This method is based on the fibre dimension theorem. A more general way is to perform the command
.
i1 : P8=ZZ/101[x_0..x_8];
|
i2 : phi=toMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7},{x_4..x_8}}
4 2 2 2 2 3 2 2 2 2 2 3 2 2 3 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 4 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 3 2 2 2 2 2 2 2 2 3 2 2 4 2 2 2 2 3 2 2 2 2 2 3 2 2
o2 = map(P8,P8,{x - 3x x x + x x + 2x x x - x x + 2x x x - 2x x x - 2x x x x + 2x x x x + x x - x x x - x x + 2x x x x - x x x - x x x + x x x x , - 2x x + 4x x x + 2x x x - 4x x x - 2x x x + 2x x - 2x x + 2x x x + 2x x x + 2x x x x - 4x x x x - 2x x x + 2x x x + 2x x x - 2x x x - 2x x x x + 2x x x + 2x x x x - 2x x x x , 3x x - 2x x - 3x x - 2x x x x + 2x x x + x x + 4x x x - 2x x x - x x + 4x x x + 2x x x - 8x x x x + 2x x x - 4x x x x + 2x x x x + 2x x x x + 3x x - 2x x x - x x x - 3x x x + 2x x x + 4x x x x - 2x x x x - x x x - 3x x x + 2x x x x + x x x x , - 4x x + 6x x x - 2x x + 6x x x - 6x x x - 2x x x x + 2x x x + 2x x x - 4x x x + 2x x x - 6x x x + 4x x x + 4x x x x - 2x x x - 2x x x + 4x x x x - 2x x x x - 2x x x + 2x x x + 4x x - 6x x x x + 2x x x + 2x x x - 4x x x x + 2x x x x + 2x x x x - 2x x x x , 5x - 12x x x + 3x x + 6x x x - 2x x + 6x x x - 9x x x - 2x x x x + 8x x x x - 3x x x + 2x x - 4x x x + 2x x x - 2x x + 8x x x x - 6x x x - 4x x x + 4x x x x + 2x x x x - 2x x x x + x x - x x x - 3x x x + 2x x x + 4x x x x - 3x x x - 2x x x x + 2x x x x - x x x + x x x x , - 4x x + 6x x x + 6x x x - 6x x x - 6x x x + 4x x - 2x x - 2x x x x + 4x x x + 2x x x + 4x x x x - 6x x x x - 2x x x + 2x x x + 2x x x - 4x x x + 2x x x + 4x x x x - 4x x x x - 2x x x + 2x x x x + 2x x x - 2x x x - 2x x x x + 2x x x x + 2x x x - 2x x x x , 3x x - 3x x - 2x x - 2x x x x + 4x x x + x x + 2x x x - 3x x x + 2x x x + 4x x x - 8x x x x + 2x x x - 4x x x x + 4x x x x + 3x x - 3x x x - 2x x x + 2x x x + 2x x x x - 2x x x x - 2x x x + 2x x x x - x x + 2x x x x - x x x - x x x + x x x x , - 2x x + 4x x x - 2x x + 2x x x - 4x x x + 2x x x + 2x x x - 2x x x - 2x x x + 2x x x + 2x x x x - 2x x x x - 2x x x + 2x x x x + 2x x - 4x x x x + 2x x x + 2x x x - 2x x x x , x - 3x x x + x x + 2x x x - x x + 2x x x - 2x x x - 2x x x x + 2x x x x + x x - x x x - x x + 2x x x x - x x x - x x x + x x x x })
5 4 5 6 4 6 3 5 6 2 6 4 5 7 3 5 7 3 4 6 7 2 5 6 7 3 7 2 4 7 4 8 3 4 5 8 2 5 8 3 6 8 2 4 6 8 4 5 4 5 6 3 5 6 3 4 6 2 5 6 1 6 4 7 2 5 7 3 6 7 2 4 6 7 1 5 6 7 2 3 7 1 4 7 3 4 8 3 5 8 2 4 5 8 1 5 8 2 3 6 8 1 4 6 8 4 5 3 5 4 6 3 4 5 6 2 5 6 3 6 2 4 6 1 5 6 0 6 3 4 7 3 5 7 2 4 5 7 1 5 7 2 3 6 7 1 4 6 7 0 5 6 7 2 7 1 3 7 0 4 7 3 4 8 2 4 8 2 3 5 8 1 4 5 8 0 5 8 2 6 8 1 3 6 8 0 4 6 8 4 5 3 4 5 2 5 3 4 6 3 5 6 2 4 5 6 1 5 6 2 3 6 1 4 6 0 5 6 3 4 7 2 4 7 2 3 5 7 0 5 7 2 6 7 1 3 6 7 0 4 6 7 1 2 7 0 3 7 3 8 2 3 4 8 1 4 8 2 5 8 1 3 5 8 0 4 5 8 1 2 6 8 0 3 6 8 4 3 4 5 3 5 2 4 5 1 5 3 4 6 2 4 6 2 3 5 6 1 4 5 6 0 5 6 2 6 1 3 6 0 4 6 3 7 2 3 4 7 1 4 7 2 5 7 0 4 5 7 1 2 6 7 0 3 6 7 1 7 0 2 7 2 3 8 2 4 8 1 3 4 8 0 4 8 1 2 5 8 0 3 5 8 1 6 8 0 2 6 8 3 4 3 4 5 2 4 5 2 3 5 1 4 5 0 5 3 6 2 3 4 6 1 4 6 2 5 6 1 3 5 6 0 4 5 6 1 2 6 0 3 6 2 3 7 2 4 7 0 4 7 1 2 5 7 0 3 5 7 1 6 7 0 2 6 7 2 3 8 1 3 8 1 2 4 8 0 3 4 8 1 5 8 0 2 5 8 3 4 2 4 3 5 2 3 4 5 1 4 5 2 5 1 3 5 0 4 5 2 3 6 2 4 6 1 3 4 6 0 4 6 1 2 5 6 0 3 5 6 1 6 0 2 6 2 3 7 1 3 7 1 2 4 7 0 3 4 7 1 5 7 0 2 5 7 2 8 1 2 3 8 0 3 8 1 4 8 0 2 4 8 3 4 2 3 4 1 4 2 3 5 2 4 5 0 4 5 1 2 5 0 3 5 2 3 6 1 3 6 1 2 4 6 0 3 4 6 1 5 6 0 2 5 6 2 7 1 2 3 7 0 3 7 1 4 7 0 2 4 7 3 2 3 4 2 4 1 3 4 0 4 2 3 5 1 3 5 1 2 4 5 0 3 4 5 1 5 0 2 5 2 6 1 2 3 6 0 3 6 1 4 6 0 2 4 6
o2 : RingMap P8 <--- P8
|
i3 : time isDominant(phi,MathMode=>true)
MathMode: output certified!
-- used 6.42563 seconds
o3 = true
|
i4 : P7=ZZ/101[x_0..x_7];
|
i5 : -- hyperelliptic curve of genus 3
C=ideal(x_4*x_5+23*x_5^2-23*x_0*x_6-18*x_1*x_6+6*x_2*x_6+37*x_3*x_6+23*x_4*x_6-26*x_5*x_6+2*x_6^2-25*x_0*x_7+45*x_1*x_7+30*x_2*x_7-49*x_3*x_7-49*x_4*x_7+50*x_5*x_7,x_3*x_5-24*x_5^2+21*x_0*x_6+x_1*x_6+46*x_3*x_6+27*x_4*x_6+5*x_5*x_6+35*x_6^2+20*x_0*x_7-23*x_1*x_7+8*x_2*x_7-22*x_3*x_7+20*x_4*x_7-15*x_5*x_7,x_2*x_5+47*x_5^2-40*x_0*x_6+37*x_1*x_6-25*x_2*x_6-22*x_3*x_6-8*x_4*x_6+27*x_5*x_6+15*x_6^2-23*x_0*x_7-42*x_1*x_7+27*x_2*x_7+35*x_3*x_7+39*x_4*x_7+24*x_5*x_7,x_1*x_5+15*x_5^2+49*x_0*x_6+8*x_1*x_6-31*x_2*x_6+9*x_3*x_6+38*x_4*x_6-36*x_5*x_6-30*x_6^2-33*x_0*x_7+26*x_1*x_7+32*x_2*x_7+27*x_3*x_7+6*x_4*x_7+36*x_5*x_7,x_0*x_5+30*x_5^2-11*x_0*x_6-38*x_1*x_6+13*x_2*x_6-32*x_3*x_6-30*x_4*x_6+4*x_5*x_6-28*x_6^2-30*x_0*x_7-6*x_1*x_7-45*x_2*x_7+34*x_3*x_7+20*x_4*x_7+48*x_5*x_7,x_3*x_4+46*x_5^2-37*x_0*x_6+27*x_1*x_6+33*x_2*x_6+8*x_3*x_6-32*x_4*x_6+42*x_5*x_6-34*x_6^2-37*x_0*x_7-28*x_1*x_7+10*x_2*x_7-27*x_3*x_7-42*x_4*x_7-8*x_5*x_7,x_2*x_4-25*x_5^2-4*x_0*x_6+2*x_1*x_6-31*x_2*x_6-5*x_3*x_6+16*x_4*x_6-24*x_5*x_6+31*x_6^2-30*x_0*x_7+32*x_1*x_7+12*x_2*x_7-40*x_3*x_7+3*x_4*x_7-28*x_5*x_7,x_0*x_4+15*x_5^2+48*x_0*x_6-50*x_1*x_6+46*x_2*x_6-48*x_3*x_6-23*x_4*x_6-28*x_5*x_6+39*x_6^2+38*x_1*x_7-5*x_3*x_7+5*x_4*x_7-34*x_5*x_7,x_3^2-31*x_5^2+41*x_0*x_6-30*x_1*x_6-4*x_2*x_6+43*x_3*x_6+23*x_4*x_6+7*x_5*x_6+31*x_6^2-19*x_0*x_7+25*x_1*x_7-49*x_2*x_7-16*x_3*x_7-45*x_4*x_7+25*x_5*x_7,x_2*x_3+13*x_5^2-45*x_0*x_6-22*x_1*x_6+33*x_2*x_6-26*x_3*x_6-21*x_4*x_6+34*x_5*x_6-21*x_6^2-47*x_0*x_7-10*x_1*x_7+29*x_2*x_7-46*x_3*x_7-x_4*x_7+20*x_5*x_7,x_1*x_3+22*x_5^2+4*x_0*x_6+3*x_1*x_6+45*x_2*x_6+37*x_3*x_6+17*x_4*x_6+36*x_5*x_6-2*x_6^2-31*x_0*x_7+3*x_1*x_7-12*x_2*x_7+19*x_3*x_7+28*x_4*x_7+30*x_5*x_7,x_0*x_3-47*x_5^2-43*x_0*x_6+6*x_1*x_6-40*x_2*x_6+21*x_3*x_6+26*x_4*x_6-5*x_5*x_6-5*x_6^2+4*x_0*x_7-15*x_1*x_7+18*x_2*x_7-31*x_3*x_7+50*x_4*x_7-46*x_5*x_7,x_2^2+4*x_5^2+31*x_0*x_6+41*x_1*x_6+31*x_2*x_6+28*x_3*x_6+42*x_4*x_6-28*x_5*x_6-4*x_6^2-7*x_0*x_7+15*x_1*x_7-9*x_2*x_7+31*x_3*x_7+3*x_4*x_7+7*x_5*x_7,x_1*x_2-46*x_5^2-6*x_0*x_6-50*x_1*x_6+32*x_2*x_6-10*x_3*x_6+42*x_4*x_6+33*x_5*x_6+18*x_6^2-9*x_0*x_7-20*x_1*x_7+45*x_2*x_7-9*x_3*x_7+10*x_4*x_7-8*x_5*x_7,x_0*x_2-9*x_5^2+34*x_0*x_6-45*x_1*x_6+19*x_2*x_6+24*x_3*x_6+23*x_4*x_6-37*x_5*x_6-44*x_6^2+24*x_0*x_7-33*x_2*x_7+41*x_3*x_7-40*x_4*x_7+4*x_5*x_7,x_1^2+x_1*x_4+x_4^2-28*x_5^2-33*x_0*x_6-17*x_1*x_6+11*x_3*x_6+20*x_4*x_6+25*x_5*x_6-21*x_6^2-22*x_0*x_7+24*x_1*x_7-14*x_2*x_7+5*x_3*x_7-39*x_4*x_7-18*x_5*x_7,x_0*x_1-47*x_5^2-5*x_0*x_6-9*x_1*x_6-45*x_2*x_6+48*x_3*x_6+45*x_4*x_6-29*x_5*x_6+3*x_6^2+29*x_0*x_7+40*x_1*x_7+46*x_2*x_7+27*x_3*x_7-36*x_4*x_7-39*x_5*x_7,x_0^2-31*x_5^2+36*x_0*x_6-30*x_1*x_6-10*x_2*x_6+42*x_3*x_6+9*x_4*x_6+34*x_5*x_6-6*x_6^2+48*x_0*x_7-47*x_1*x_7-19*x_2*x_7+25*x_3*x_7+28*x_4*x_7+34*x_5*x_7);
o5 : Ideal of P7
|
i6 : phi=toMap(C,3,2)
2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
o6 = map(P7,P7,{17x x + 44x x x - 34x x + 46x x + 10x x - 17x + 29x x x - 47x x - 20x x x - 44x x x - x x - 27x x - 46x x + 31x x + 17x x x + 13x x x - 34x x x - 37x x + 30x x x - 47x x x - 45x x x - 27x x + 17x x - 34x x - 47x x + 23x x x + 31x x - 30x x x - 24x x x + 43x x + 18x x x + 26x x x + 33x x x - 27x x + 19x x x + 31x x x + 11x x x - 29x x x + 31x x + 5x x + 40x x - 47x x + 18x x - 31x x + 39x + 17x x x + 41x x - 18x x x + 27x x x - 19x x + 41x x x + 41x x x - 18x x x + 41x x - 27x x x - 29x x x + 13x x x + 14x x x - 27x x - 12x x x - 30x x - 9x x x + 50x x x - 21x x + 33x x x + 31x x x + 31x x x + 47x x x - 30x x x - 22x x x + 33x x x - 30x x + 47x x x - 30x x x - 22x x x + 33x x x + 41x x x - 30x x , - 41x x - 29x x - 4x - 10x x x - 6x x + 30x x x - 34x x x - 14x x - 10x x + 43x x - 10x x + 11x x x - 6x x + 42x x x - 6x x x - 10x x x - 10x x - 6x x - 41x x x - 29x x - 31x x x - 27x x x - 4x x - 41x x x + 37x x x + 12x x x - 10x x - 6x x x - 29x x x - 16x x x - 47x x x - 29x x + 40x x - 17x x - 4x x - 41x x - 33x x - 4x - 11x x + 41x x x + 43x x x - 26x x - 11x x x - 11x x x - 23x x x - 11x x - 10x x x + 43x x x + 31x x x - 21x x x - 10x x + x x x - 6x x + 47x x x + 6x x + x x x - 47x x x - 47x x x + 42x x x - 6x x x + 19x x x + x x x - 6x x + 42x x x - 6x x x + 19x x x + x x x - 12x x x - 6x x , 39x + 4x x + 33x x + x x + 12x x x + 39x x + 48x x + 22x x + 29x - 27x x x - 36x x - 50x x x - 36x x x + 35x x + 35x x + 8x x + 34x x + 2x + 33x x x + 18x x x + 39x x x + 7x x + 32x x x - 36x x x + 40x x x - 10x x + 33x x + 39x x - 36x x + 24x x x - 16x x - 46x x x - 8x x x + 31x x - 21x x x - 5x x x - 15x x x - 43x x - 40x x x - 16x x x - 39x x x + 39x x x - 16x x - 43x x + 18x x + 26x x - 30x x - 22x x - 37x - 10x x + 21x x x - 13x x - 42x x x - 31x x x - 31x x + 11x x x - 38x x x - 3x x x - 4x x + 42x x x - 13x x x + 5x x x - 20x x x - 13x x - 46x x x + 20x x x + 42x x x + 19x x x + 18x x x + 31x x + 19x x - 33x x - 2x x + 15x x + 15x x - 47x x + 23x x x - 3x x + 42x x x - 35x x x + 36x x + 13x x x + 33x x x + 37x x x - 31x x + 22x x x - 3x x x + 27x x x + 44x x x - 3x x + 3x x x + 30x x x + 29x x x + 44x x x - 21x x x - 18x x , - 9x - 21x x + 15x x + 21x x x - 16x x + 39x x + 13x x + 40x + x x + 9x x x + 34x x - 31x x x + 36x x x + 14x x + 10x x + 17x x + 45x x - 31x + 15x x x - 9x x x - 16x x x - 38x x + 17x x x + 34x x x - 13x x x - 10x x + 15x x - 16x x + 34x x + 19x x x - 43x x - 10x x x + 5x x x - 35x x + 8x x x + 26x x x - 2x x x + 29x x - 13x x x - 43x x x - 37x x x - 38x x x - 43x x - 10x x - 36x x + 49x x - 27x x - 18x x - 13x - 21x x + 45x x x - 44x x - 11x x x + 24x x x + 18x x - 33x x x - 29x x x - 44x x x + 45x x - 14x x x - 44x x x - 27x x x + 37x x x - 44x x - 40x x x - 47x x x + 26x x x - 39x x x + 25x x x - 32x x - 43x x + 33x x - 30x x + 2x x + 2x x - 28x x - 49x x x + 49x x + 2x x x + 33x x x + 23x x - 26x x x - 3x x x - 48x x x - 38x x + 9x x x + 49x x x - 21x x x + 12x x x + 49x x - 49x x x + 16x x x + 9x x x + 12x x x - 5x x x + 47x x , - 43x - 34x x - 41x x + 41x x x + 45x x + 38x x - 3x x + 24x + 42x x x + 29x x + 8x x x + 15x x x - 49x x + 5x x + 9x x + 8x x + 9x + x x - 41x x x - 42x x x + 45x x x + 14x x + 13x x x + 29x x x - 8x x x + 29x x - 41x x + 45x x + 29x x - 31x x x - 45x x - 50x x x - 37x x x - 48x x - 31x x x - 38x x x + 11x x x + 22x x + 13x x x - 45x x x + 11x x x - 13x x x - 45x x + 15x x + 6x x - 21x x + 15x x - 24x x - 17x - 33x x - 32x x x - 40x x - 44x x x + 7x x x - 30x x + 44x x x + 47x x x + 23x x x - 44x x + 23x x x - 40x x x + 23x x x - 20x x x - 40x x + 46x x x - 2x x x + 4x x x + 5x x x - 19x x x + 21x x - 19x x + 29x x - 34x x + 38x x + 38x x - 44x x + 8x x x - 12x x + 26x x x - 20x x x - 15x x + 23x x x + 38x x x - 19x x x - 38x x - 32x x x - 12x x x - 27x x x - 40x x x - 12x x - 13x x x - 41x x x + 7x x x - 40x x x + 39x x x - 50x x , - 36x - 34x x - x x + 25x x x + 8x x + 33x x - 7x x - 27x + 5x x x + 22x x - 13x x x - x x x + 37x x + 46x x - 42x x + 27x x + 29x - x x x + 24x x x + 8x x x - 27x x + 34x x x + 22x x x - 30x x x + 28x x - x x + 8x x + 22x x + x x + 3x x x + 13x x - 33x x x - 3x x x + 24x x + 20x x x + 32x x x + 42x x x - 13x x + x x x + 13x x x - 32x x x + 29x x x + 13x x - x x + 20x x - 41x x - 21x x + 28x x + 7x + 17x x - 38x x x + 2x x - 50x x x + 4x x x - 31x x - 10x x x + 4x x x - 23x x x - 28x x - 23x x x + 2x x x - 21x x x - 9x x x + 2x x - 11x x x + 14x x x + 19x x x - 25x x x + 24x x x + 22x x + 41x x + 49x x - 28x x - 28x x - 11x x + 31x x x + 21x x + 38x x x + 45x x x - 17x x + 12x x x + 12x x x + 40x x x - 8x x + 4x x x + 21x x x + 32x x x + 20x x x + 21x x + 4x x x - 20x x x - 17x x x + 20x x x - 31x x x + 49x x , - 17x + 43x x - 6x x + 50x x x + 14x x + 10x x + 24x x - 31x + 42x x x - 7x x + 27x x x - 19x x x + 15x x + 25x x + 34x x + 50x - 6x x x + 10x x x + 14x x x - 20x x + 12x x x - 7x x x + 16x x x + 8x x - 6x x + 14x x - 7x x - 12x x x + 35x x + 12x x x + 16x x x - 29x x + 10x x x - 10x x x + 2x x x - 43x x - 48x x x + 35x x x - 18x x x + 14x x x + 35x x + 3x x + 50x x + 30x x - x x + 32x x + 44x - 5x x - 33x x x + 33x x - 11x x x + 44x x x - 29x x + x x x - 50x x x - 2x x x - 22x x + 5x x x + 33x x x - 5x x x + 29x x x + 33x x + 23x x x + 14x x x - 2x x x + 22x x x + 37x x x + 4x x - 21x x - 36x x + 18x x - 43x x - 43x x - 8x x - 38x x x - 13x x + 6x x x + 39x x x + x x + 18x x x - 19x x x + 3x x x + 47x x - 36x x x - 13x x x + 21x x x - 29x x x - 13x x - 15x x x + 23x x x + 3x x x - 29x x x + 17x x x + 30x x , - 43x - 19x x - 11x x - 34x x x + 10x x - 32x x + 34x x - 18x + 29x x x - 13x x + 43x x x + 44x x x - 42x x + 24x x - 7x x - 45x x - 34x - 11x x x + 15x x x + 10x x x + 13x x x - 13x x x + 18x x x - 15x x - 11x x + 10x x - 13x x - 24x x x - 21x x + 31x x x + 2x x x + 16x x + 21x x x - 15x x x - 3x x x + 50x x - 30x x x - 21x x x + 44x x x - 21x x + 28x x + 31x x - 25x x - 41x x + 16x x - 30x - 33x x - 46x x x + 15x x - 32x x x + 38x x x + 8x x + 34x x x - 19x x x - 14x x x + 3x x - 9x x x + 15x x x - 14x x x - 4x x x + 15x x + 45x x x - 41x x x + 28x x x - 37x x x + 50x x x + 35x x - 48x x + 30x x - 4x x - 45x x - 45x x - 43x x - 18x x x - 24x x - 5x x x + 23x x x + 11x x - 47x x x + 45x x x + 42x x x + 34x x - 7x x x - 24x x x + 38x x x + 20x x x - 24x x + 41x x x + 47x x x + 42x x x + 20x x x - 3x x x + 21x x })
0 1 0 1 2 1 2 0 2 1 2 2 0 1 3 1 3 0 2 3 1 2 3 2 3 0 3 1 3 2 3 0 1 4 0 2 4 1 2 4 2 4 0 3 4 1 3 4 2 3 4 3 4 0 4 2 4 3 4 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 2 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 0 1 6 1 6 0 2 6 1 2 6 2 6 0 4 6 1 4 6 2 4 6 4 6 0 5 6 1 5 6 2 5 6 4 5 6 5 6 0 1 7 1 7 0 2 7 1 2 7 2 7 0 3 7 1 3 7 2 3 7 0 4 7 1 4 7 2 4 7 3 4 7 4 7 0 5 7 1 5 7 2 5 7 3 5 7 4 5 7 5 7 0 2 1 2 2 0 1 3 1 3 0 2 3 1 2 3 2 3 0 3 1 3 2 3 0 2 4 2 4 0 3 4 1 3 4 2 3 4 3 4 3 4 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 2 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 1 6 0 2 6 1 2 6 2 6 0 4 6 1 4 6 2 4 6 4 6 0 5 6 1 5 6 2 5 6 4 5 6 5 6 0 1 7 1 7 0 2 7 2 7 0 3 7 1 3 7 2 3 7 0 4 7 1 4 7 2 4 7 3 4 7 4 7 0 5 7 1 5 7 2 5 7 3 5 7 4 5 7 5 7 0 0 1 0 1 0 2 0 1 2 1 2 0 2 1 2 2 0 1 3 1 3 0 2 3 1 2 3 2 3 0 3 1 3 2 3 3 0 1 4 0 2 4 1 2 4 2 4 0 3 4 1 3 4 2 3 4 3 4 0 4 2 4 3 4 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 2 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 0 6 0 1 6 1 6 0 2 6 1 2 6 2 6 0 3 6 1 3 6 2 3 6 3 6 0 4 6 1 4 6 2 4 6 3 4 6 4 6 0 5 6 1 5 6 2 5 6 3 5 6 4 5 6 5 6 0 6 1 6 2 6 4 6 5 6 0 7 0 1 7 1 7 0 2 7 1 2 7 2 7 0 3 7 1 3 7 2 3 7 3 7 0 4 7 1 4 7 2 4 7 3 4 7 4 7 0 5 7 1 5 7 2 5 7 3 5 7 4 5 7 5 7 0 0 1 0 1 0 1 2 1 2 0 2 1 2 2 0 3 0 1 3 1 3 0 2 3 1 2 3 2 3 0 3 1 3 2 3 3 0 1 4 0 2 4 1 2 4 2 4 0 3 4 1 3 4 2 3 4 3 4 0 4 2 4 3 4 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 2 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 0 6 0 1 6 1 6 0 2 6 1 2 6 2 6 0 3 6 1 3 6 2 3 6 3 6 0 4 6 1 4 6 2 4 6 3 4 6 4 6 0 5 6 1 5 6 2 5 6 3 5 6 4 5 6 5 6 0 6 1 6 2 6 4 6 5 6 0 7 0 1 7 1 7 0 2 7 1 2 7 2 7 0 3 7 1 3 7 2 3 7 3 7 0 4 7 1 4 7 2 4 7 3 4 7 4 7 0 5 7 1 5 7 2 5 7 3 5 7 4 5 7 5 7 0 0 1 0 1 0 1 2 1 2 0 2 1 2 2 0 1 3 1 3 0 2 3 1 2 3 2 3 0 3 1 3 2 3 3 0 4 0 1 4 0 2 4 1 2 4 2 4 0 3 4 1 3 4 2 3 4 3 4 0 4 2 4 3 4 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 2 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 0 6 0 1 6 1 6 0 2 6 1 2 6 2 6 0 3 6 1 3 6 2 3 6 3 6 0 4 6 1 4 6 2 4 6 3 4 6 4 6 0 5 6 1 5 6 2 5 6 3 5 6 4 5 6 5 6 0 6 1 6 2 6 4 6 5 6 0 7 0 1 7 1 7 0 2 7 1 2 7 2 7 0 3 7 1 3 7 2 3 7 3 7 0 4 7 1 4 7 2 4 7 3 4 7 4 7 0 5 7 1 5 7 2 5 7 3 5 7 4 5 7 5 7 0 0 1 0 1 0 1 2 1 2 0 2 1 2 2 0 1 3 1 3 0 2 3 1 2 3 2 3 0 3 1 3 2 3 3 0 1 4 0 2 4 1 2 4 2 4 0 3 4 1 3 4 2 3 4 3 4 0 4 2 4 3 4 0 5 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 2 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 0 6 0 1 6 1 6 0 2 6 1 2 6 2 6 0 3 6 1 3 6 2 3 6 3 6 0 4 6 1 4 6 2 4 6 3 4 6 4 6 0 5 6 1 5 6 2 5 6 3 5 6 4 5 6 5 6 1 6 2 6 4 6 5 6 0 7 0 1 7 1 7 0 2 7 1 2 7 2 7 0 3 7 1 3 7 2 3 7 3 7 0 4 7 1 4 7 2 4 7 3 4 7 4 7 0 5 7 1 5 7 2 5 7 3 5 7 4 5 7 5 7 0 0 1 0 1 0 1 2 1 2 0 2 1 2 2 0 1 3 1 3 0 2 3 1 2 3 2 3 1 3 2 3 3 0 1 4 0 2 4 1 2 4 2 4 0 3 4 1 3 4 2 3 4 3 4 0 4 2 4 3 4 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 2 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 0 6 0 1 6 1 6 0 2 6 1 2 6 2 6 0 3 6 1 3 6 2 3 6 3 6 0 4 6 1 4 6 2 4 6 3 4 6 4 6 0 5 6 1 5 6 2 5 6 3 5 6 4 5 6 5 6 0 6 1 6 2 6 4 6 5 6 0 7 0 1 7 1 7 0 2 7 1 2 7 2 7 0 3 7 1 3 7 2 3 7 3 7 0 4 7 1 4 7 2 4 7 3 4 7 4 7 0 5 7 1 5 7 2 5 7 3 5 7 4 5 7 5 7 0 0 1 0 1 0 1 2 1 2 0 2 1 2 2 0 1 3 1 3 0 2 3 1 2 3 2 3 0 3 1 3 2 3 3 0 1 4 0 2 4 1 2 4 0 3 4 1 3 4 2 3 4 3 4 0 4 2 4 3 4 0 1 5 1 5 0 2 5 1 2 5 2 5 0 3 5 1 3 5 2 3 5 3 5 0 4 5 1 4 5 3 4 5 4 5 0 5 1 5 2 5 3 5 4 5 5 0 6 0 1 6 1 6 0 2 6 1 2 6 2 6 0 3 6 1 3 6 2 3 6 3 6 0 4 6 1 4 6 2 4 6 3 4 6 4 6 0 5 6 1 5 6 2 5 6 3 5 6 4 5 6 5 6 0 6 1 6 2 6 4 6 5 6 0 7 0 1 7 1 7 0 2 7 1 2 7 2 7 0 3 7 1 3 7 2 3 7 3 7 0 4 7 1 4 7 2 4 7 3 4 7 4 7 0 5 7 1 5 7 2 5 7 3 5 7 4 5 7 5 7
o6 : RingMap P7 <--- P7
|
i7 : time isDominant(phi,MathMode=>true)
MathMode: output certified!
-- used 4.81439 seconds
o7 = false
|