next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
ConformalBlocks :: kappaDivisorM0nbar

kappaDivisorM0nbar -- the class of the divisor kappa

Synopsis

Description

On M0,n, the divisor kappa may be defined by K + Δ, where K is the canonical divisor, and Δ is the sum of the boundary classes Bi. A fun fact is that kappa . FI1,I2,I3,I4 =1 for every F curve.

i1 : kappaDivisorM0nbar(14)

                                 11
o1 = SymmetricDivisorM0nbar{2 => --             }
                                 13
                                 20
                            3 => --
                                 13
                                 27
                            4 => --
                                 13
                                 32
                            5 => --
                                 13
                                 35
                            6 => --
                                 13
                                 36
                            7 => --
                                 13
                            NumberOfPoints => 14

o1 : SymmetricDivisorM0nbar

Ways to use kappaDivisorM0nbar :