"""
AST nodes specific to Fortran.
The functions defined in this module allows the user to express functions such as ``dsign``
as a SymPy function for symbolic manipulation.
"""
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.compatibility import string_types
from sympy.core.containers import Tuple
from sympy.core.function import Function
from sympy.core.numbers import Float, Integer
from sympy.core.sympify import sympify
from sympy.codegen.ast import (
Attribute, CodeBlock, Declaration, FunctionCall, Node, none, String,
Token, Type, _mk_Tuple, Variable
)
from sympy.logic import true, false
from sympy.utilities.iterables import iterable
pure = Attribute('pure')
elemental = Attribute('elemental') # (all elemental procedures are also pure)
intent_in = Attribute('intent_in')
intent_out = Attribute('intent_out')
intent_inout = Attribute('intent_inout')
allocatable = Attribute('allocatable')
[docs]class Program(Token):
""" Represents a 'program' block in Fortran
Examples
========
>>> from sympy.codegen.ast import Print
>>> from sympy.codegen.fnodes import Program
>>> prog = Program('myprogram', [Print([42])])
>>> from sympy.printing import fcode
>>> print(fcode(prog, source_format='free'))
program myprogram
print *, 42
end program
"""
__slots__ = ['name', 'body']
_construct_name = String
_construct_body = staticmethod(lambda body: CodeBlock(*body))
[docs]class use_rename(Token):
""" Represents a renaming in a use statement in Fortran
Examples
========
>>> from sympy.codegen.fnodes import use_rename, use
>>> from sympy.printing import fcode
>>> ren = use_rename("thingy", "convolution2d")
>>> print(fcode(ren, source_format='free'))
thingy => convolution2d
>>> full = use('signallib', only=['snr', ren])
>>> print(fcode(full, source_format='free'))
use signallib, only: snr, thingy => convolution2d
"""
__slots__ = ['local', 'original']
_construct_local = String
_construct_original = String
def _name(arg):
if hasattr(arg, 'name'):
return arg.name
else:
return String(arg)
[docs]class use(Token):
""" Represents a use statement in Fortran
Examples
========
>>> from sympy.codegen.fnodes import use
>>> from sympy.printing import fcode
>>> fcode(use('signallib'), source_format='free')
'use signallib'
>>> fcode(use('signallib', [('metric', 'snr')]), source_format='free')
'use signallib, metric => snr'
>>> fcode(use('signallib', only=['snr', 'convolution2d']), source_format='free')
'use signallib, only: snr, convolution2d'
"""
__slots__ = ['namespace', 'rename', 'only']
defaults = {'rename': none, 'only': none}
_construct_namespace = staticmethod(_name)
_construct_rename = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else use_rename(*arg) for arg in args]))
_construct_only = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else _name(arg) for arg in args]))
[docs]class Module(Token):
""" Represents a module in Fortran
Examples
========
>>> from sympy.codegen.fnodes import Module
>>> from sympy.printing import fcode
>>> print(fcode(Module('signallib', ['implicit none'], []), source_format='free'))
module signallib
implicit none
<BLANKLINE>
contains
<BLANKLINE>
<BLANKLINE>
end module
"""
__slots__ = ['name', 'declarations', 'definitions']
defaults = {'declarations': Tuple()}
_construct_name = String
_construct_declarations = staticmethod(lambda arg: CodeBlock(*arg))
_construct_definitions = staticmethod(lambda arg: CodeBlock(*arg))
[docs]class Subroutine(Node):
""" Represents a subroutine in Fortran
Examples
========
>>> from sympy import symbols
>>> from sympy.codegen.ast import Print
>>> from sympy.codegen.fnodes import Subroutine
>>> from sympy.printing import fcode
>>> x, y = symbols('x y', real=True)
>>> sub = Subroutine('mysub', [x, y], [Print([x**2 + y**2, x*y])])
>>> print(fcode(sub, source_format='free', standard=2003))
subroutine mysub(x, y)
real*8 :: x
real*8 :: y
print *, x**2 + y**2, x*y
end subroutine
"""
__slots__ = ['name', 'parameters', 'body', 'attrs']
_construct_name = String
_construct_parameters = staticmethod(lambda params: Tuple(*map(Variable.deduced, params)))
@classmethod
def _construct_body(cls, itr):
if isinstance(itr, CodeBlock):
return itr
else:
return CodeBlock(*itr)
[docs]class SubroutineCall(Token):
""" Represents a call to a subroutine in Fortran
Examples
========
>>> from sympy.codegen.fnodes import SubroutineCall
>>> from sympy.printing import fcode
>>> fcode(SubroutineCall('mysub', 'x y'.split()))
' call mysub(x, y)'
"""
__slots__ = ['name', 'subroutine_args']
_construct_name = staticmethod(_name)
_construct_subroutine_args = staticmethod(_mk_Tuple)
[docs]class Do(Token):
""" Represents a Do loop in in Fortran
Examples
========
>>> from sympy import symbols
>>> from sympy.codegen.ast import aug_assign, Print
>>> from sympy.codegen.fnodes import Do
>>> from sympy.printing import fcode
>>> i, n = symbols('i n', integer=True)
>>> r = symbols('r', real=True)
>>> body = [aug_assign(r, '+', 1/i), Print([i, r])]
>>> do1 = Do(body, i, 1, n)
>>> print(fcode(do1, source_format='free'))
do i = 1, n
r = r + 1d0/i
print *, i, r
end do
>>> do2 = Do(body, i, 1, n, 2)
>>> print(fcode(do2, source_format='free'))
do i = 1, n, 2
r = r + 1d0/i
print *, i, r
end do
"""
__slots__ = ['body', 'counter', 'first', 'last', 'step', 'concurrent']
defaults = {'step': Integer(1), 'concurrent': false}
_construct_body = staticmethod(lambda body: CodeBlock(*body))
_construct_counter = staticmethod(sympify)
_construct_first = staticmethod(sympify)
_construct_last = staticmethod(sympify)
_construct_step = staticmethod(sympify)
_construct_concurrent = staticmethod(lambda arg: true if arg else false)
[docs]class ArrayConstructor(Token):
""" Represents an array constructor
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import ArrayConstructor
>>> ac = ArrayConstructor([1, 2, 3])
>>> fcode(ac, standard=95, source_format='free')
'(/1, 2, 3/)'
>>> fcode(ac, standard=2003, source_format='free')
'[1, 2, 3]'
"""
__slots__ = ['elements']
_construct_elements = staticmethod(_mk_Tuple)
[docs]class ImpliedDoLoop(Token):
""" Represents an implied do loop in Fortran
Examples
========
>>> from sympy import Symbol, fcode
>>> from sympy.codegen.fnodes import ImpliedDoLoop, ArrayConstructor
>>> i = Symbol('i', integer=True)
>>> idl = ImpliedDoLoop(i**3, i, -3, 3, 2) # -27, -1, 1, 27
>>> ac = ArrayConstructor([-28, idl, 28]) # -28, -27, -1, 1, 27, 28
>>> fcode(ac, standard=2003, source_format='free')
'[-28, (i**3, i = -3, 3, 2), 28]'
"""
__slots__ = ['expr', 'counter', 'first', 'last', 'step']
defaults = {'step': Integer(1)}
_construct_expr = staticmethod(sympify)
_construct_counter = staticmethod(sympify)
_construct_first = staticmethod(sympify)
_construct_last = staticmethod(sympify)
_construct_step = staticmethod(sympify)
[docs]class Extent(Basic):
""" Represents a dimension extent.
Examples
========
>>> from sympy.codegen.fnodes import Extent
>>> e = Extent(-3, 3) # -3, -2, -1, 0, 1, 2, 3
>>> from sympy.printing import fcode
>>> fcode(e, source_format='free')
'-3:3'
>>> from sympy.codegen.ast import Variable, real
>>> from sympy.codegen.fnodes import dimension, intent_out
>>> dim = dimension(e, e)
>>> arr = Variable('x', real, attrs=[dim, intent_out])
>>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
'real*8, dimension(-3:3, -3:3), intent(out) :: x'
"""
def __new__(cls, *args):
if len(args) == 2:
low, high = args
return Basic.__new__(cls, sympify(low), sympify(high))
elif len(args) == 0 or (len(args) == 1 and args[0] in (':', None)):
return Basic.__new__(cls) # assumed shape
else:
raise ValueError("Expected 0 or 2 args (or one argument == None or ':')")
def _sympystr(self, printer):
if len(self.args) == 0:
return ':'
return '%d:%d' % self.args
assumed_extent = Extent() # or Extent(':'), Extent(None)
[docs]def dimension(*args):
""" Creates a 'dimension' Attribute with (up to 7) extents.
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import dimension, intent_in
>>> dim = dimension('2', ':') # 2 rows, runtime determined number of columns
>>> from sympy.codegen.ast import Variable, integer
>>> arr = Variable('a', integer, attrs=[dim, intent_in])
>>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
'integer*4, dimension(2, :), intent(in) :: a'
"""
if len(args) > 7:
raise ValueError("Fortran only supports up to 7 dimensional arrays")
parameters = []
for arg in args:
if isinstance(arg, Extent):
parameters.append(arg)
elif isinstance(arg, string_types):
if arg == ':':
parameters.append(Extent())
else:
parameters.append(String(arg))
elif iterable(arg):
parameters.append(Extent(*arg))
else:
parameters.append(sympify(arg))
if len(args) == 0:
raise ValueError("Need at least one dimension")
return Attribute('dimension', parameters)
assumed_size = dimension('*')
[docs]def array(symbol, dim, intent=None, **kwargs):
""" Convenience function for creating a Variable instance for a Fortran array
Parameters
==========
symbol : symbol
dim : Attribute or iterable
If dim is an ``Attribute`` it need to have the name 'dimension'. If it is
not an ``Attribute``, then it is passsed to :func:`dimension` as ``*dim``
intent : str
One of: 'in', 'out', 'inout' or None
\\*\\*kwargs:
Keyword arguments for ``Variable`` ('type' & 'value')
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.ast import integer, real
>>> from sympy.codegen.fnodes import array
>>> arr = array('a', '*', 'in', type=integer)
>>> print(fcode(arr.as_Declaration(), source_format='free', standard=2003))
integer*4, dimension(*), intent(in) :: a
>>> x = array('x', [3, ':', ':'], intent='out', type=real)
>>> print(fcode(x.as_Declaration(value=1), source_format='free', standard=2003))
real*8, dimension(3, :, :), intent(out) :: x = 1
"""
if isinstance(dim, Attribute):
if str(dim.name) != 'dimension':
raise ValueError("Got an unexpected Attribute argument as dim: %s" % str(dim))
else:
dim = dimension(*dim)
attrs=list(kwargs.pop('attrs', [])) + [dim]
if intent is not None:
if intent not in (intent_in, intent_out, intent_inout):
intent = {'in': intent_in, 'out': intent_out, 'inout': intent_inout}[intent]
attrs.append(intent)
value = kwargs.pop('value', None)
type_ = kwargs.pop('type', None)
if type_ is None:
return Variable.deduced(symbol, value=value, attrs=attrs)
else:
return Variable(symbol, type_, value=value, attrs=attrs)
def _printable(arg):
return String(arg) if isinstance(arg, string_types) else sympify(arg)
[docs]def allocated(array):
""" Creates an AST node for a function call to Fortran's "allocated(...)"
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import allocated
>>> alloc = allocated('x')
>>> fcode(alloc, source_format='free')
'allocated(x)'
"""
return FunctionCall('allocated', [_printable(array)])
[docs]def lbound(array, dim=None, kind=None):
""" Creates an AST node for a function call to Fortran's "lbound(...)"
Parameters
==========
array : Symbol or String
dim : expr
kind : expr
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import lbound
>>> lb = lbound('arr', dim=2)
>>> fcode(lb, source_format='free')
'lbound(arr, 2)'
"""
return FunctionCall(
'lbound',
[_printable(array)] +
([_printable(dim)] if dim else []) +
([_printable(kind)] if kind else [])
)
def ubound(array, dim=None, kind=None):
return FunctionCall(
'ubound',
[_printable(array)] +
([_printable(dim)] if dim else []) +
([_printable(kind)] if kind else [])
)
[docs]def shape(source, kind=None):
""" Creates an AST node for a function call to Fortran's "shape(...)"
Parameters
==========
source : Symbol or String
kind : expr
Examples
========
>>> from sympy.printing import fcode
>>> from sympy.codegen.fnodes import shape
>>> shp = shape('x')
>>> fcode(shp, source_format='free')
'shape(x)'
"""
return FunctionCall(
'shape',
[_printable(source)] +
([_printable(kind)] if kind else [])
)
[docs]def size(array, dim=None, kind=None):
""" Creates an AST node for a function call to Fortran's "size(...)"
Examples
========
>>> from sympy import Symbol
>>> from sympy.printing import fcode
>>> from sympy.codegen.ast import FunctionDefinition, real, Return, Variable
>>> from sympy.codegen.fnodes import array, sum_, size
>>> a = Symbol('a', real=True)
>>> body = [Return((sum_(a**2)/size(a))**.5)]
>>> arr = array(a, dim=[':'], intent='in')
>>> fd = FunctionDefinition(real, 'rms', [arr], body)
>>> print(fcode(fd, source_format='free', standard=2003))
real*8 function rms(a)
real*8, dimension(:), intent(in) :: a
rms = sqrt(sum(a**2)*1d0/size(a))
end function
"""
return FunctionCall(
'size',
[_printable(array)] +
([_printable(dim)] if dim else []) +
([_printable(kind)] if kind else [])
)
[docs]def reshape(source, shape, pad=None, order=None):
""" Creates an AST node for a function call to Fortran's "reshape(...)"
Parameters
==========
source : Symbol or String
shape : ArrayExpr
"""
return FunctionCall(
'reshape',
[_printable(source), _printable(shape)] +
([_printable(pad)] if pad else []) +
([_printable(order)] if pad else [])
)
[docs]def bind_C(name=None):
""" Creates an Attribute ``bind_C`` with a name
Parameters
==========
name : str
Examples
========
>>> from sympy import Symbol
>>> from sympy.printing import fcode
>>> from sympy.codegen.ast import FunctionDefinition, real, Return, Variable
>>> from sympy.codegen.fnodes import array, sum_, size, bind_C
>>> a = Symbol('a', real=True)
>>> s = Symbol('s', integer=True)
>>> arr = array(a, dim=[s], intent='in')
>>> body = [Return((sum_(a**2)/s)**.5)]
>>> fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')])
>>> print(fcode(fd, source_format='free', standard=2003))
real*8 function rms(a, s) bind(C, name="rms")
real*8, dimension(s), intent(in) :: a
integer*4 :: s
rms = sqrt(sum(a**2)/s)
end function
"""
return Attribute('bind_C', [String(name)] if name else [])
[docs]class GoTo(Token):
""" Represents a goto statement in Fortran
Examples
========
>>> from sympy.codegen.fnodes import GoTo
>>> go = GoTo([10, 20, 30], 'i')
>>> from sympy.printing import fcode
>>> fcode(go, source_format='free')
'go to (10, 20, 30), i'
"""
__slots__ = ['labels', 'expr']
defaults = {'expr': none}
_construct_labels = staticmethod(_mk_Tuple)
_construct_expr = staticmethod(sympify)
[docs]class FortranReturn(Token):
""" AST node explicitly mapped to a fortran "return".
Because a return statement in fortran is different from C, and
in order to aid reuse of our codegen ASTs the ordinary
``.codegen.ast.Return`` is interpreted as assignment to
the result variable of the function. If one for some reason needs
to generate a fortran RETURN statement, this node should be used.
Examples
========
>>> from sympy.codegen.fnodes import FortranReturn
>>> from sympy.printing import fcode
>>> fcode(FortranReturn('x'))
' return x'
"""
__slots__ = ['return_value']
defaults = {'return_value': none}
_construct_return_value = staticmethod(sympify)
class FFunction(Function):
_required_standard = 77
def _fcode(self, printer):
name = self.__class__.__name__
if printer._settings['standard'] < self._required_standard:
raise NotImplementedError("%s requires Fortran %d or newer" %
(name, self._required_standard))
return '{0}({1})'.format(name, ', '.join(map(printer._print, self.args)))
class F95Function(FFunction):
_required_standard = 95
[docs]class isign(FFunction):
""" Fortran sign intrinsic for integer arguments. """
nargs = 2
[docs]class dsign(FFunction):
""" Fortran sign intrinsic for double precision arguments. """
nargs = 2
[docs]class cmplx(FFunction):
""" Fortran complex conversion function. """
nargs = 2 # may be extended to (2, 3) at a later point
[docs]class kind(FFunction):
""" Fortran kind function. """
nargs = 1
[docs]class merge(F95Function):
""" Fortran merge function """
nargs = 3
class _literal(Float):
_token = None
_decimals = None
def _fcode(self, printer, *args, **kwargs):
mantissa, sgnd_ex = ('%.{0}e'.format(self._decimals) % self).split('e')
mantissa = mantissa.strip('0').rstrip('.')
ex_sgn, ex_num = sgnd_ex[0], sgnd_ex[1:].lstrip('0')
ex_sgn = '' if ex_sgn == '+' else ex_sgn
return (mantissa or '0') + self._token + ex_sgn + (ex_num or '0')
[docs]class literal_sp(_literal):
""" Fortran single precision real literal """
_token = 'e'
_decimals = 9
[docs]class literal_dp(_literal):
""" Fortran double precision real literal """
_token = 'd'
_decimals = 17
class sum_(Token, Expr):
__slots__ = ['array', 'dim', 'mask']
defaults = {'dim': none, 'mask': none}
_construct_array = staticmethod(sympify)
_construct_dim = staticmethod(sympify)
class product_(Token, Expr):
__slots__ = ['array', 'dim', 'mask']
defaults = {'dim': none, 'mask': none}
_construct_array = staticmethod(sympify)
_construct_dim = staticmethod(sympify)