next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000124656 seconds elapsed
 -- 0.00151663 seconds elapsed
 -- 0.000327138 seconds elapsed
 -- 0.000129589 seconds elapsed
 -- 0.00138188 seconds elapsed
 -- 0.000322141 seconds elapsed
 -- 0.000115195 seconds elapsed
 -- 0.000119207 seconds elapsed
 -- 0.000292558 seconds elapsed
 -- 0.000122957 seconds elapsed
 -- 0.00125778 seconds elapsed
 -- 0.000312406 seconds elapsed
 -- 0.000122472 seconds elapsed
 -- 0.00121807 seconds elapsed
 -- 0.000302469 seconds elapsed
 -- 0.000120132 seconds elapsed
 -- 0.00120028 seconds elapsed
 -- 0.000327657 seconds elapsed
 -- 0.000120503 seconds elapsed
 -- 0.00140007 seconds elapsed
 -- 0.000322869 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000119501 seconds elapsed
 -- 0.00150021 seconds elapsed
 -- 0.000330548 seconds elapsed
 -- 0.000120296 seconds elapsed
 -- 0.00137202 seconds elapsed
 -- 0.000307793 seconds elapsed
 -- 0.000160866 seconds elapsed
 -- 0.00136758 seconds elapsed
 -- 0.00035045 seconds elapsed
 -- 0.000132467 seconds elapsed
 -- 0.00135845 seconds elapsed
 -- 0.000332974 seconds elapsed
 -- 0.000144991 seconds elapsed
 -- 0.00142733 seconds elapsed
 -- 0.000336238 seconds elapsed
 -- 0.000120163 seconds elapsed
 -- 0.00134323 seconds elapsed
 -- 0.00031556 seconds elapsed
 -- 0.000122183 seconds elapsed
 -- 0.00150462 seconds elapsed
 -- 0.000309104 seconds elapsed
 -- 0.000119575 seconds elapsed
 -- 0.00138302 seconds elapsed
 -- 0.000314422 seconds elapsed
 -- 0.000122351 seconds elapsed
 -- 0.00125552 seconds elapsed
 -- 0.000311402 seconds elapsed
 -- 0.000124798 seconds elapsed
 -- 0.00122783 seconds elapsed
 -- 0.000310664 seconds elapsed
 -- 0.000121863 seconds elapsed
 -- 0.00120156 seconds elapsed
 -- 0.000314877 seconds elapsed
 -- 0.000120367 seconds elapsed
 -- 0.00138648 seconds elapsed
 -- 0.000329152 seconds elapsed
 -- 0.000121427 seconds elapsed
 -- 0.00185848 seconds elapsed
 -- 0.000530549 seconds elapsed
 -- 0.000119658 seconds elapsed
 -- 0.00194828 seconds elapsed
 -- 0.000538611 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.