErr OGRLayer::ISetFeature (

OGRFeature ∗ poFeature) [protected], [virtual]

Rewrite an existing feature.

This method is implemented by drivers and not called directly. User code should use SetFeature() instead.

This method will write a feature to the layer, based on the feature id within the OGRFeature.

Parameters

poFeature the feature to write.

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code (e.g OGRERR_NON_EXISTI←↩

NG_FEATURE if the feature does not exist).

Since

GDAL 2.0

5.2.2.29 Reference()

int OGRLayer::Reference ()

Increment layer reference count.

This method is the same as the C function OGR_L_Reference().

Returns

the reference count after incrementing.

Generated by Doxygen

26 Class Documentation

5.2.2.30 ReorderField()

OGRErr OGRLayer::ReorderField (

int iOldFieldPos,

int iNewFieldPos)

Reorder an existing field on a layer.

This method is a convenience wrapper of ReorderFields() dedicated to move a single field. It is a non-virtual method,
so drivers should implement ReorderFields() instead.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn for the layer will be
updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn used by a
layer directly.

This method should not be called while there are feature objects in existence that were obtained or created with the
previous layer definition.

The field definition that was at initial position iOldFieldPos will be moved at position iNewFieldPos, and elements
between will be shuffled accordingly.

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderField(1, 3) will reorder them as
"0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existing features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderField().

Parameters

iOldFieldPos previous position of the field to move. Must be in the range [0,GetFieldCount()-1].

iNewFieldPos new position of the field to move. Must be in the range [0,GetFieldCount()-1].

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

5.2.2.31 ReorderFields()

OGRErr OGRLayer::ReorderFields (

int ∗ panMap) [virtual]

Reorder all the fields of a layer.

Generated by Doxygen

5.2 OGRLayer Class Reference 27

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn for the layer will be
updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn used by a
layer directly.

This method should not be called while there are feature objects in existence that were obtained or created with the
previous layer definition.

panMap is such that,for each field definition at position i after reordering, its position before reordering was pan←↩

Map[i].

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderFields([0,2,3,1,4]) will reorder them as
"0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existing features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderFields().

Parameters

panMap an array of GetLayerDefn()->OGRFeatureDefn::GetFieldCount() elements which is a permutation of [0,
GetLayerDefn()->OGRFeatureDefn::GetFieldCount()-1].

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

5.2.2.32 ResetReading()

void OGRLayer::ResetReading () [pure virtual]

Reset feature reading to start on the first feature.

This affects GetNextFeature().

This method is the same as the C function OGR_L_ResetReading().

5.2.2.33 RollbackTransaction()

OGRErr OGRLayer::RollbackTransaction () [virtual]

For datasources which support transactions, RollbackTransaction will roll back a datasource to its state before the
start of the current transaction. If no transaction is active, or the rollback fails, will return OGRERR_FAILURE.
Datasources which do not support transactions will always return OGRERR_NONE.

This function is the same as the C function OGR_L_RollbackTransaction().

Returns

OGRERR_NONE on success.

Generated by Doxygen

28 Class Documentation

5.2.2.34 SetAttributeFilter()

void OGRLayer::SetAttributeFilter (

const char ∗ pszQuery) [virtual]

Set a new attribute query.

This method sets the attribute query string to be used when fetching features via the GetNextFeature() method.
Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000 and
population < 5000000" where population is an attribute in the layer. The query format is normally a restricted form
of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In some cases (RDBMS
backed drivers) the native capabilities of the database may be used to interpret the WHERE clause in which case
the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala ResetReading()).

This method is the same as the C function OGR_L_SetAttributeFilter().

Parameters

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some other
failure occurs.

5.2.2.35 SetFeature()

OGRErr OGRLayer::SetFeature (

OGRFeature ∗ poFeature)

Rewrite an existing feature.

This method will write a feature to the layer, based on the feature id within the OGRFeature.

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writing via
SetFeature().

Starting with GDAL 2.0, drivers should specialize the ISetFeature() method, since SetFeature() is no longer virtual.

This method is the same as the C function OGR_L_SetFeature().

Parameters

poFeature the feature to write.

Generated by Doxygen

ogr_sql.html

5.2 OGRLayer Class Reference 29

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code (e.g OGRERR_NON_EXISTI←↩

NG_FEATURE if the feature does not exist).

5.2.2.36 SetIgnoredFields()

OGRErr OGRLayer::SetIgnoredFields (

const char ∗∗ papszFields) [virtual]

Set which fields can be omitted when retrieving features from the layer.

If the driver supports this functionality (testable using OLCIgnoreFields capability), it will not fetch the specified fields
in subsequent calls to GetFeature() / GetNextFeature() and thus save some processing time and/or bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to ignore geom-
etry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.

This method is the same as the C function OGR_L_SetIgnoredFields()

Parameters

papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is cleared.

Returns

OGRERR_NONE if all field names have been resolved (even if the driver does not support this method)

5.2.2.37 SetNextByIndex()

OGRErr OGRLayer::SetNextByIndex (

GIntBig nIndex) [virtual]

Move read cursor to the nIndex'th feature in the current resultset.

This method allows positioning of a layer such that the GetNextFeature() call will read the requested feature, where
nIndex is an absolute index into the current result set. So, setting it to 3 would mean the next feature read with
GetNextFeature() would have been the 4th feature to have been read if sequential reading took place from the
beginning of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() efficiently implemented. In all other cases the default implementa-
tion which calls ResetReading() and then calls GetNextFeature() nIndex times is used. To determine if fast seeking
is available on the current layer use the TestCapability() method with a value of OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex().

Generated by Doxygen

30 Class Documentation

Parameters

nIndex the index indicating how many steps into the result set to seek.

Returns

OGRERR_NONE on success or an error code.

5.2.2.38 SetSpatialFilter() [1/2]

void OGRLayer::SetSpatialFilter (

OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() method.
Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features whose envelope (as
returned by OGRGeometry::getEnvelope()) overlaps the envelope of the spatial filter will be returned. This can
result in more shapes being returned that should strictly be the case.

Starting with GDAL 2.3, features with null or empty geometries will never be considered as matching a spatial filter.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by
OGRLayer::GetSpatialRef()). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter().

Parameters

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current spatial
filter should be cleared, but no new one instituted.

5.2.2.39 SetSpatialFilter() [2/2]

void OGRLayer::SetSpatialFilter (

int iGeomField,

OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() method.
Only features that geometrically intersect the filter geometry will be returned.

Generated by Doxygen

5.2 OGRLayer Class Reference 31

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope()) overlaps the envelope of the spatial filter will be returned. This can
result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field defini-
tion it corresponds to (as returned by GetLayerDefn()->OGRFeatureDefn::GetGeomFieldDefn(iGeomField)-
>GetSpatialRef()). In the future this may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

Note to driver implementer: if you implement SetSpatialFilter(int,OGRGeometry∗), you must also implement
SetSpatialFilter(OGRGeometry∗) to make it call SetSpatialFilter(0,OGRGeometry∗).

This method is the same as the C function OGR_L_SetSpatialFilterEx().

Parameters

iGeomField index of the geometry field on which the spatial filter operates.

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current spatial
filter should be cleared, but no new one instituted.

Since

GDAL 1.11

5.2.2.40 SetSpatialFilterRect() [1/2]

void OGRLayer::SetSpatialFilterRect (

double dfMinX,

double dfMinY,

double dfMaxX,

double dfMaxY) [virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() method.
Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as the layer as a whole (as returned by
OGRLayer::GetSpatialRef()). Internally this method is normally implemented as creating a 5 vertex closed
rectangular polygon and passing it to OGRLayer::SetSpatialFilter(). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRect().

Generated by Doxygen

32 Class Documentation

Parameters

dfMinX the minimum X coordinate for the rectangular region.

dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.

dfMaxY the maximum Y coordinate for the rectangular region.

5.2.2.41 SetSpatialFilterRect() [2/2]

void OGRLayer::SetSpatialFilterRect (

int iGeomField,

double dfMinX,

double dfMinY,

double dfMaxX,

double dfMaxY) [virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() method.
Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as as the geometry field definition it corresponds to
(as returned by GetLayerDefn()->OGRFeatureDefn::GetGeomFieldDefn(iGeomField)->GetSpatialRef()). Inter-
nally this method is normally implemented as creating a 5 vertex closed rectangular polygon and passing it to
OGRLayer::SetSpatialFilter(). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRectEx().

Parameters

iGeomField index of the geometry field on which the spatial filter operates.

dfMinX the minimum X coordinate for the rectangular region.

dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.

dfMaxY the maximum Y coordinate for the rectangular region.

Since

GDAL 1.11

5.2.2.42 SetStyleTable()

void OGRLayer::SetStyleTable (

OGRStyleTable ∗ poStyleTable) [virtual]

Generated by Doxygen

5.2 OGRLayer Class Reference 33

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTableDirectly() except that it does not assume ownership of the
passed table.

This method is the same as the C function OGR_L_SetStyleTable().

Parameters

poStyleTable pointer to style table to set

5.2.2.43 SetStyleTableDirectly()

void OGRLayer::SetStyleTableDirectly (

OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTable() except that it assumes ownership of the passed table.

This method is the same as the C function OGR_L_SetStyleTableDirectly().

Parameters

poStyleTable pointer to style table to set

5.2.2.44 StartTransaction()

OGRErr OGRLayer::StartTransaction () [virtual]

For datasources which support transactions, StartTransaction creates a transaction.

If starting the transaction fails, will return OGRERR_FAILURE. Datasources which do not support transactions will
always return OGRERR_NONE.

Note: as of GDAL 2.0, use of this API is discouraged when the dataset offers dataset level transaction with GD←↩

ALDataset::StartTransaction(). The reason is that most drivers can only offer transactions at dataset level, and not
layer level. Very few drivers really support transactions at layer scope.

This function is the same as the C function OGR_L_StartTransaction().

Returns

OGRERR_NONE on success.

Generated by Doxygen

34 Class Documentation

5.2.2.45 SyncToDisk()

OGRErr OGRLayer::SyncToDisk () [virtual]

Flush pending changes to disk.

This call is intended to force the layer to flush any pending writes to disk, and leave the disk file in a consistent state.
It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implementation just
returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush to disk.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() that will
ensure all data is correctly flushed.

This method is the same as the C function OGR_L_SyncToDisk().

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

5.2.2.46 TestCapability()

int OGRLayer::TestCapability (

const char ∗ pszCap) [pure virtual]

Test if this layer supported the named capability.

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() method is implemented in an optimized way
for this layer, as opposed to the default implementation using ResetReading() and GetNextFeature() to find
the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() method works for this layer. Note this
means that this particular layer is writable. The same OGRLayer class may returned FALSE for other layer
instances that are effectively read-only.

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() method is operational on this layer. Note this
means that this particular layer is writable. The same OGRLayer class may returned FALSE for other layer
instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature intersection methods should return FA←↩

LSE. This can be used as a clue by the application whether it should build and maintain its own spatial index
for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via
GetFeatureCount()) efficiently. i.e. without counting the features. In some cases this will return TRUE
until a spatial filter is installed after which it will return FALSE.

Generated by Doxygen

5.2 OGRLayer Class Reference 35

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetExtent()) efficiently,
i.e. without scanning all the features. In some cases this will return TRUE until a spatial filter is installed after
which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex() call
efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using
CreateField(), otherwise FALSE.

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField(), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField(), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() or ReorderFields(), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn(), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() method is supported on this layer, other-
wise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and RollbackTransaction()
methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetching features
as set by SetIgnoredFields() method.

• OLCCurveGeometries / "CurveGeometries": TRUE if this layer supports writing curve geometries or may
return such geometries. (GDAL 2.0).

This method is the same as the C function OGR_L_TestCapability().

Parameters

pszCap the name of the capability to test.

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognized capabilities.

5.2.2.47 ToHandle()

static OGRLayerH OGRLayer::ToHandle (

OGRLayer ∗ poLayer) [inline], [static]

Convert a OGRLayer∗ to a OGRLayerH.

Since

GDAL 2.3

Generated by Doxygen

36 Class Documentation

5.2.3 Friends And Related Function Documentation

5.2.3.1 begin

FeatureIterator begin (

OGRLayer ∗ poLayer) [friend]

Return begin of feature iterator.

Using this iterator for standard range-based loops is safe, but due to implementation limitations, you shouldn't try to
access (dereference) more than one iterator step at a time, since the std::unique_ptr<OGRFeature> reference is
reused.

Only one iterator per layer can be active at a time.

Since

GDAL 2.3

See also

OGRLayer::begin()

5.2.3.2 end

FeatureIterator end (

OGRLayer ∗ poLayer) [friend]

Return end of feature iterator.

See also

OGRLayer::end()

The documentation for this class was generated from the following files:

• ogrsf_frmts.h
• ogrsf_frmts.dox

5.3 OGRSFDriver Class Reference

#include <ogrsf_frmts.h>

Inheritance diagram for OGRSFDriver:

OGRSFDriver

GDALDriver

Generated by Doxygen

5.4 OGRSFDriverRegistrar Class Reference 37

5.3.1 Detailed Description

LEGACY class. Use GDALDriver in your new code ! This class may be removed in a later release.

Represents an operational format driver.

One OGRSFDriver derived class will normally exist for each file format registered for use, regardless of whether a
file has or will be opened. The list of available drivers is normally managed by the OGRSFDriverRegistrar.

NOTE: Starting with GDAL 2.0, it is NOT safe to cast the handle of a C function that returns a OGRSFDriverH to a
OGRSFDriver∗. If a C++ object is needed, the handle should be cast to GDALDriver∗.

Deprecated

The documentation for this class was generated from the following file:

• ogrsf_frmts.h

5.4 OGRSFDriverRegistrar Class Reference

#include <ogrsf_frmts.h>

5.4.1 Detailed Description

LEGACY class. Use GDALDriverManager in your new code ! This class may be removed in a later release.

Singleton manager for OGRSFDriver instances that will be used to try and open datasources. Normally the registrar
is populated with standard drivers using the OGRRegisterAll() function and does not need to be directly accessed.
The driver registrar and all registered drivers may be cleaned up on shutdown using OGRCleanupAll().

Deprecated

The documentation for this class was generated from the following file:

• ogrsf_frmts.h

Generated by Doxygen

38 Class Documentation

Generated by Doxygen

Chapter 6

File Documentation

6.1 ogrsf_frmts.h File Reference

#include "cpl_progress.h"
#include "ogr_feature.h"
#include "ogr_featurestyle.h"
#include "gdal_priv.h"
#include <memory>

Classes

• class OGRLayer
• class OGRDataSource
• class OGRSFDriver
• class OGRSFDriverRegistrar

Functions

• OGRLayer::FeatureIterator begin (OGRLayer ∗poLayer)
• OGRLayer::FeatureIterator end (OGRLayer ∗poLayer)

6.1.1 Detailed Description

Classes related to registration of format support, and opening datasets.

6.1.2 Function Documentation

40 File Documentation

6.1.2.1 begin()

OGRLayer::FeatureIterator begin (

OGRLayer ∗ poLayer) [inline]

Return begin of feature iterator.

Using this iterator for standard range-based loops is safe, but due to implementation limitations, you shouldn't try to
access (dereference) more than one iterator step at a time, since the std::unique_ptr<OGRFeature> reference is
reused.

Only one iterator per layer can be active at a time.

Since

GDAL 2.3

See also

OGRLayer::begin()

6.1.2.2 end()

OGRLayer::FeatureIterator end (

OGRLayer ∗ poLayer) [inline]

Return end of feature iterator.

See also

OGRLayer::end()

Generated by Doxygen

Index

AlterFieldDefn
OGRLayer, 12

begin
OGRLayer, 13, 36
ogrsf_frmts.h, 39

CommitTransaction
OGRLayer, 13

CreateFeature
OGRLayer, 14

CreateField
OGRLayer, 14

CreateGeomField
OGRLayer, 15

DeleteFeature
OGRLayer, 16

DeleteField
OGRLayer, 16

Dereference
OGRLayer, 17

end
OGRLayer, 17, 36
ogrsf_frmts.h, 40

FindFieldIndex
OGRLayer, 17

FromHandle
OGRLayer, 17

GetExtent
OGRLayer, 18

GetFIDColumn
OGRLayer, 20

GetFeature
OGRLayer, 19

GetFeatureCount
OGRLayer, 20

GetGeomType
OGRLayer, 21

GetGeometryColumn
OGRLayer, 20

GetLayerDefn
OGRLayer, 21

GetName
OGRLayer, 22

GetNextFeature
OGRLayer, 22

GetRefCount

OGRLayer, 23
GetSpatialFilter

OGRLayer, 23
GetSpatialRef

OGRLayer, 23
GetStyleTable

OGRLayer, 24

ICreateFeature
OGRLayer, 24

ISetFeature
OGRLayer, 25

OGRDataSource, 9
OGRLayer, 10

AlterFieldDefn, 12
begin, 13, 36
CommitTransaction, 13
CreateFeature, 14
CreateField, 14
CreateGeomField, 15
DeleteFeature, 16
DeleteField, 16
Dereference, 17
end, 17, 36
FindFieldIndex, 17
FromHandle, 17
GetExtent, 18
GetFIDColumn, 20
GetFeature, 19
GetFeatureCount, 20
GetGeomType, 21
GetGeometryColumn, 20
GetLayerDefn, 21
GetName, 22
GetNextFeature, 22
GetRefCount, 23
GetSpatialFilter, 23
GetSpatialRef, 23
GetStyleTable, 24
ICreateFeature, 24
ISetFeature, 25
Reference, 25
ReorderField, 25
ReorderFields, 26
ResetReading, 27
RollbackTransaction, 27
SetAttributeFilter, 27
SetFeature, 28
SetIgnoredFields, 29

42 INDEX

SetNextByIndex, 29
SetSpatialFilter, 30
SetSpatialFilterRect, 31, 32
SetStyleTable, 32
SetStyleTableDirectly, 33
StartTransaction, 33
SyncToDisk, 33
TestCapability, 34
ToHandle, 35

OGRSFDriver, 36
OGRSFDriverRegistrar, 37
ogrsf_frmts.h, 39

begin, 39
end, 40

Reference
OGRLayer, 25

ReorderField
OGRLayer, 25

ReorderFields
OGRLayer, 26

ResetReading
OGRLayer, 27

RollbackTransaction
OGRLayer, 27

SetAttributeFilter
OGRLayer, 27

SetFeature
OGRLayer, 28

SetIgnoredFields
OGRLayer, 29

SetNextByIndex
OGRLayer, 29

SetSpatialFilter
OGRLayer, 30

SetSpatialFilterRect
OGRLayer, 31, 32

SetStyleTable
OGRLayer, 32

SetStyleTableDirectly
OGRLayer, 33

StartTransaction
OGRLayer, 33

SyncToDisk
OGRLayer, 33

TestCapability
OGRLayer, 34

ToHandle
OGRLayer, 35

Generated by Doxygen

	1 Deprecated List
	2 Hierarchical Index
	2.1 Class Hierarchy

	3 Class Index
	3.1 Class List

	4 File Index
	4.1 File List

	5 Class Documentation
	5.1 OGRDataSource Class Reference
	5.1.1 Detailed Description

	5.2 OGRLayer Class Reference
	5.2.1 Detailed Description
	5.2.2 Member Function Documentation
	5.2.2.1 AlterFieldDefn()
	5.2.2.2 begin()
	5.2.2.3 CommitTransaction()
	5.2.2.4 CreateFeature()
	5.2.2.5 CreateField()
	5.2.2.6 CreateGeomField()
	5.2.2.7 DeleteFeature()
	5.2.2.8 DeleteField()
	5.2.2.9 Dereference()
	5.2.2.10 end()
	5.2.2.11 FindFieldIndex()
	5.2.2.12 FromHandle()
	5.2.2.13 GetExtent() [1/2]
	5.2.2.14 GetExtent() [2/2]
	5.2.2.15 GetFeature()
	5.2.2.16 GetFeatureCount()
	5.2.2.17 GetFIDColumn()
	5.2.2.18 GetGeometryColumn()
	5.2.2.19 GetGeomType()
	5.2.2.20 GetLayerDefn()
	5.2.2.21 GetName()
	5.2.2.22 GetNextFeature()
	5.2.2.23 GetRefCount()
	5.2.2.24 GetSpatialFilter()
	5.2.2.25 GetSpatialRef()
	5.2.2.26 GetStyleTable()
	5.2.2.27 ICreateFeature()
	5.2.2.28 ISetFeature()
	5.2.2.29 Reference()
	5.2.2.30 ReorderField()
	5.2.2.31 ReorderFields()
	5.2.2.32 ResetReading()
	5.2.2.33 RollbackTransaction()
	5.2.2.34 SetAttributeFilter()
	5.2.2.35 SetFeature()
	5.2.2.36 SetIgnoredFields()
	5.2.2.37 SetNextByIndex()
	5.2.2.38 SetSpatialFilter() [1/2]
	5.2.2.39 SetSpatialFilter() [2/2]
	5.2.2.40 SetSpatialFilterRect() [1/2]
	5.2.2.41 SetSpatialFilterRect() [2/2]
	5.2.2.42 SetStyleTable()
	5.2.2.43 SetStyleTableDirectly()
	5.2.2.44 StartTransaction()
	5.2.2.45 SyncToDisk()
	5.2.2.46 TestCapability()
	5.2.2.47 ToHandle()

	5.2.3 Friends And Related Function Documentation
	5.2.3.1 begin
	5.2.3.2 end

	5.3 OGRSFDriver Class Reference
	5.3.1 Detailed Description

	5.4 OGRSFDriverRegistrar Class Reference
	5.4.1 Detailed Description

	6 File Documentation
	6.1 ogrsf_frmts.h File Reference
	6.1.1 Detailed Description
	6.1.2 Function Documentation
	6.1.2.1 begin()
	6.1.2.2 end()

	Index

