This function writes a Keel relation among curves. It is an expression supported on four F-curves that is equivalent to zero.
Specifically, let P = I1 ∪…∪I5 be a partition of {1,...,n} into five nonempty subsets. Then this function returns the curve class representative FI1,I2,I3,I4 ∪I5 + FI1 ∪I2, I3,I4,I5 - FI1, I4, I3, I2 ∪I5 - FI1 ∪I4, I3, I2, I5.
i1 : C1=KeelRelationAmongCurves({{1},{2},{3},{4},{5}}) o1 = CurveClassRepresentativeM0nbar{CurveExpression => HashTable{{{1, 2}, {3}, {4}, {5}} => 1 }} {{1, 4}, {2}, {3}, {5}} => -1 {{1}, {2, 5}, {3}, {4}} => -1 {{1}, {2}, {3}, {4, 5}} => 1 NumberOfMarkedPoints => 5 o1 : CurveClassRepresentativeM0nbar |
i2 : L={ }; |
i3 : C2=curveClassRepresentativeM0nbar(5,L); |
i4 : isEquivalent(C1,C2) o4 = true |