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Chapter 1

Introduction

Gappa (Génération Automatique de Preuves de Propriétés Arithmétiques — automatic proof generation of arithmetic proper-
ties) is a tool intended to help verifying and formally proving properties on numerical programs and circuits handling floating-
point or fixed-point arithmetic.

This tool manipulates logical formulas stating the enclosures of expressions in some intervals. For example, a formal proof of
the property

c ∈ [−0.3,−0.1] ∧ (2a ∈ [3,4]⇒ b+ c ∈ [1,2]) ∧ a− c ∈ [1.9,2.05] ⇒ b+1 ∈ [2,3.5]

can be generated thanks to the following Gappa script.

{
c in [-0.3,-0.1] /\
(2 * a in [3,4] -> b + c in [1,2]) /\
a - c in [1.9,2.05]

-> b + 1 in [2,3.5]
}

a -> a - c + c;
b -> b + c - c;

Through the use of rounding operators as part of the expressions, Gappa is specially designed to deal with formulas that could
appear when certifying numerical codes. In particular, Gappa makes it simple to bound computational errors due to floating-
point arithmetic.

Gappa is free software; you can redistribute it and/or modify it under the terms of the CeCILL Free Software License Agreement
or under the terms of the GNU General Public License. (Refer to the files from the source archive for the precise wording of
these two licences.) Gappa can be downloaded on its project page1. The tool and its documentation have been written by
Guillaume Melquiond2.

1http://gappa.gforge.inria.fr/
2http://www.lri.fr/~melquion/

http://gappa.gforge.inria.fr/
http://www.lri.fr/~melquion/
http://gappa.gforge.inria.fr/
http://www.lri.fr/~melquion/




Chapter 2

Invoking Gappa

2.1 Input and output

Gappa reads the script whose filename is passed as an argument to the tool, or on its standard input if none. Such a script is
made of three parts: the definitions, the logical formula, and the hints. Warning messages, error messages, and results, are
displayed on the standard error output. Gappa also sends to the standard output a formal proof of the logical formula; its format
depends on the selected back-end. Finally, if the tool was unable to prove some goals, its return code is a nonzero value.

For example, the following command lines create a simple script in file test.g, pass it to Gappa, and store the generated Coq
proof in file test.v file. They also test the return code of Gappa and send the generated proof to Coq so that it is automatically
checked. Since the proof checker does not display anything, it means no errors were detected and the result computed by Gappa
is correct.

$ echo "{ x in [-2,2] -> x * x in ? }" > test.g

$ gappa -Bcoq test.g > test.v
Results:

x * x in [0, 4]

$ echo "Return code is $?"
Return code is 0

$ coqc -I path/to/gappalib-coq test.v

$

Note that, if no ranges are left unspecified in the logical formula, Gappa will not have anything to display in case of success.

$ echo "{ 1 + 1 = 2 }" | gappa

$ echo "Return code is $?"
Return code is 0

2.2 Command-line options

2.2.1 Selecting a proof back-end

These options are mutually exclusive and cannot be embedded into scripts.
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2.2.1.1 Null back-end.

Option: -Bnull

Do not enable any back-end. This is the default behavior. This is also the only back-end compatible with the -Munconstra
ined option.

2.2.1.2 Coq back-end

Option: -Bcoq

When this back-end is selected, Gappa generates a script that proves the logical formula. This script can be mechanically
verified by the Coq proof checker. It can also be reused in bigger formal developments made with Coq.

2.2.1.3 Latex back-end

Option: -Blatex

When this back-end is selected, Gappa generates a Latex file that contains the steps for proving the logical formula.

2.2.1.4 Coq lambda-term back-end

Option: -Bcoq-lambda

This back-end is used by the gappa tactic available for the Coq proof checker. It generates a lambda-term that can be directly
loaded by the proof checker, but it only supports the features needed by the tactic. For instance, it does not support rewriting
rules.

2.2.2 Setting internal parameters

2.2.2.1 Internal precision

Option: -Eprecision=integer

This option sets the internal MPFR precision that Gappa uses when computing bounds of intervals. The default value is 60 and
should be sufficient for most uses.

2.2.2.2 Dichotomy depth

Option: -Edichotomy=integer

This option limits the depth of a dichotomy split. The default value is 100. It means that an interval of width 1 is potentially
split into 2100 intervals of width 2−100 relatively to the original interval. This should be sufficient for most uses too.

2.2.2.3 Fused multiply-add format

Option: -E[no-]reverted-fma

By default (-Eno-reverted-fma), the expression fma(a,b,c) is interpreted as a * b + c. As this may not be the
preferred order for the operands, the option makes Gappa use c + a * b instead.

2.2.2.4 Threshold for accepting new results

Option: -Echange-threshold=float

When Gappa discovers a new result, it compares it to the ones previously found. If the changes are smaller than the threshold,
the new result is discarded. The threshold is a floating-point value between 0 and 1. Setting it to 0 prevents Gappa from ever
discarding a better result. By default, its value is 0.01, that is, interval bounds or widths have to improve by at least one percent.
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2.2.2.5 Automatic dichotomy

Option: -E[no-]auto-dichotomy

Gappa can automatically select an expression on which to perform a dichotomy. This behavior is disabled if the logical formula
contains some unspecified intervals. It can also be disabled using this option.

2.2.3 Setting modes

These options cannot be embedded into scripts.

2.2.3.1 Assuming vague hypotheses

Option: -Munconstrained

By default, Gappa checks that all the hypotheses hold before applying a theorem. This mode weakens the engine by making it
skip hypotheses that are not needed for computing intermediate results. For example, Gappa will no longer check that x is not
zero before applying the lemma proving x /x in [1,1].

This mode is especially useful when starting a proof on relative errors, as it makes it possible to get some early results about
them without having to prove that they are well-defined.

At the end of its run, Gappa displays all the facts that are left unproven. In the following example, the property NZR indicates
that Gappa possibly needs to prove that some values are not zero.

{ x in [1,2] ->
(x + 1) / (x + 1) in ? /\ (x - 1) / (x - 1) in ? }

Results:
(x + 1) / (x + 1) in [1, 1]
(x - 1) / (x - 1) in [1, 1]

Warning: some properties were assumed:
NZR(x + 1)
NZR(x - 1)

Notice that Gappa has assumed x + 1 to be nonzero, while it actually can be deduced from x in [1,2]. So there might
be false positives among assumptions, depending on the order Gappa deduced properties.

This mode cannot be used when a proof back-end is selected, as a generated proof would contain holes. It is, however, as slow
as if a back-end had been selected, since the whole proof graph is kept around.

2.2.3.2 Gathering statistics

Option: -Mstatistics

At the end of its computations, Gappa displays some statistics. For example, the second script of Section 5.3 gives:

Statistics:
2359 expressions were considered,
but then 127 of those got discarded.

6317 theorems were considered,
but then 326 of those got discarded.

7437 applications were tried. Among those,
5933 were successful,
yet 2626 proved useless
and 13 improved existing results.
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The first two lines show how many intermediate expressions Gappa has prepared. The first number tells how many have
been considered, and the second number tells how many of them were discarded because no theorem could handle them.
Similarly, the next two lines show how many theorem instances Gappa has prepared. The first number tells how many have
been considered, and the second number tells how many of them were discarded because their hypotheses could never have
been satisfied.

Once both sets are ready, Gappa tries to deduce new properties by repeatedly applying the prepared theorems. The next statistic
show how many of those theorems Gappa tried to apply. Applications are successful if Gappa could satisfy theorem hypotheses.
Even if an application succeeded, the deduced property could have been (partly) useless because a stronger property had already
been found at the time the theorem was applied. The last two lines track these cases.

2.2.4 Enabling and disabling warning messages

By default, all the warning messages are enabled. See annex for details on warning messages displayed during parsing and
during computations.

2.3 Embedded options

Options setting internal parameters or enabling warning messages can be embedded in a Gappa proof script. It is especially
important when the logical property cannot be proved with the default parameters. These options are passed through a special
comment syntax: #@-Edichotomy=200.
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Formalizing a problem

3.1 Sections of a Gappa script

A Gappa script contains three parts. The first one is used to give names to some expressions in order to simplify the writing of
the next parts. The second one is the logical formula one wants to prove with the tool. The third one gives some hints to Gappa
on how to prove it.

The following script shows these three parts for the example of Section 5.1.

# some notations for making the script readable
@rnd = float<ieee_32, ne>;
x = rnd(xx);
y rnd= x * (1 - x);
z = x * (1 - x);

# the logical formula that Gappa will try (and succeed) to prove
{ x in [0,1] -> y in [0,0.25] /\ y - z in [-3b-27,3b-27] }

# three hints to help Gappa finding the proof
z -> 0.25 - (x - 0.5) * (x - 0.5);
y $ x;
y - z $ x;

3.1.1 Logical formula

This is the fundamental part of the script, it contains the logical formula Gappa is expected to prove. This formula is written
between brackets and can contain any implication, disjunction, conjunction, negation of properties of mathematical expressions.
These properties can be enclosures, inequalities, relative errors, equalities, and expression precisions. Any identifier without
definition is assumed to be universally quantified over the set of real numbers.

3.1.1.1 Enclosures

Enclosures are either bounded ranges or inequalities. In positive position, ranges can be left unspecified. Gappa will then
suggest a range such that the logical formula is verified.

{ x - 2 in [-2,0] /\ (x + 1 in [0,2] -> y in [3,4]) -> not x <= 1 \/ x + y in ? }

Results:
x + y in [3, 5]
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Note that Gappa might be able to prove the formula without even having to fill some unspecified ranges. In that case, Gappa
will not display anything about them.

{ x in [1,2] /\ x - 3 >= 0 -> x + 1 in ? }
# notice the contradiction between the hypotheses

Results:
remaining results are pointless, anything can be proved.

Inequalities that give an upper bound on an absolute value are treated specially. They are assumed to be full enclosures with a
lower bound equal to zero. In other words, |x| <=1 is syntactic sugar for |x| in [0,1].

Gappa does not know much about inequalities, as they never appear as hypotheses of its theorems. They can only be used to
refine a previously computed enclosure. For instance, Gappa cannot deduce a contradiction from x * x <=-1 alone. It needs
to know either an enclosure of x or a nonnegative enclosure of x * x.

3.1.1.2 Relative errors

The relative error between an approximate value x and a more precise value y is expressed by (x -y) /y. For instance,
when one wants to prove a bound on it, one can write:

{ ... -> |(x - y) / y| <= 0x1p-53 }

However, this bound can only be obtained if y is (proved to be) nonzero. Similarly, if a hypothesis was a bound on a relative
error, this hypothesis would be usable by Gappa only if it can prove that its denominator is nonzero.

Gappa provides another way of expressing relative errors which does not depend on the denominator being nonzero. It cannot
be used as a subexpression; it can only be used as the left-hand side of an enclosure:

{ ... -> x -/ y in [-0x1p-53,0x1p-53] }

This enclosure on the relative error represents the following proposition: ∃ε ∈ [−2−53,2−53], x = y× (1+ ε).

As with enclosures, the range can be left unspecified.

{ x -/ x in ? }

Results:
x -/ x in [0, 0]

When the bounds on a relative error are symmetric, the enclosure can be written as |x -/y| <=... instead.

3.1.1.3 Equalities

While equalities could be encoded with enclosures,

{ ... -> x - y in [0,0] -> ...

Gappa also understands the following notation:

{ ... -> x = y -> ... }

Note that equalities are implicitly directed from left to right. For instance, when looking for a property on a + x, Gappa will
consider a + y (assuming that property x =y holds), but not the other way around. This is similar to the handling of rewriting
rules.

Whenever possible, equalities should be expressed as definitions rather than inside the logical formulas, as it offers more
opportunities for Gappa to apply its theorems.



Chapter 3. Formalizing a problem 9 / 59

3.1.1.4 Expression precision

In addition to equalities and inequalities, Gappa also supports properties about the precision needed to represent expressions.
These are expressed by using the predicates @FIX(x,k) and @FLT(x,k) where x is an expression and k an integer. Both
properties state that x can be decomposed as a generic binary floating-point number: ∃m,e ∈ Z, x = m · 2e. For @FIX this
decomposition satisfies e≥ k, while for @FLT it satisfies |m|< 2k. For instance, the following Gappa formula holds:

x = float<ieee_32,ne>(x_);
{ @FIX(x,-149) /\ @FLT(x,24) }

3.1.1.5 Nonzero expressions

Finally, Gappa has special support for expressions that are not zero (and thus can be properly handled when they appear as
denominators).

{ x <> 0 -> x / x in [1,1] }

3.1.2 Definitions

Typing the whole expressions in the logical formula can soon become annoying and error-prone, especially if they contain
rounding operators. To ease this work, the user can define in another section beforehand the expressions that will be used more
than once. A special syntax also allows to avoid embedding rounding operators everywhere.

First, rounding operators can be given a shorter name by using the @name =definition<parameters> syntax. name
can then be used wherever the whole definition would have been used.

Next, common sub-terms of a mathematical expression can be shared by giving them a name with the name =term syntax.
This name can then be used in later definitions or in the logical formula or in the hints. The equality itself does not hold any
semantic meaning. Gappa will only use the name as a shorter expression when displaying the sub-term, and in the generated
proof instead of a randomly generated name.

Finally, when all the arithmetic operations on the right side of a definition are followed by the same rounding operator, this
operator can be put once and for all on the left of the equal symbol. For example, with the following script, Gappa will complain
that y and z are two different names for the same expression.

@rnd = float<ieee_32, ne>;
y = rnd(x * rnd(1 - x));
z rnd= x * (1 - x);
{ y - z >= 0 }

3.1.3 Hints

Hints for Gappa’s engine can be added in this last section, if the tool is not able to prove the logical formula. These hints are
either rewriting rules or bisection directives. Approximate and accurate expressions can also be provided in this section in order
to generate implicit rewriting rules.

3.2 Preferred expressions and other peculiarities

Gappa rewrites expressions by matching them with well-known patterns. The enclosure of an unmatchable expression will
necessarily have to be computed through interval arithmetic. As a consequence, to ensure that the expressions will benefit from
as much rewriting as possible, special care needs to be taken when expressing the computational errors.
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3.2.1 Absolute and relative errors

Let exact be an arithmetic expression and approx an approximation of exact. The approximation usually contains round-
ing operators while the exact expression does not. The absolute error between these two expressions is their difference: approx
-exact.

Writing the errors differently will prevent Gappa from applying theorems on rounding errors: -(x -rnd(x)) may lead to a
worse enclosure than rnd(x) -x.

The situation is similar for the relative error. It should be expressed as the quotient between the absolute error and the exact
value: (approx -exact) /exact. For enclosures of relative errors, this is the same: approx -/exact.

3.2.2 Global errors

The approx and exact expressions need to have a similar structure in order for the rewriting rules to kick in. E.g., if exact
is a sum of two terms a and b, then approx has to be the sum of two terms c and d such that c and d are approximations of
a and b respectively.

Indeed the rewriting rule for the absolute error of the addition is: (a + b) -(c + d) -> (a -c) + (b -d). Simi-
larly, the rewriting rules for the multiplication keep the same ordering of sub-terms. For example, one of the rules is: a * b
-c * d -> (a -c) * b + c * (b -d). Therefore, one should try not to mess with the structure of expressions.

If the two sides of an error expression happen to not have a similar structure, then a user rewriting rule has to be added in order
to put them in a suitable state. For instance, let us assume we are interested in the absolute error between a and d, but they
have dissimilar structures. Yet there are two expressions b and c that are equal and with structures similar to a for b and d for
c. Then we just have to add the following hints to help Gappa:

b - c -> 0; # or "b-c in [0,0]" as a hypothesis
a ~ b; # a is an approximation of b
c ~ d; # c is an approximation of d

3.2.3 Discrete values

When an expression is known to take a few separate values that are not equally distributed, a disjunction is the simplest solution
but it can be avoided if needed. For instance, if x can only be 0, 2, or 17, one can write:

x = i * (19b-1 * i - 15b-1);
{ @FIX(i, 0) /\ i in [-1,1] -> ... }
$ i in 3; # this dichotomy hint helps Gappa to understand that i is either -1, 0, or 1

3.2.4 Disjunction

When the goal of a formula contains a disjunction, one of the sides of this disjunction has to always hold with respect to the
set of hypotheses. This is especially important when performing dichotomies. Even if Gappa is able to prove the formula in
each particular branch of a dichotomy, if a different property of the disjunction is used each time, the tool will fail to prove the
formula in the general case. Note that, whenever a contradiction is found for a specific set of hypotheses, whichever side of the
disjunction holds no longer matter, since Gappa can infer any of them.

3.3 Providing hints

3.3.1 Rewriting rules

Internally, Gappa tries to compute the range of mathematical terms. For example, if the tool has to bound the product of two
factors, it will check if it knows the ranges of both factors. If it does, it will apply the theorem about real multiplication in order
to compute the range of the product.
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Unfortunately, there may be some expressions that Gappa cannot bound tightly. This usually happens because it has no result
on a sub-term or because the expression is badly correlated. In this case, the user can provide an intermediate expression with
the following hint.

primary -> secondary;

If Gappa finds a property about the secondary expression, it will use it as if it was about the primary expression. This trans-
formation is valid as long as both expressions are equal. So, when generating a theorem proof, Gappa adds this equality as a
hypothesis. It is then up to the user to prove it in order to be able to apply the theorem.

To detect mistyping early, Gappa checks if both expressions can be normalized to the same one according to field rules (and
are therefore equal) and warn if they are not. (It will not generate a proof of their equality though.) Note that Gappa does not
check if the divisors that appear in the expressions are always nonzero; it just warns about them.

If an equality requires some conditions to be verified, they can be added to the rule:

sqrt(x * x) -> -x { x <= 0 };

3.3.2 Approximated expressions

As mentioned before, Gappa has an internal database of rewriting rules. Some of these rules need to know about accurate and
approximate terms. Without this information, they do not match any expression. For example, Gappa will replace the term B
by b + -(b -B) only it knows a term b that is an approximation of the term B.

Gappa has two heuristics to detect terms that are approximations of other terms. First, rounded values are approximations of
their non-rounded counterparts. Second, any absolute or relative error that appears as a hypothesis of a logical sub-formula will
define a pair of accurate and approximate terms.

Since these pairs create lots of already proved rewriting rules, it is helpful for the user to define its own pairs. This can be done
with the following syntax.

approximate ~ accurate;

In the following example, the comments show two hints that could be added if they had not already been guessed by Gappa. In
particular, the second one enables a rewriting rule that completes the proof.

@floor = int<dn>;
{ x - y in [-0.1,0.1] -> floor(x) - y in ? }
# floor(x) ~ x;
# x ~ y;

3.3.3 Dichotomy search

The last kind of hint can be used when Gappa is unable to prove a formula but would be able to prove it if the hypothesis ranges
were not so wide. Such a failure is usually caused by a bad correlation between the sub-terms of the expressions. This can be
solved by rewriting the expressions. But the failure can also happen when the proof of the formula is not the same everywhere
on the domain, as in the following example. In both cases, the user can ask Gappa to split the ranges into tighter ranges and see
if it helps proving the formula.

@rnd = float< ieee_32, ne >;
x = rnd(x_);
y = x - 1;
z = x * (rnd(y) - y);
{ x in [0,3] -> |z| in ? }

With this script, Gappa will answer that |z| ≤ 3 ·2−24. This is not the best answer because Gappa does not notice that rnd(y)
-y is always zero when 1

2 ≤ x≤ 3. The user needs to ask for a bisection with respect to the expression rnd(x_).

There are three types of bisection. The first one splits an interval in as many equally wide sub-intervals as asked by the user.
The second one splits an interval along the points provided by the user.
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$ x in 6; # split the range of "x" in six sub-intervals
$ x in (0.5,1.9999999); # split the range of "x" in three sub-intervals, the middle one ←↩

being [0.5,~2]
$ x; # equivalent to: $ x in 4;

The third kind of bisection tries to find by dichotomy the best range split such that a goal of the logical formula holds true. This
requires the range of this goal to be specified, and the enclosed expression has to be indicated on the left of the $ symbol.

{ x in [0,3] -> |z| <= 1b-26 }
|z| $ x;

Contrarily to the first two kinds of bisection, this third one keeps the range improvements only if the goal was finally reached.
If there was a failure in doing so, all the improvements are discarded. Gappa will display the sub-range on which the goal was
not proved. There is a failure when Gappa cannot prove the goal on a range and this range cannot be split into two half ranges,
either because its internal precision is not enough anymore or because the maximum depth of dichotomy has been reached.
This depth can be set with the -Edichotomy=999 option.

More than one bisection hint can be used. And hints of the third kind can try to satisfy more than one goal at once.

a, b, c $ u;
a, d $ v;

These two hints will be used one after the other. In particular, none will be used when Gappa is doing a bisection with the
other one. By adding terms on the right of the $ symbol, more complex hints can be built. Beware of combinatorial explosions
though. The following hint is an example of a complex bisection: it asks Gappa to find a set of sub-ranges on u such that the
goal on b is satisfied when the range on v is split into three sub-intervals.

b $ u, v in 3

Rather than mentioning simple terms on the left-hand side of hints, one can also write a logical formula. As a consequence,
Gappa no longer infers the termination condition from the goal but instead performs a bisection until the formula is satisfied.
This is especially useful if no enclosures of the terms appear in the goal, or if the termination criteria is not even an expression
enclosure.

rnd(a) = a $ u
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Supported arithmetic

4.1 Rounding directions

Some of the classes of operators presented in the following sections are templated by a rounding direction. This is the direction
chosen when converting a real number that cannot be exactly represented in the destination format.

There are eleven directions:

zr toward zero

aw away from zero

dn toward minus infinity (down)

up toward plus infinity

od to odd mantissas

ne to nearest, tie breaking to even mantissas

no to nearest, tie breaking to odd mantissas

nz to nearest, tie breaking toward zero

na to nearest, tie breaking away from zero

nd to nearest, tie breaking toward minus infinity

nu to nearest, tie breaking toward plus infinity

The rounding directions mandated by the IEEE-754 standard are ne (default mode, rounding to nearest), zr, dn, up, and na
(introduced for decimal arithmetic).

4.2 Floating-point operators

This class of operators covers all the formats whose number sets are F(p,d) = {m×2e; |m|< 2p,e≥ d}. In particular, IEEE-
754 floating-point formats (with subnormal numbers) are part of this class, if we set apart overflow issues. Both parameters p
and d select a particular format. The last parameter selects the rounding direction.

float< precision, minimum_exponent, rounding_direction >(...)

Formats with no minimal exponent (and thus no underflow) are also available:
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float< precision, rounding_direction >(...)

Having to remember the precision and minimum exponent parameters may be a bit tedious, so an alternate syntax is provided:
instead of these two parameters, a name can be given to the float class.

float< name, rounding_direction >(...)

There are four predefined formats:

ieee_32 IEEE-754 single precision

ieee_64 IEEE-754 double precision

ieee_128 IEEE-754 quadruple precision

x86_80 extended precision on x86-like processors

4.3 Fixed-point operators

This class of operators covers all the formats whose number sets are F(e) = {m×2e}. The first parameter selects the weight of
the least significant bit. The second parameter selects the rounding direction.

fixed< lsb_weight, rounding_direction >(...)

Rounding to integer is a special case of fixed point rounding of weight 0. A syntactic shortcut is provided.

int< rounding_direction >(...)

4.4 Miscellaneous operators

The following operators are underspecified and therefore not suitable for formal proofs.

4.4.1 Functions with relative error

This set of functions is defined with related theorems on relative error. They can be used to express properties that cannot be
directly expressed through unary rounding operators.

{add|sub|mul}_rel< precision [, minimum_exponent] >(..., ...)

If the minimum exponent is not provided, the bound on the relative error is assumed to be valid on the entire domain. Otherwise
the interval [−2e,2e] is excluded from the domain.

Talking about the expression add_rel<20,-60>(a,b) is like talking about a fresh expression c such that not |a + b|
<=1b-60 -> |c -/(a + b)| <=1b-20.

4.4.2 Rounding operators with homogen properties

To be written.



Chapter 5

Examples

5.1 A simple example to start from: x * (1 - x)

5.1.1 The C program

Let us analyze the following function.

float f(float x)
{

assert(0 <= x && x <= 1);
return x * (1 - x);

}

This function computes the value x * (1 -x) for an argument x between 0 and 1. The float type is meant to force the
compiler to use IEEE-754 single precision floating-point numbers. We also assume that the default rounding mode is used:
rounding to nearest number, break to even on tie.

The function returns the value x⊗ (1	 x) instead of the ideal value x · (1− x) due to the limited precision of the computations.
If we rule out the overflow possibility (floating-point numbers are limited, not only in precision, but also in range), the returned
value is also ◦(x · ◦(1−x)). This o function is a unary operator related to the floating-point format and the rounding mode used
for the computations. This is the form Gappa works on.

5.1.2 First Gappa version

We first try to bound the result of the function. Knowing that x is in the interval [0,1], what is the enclosing interval of the
function result? It can be expressed as an implication: If x is in [0,1], then the result is in ... something. Since we do not
want to enforce some specific bounds yet, we use a question mark instead of some explicit bounds.

The logical formula Gappa has to verify is enclosed between braces. The rounding operator is a unary function float<
ieee_32, ne >. The result of this function is a real number that would fit in a IEEE-754 single precision (ieee_32)
floating-point number (float), if there was no overflow. This number is potentially a subnormal number and it was obtained
by rounding the argument of the rounding operator toward nearest even (ne).

The following Gappa script finds an interval such that the logical formula describing our previous function is true.

{ x in [0,1] -> float<ieee_32,ne>(x * float<ieee_32,ne>(1 - x)) in ? }

Gappa answers that the result is between 0 and 1. Without any help from the user, they are the best bounds Gappa is able to
prove.

Results:
float<24,-149,ne>(x * float<24,-149,ne>(1 - x)) in [0, 1]
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5.1.3 Defining notations

Directly writing the completely expanded logical formula is fine for small formulas, but it may become tedious once the problem
gets big enough. For this reason, notations can be defined to avoid repeating the same terms over and over. These notations are
all written before the logical formula.

For example, if we want not only the resulting range of the function, but also the absolute error, we need to write the expression
twice. So we give it the name y.

y = float<ieee_32,ne>(x * float<ieee_32,ne>(1 - x));
{ x in [0,1] -> y in ? /\ y - x * (1 - x) in ? }

We can simplify the input a bit further by giving a name to the rounding operator too.

@rnd = float<ieee_32, ne>;
y = rnd(x * rnd(1 - x));
{ x in [0,1] -> y in ? /\ y - x * (1 - x) in ? }

These explicit rounding operators right in the middle of the expressions make it difficult to directly express the initial C code.
So we factor the operators by putting them before the equal sign.

@rnd = float<ieee_32, ne>;
y rnd= x * (1 - x);
{ x in [0,1] -> y in ? /\ y - x * (1 - x) in ? }

Please note that this implicit rounding operator only applies to the results of arithmetic operations. In particular, a rnd=b is
not equivalent to a =rnd(b). It is equivalent to a =b.

Finally, we can also give a name to the infinitely precise result of the function to clearly show that both expressions have a
similar arithmetic structure.

@rnd = float< ieee_32, ne >;
y rnd= x * (1 - x);
z = x * (1 - x);

{ x in [0,1] -> y in ? /\ y - z in ? }

On the script above, Gappa displays:

Results:
y in [0, 1]
y - z in [-1b-24 {-5.96046e-08, -2^(-24)}, 1b-24 {5.96046e-08, 2^(-24)}]

Gappa displays the bounds it has computed. Numbers enclosed in braces are approximations of the numbers on their left. These
exact left numbers are written in decimal with a power-of-two exponent. The precise format will be described below.

5.1.4 Complete version

Previously found bounds are not as tight as they could actually be. Let us see how to expand Gappa’s search space in order for
it to find better bounds. Not only Gappa will be able provide a proof of the optimal bounds for the result of the function, but it
will also prove a tight interval on the computational absolute error.

5.1.4.1 Notations

x = rnd(xx); # x is a floating-point number
y rnd= x * (1 - x); # equivalent to y = rnd(x * rnd(1 - x))
z = x * (1 - x);
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The syntax for notations is simple. The left-hand-side identifier is a name representing the expression on the right-hand side.
Using one side or the other in the logical formula is strictly equivalent. Gappa will use the defined identifier when displaying
the results and generating the proofs though, in order to improve their readability.

The second and third notations have already been presented. The first one defines x as the rounded value of a real number
xx. In the previous example, we had not expressed this property of x: it is a floating-point number. This additional piece of
information will help Gappa to improve the bound on the error bound. Without it, a theorem like Sterbenz’ lemma cannot apply
to the 1 -x subtraction.

5.1.4.2 Logical formulas and numbers

{ x in [0,1] -> y in [0,0.25] /\ y - z in [-3b-27,3b-27] }

Numbers and bounds can be written either in the usual scientific decimal notation or by using a power-of-two exponent: 3b-
27 means 3 · 2−27. Numbers can also be written with the C99 hexadecimal notation: 0x0.Cp-25 is another way to express
the bound on the absolute error.

5.1.4.3 Hints

Although we have given additional data through the type of x, Gappa is not yet able to prove the formula. It needs some user
hints.

z -> 0.25 - (x - 0.5) * (x - 0.5); # x * (1 - x) == 1/4 - (x - 1/2)^2
y $ x; # bound y by splitting the interval on x
y - z $ x; # bound y - z by splitting ...

The first hint indicates to Gappa that both hand sides are equivalent: When it tries to bound the left hand side, it can use
the bounds it has found for the right hand side. Please note that this rewriting only applies when Gappa tries to bound the
expression, not when it tries to bound a bigger expression.

The two other hints indicate that Gappa should bound the left-hand-side values by doing a case split on the right-hand side. It
only works if the logical proposition requires explicit bounds for the expression on the left hand side.

5.1.4.4 Full listing

As a conclusion, here is the full listing of this example.

# some notations
@rnd = float<ieee_32, ne>;
x = rnd(xx); # x is a floating-point number
y rnd= x * (1 - x); # equivalent to y = rnd(x * rnd(1 - x))
z = x * (1 - x); # the value we want to approximate

# the logical property
{ x in [0,1] -> y in [0,0.25] /\ y - z in [-3b-27,3b-27] }

# hints
z -> 0.25 - (x - 0.5) * (x - 0.5); # x * (1 - x) == 1/4 - (x - 1/2)^2
y $ x; # bound y by splitting the interval on x
y - z $ x; # bound y - z by splitting ...

Gappa gives the results below. Since it proved the whole formula and there was no unspecified range, it does not have much to
say.

Warning: z and 25e-2 - (x - 5e-1) * (x - 5e-1) are not trivially equal.
Difference: -(25e-2) - 2 * (x) * (5e-1) + (5e-1)^2 + (x)
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Note that Gappa checks the rewriting rules in order to provide early detection of mistyping. Since this check does not involve
computations on decimal numbers, Gappa warns about the user hint on z. This false positive can be avoided by adding the
special comment #@-Wno-hint-difference before the offending rule.

5.2 Tang’s exponential function

5.2.1 The algorithm

In Table-Driven Implementation of the Exponential Function in IEEE Floating-Point Arithmetic, Ping Tak Peter Tang described
an implementation of an almost correctly-rounded elementary function in single and double precision. John Harrison later did
a complete formal proof in HOL Light of the implementation in Floating point verification in HOL Light: the exponential
function.

Here we just focus on the tedious computation of the rounding error. We consider neither the argument reduction nor the
reconstruction part (trivial anyway, excepted when the end result is subnormal). We want to prove that, in the C code below,
the absolute error between e and the exponential E0 of R0 (the ideal reduced argument) is less than 0.54 ulp. Variable n is an
integer and all the other variables are single-precision floating-point numbers.

r2 = -n * l2;
r = r1 + r2;
q = r * r * (a1 + r * a2);
p = r1 + (r2 + q);
s = s1 + s2;
e = s1 + (s2 + s * p);

Let us note R the computed reduced argument and S the stored value of the ideal constant S0. There are 32 such constants. For
the sake of simplicity, we only consider the second constant: 2

1
32 . E is the value of the expression e computed with an infinitely

precise arithmetic. Z is the absolute error between the polynomial x+a1 · x2 +a2 · x3 and exp(x)−1 for |x| ≤ log2
64 .

5.2.2 Gappa description

a1 = 8388676b-24;
a2 = 11184876b-26;
l2 = 12566158b-48;
s1 = 8572288b-23;
s2 = 13833605b-44;

r2 rnd= -n * l2;
r rnd= r1 + r2;
q rnd= r * r * (a1 + r * a2);
p rnd= r1 + (r2 + q);
s rnd= s1 + s2;
e rnd= s1 + (s2 + s * p);

R = r1 + r2;
S = s1 + s2;

E0 = S0 * (1 + R0 + a1 * R0 * R0 + a2 * R0 * R0 * R0 + Z);

{ Z in [-55b-39,55b-39] /\ S - S0 in [-1b-41,1b-41] /\ R - R0 in [-1b-34,1b-34] /\
R in [0,0.0217] /\ n in [-10176,10176]
->

e in ? /\ e - E0 in ? }

Please note the way Z is introduced. Its definition is backward: Z is a real number such that E0 is the product of S0 and the
exponential of R0. It makes for clearer definitions and it avoids having to deal with divisions.
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Results:
e in [4282253b-22 {1.02097, 2^(0.0299396)}, 8768135b-23 {1.04524, 2^(0.0638374)}]
e - E0 in [-13458043620277891b-59 {-0.023346, -2^(-5.42068)}, 3364512538651833b-57 ←↩

{0.023346, 2^(-5.42068)}]

Gappa is able to bound both expressions. While the bounds for e seem sensible, the bounds for e -E0 are grossly overesti-
mated. This overestimation comes from the difference between the structures of e and E0. To improve the bounds on the error
e -E0, we split it into two parts: a round-off error and a term that combines both discretization and truncation errors. The
round-off error is expressed by introducing a term E with the same structure as e but without any rounding operator.

E = s1 + (s2 + S * (r1 + (r2 + R * R * (a1 + R * a2))));

So the round-off error is e -E, while the other term is E -E0. As before, the expressions E and E0 are structurally different,
so Gappa grossly overestimates the bounds of E -E0. This time, we introduce a term Er with the same structure as E0 but
equal to E. Since Z has no corresponding term in E, we insert an artificial term 0 in Er to obtain the same structure.

Er = S * (1 + R + a1 * R * R + a2 * R * R * R + 0);

Finally, we tell Gappa how to compute e -E0 using E and Er.

e - E0 -> (e - E) + (Er - E0);

Note that, rather than using a hint, this equality could also have been indicated as a hypothesis of the logical formula.

5.2.3 Full listing

@rnd = float< ieee_32, ne >;

a1 = 8388676b-24;
a2 = 11184876b-26;
l2 = 12566158b-48;
s1 = 8572288b-23;
s2 = 13833605b-44;

r2 rnd= -n * l2;
r rnd= r1 + r2;
q rnd= r * r * (a1 + r * a2);
p rnd= r1 + (r2 + q);
s rnd= s1 + s2;
e rnd= s1 + (s2 + s * p);

R = r1 + r2;
S = s1 + s2;

E = s1 + (s2 + S * (r1 + (r2 + R * R * (a1 + R * a2))));
Er = S * (1 + R + a1 * R * R + a2 * R * R * R + 0);
E0 = S0 * (1 + R0 + a1 * R0 * R0 + a2 * R0 * R0 * R0 + Z);

{ Z in [-55b-39,55b-39] /\ S - S0 in [-1b-41,1b-41] /\ R - R0 in [-1b-34,1b-34] /\
R in [0,0.0217] /\ n in [-10176,10176] ->
e in ? /\ e - E0 in ? }

e - E0 -> (e - E) + (Er - E0);

Gappa answers that the error is bounded by 0.535 ulp. This is consistent with the bounds computed by Tang and Harrison.
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Results:
e in [8572295b-23 {1.0219, 2^(0.0312489)}, 4380173b-22 {1.04431, 2^(0.0625575)}]
e - E0 in [-75807082762648785b-80 {-6.27061e-08, -2^(-23.9268)}, 154166255364809243b-81 ←↩

{6.37617e-08, 2^(-23.9027)}]

5.3 Fixed-point Newton division

5.3.1 The algorithm and its verification

Let us suppose we want to invert a floating-point number on a processor without a floating-point unit. The 24-bit mantissa has
to be inverted from a value between 0.5 and 1 to a value between 1 and 2. For the sake of this example, the transformation is
performed by Newton’s iteration with fixed-point arithmetic.

The mantissa is noted d and its exact reciprocal is R. Newton’s iteration is started with a first approximation r0 taken from
a table containing reciprocals at precision ±2−8. Two iterations are then performed. The result r1 of the first iteration is
computed on 16-bit words in order to speed up computations. The result r2 of the second iteration is computed on full 32-bit
words. We want to prove that this second result is close enough to the infinitely precise reciprocal R =1/d.

First, we define R as the reciprocal, and d and r0 as two fixed-point numbers that are integer multiples of 2−24 and 2−8

respectively. Moreover, r0 is an approximation of R and d is between 0.5 and 1.

R = 1 / d;

{ @FIX(d,-24) /\ d in [0.5,1] /\
@FIX(r0,-8) /\ r0 - R in [-1b-8,1b-8] ->
... }

Next we have the two iterations. Gappa’s representation of fixed-point arithmetic is high-level: the tool is only interested in the
weight of the least significant bit. The shifts that occur in an implementation only have an impact on the internal representation
of the values, not on the values themselves.

r1 fixed<-14,dn>= r0 * (2 - fixed<-16,dn>(d) * r0);
r2 fixed<-30,dn>= r1 * (2 - d * r1);

The property we are looking for is a bound on the absolute error between r2 and R.

{ ... -> r2 - R in ? }

We expect Gappa to prove that r2 is R±2−24. Unfortunately, this is not the case.

Results:
r2 - R in [-1320985b-18 {-5.03916, -2^(2.33318)}, 42305669b-23 {5.04323, 2^(2.33435)}]

5.3.2 Adding hints

With the previous script, Gappa computes a range so wide for r2 -R that it is useless. This is not surprising: The tool does not
know what Newton’s iteration is. In particular, Gappa cannot guess that such an iteration has a quadratic convergence. Testing
for r1 -R instead does not give results any better.

Gappa does not find any useful relation between r1 and R, as the first one is a rounded multiplication while the second one is
an exact division. So we have to split the absolute error into two terms: a round-off error we expect Gappa to compute, and the
convergence due to Newton’s iteration.

{ ... ->
r1 - r0 * (2 - d * r0) in ? /\ r0 * (2 - d * r0) - R in ? }
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Gappa now gives the answer below. Notice that the range of the round-off error almost matches the precision of the computa-
tions.

Results:
r1 - r0 * (2 - d * r0) in [-1b-14 {-6.10352e-05, -2^(-14)}, 788481b-32 {0.000183583, ←↩

2^(-12.4113)}]
r0 * (2 - d * r0) - R in [-131585b-16 {-2.00783, -2^(1.00564)}, 131969b-16 {2.01369, ←↩

2^(1.00984)}]

So Gappa computes correct bounds for the round-off error, but not for the algorithmic one. We can help Gappa by providing an
expression of the latter one. So we add a rule describing the quadratic convergence of Newton’s iteration:

r0 * (2 - d * r0) - R -> (r0 - R) * (r0 - R) * -d;
r1 * (2 - d * r1) - R -> (r1 - R) * (r1 - R) * -d;

Gappa answers that r2 = R±2−24.7.

Warning: although present in a quotient, the expression (d) may have not been tested for ←↩
non-zeroness.

Results:
r2 - R in [-638882156545b-64 {-3.46339e-08, -2^(-24.7832)}, 32771b-44 {1.86282e-09, ←↩

2^(-28.9999)}]

While the answer is the expected one, there is this warning message about d possibly being zero. Indeed, R is the reciprocal of
d and we are using the fact that R * d =1. So the rewriting rules cannot be proved on their own. (But they can be proved
in the context of the problem, so there is no correctness issue.) In order to eliminate this warning, we can give the precise
hypotheses such that the left hand sides of the rewriting rules are equal to their right hand sides without any other assumption.
This is indicated at the end of the rule.

r0 * (2 - d * r0) - R -> (r0 - R) * (r0 - R) * -d { d <> 0 };

When generating a script for an external proof checker, Gappa will add this rewriting rule as a global hypothesis. For example,
when selecting the Coq back-end with the option -Bcoq, the output contains the line below.

Hypothesis a1 : (_d <> 0)%R -> r9 = r2.

In this hypothesis, _d is the d variable of the example, while r9 and r2 are short notations for r0 * (2 -d * r0) -R
and (r0 -R) * (r0 -R) * -d respectively. In order to access the generated proof, the user has to prove this hypothesis,
which can be trivially done with Coq’s field tactic.

5.3.3 Full listing

R = 1 / d;

r1 fixed<-14,dn>= r0 * (2 - fixed<-16,dn>(d) * r0);
r2 fixed<-30,dn>= r1 * (2 - d * r1);

{ @FIX(d,-24) /\ d in [0.5,1] /\
@FIX(r0,-8) /\ r0 - R in [-1b-8,1b-8] ->
r2 - R in ? }

r0 * (2 - d * r0) - R -> (r0 - R) * (r0 - R) * -d { d <> 0 };
r1 * (2 - d * r1) - R -> (r1 - R) * (r1 - R) * -d { d <> 0 };

The answer is the same as before, since Gappa easily proves that d is not zero.

Results:
r2 - R in [-638882156545b-64 {-3.46339e-08, -2^(-24.7832)}, 32771b-44 {1.86282e-09, ←↩

2^(-28.9999)}]

Another example of a Newton iteration is given in Section 6.1.





Chapter 6

Using Gappa from other tools

6.1 Why and Gappa

The Why1 software verification platform can be used to translate code annotated with pre- and postconditions into proof
obligations suitable for Gappa.

By installing Frama-C2 first and then Why (in order to build the Jessie plugin), one gets a tool for directly certifying C programs
with Gappa.

6.1.1 Example: floating-point square root

The example below demonstrates the usage of these tools. The C file defines a sqrt function that computes the square root
with a relative accuracy of 2−43 for an input x between 0.5 and 2.

/*@
requires 0.5 <= x <= 2;
ensures \abs(\result - 1/\sqrt(x)) <= 0x1p-6 * \abs(1/\sqrt(x));

*/
double sqrt_init(double x);

/*@
lemma quadratic_newton: \forall real x, t; x > 0 ==>
\let err = (t - 1 / \sqrt(x)) / (1 / \sqrt(x));
(0.5 * t * (3 - t * t * x) - 1 / \sqrt(x)) / (1 / \sqrt(x)) ==
- (1.5 + 0.5 * err) * (err * err);

*/

/*@
requires 0.5 <= x <= 2;
ensures \abs(\result - \sqrt(x)) <= 0x1p-43 * \abs(\sqrt(x));

*/
double sqrt(double x)
{

int i;
double t, u;
t = sqrt_init(x);

/*@ loop pragma UNROLL 4;
@ loop invariant 0 <= i <= 3; */

1http://why.lri.fr/
2http://frama-c.com/

http://why.lri.fr/
http://frama-c.com/
http://why.lri.fr/
http://frama-c.com/
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for (i = 0; i <= 2; ++i) {
u = 0.5 * t * (3 - t * t * x);
//@ assert \abs(u - 0.5 * t * (3 - t * t * x)) <= 1;
/*@ assert \let err = (t - 1 / \sqrt(x)) / (1 / \sqrt(x));

(0.5 * t * (3 - t * t * x) - 1 / \sqrt(x)) / (1 / \sqrt(x)) ==
- (1.5 + 0.5 * err) * (err * err); */

//@ assert \abs(u - 1 / \sqrt(x)) <= 0x1p-10 * \abs(1 / \sqrt(x));
t = u;

}

//@ assert x * (1 / \sqrt(x)) == \sqrt(x);
return x * t;

}

The code starts by calling the sqrt_init function. It returns an approximation of x−1/2 with a relative accuracy of 2−6.
Only the specification of this auxiliary function is given. (Preconditions are introduced by the requires keyword, while
postconditions are introduced by ensures.) Its implementation could use small tables for instance. Note that bounds on
relative errors are expressed as |approx− exact| ≤ error×|exact| in this setting.

The sqrt function then performs three Newton iterations in order to obtain an improved approximation of the reciprocal square
root of x. Since Gappa only handles straight-line programs, a pragma annotation instructs Frama-C to completely unroll the
loop before passing it to Jessie. Finally, once the reciprocal square root has been computed, it is multiplied by x to obtain the
square root.

6.1.2 Passing hints through annotations

The assert annotations cause Frama-C/Jessie to generate additional proof obligations. These facts are then available to
the following proof obligations as hypotheses. In this example, the actual content of the assertions does not matter from a
certification point of view, they are only used as a way to pass information to Gappa. Indeed, as explained in Section 5.3,
Gappa needs to know about Newton’s relation and which expressions are approximations of what. So, if the program were to
be directly expressed in Gappa syntax, the three loop assertions would instead have been written as follows.

rsqrt = 1 / sqrt(x);
err = (t - rsqrt) / rsqrt;
{ ... }
u ~ 0.5 * t * (3 - t * t * x);
(0.5 * t * (3 - t * t * x) - rsqrt) / rsqrt -> - (1.5 + 0.5 * err) * (err * err);
u ~ rsqrt;

When writing these assertions for guiding Gappa, one just as to make sure that they are easily provable; their actual accuracy
is not relevant. For instance, if the relative distance between u and 1/

√
x had been 2−1 instead of 2−10, Gappa would still have

succeeded.

6.1.3 Execution results

Passing the program above to the Frama-C/Jessie tool produces the following console output...

$ frama-c -jessie a.c
[kernel] preprocessing with "gcc -C -E -I. -dD a.c"
[jessie] Starting Jessie translation
[kernel] No code for function sqrt_init, default assigns generated
[jessie] Producing Jessie files in subdir a.jessie
[jessie] File a.jessie/a.jc written.
[jessie] File a.jessie/a.cloc written.
[jessie] Calling Jessie tool in subdir a.jessie
Generating Why function sqrt
[jessie] Calling VCs generator.
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gwhy-bin [...] why/a.why
Computation of VCs...
Computation of VCs done.
Reading GWhy configuration...
Loading .gwhyrc config file
GWhy configuration loaded...
Creating GWhy Tree view...

...and displays the following user interface.

On the left of the window are the proof obligations. Once all of them are proved, the code is guaranteed to match its specifica-
tion. Green marks flag proof obligations that were automatically proved. Selected proof obligations are displayed on the right;
here it is the postcondition of the sqrt function.

Gappa is not able to prove Newton’s relation nor does it know that x×
√

x−1
=
√

x holds. These assertions are therefore left
unproved. Due to loop unrolling, Newton’s relation appears three times. To factor these occurrences, a lemma describing the
relation has been added to the C code. The Alt-Ergo3 prover is used to check that the three occurrences indeed match this
lemma.

In the end, we have 72 proof obligations and only two of them are left unproved by the combination of Gappa and Alt-Ergo.
They are mathematical identities on real-valued expressions, so they could easily be checked with an interactive proof assistant
or a computer algebra system. (And they should be, at least for Newton’s relation, because of its error-prone expression.)

6.2 Coq and Gappa

The Gappa Coq Library4 adds a gappa tactic to the Coq Proof Assistant5. This tactic invokes Gappa to solve properties about
floating-point or fixed-point arithmetic. It can also solve simple inequalities over real numbers.

The tactic is provided by the Gappa_tactic module. It expects to find a Gappa executable (called gappa) in the user
program path.

3http://alt-ergo.lri.fr/
4http://gappa.gforge.inria.fr/
5http://coq.inria.fr/

http://alt-ergo.lri.fr/
http://gappa.gforge.inria.fr/
http://coq.inria.fr/
http://alt-ergo.lri.fr/
http://gappa.gforge.inria.fr/
http://coq.inria.fr/
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Require Import Reals.
Require Import Fcore.
Require Import Gappa_tactic.
Open Scope R_scope.

Goal
forall x y : R,
3/4 <= x <= 3 ->
0 <= sqrt x <= 1775 * (powerRZ 2 (-10)).

Proof.
gappa.

Qed.

The tactic recognizes fully-applied rounding_fixed and rounding_float functions as rounding operators.

The script below proves that the difference between two double precision floating-point numbers in [ 52
16 ,

53
16 ] and [ 22

16 ,
30
16 ] is

exactly representable as a double-precision floating-point number. (Rounding direction does not matter for this example; it has
been arbitrarily chosen as rounding toward zero.)

Definition rnd := rounding_float rndZR 53 (-1074).

Goal
forall a_ b_ a b : R,
a = rnd a_ ->
b = rnd b_ ->
52 / 16 <= a <= 53 / 16 ->
22 / 16 <= b <= 30 / 16 ->
rnd (a - b) = (a - b).

Proof.
unfold rnd; gappa.

Qed.

The tactic handles goals and hypotheses that are either equalities of real numbers, e1 = e2, or pairs of inequalities on real
numbers, b1 ≤ e ≤ b2, or inequalities expressing relative errors, |e1− e2| ≤ b · |e2|. For inequalities, the b bounds have to be
explicit dyadic numbers. The tactic also recognizes properties written as |e| ≤ b as syntactic sugar for 0≤ |e| ≤ b.

The tactic is built on Flocq’s formalism6 and uses the same rounding operators and formats. The previous goal could therefore
have been written in a slightly more natural way.

Definition format :=
generic_format radix2 (FLT_exp (-1074) 53).

Goal
forall a b : R,
format a -> format b ->
52 / 16 <= a <= 53 / 16 ->
22 / 16 <= b <= 30 / 16 ->
format (a - b).

Proof.
intros a b Ha Hb Ia Ib.
refine (sym_eq (_ : rnd (a - b) = a - b)).
revert Ia Ib.
replace a with (rnd a).
replace b with (rnd b).
unfold rnd ; gappa.

Qed.

6http://flocq.gforge.inria.fr/

http://flocq.gforge.inria.fr/
http://flocq.gforge.inria.fr/
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Customizing Gappa

These sections explain how rounding operators and back-ends are defined in the tool. They are meant for developers rather than
users of Gappa and involve manipulating C++ classes defined in the src/arithmetic and src/backends directories.

7.1 Defining a generator for a new formal system

To be written.

7.2 Defining rounding operators for a new arithmetic

7.2.1 Function classes

A function derives from the function_class class. This class is an interface to the name of the function, its associated real
operator, and six theorems.

struct function_class
{

function_class(real_op_type t, int mask);
virtual interval round (interval const &, std::string &) const;
virtual interval enforce (interval const &, std::string &) const;
virtual interval absolute_error (std::string &) const;
virtual interval relative_error (std::string &) const;
virtual interval absolute_error_from_exact_bnd (interval const &, std::string &) const;
virtual interval absolute_error_from_exact_abs (interval const &, std::string &) const;
virtual interval absolute_error_from_approx_bnd(interval const &, std::string &) const;
virtual interval absolute_error_from_approx_abs(interval const &, std::string &) const;
virtual interval relative_error_from_exact_bnd (interval const &, std::string &) const;
virtual interval relative_error_from_exact_abs (interval const &, std::string &) const;
virtual interval relative_error_from_approx_bnd(interval const &, std::string &) const;
virtual interval relative_error_from_approx_abs(interval const &, std::string &) const;
virtual std::string description() const = 0;
virtual std::string pretty_name() const = 0;
virtual ~function_class();

};

The description function should return the internal name of the rounding operator. It will be used when generating
the notations of the proof. When the generated notation cannot be reduced to a simple name, comma-separated additional
parameters can be appended. The back-end will take care of formatting the final string. This remark also applies to names



28 / 59 7.2. Defining rounding operators for a new arithmetic

returned by the theorem methods (see below). The pretty_name function returns a name that can be used in messages
displayed to the user. Ideally, this string can be reused in an input script.

The real_op_type value is the associated real operator. This will be UOP_ID (the unary identity function) for standard
rounding operators. But it can be more complex if needed:

enum real_op_type { UOP_ID, UOP_NEG, UOP_ABS, BOP_ADD, BOP_SUB, BOP_MUL, BOP_DIV, ... };

The type will indicate to the parser the number of arguments the function requires. For example, if the BOP_DIAM type is
associated to the function f, then f will be parsed as a binary function. But the type is also used by the rewriting engines in
order to derive default rules for this function. These rules involve the associated real operator (the diamond in this example).

f (a,b)− c�d −→ ( f (a,b)−a�b)+(a�b− c�d)

f (a,b)− c�d
c�d

−→ f (a,b)−a�b
a�b

+
a�b− c�d

c�d
+

f (a,b)−a�b
a�b

· a�b− c�d
c�d

For these rules and the following theorems to be useful, the expressions f (a,b) and a�b have to be close to each other. Bounding
their distance is the purpose of the last ten theorems. The first two theorems compute the range of f (a,b) itself.

It is better for the proof engine not to consider theorems that never return a useful range. The mask argument of the functi
on_class constructor is a combination of the following flags. They indicate which theorems are known. The corresponding
methods should therefore have been overloaded.

struct function_class
{

static const int TH_RND, TH_ENF, TH_ABS, TH_REL,
TH_ABS_EXA_BND, TH_ABS_EXA_ABS, TH_ABS_APX_BND, TH_ABS_APX_ABS,
TH_REL_EXA_BND, TH_REL_EXA_ABS, TH_REL_APX_BND, TH_REL_APX_ABS;

};

All the virtual methods for theorems have a similar specification. If the result is the undefined interval interval(), the
theorem does not apply. Otherwise, the last parameter is updated with the name of the theorem that was used for computing the
returned interval. The proof generator will then generate an internal node from the two intervals and the name. When defining
a new rounding operator, overloading does not have to be comprehensive; some functions may be ignored and the engine will
work around the missing theorems.

round Given the range of a�b, compute the range of f (a,b).

enforce Given the range of f (a,b), compute a stricter range of it.

absolute_error Given no range, compute the range of f (a,b)−a�b.

relative_error Given no range, compute the range of f (a,b)−a�b
a�b .

absolute_error_from_exact_bnd Given the range of a�b, compute the range of f (a,b)−a�b.

absolute_error_from_exact_abs Given the range of |a�b|, compute the range of f (a,b)−a�b.

absolute_error_from_approx_bnd Given the range of f (a,b), compute the range of f (a,b)−a�b.

absolute_error_from_approx_abs Given the range of | f (a,b)|, compute the range of f (a,b)−a�b.

relative_error_from_exact_bnd Given the range of a�b, compute the range of f (a,b)−a�b
a�b .

relative_error_from_exact_abs Given the range of |a�b|, compute the range of f (a,b)−a�b
a�b .

relative_error_from_approx_bnd Given the range of f (a,b), compute the range of f (a,b)−a�b
a�b .

relative_error_from_approx_abs Given the range of | f (a,b)|, compute the range of f (a,b)−a�b
a�b .
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The enforce theorem is meant to trim the bounds of a range. For example, if this expression is an integer between 1.7 and
3.5, then it is also a real number between 2 and 3. This property is especially useful when doing a dichotomy resolution, since
some of the smaller intervals may be reduced to a single exact value through this theorem.

Since the undefined interval is used when a theorem does not apply, it cannot be used by enforce to flag an empty interval in
case of a contradiction. The method should instead return an interval that does not intersect the initial interval. Due to formal
certification considerations, it should however be in the rounded outward version of the initial interval. For example, if the
expression is an integer between 1.3 and 1.7, then the method should return an interval contained in [1,1.3[ or ]1.7,2]. For
practical reasons, [1,1] and [2,2] are the most interesting answers.

7.2.2 Function generators

Because functions can be templated by parameters. They have to be generated by the parser on the fly. This is done by
invoking the functional method of an object derived from the function_generator class. For identical parameters, the
same function_class object should be returned, which means that they have to be cached.

struct function_generator {
function_generator(const char *);
virtual function_class const *operator()(function_params const &) const = 0;
virtual ~function_generator() {}

};

The constructor of this class requires the name of the function template, so that it gets registered by the parser. operator()
is called with a vector of encoded parameters.

If a function has no template parameters, the default_function_generator class can be used instead to register it. The
first parameter of the constructor is the function name. The second one is the address of the function_class object.

default_function_generator::default_function_generator(const char *, function_class const ←↩
*);
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Appendix A

Gappa language

A.1 Comments and embedded options

Comments begin with a sharp sign # and go till the end of the line. Comments beginning by #@ are handled as embedded
command-line options. All these comments are no different from a space character.

Space, tabulation, and line-break characters are not significant, they at most act as identifier separators. In the definition part of
a script, the GE is never matched, so no separator is needed between operators > and =.

A.2 Tokens and operator priority

There are five composite operators: /\ (AND) and \/ (OR) and -> (IMPL) and <= (LE) and >= (GE). And three keywords: in
(IN) and not (NOT) and sqrt (SQRT).

Numbers are either written with a binary representation, or with a decimal representation. In both representations, the {inte
ger} parts are radix-10 natural numbers.

binary {integer}([bB][-+]?{integer})?
decimal (({integer}(\.{integer}?)?)|(\.{integer}))([eE][-+]?{integer})?
hexadecimal 0x(({hexa}(\.{hexa}?)?)|(\.{hexa}))([pP][-+]?{integer})?
number ({binary}|{decimal}|{hexadecimal})

These three expressions represent the same number: 57.5e-1, 23b-2, 0x5.Cp0. They do not have the same semantic for
Gappa though and a different property will be proved in the decimal case. Indeed, some decimal numbers cannot be expressed
as a dyadic number and Gappa will have to harden the proof and add a layer to take this into account. In particular, the user
should refrain from being inventive with the constant 1. For example, writing this constant as 00100.000e-2 may prevent
some rewriting rules to be applied.

Identifiers (IDENT) are matched by {alpha}({alpha}|{digit}|_)*.

The associativity and priority of the operators in logical formulas is as follows. It is meant to match the usual conventions.

%right IMPL
%left OR
%left AND
%left NOT

For the mathematical expressions, the priority are as follows. Note that NEG is the priority of the unary minus; this is the
operator with the highest precedence.

%left ’+’ ’-’
%left ’*’ ’/’
%left NEG
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A.3 Grammar

0 $accept: BLOB $end

1 BLOB: BLOB1 HINTS

2 BLOB1: PROG ’{’ PROP ’}’

3 PROP: REAL LE SNUMBER
4 | FIX ’(’ REAL ’,’ SINTEGER ’)’
5 | FLT ’(’ REAL ’,’ INTEGER ’)’
6 | REAL IN ’[’ SNUMBER ’,’ SNUMBER ’]’
7 | REAL IN ’?’
8 | REAL GE SNUMBER
9 | REAL RDIV REAL IN ’[’ SNUMBER ’,’ SNUMBER ’]’

10 | ’|’ REAL RDIV REAL ’|’ LE NUMBER
11 | REAL RDIV REAL IN ’?’
12 | REAL ’=’ REAL
13 | PROP AND PROP
14 | PROP OR PROP
15 | PROP IMPL PROP
16 | NOT PROP
17 | ’(’ PROP ’)’

18 SNUMBER: NUMBER
19 | ’+’ NUMBER
20 | ’-’ NUMBER

21 INTEGER: NUMBER

22 SINTEGER: SNUMBER

23 FUNCTION_PARAM: SINTEGER
24 | IDENT

25 FUNCTION_PARAMS_AUX: FUNCTION_PARAM
26 | FUNCTION_PARAMS_AUX ’,’ FUNCTION_PARAM

27 FUNCTION_PARAMS: /* empty */
28 | ’<’ FUNCTION_PARAMS_AUX ’>’

29 FUNCTION: FUNID FUNCTION_PARAMS

30 EQUAL: ’=’
31 | FUNCTION ’=’

32 PROG: /* empty */
33 | PROG IDENT EQUAL REAL ’;’
34 | PROG ’@’ IDENT ’=’ FUNCTION ’;’
35 | PROG VARID
36 | PROG FUNID
37 | PROG ’@’ VARID
38 | PROG ’@’ FUNID

39 REAL: SNUMBER
40 | VARID
41 | IDENT
42 | FUNCTION ’(’ REALS ’)’
43 | REAL ’+’ REAL
44 | REAL ’-’ REAL
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45 | REAL ’*’ REAL
46 | REAL ’/’ REAL
47 | ’|’ REAL ’|’
48 | SQRT ’(’ REAL ’)’
49 | FMA ’(’ REAL ’,’ REAL ’,’ REAL ’)’
50 | ’(’ REAL ’)’
51 | ’+’ REAL
52 | ’-’ REAL

53 REALS: REAL
54 | REALS ’,’ REAL

55 DPOINTS: SNUMBER
56 | DPOINTS ’,’ SNUMBER

57 DVAR: REAL
58 | REAL IN INTEGER
59 | REAL IN ’(’ DPOINTS ’)’

60 DVARS: DVAR
61 | DVARS ’,’ DVAR

62 PRECOND: REAL NE SINTEGER
63 | REAL LE SINTEGER
64 | REAL GE SINTEGER
65 | REAL ’<’ SINTEGER
66 | REAL ’>’ SINTEGER

67 PRECONDS_AUX: PRECOND
68 | PRECONDS_AUX ’,’ PRECOND

69 PRECONDS: /* empty */
70 | ’{’ PRECONDS_AUX ’}’

71 HINTS: /* empty */
72 | HINTS REAL IMPL REAL PRECONDS ’;’
73 | HINTS REALS ’$’ DVARS ’;’
74 | HINTS PROP ’$’ DVARS ’;’
75 | HINTS ’$’ DVARS ’;’
76 | HINTS REAL ’~’ REAL ’;’

A.4 Logical formulas

These sections describe some properties of the logical fragment Gappa manipulates. Notice that this fragment is sound, as the
generated formal proofs depend on the support libraries, and these libraries are formally proved by relying only on the axioms
of basic arithmetic on real numbers.

A.4.1 Undecidability

First, notice that the equality of two expressions is equivalent to checking that their difference is bounded by zero: e -f in
[0,0]. Second, the property that a real number is a natural number can be expressed by the equality between its integer part
int<dn>(e) and its absolute value |e|.

Thanks to classical logic, a first-order formula can be written in prenex normal form. Moreover, by skolemizing the formula,
existential quantifiers can be removed (although Gappa does not allow the user to type arbitrary functional operators in order to
prevent mistyping existing operators, the engine can handle them).
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As a consequence, a first-order formula with Peano arithmetic (addition, multiplication, and equality, on natural numbers) can
be expressed in Gappa’s formalism. It implies that Gappa’s logical fragment is not decidable.

A.4.2 Expressiveness

Equality between two expressions can be expressed as a bound on their difference: e -f in [0,0]. For inequalities, the
difference can be compared to zero: e -f >=0. The negation of the previous propositions can also be used. Checking the
sign of an expression could also be done with bounds; here are two examples: e -|e| in [0,0] and e in [0,1] \/
1 /e in [0,1]. Logical negations of these formulas can be used to obtain strict inequalities. They can also be defined by
discarding only the zero case: not e in [0,0].

Disclaimer: although these properties can be expressed, it does not mean that Gappa is able to handle them efficiently. Yet, if
a proposition is proved to be true by Gappa, then it can be considered to be true even if the previous "features" were used in its
expression.
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Warning and error messages

B.1 Syntax error messages

B.1.1 Error: foobar at line 17 column 42.

The Bison front-end has detected a syntax error at the given location. The error message is usually unusable, so let us hope the
location is enough for you to find what the problem is.

f(x) = x + 1;

Error: syntax error, unexpected ’(’, expecting FUNID or ’=’ at line 1 column 2

B.1.2 Error: unrecognized option ’bar’.

Gappa was invoked with an unknown option.

Variant: unrecognized option ’bar’ at line 42. This error is displayed for options embedded in the script.

B.1.3 Error: redefinition of identifier ’foo’...

A symbol cannot be defined more than once, even if the right hand sides of every definitions are equivalent.

a = 1;
a = 1;

Nor can it be defined after being used as an unbound variable.

b = a * 2;
a = 1;

B.1.4 Error: rounding operator expected, got ’foo’...

Only rounding operators (unary function close to the identity function) can be prepended to the equal sign in a definition.

x add_rel<25,-100>= 1;

Error: rounding operator expected, got ’add_rel<25,-100>’ at line 1 column 19
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B.1.5 Error: invalid parameters for ’foo’...

A function template has been instantiated with an incorrect number of parameters or with parameters of the wrong type.

x = float<ieee_32,0>(y);

Error: invalid parameters for ’float’ at line 1 column 20

B.1.6 Error: incorrect number of arguments for ’foo’...

There are either less or more expressions between parentheses than expected by the function.

x = int<zr>(y, z);

Error: incorrect number of arguments for ’fixed<0,zr>’ at line 1 column 17

B.2 Other error messages during parsing

B.2.1 Error: undefined intervals are restricted to conclusions.

You are not allowed to use an interrogation mark for an interval that appears in negative position in the logical formula.

{ x in ? -> x + 1 in [0,1] }

B.2.2 Error: the range of foo is an empty interval.

An interval has been interpreted as having reverted bounds.

{ x in [2,1] }

Error: the range of x is an empty interval.

Interval bounds are replaced by binary floating-point numbers. As a consequence, Gappa can encounter an empty interval when
it tightens a range appearing in a goal. For example, the empty set is the biggest representable interval that is a subset of the
singleton {1.3}. So Gappa fails to prove the following property.

{ 1.3 in [1.3,1.3] }

Error: the range of 13e-1 is an empty interval.

B.2.3 Error: zero appears as a denominator in a rewriting rule.

Gappa has a detected that a divisor is trivially equal to zero in an expression that appears in a rewriting rule. This is most
certainly an error.

{ 1 in ? }
y -> y * (x - x) / (x - x);
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B.3 Proof failures

B.3.1 Error: no contradiction was found.

The logical formula had no property in negative position or Gappa has discharged all of them, yet this was not sufficient to
prove the formula.

{ x in [1,2] -> not x + 1 in [2,3] }

Error: no contradiction was found.

B.3.2 Error: some enclosures were not satisfied.

Only part of a conjunction of goals was proved to be true. Gappa was unable to prove some other expressions or formulas,
which are displayed after the message.

{ x in [1,2] -> x + 1 in ? /\ x + 2 in [2,3] }

Warning: case split on x + 2 has not produced any interesting new result.
Results:

x + 1 in [2, 3]
Error: some properties were not satisfied:

BND(x + 2), best: [3, 4]

B.4 Warning messages during parsing

B.4.1 Warning: renaming identifier ’foo’ as ’bar’...

When a definition foo =expr is given to Gappa, the name foo is associated to the expression expr. This name is then used
whenever Gappa outputs expr. If another definition bar =expr is later provided, the new name supersedes the name given
previously.

a = 42;
b = 42;
{ a - b in ? }

Warning: renaming identifier ’a’ as ’b’ at line 2 column 7
b - b in [0, 0]

B.4.2 Warning: although present in a quotient, the expression foo may not have been tested for
non-zeroness.

When Gappa verifies that both sides of a user rewriting rule are equivalent, it does not generate additional constraints to verify
that denominators appearing in the expressions are not zero. For example, the rule 1 /(1 /x) -> x only applies when x is
not zero; yet Gappa does not test for it.

No warning messages are displayed when constraints are added to the rewriting rule (whether these constraints are sufficient or
not). E.g. 1 /(1/x) -> x { x <> 0 }.

Option switch: -W[no-]null-denominator.
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B.4.3 Warning: foo and bar are not trivially equal.

When Gappa verifies the rule foo -> bar, it first performs the subtraction of both sides. Then it normalizes this expression
in the field of polynomial fractions with integer coefficients. If this result is not zero, Gappa warns about it.

As the normalization only deals with polynomials and integers, false positive may appear when the expressions involve numer-
ical values or square roots or absolute values.

{ 1 in ? }
x * (y - 2) -> x * y - x; # not equal
1b-2 -> 0.2 + 0.05; # equal, but needs numerical computations
sqrt(x * x) -> |x|; # equal, but involves square root and absolute value

Warning: x * (y - 2) and x * y - x are not trivially equal.
Difference: -(x)

Warning: 1b-2 and 2e-1 + 5e-2 are not trivially equal.
Difference: -(2e-1) - (5e-2) + (1b-2)

Warning: sqrt(x * x) and |x| are not trivially equal.
Difference: (sqrt(x * x)) - (|x|)

Results:
1 in [1, 1]

Option switch: -W[no-]hint-difference.

B.4.4 Warning: bar is a variable without definition, yet it is unbound.

Identifier bar neither represents an expression nor is it a sub-term of any of the bounded expressions of the logical property.
This may mean an identifier was mistyped.

{ x - x in ? }

Warning: x is a variable without definition, yet it is unbound.

Option switch: -W[no-]unbound-variable.

B.4.5 Warning: no path was found for foo.

The expression foo appears in one of the goals, yet Gappa does not have any theorem that could be used to compute this
expression or one of its sub-terms.

B.5 Warning messages during proof computation

B.5.1 Warning: when foo is in i1, bar cannot be proved.

When Gappa applies a case splitting bar $ foo, it splits the interval of foo until the property about bar holds for any sub-
interval. If the maximal dichotomy depth has been reached yet the property still does not hold, the warning message displays
the failing sub-interval (the leftmost one).

{ x in [-2,1] -> x / x in [1,1] }
x / x $ x;

Warning: when x is in [-1b-99 {-1.57772e-30, -2^(-99)}, 1b-100 {7.88861e-31, 2^(-100)}], ←↩
BND(x / x, [1, 1]) cannot be proved.

Error: some properties were not satisfied:
BND(x / x)

Option switch: -W[no-]dichotomy-failure.
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B.5.2 Warning: case split on foo has not produced any interesting new result.

This warning is displayed when Gappa is successful in finding a case split that satisfies the goals, yet the results obtained on
the sub-intervals are not interesting: they have already been proved through a simpler analysis.

{ x in [1,2] -> x + 1 in ? }
$ x;

Warning: case split on x has not produced any interesting new result.
Results:

x + 1 in [2, 3]

Option switch: -W[no-]dichotomy-failure.

B.5.3 Warning: case split on foo has no range to split.

This warning is displayed when Gappa is unable to find the initial range on which to split cases.

{ x in [-1,1] -> 1 in ? }
$ 1 / x;

Warning: case split on 1 / x has no range to split.
Results:

1 in [1, 1]

Option switch: -W[no-]dichotomy-failure.

B.5.4 Warning: case split on foo is not goal-driven anymore.

This warning is displayed when Gappa is supposed to find the best case split for proving a property, yet it does not know the
range for this property or it has already proved it.

{ x in [-1,1] -> x + 1 in ? }
x + 1 $ x;

Warning: case split on x is not goal-driven anymore.
Results:

x + 1 in [0, 2]

Option switch: -W[no-]dichotomy-failure.





Appendix C

Theorems of Gappa

C.1 Predicates

Gappa works on sets of facts about real-valued expressions. The following predicates are handled internally:

BND(x,I) The value of expression x is included in interval I.

ABS(x,I) The absolute value of expression x is included in interval I.

REL(x,y,I) The values of expressions x and y satisfy x = y× (1+ ε) with ε ∈ I.

FIX(x,k) The value of expression x is such that ∃m ∈ Z, x = m ·2k.

FLT(x,k) The value of expression x is such that ∃m,e ∈ Z, x = m ·2e∧|m|< 2k.

NZR(x) The value of expression x is not zero.

EQL(x,y) Expressions x and y have equal values.

In the definitions above, I denotes an interval whose bounds have known numerical values, while k is a known integer. In the
description of the theorems, these parameters will usually be ignored. For instance, BND(x) just means that an enclosure of x
is known. In addition, EQL properties are also used to express rewriting hints provided by the user.

C.2 Theorems

There are three categories of theorems in Gappa: theorems about real arithmetic, theorems about rounding operators, and
rewriting rules.

In the following, variables a, b, c, and d, represent arbitrary expressions. Gappa is using backward reasoning, so they are
filled by matching the goal of a theorem against the property Gappa wants to compute. If some theorem mentions both a and
b but only one of them appears on the right-hand side, then Gappa infers the other one so that b is an approximate value of
a. See Section 3.3.2 for more details. There may be additional constraints on the expressions that require some of them to be
syntactically different (denoted a 6= b), or to be syntactically constant (denoted a=), or to be syntactically variable (denoted
a~).
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Theorem name Goal Hypotheses Constraints

C.2.1 Theorems about real arithmetic

Theorem name Goal Hypotheses Constraints
sub_of_eql BND(a -b) EQL(a, b) a 6= b, (a -b)~
eql_of_cst EQL(a, b) BND(a), BND(b) a=, b=
rel_refl REL(a, a)
eql_trans EQL(b, c) EQL(b, a), EQL(a, c) a 6= c
eql_trans EQL(c, a) EQL(c, b), EQL(b, a) b 6= c
neg BND(-a) BND(a)
sqrt BND(sqrt(a)) BND(a)
sub_refl BND(a -a)
div_refl BND(a /a) NZR(a)
square BND(a * a) ABS(a)
neg_a ABS(-a) ABS(a)
abs_a ABS(|a|) ABS(a)
add BND(a + b) BND(a), BND(b)
sub BND(a -b) BND(a), BND(b) a 6= b
mul_{nop}{nop} BND(a * b) BND(a), BND(b)
div_{nop}{np} BND(a /b) BND(a), BND(b) a 6= b
add_aa_{nop} ABS(a + b) ABS(a), ABS(b)
sub_aa_{nop} ABS(a -b) ABS(a), ABS(b)
mul_aa ABS(a * b) ABS(a), ABS(b)
div_aa ABS(a /b) ABS(a), ABS(b)
bnd_of_abs BND(a) ABS(a) a 6= |?|
abs_of_bnd_{nop} ABS(a) BND(a) a 6= |?|
bnd_of_bnd_abs_{np} BND(a) BND(a), ABS(a) a 6= |?|
uabs_of_abs BND(|a|) ABS(a)
abs_of_uabs ABS(a) BND(|a|) a 6= |?|, a~
constant{1,2,10} BND(a) a number
abs_fix FIX(|a|) FIX(a) a~
abs_flt FLT(|a|) FLT(a) a~
neg_fix FIX(-a) FIX(a) a~
neg_flt FLT(-a) FLT(a) a~
add_fix FIX(a + b) FIX(a), FIX(b) a~ or b~
sub_fix FIX(a -b) FIX(a), FIX(b) a~ or b~
sub_flt FLT(a -b) FLT(a), FLT(b), REL(a,b) a~ or b~
sub_flt_rev FLT(b -a) FLT(a), FLT(b), REL(a,b) a~ or b~
mul_fix FIX(a * b) FIX(a), FIX(b) a~ or b~
mul_flt FLT(a * b) FLT(a), FLT(b) a~ or b~
fix_of_flt_bnd FIX(a) FLT(a), ABS(a) a~, a 6= -?, a 6= |?|
flt_of_fix_bnd FLT(a) FIX(a), ABS(a) a~, a 6= -?, a 6= |?|
fix_of_singleton_bnd FIX(a) ABS(a)
flt_of_singleton_bnd FLT(a) ABS(a)
bnd_of_nzr_rel BND((b -a) /a) NZR(a), REL(b,a) a 6= b
rel_of_nzr_bnd REL(a, b) NZR(b), BND((a -b) /b) a 6= b
add_rr REL(a + b, c + d) REL(a, c), REL(b, d), BND(c /(c + d)), NZR(c + d)
sub_rr REL(a -b, c -d) REL(a, c), REL(b, d), BND(c /(c -d)), NZR(c -d)
mul_rr REL(a * b, c * d) REL(a, c), REL(b, d) a 6= c, b 6= d
div_rr REL(a /b, c /d) REL(a, c), REL(b, d), NZR(d) a 6= c, b 6= d
compose REL(b, c) REL(b, a), REL(a, c) a 6= c
compose REL(c, a) REL(c, b), REL(b, a) b 6= c
compose_swap REL(c * b, d) REL(c, d * a’), REL(b, 1 /a’), NZR(a’) a =1 /a’
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Theorem name Goal Hypotheses Constraints
error_of_rel_{nop}{nop} BND(b -a) REL(b, a), BND(a) a 6= b
nzr_of_abs NZR(a) ABS(a)
nzr_of_nzr_rel NZR(b) NZR(a), REL(b, a)
nzr_of_nzr_rel_rev NZR(a) NZR(b), REL(b, a)
bnd_div_of_rel_bnd_div BND((b -a) /c) REL(b, a), BND(a /c), NZR(c)

C.2.2 Theorems about rounding operators

The following table describes the kind of theorems that can be applied to rounding operators. These theorems have no specific
names, as each rounding operator comes with its dedicated set of theorems. When a specific theorem is not available for a given
rounding operator, its effect can usually be obtained through an available one combined with a rewriting rule.

Goal Hypothesis Rounding kind
BND(rnd(a)) BND(a) fixed, float
BND(rnd(a)) BND(rnd(a)) float
BND(rnd(a) -a) fixed
BND(rnd(a) -a) BND(a) fixed (zr, aw), float (zr, aw, up, dn, nu, nd)
BND(rnd(a) -a) ABS(a) float (od, ne, nz, na, no)
BND(rnd(a) -a) BND(rnd(a)) fixed (zr, aw), float (up, dn, nu, nd)
BND(rnd(a) -a) ABS(rnd(a)) float (zr, aw, od, ne, nz, na, no)
REL(rnd(a), a)
REL(rnd(a), a) BND(a)
REL(rnd(a), a) ABS(a) float
REL(rnd(a), a) BND(rnd(a))
REL(rnd(a), a) ABS(rnd(a)) float

C.2.3 Rewriting rules

The following theorems are used to propagate properties about a term to some provably equal term.

Theorem name Goal Hypotheses
bnd_rewrite BND(a) EQL(a, b), BND(b)
abs_rewrite ABS(a) EQL(a, b), ABS(b)
fix_rewrite FIX(a) EQL(a, b), FIX(b)
flt_rewrite FLT(a) EQL(a, b), FLT(b)
nzr_rewrite NZR(a) EQL(a, b), NZR(b)
rel_rewrite_1 REL(a, c) EQL(a, b), REL(b, c)
rel_rewrite_2 REL(c, a) EQL(a, b), REL(c, b)

For the sake of readability, the following theorems are not written with BND predicates but rather with expressions only. When
trying to obtain some enclosure of the target expression (goal), Gappa will first consider the source one (hypothesis). As a
consequence of this layout and contrarily to previous tables, constraints will also list additional hypotheses needed to apply the
rules. Whenever an operator is put between square brackets, it means that only theorems that perform basic interval arithmetic
will be able to match it. A constraint written using USR means that the theorem will be applied only if a matching expression
appears in the input file.

Theorem name Target Source Constraints
opp_mibs -a --b [-] (a -b) a 6= b
add_xals b + c (b -a) [+] (a + c)
add_xars c + b (c + a) [+] (b -a)
add_mibs (a + b) -(c + d) (a -c) [+] (b -d) a 6= c, b 6= d
add_fils (a + b) -(a + c) b -c b 6= c
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Theorem name Target Source Constraints
add_firs (a + b) -(c + b) a -c a 6= c
add_filq ((a + b) -(a + c)) /(a + c) (b -c) /(a + c) NZR(a + c), b 6= c
add_firq ((a + b) -(c + b)) /(c + b) (a -c) /(c + b) NZR(c + b), a 6= c
add_xilu a (a + b) [-] b USR(a + b)
add_xiru b (a + b) [-] a USR(a + b)
sub_xals b -c (b -a) [+] (a -c) a 6= c, b 6= c
sub_xars c -b (c -a) [-] (b -a) b 6= c
sub_mibs (a -b) -(c -d) (a -c) [-] (b -d) a 6= c, b 6= d
sub_fils (a -b) -(a -c) [-] (b -c) b 6= c
sub_firs (a -b) -(c -b) a -c a 6= c
sub_filq ((a -b) -(a -c)) /(a -c) [-] ((b -c) /(a -c)) NZR(a -c), b 6= c
sub_firq ((a -b) -(c -b)) /(c -b) (a -c) /(c -b) NZR(c -b), a 6= c
val_xabs b a [+] (b -a) USR(b -a)
val_xebs a b [-] (b -a) USR(b -a)
mul_xals b * c ((b -a) [*] c) [+] (a * c)
mul_xars c * b (c [*] (b -a)) [+] (c * a)
mul_fils a * b -a * c a [*] (b -c) b 6= c
mul_firs a * b -c * b (a -c) [*] b a 6= c
mul_mars a * b -c * d (a [*] (b -d)) [+] ((a -c) [*] d) a 6= c, b 6= d
mul_mals a * b -c * d ((a -c) [*] b) [+] (c [*] (b -d)) a 6= c, b 6= d
mul_mabs a * b -c * d (a [*] (b -d)) [+] ((a -c) [*] b) [-] ((a -c) [*] (b -d)) a 6= c, b 6= d
mul_mibs a * b -c * d (c [*] (b -d)) [+] ((a -c) [*] d) [+] ((a -c) [*] (b -d)) a 6= c, b 6= d
mul_xilu a (a * b) [/] b USR(a * b), NZR(b)
mul_xiru b (a * b) [/] a USR(a * b), NZR(a)
div_xals b /c ((b -a) /c) [+] (a /c) NZR(c), a 6= c, b 6= c
div_fir (a * b) /b a NZR(b)
div_fil (a * b) /a b NZR(a)
div_xilu a (a /b) [*] b USR(a /b), NZR(b)
div_xiru b a [/] (a /b) USR(a /b), NZR(a), NZR(b)
sqrt_mibs sqrt(a) -sqrt(b) (a -b) [/] (sqrt(a) [+] sqrt(b)) BND(a), BND(b), a 6= b
sqrt_mibq (sqrt(a) -sqrt(b)) /sqrt(b) sqrt(1 [+] ((a -b) /b)) [-] 1 BND(a), BND(b), a 6= b
sqrt_xibu a sqrt(a) [*] sqrt(a) USR(sqrt(a)), BND(a)
sub_xals c -a (c -b) [+] (b -a) a 6= c, b 6= c
val_xabs b a [+] (b -a)
val_xebs a b [-] (b -a)
val_xabq b a [*] (1 [+] ((b -a) /a)) NZR(a)
val_xebq a b [/] (1 [+] ((b -a) /a)) NZR(a), NZR(b)
square_sqrt sqrt(a) * sqrt(a) a BND(a)
addf_1 a /(a + b) 1 [/] (1 [+] (b /a)) NZR(a), NZR(a + b)
addf_2 a /(a + b) 1 [-] (b /(a + b)) NZR(a + b)
addf_3 a /(a -b) 1 [/] (1 [-] (b /a)) NZR(a), NZR(a -b), a 6= b
addf_4 a /(a -b) 1 [+] (b /(a -b)) NZR(a -b), a 6= b
addf_5 b /(a + b) 1 [/] ((a /b) [+] 1) NZR(b), NZR(a + b), a 6= b
addf_6 b /(a + b) 1 [-] (a /(a + b)) NZR(a + b), a 6= b
addf_7 b /(a -b) 1 [/] ((a /b) [-] 1) NZR(b), NZR(a -b), a 6= b
addf_8 b /(a -b) ((a /(a -b)) [-] 1) NZR(a -b), a 6= b

There are also some rewriting rules dealing with REL predicates.

Theorem name Target Source Constraints
opp_fibq REL(-a, -b) REL(a, b)
mul_filq REL(a * b, a * c) REL(b, c) b 6= c
mul_firq REL(a * b, c * b) REL(a, c) a 6= c
div_firq REL(a /b, c /b) REL(a, c) a 6= c
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Finally, there are theorems performing basic congruence.

Theorem name Target Source Constraints
opp_fibe EQL(-a, -b) EQL(a, b) a 6= b
add_file EQL(a + b, a + c) EQL(b, c) b 6= c
add_fire EQL(a + b, c + b) EQL(a, c) a 6= c
sub_file EQL(a -b, a -c) EQL(b, c) b 6= c
sub_fire EQL(a -b, c -b) EQL(a, c) a 6= c
mul_file EQL(a * b, a * c) EQL(b, c) b 6= c
mul_fire EQL(a * b, c * b) EQL(a, c) a 6= c
div_file EQL(a /b, a /c) EQL(b, c) b 6= c
div_fire EQL(a /b, c /b) EQL(a, c) a 6= c
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Changes

• Version 1.3.0

– arithmetic

* added support for floating-point formats without minimal exponent

– proof graph

* allowed dichotomy on variables without any known range

* improved handling of half-bounded intervals

– proof paths

* added heuristic for automatically selecting one variable for dichotomy

– main interface

* added option -Eno-auto-dichotomy to disable the heuristic above

* reduced amount of warnings in case of dichotomy failures

* improved validity checking of rewriting rules

• Version 1.2.2

– arithmetic

* fixed incorrect error computation for negative inputs of float<zr>

• Version 1.2.1

– proof graph

* sped up simplification of large proofs

– Coq back-end

* fixed garbled generation of some theorem calls

• Version 1.2.0

– fact database

* improved handling of powers of two in mul_flt

* fixed incorrect computation of the order-3 term of the relative error for division

* added rewriting rules for emulating reverse propagation

– proof graph

* improved proof simplication

– proof paths

* improved performances by avoiding some absolute values
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* improved detection of approximate/exact pairs of expressions

• Version 1.1.2

– back-ends

* fixed missing proof parts with the LaTeX back-end

– main interface

* fixed confusing message in case of failure

• Version 1.1.1

– arithmetic

* fixed incorrect error computation for some uncommon bound values

– back-ends

* fixed crash on useless leaves with undefined properties

• Version 1.1.0

– proof graph

* added detection and avoidance of slow convergence

– main interface

* added option -Echange-threshold to control detection of slow convergence

• Version 1.0.0

– syntax

* recognized "e <> 0" for inputting NZR properties

– fact database

* added some new theorems for NZR

– back-ends

* added a back-end producing LaTeX files

* disabled HOL Light back-end as it was not used

* enabled automatic dichotomy and formula reduction

– proof graph

* allowed arbitrary formulas as output of nodes

– main interface

* removed option -Msequent as formulas are handled as a whole now

• Version 0.18.0

– main interface

* removed option -Mexpensive

* added more details to -Mstatistics

– proof graph

* improved performances

* improved proof simplification

– Coq back-end

* fixed incorrect theorem name for square root

• Version 0.17.1

– build system
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* fixed issues with MacOSX, BSD, and compilation flags

• Version 0.17.0

– build system

* switched to remake

– fact database

* added theorems relating the ranges of two expressions, given the relative error between them

* simplified squaring

– proof graph

* allowed logic simplifications, even in case of indeterminate intervals

– documentation

* added list of theorems

• Version 0.16.6

– Coq lambda back-end

* fixed crash on goals that are trivial implications

• Version 0.16.5

– arithmetic

* fixed incorrect round-off error for values close to zero

• Version 0.16.4

– proof graph

* fixed crash when dichotomy fails to prove properties other than BND

• Version 0.16.3

– proof graph

* fixed crash when performing dichotomy while there are properties other than BND

• Version 0.16.2

– Coq lambda back-end

* fixed incorrect certificate for intersection lemmas

• Version 0.16.1

– proof graph

* fixed segfault when splitting cases on a degenerate goal

* reenabled logic reasoning for ABS and REL predicates

– Coq lambda back-end

* fixed signature of theorem mul_firs

• Version 0.16.0

– Coq lambda back-end

* fixed syntax of proofs containing no variables

* fixed typing of some floating-point constants

* fixed signature of theorems rel_refl, div_fil, div_fir

– Coq script back-end

* fixed typing of some floating-point constants
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* fixed syntax for Coq support library 0.17

– fact database

* added support for proving equalities between constants

* changed fixed_of_fix so that it produces an EQL property

• Version 0.15.1

– fact database

* fixed broken simplification of a*b -/ c*b

• Version 0.15.0

– fact database

* added EQL predicate: e1 = e2

* changed user rewriting to use the EQL predicate

* improved rewriting rules to handle ABS, FIX, FLT, NZR, REL in addition to BND predicate

– syntax

* added "@FLT(e,k)" and "@FIX(e,k)" for inputting FLT and FIX properties

* added "e1 = e2" for inputting EQL properties

* allowed arbitrary logical propositions as termination condition for bisection

• Version 0.14.1

– build system

* fixed some platform-specific issues

• Version 0.14.0

– Coq back-end

* added support for Coq support library 0.14

• Version 0.13.0

– Coq lambda back-end

* simplified generated proofs

– proof graph

* disabled sequent generation

* disabled proof tracking for the null back-end

* improved handling of deep logic negations

* handled disjunctions by dichotomies (null back-end only)

– main interface

* removed option -Monly-failure since there is only one proposition

– documentation

* switched from jade to dblatex

• Version 0.12.3

– Coq lambda back-end

* fixed incorrect invocation of some theorems

– arithmetic

* fixed incorrect proofs for floating-point error near powers of two

• Version 0.12.2
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– back-ends

* fixed output of underspecified REL goals

• Version 0.12.1

– proof graph

* fixed sequents with empty goals not being recognized as proved

– main interface

* added option -Msequent to display goals as Gappa scripts

* added option -Monly-failure to limit output to failing goals

* improved display of extremely small/big bounds

* improved display of rounding operators

– proof paths

* fixed inequalities (lower bound) on absolute values being ignored

– arithmetic

* improved relative operators handling when exponents are not constrained

• Version 0.12.0

– back-ends

* added back-end for producing Coq lambda terms

– proof graph

* fixed handling of complicated goals

– main interface

* added output of failed subgoals

• Version 0.11.3

– Coq back-end

* applied correct theorems for intervals with infinite bounds

• Version 0.11.2

– parser

* fixed handling of CRLF end of line

• Version 0.11.1

– main interface

* removed error code on options --help and --version

• Version 0.11.0

– proof graph

* avoided splitting provably-singleton intervals

* added score system for favoring successful schemes

– arithmetic

* tightened rounding error when applied to short values

– proof paths

* recognized lhs of user rewriting as potential user approximate

– syntax

* added "x -/ y in ..." and "|x -/ y| <= ..." for REL properties
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– build system

* fixed compilation on Cygwin

• Version 0.10.0

– proof graph

* avoided infinite dichotomy on some unprovable propositions

– back-ends

* fixed generation of subset facts

– fact database

* reduced cycles in theorems

– main interface

* added -Mschemes option for generating .dot scheme graphs

* allowed input filename on command line

• Version 0.9.0

– syntax

* added constraints on user rewriting, e.g. "x -> 1/(1/x) { x <> 0 }"

– whole engine

* added detection of assumed facts in -Munconstrained mode

– fact database

* added relative error propagation through division

– back-ends

* fixed cache collisions between theorems

– proof graph

* fixed intersection of relative errors

* enabled bound simplification through rewriting rules

* fixed handling of half-bounded goals

• Version 0.8.0

– HOL Light back-end

* added new back-end

– proof graph

* added option -Mexpensive to select best paths on length

– fact database

* added predicate REL: x = y * (1 + e)

* replaced rewriting rules on relative error by computations on REL

* enhanced path finder to fill holes in theorems

* put back rewriting rules to theorem level

* fixed incorrect equality of variables

* added predicate NZR: x <> 0

* added propagation of FIX and FLT through rounding operators

• Version 0.7.3

– fact database

* generalized rounding theorems to any combination of errors and predicates

– whole engine
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* removed dependencies between sequents

– parser

* removed automatic rounding of negated expressions

* equated numbers with exponent zero but different radices

* fixed grammar for multiple splits

– proof graph

* improved quality of fixed split

• Version 0.7.2

– parser

* fixed incorrectly rounded intervals on input

– fact database

* restricted domain of some rewriting rules

• Version 0.7.1

– fact database

* added error propagation through opposite, division, and square root

– Coq back-end

* fixed confusion between nodes from different proof graphs

* optimized away trivial goal nodes

• Version 0.7.0

– Coq back-end

* updated to support Gappa library version 0.1

– proof graph

* added optimization pass for bound precision

– whole engine

* simplified back-end handling

• Version 0.6.5

– Coq back-end

* fixed square root generation

– fact database

* disabled square root of negative numbers

– syntax

* added fma(a,b,c) as a synonym for a*b+c

– arithmetic

* added fma_rel

– main interface

* added -Ereverted-fma option to change the meaning of fma(a,b,c) to c+a*b

• Version 0.6.4

– arithmetic

* fixed influence zone again for floating-point absolute error

• Version 0.6.3
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– proof graph

* fixed failure when an inequality leads to a contradiction

* added support for intersecting ABS predicates

– hint parser

* added detection of useless hints

– parser

* normalized numbers with fractional part ending by zero

• Version 0.6.2

– fact database

* fixed dependencies of rewriting rules relying on non-zero values; a race could lead to failed theorems

* added formulas to compute the relative error of a sum

– arithmetic

* added new directed rounding: to odd, away from zero

* added new rounding to nearest with tie breaking: to odd, to zero, away from zero, up, down

* fixed influence zone for floating-point absolute error

• Version 0.6.1

– proof paths

* improved detection of dead paths

– fact database

* fixed patterns for generalized rounding operators

* improved rewriting rules for approx/accurate pairs

* renamed rewriting rules

• Version 0.6.0

– syntax

* added ways of specifying how interval splitting is done

* added detection of badly-formed intervals in propositions

* removed limitation on multiple hypotheses about the same expression

* improved heuristic for detecting approx/accurate pairs

* removed limitation on number of accurate expressions for a given approximate

* removed hack for accurate expressions of rounded expressions (potentially disruptive)

– whole engine

* added inequalities; as hypotheses, they cannot imply theorems but they can restrict computed ranges

– proof paths

* put rewriting schemes to a higher level to remove constraints on approx/accurate pairs

* added rewriting rules for replacing an accurate expression by an approximate and an error

• Version 0.5.6

– fact database

* cleaned theorems and removed redundant ones

– arithmetic

* enabled test to zero with relative rounding, it can still be disabled by -Munconstrained

– Coq back-end

* improved script generation
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– proof graph

* fixed premature halt when a case split was a failure

* fixed case split not noticing newly discovered bounds

– main interface

* simplified display of hypotheses and sorted display of goals

• Version 0.5.5

– whole engine

* added square root (no rule checking though)

* modified rewriting rules to apply to approximates instead of just rounded values

* added ABS predicate to workaround abuse of absolute values in theorems

– syntax

* added syntax to define user approximates

– fact database

* added option to disable constraint checking around zero

– arithmetic

* generalized fixed-point range enforcing to any expression

– proof paths

* enhanced the detection of dead paths that contain cycles

• Version 0.5.4

– syntax

* reduced the number of false-positive for unbound identifiers

* merged variables and functions anew in order to correctly detect define-after-uses errors

– proof graph

* added fifo processing of proof schemes

* handled case splitting on empty goals

* added more general schemes for case splitting

– hint parser

* shut up warning messages about trivial integers as denominator

• Version 0.5.3

– proof graph

* fixed goal removal: undefined goals require "optimal" solutions

• Version 0.5.2

– proof graph

* simplified node memory handling

* simplified graph handling

* put dichotomy at a higher level, outside of proof schemes

* replaced hypothesis property vectors by bit vectors, stored in-place if possible

– syntax

* added detection of unbound identifiers

– whole engine

* added support for complex logical properties
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• Version 0.5.1

– whole engine

* added FIX and FLT predicates in addition to the original BND predicate

• Version 0.5.0

– whole engine

* generalized rounding modes as functions

* generalized functions with rounding theorems

* removed default rounding theorems

– syntax

* split variables and functions

* simplified rounding and function syntax: purely C++-template-like syntax

* added NOT and OR logical operators

– arithmetic

* replaced relative rounding by functions

* factored number rounding handling

* added fixed-point arithmetic

* generalized floating-point rounding modes to any triplet (precision, subnormal smallest exponent, direction)

– proof graph

* reduced the number of node types by demoting theorem and axiom nodes to internal facts

• Version 0.4.12

– syntax

* added a way to define new names for rounding operators

* simplified the handling of negative numbers

– Coq back-end

* fixed representation of relative rounding

• Version 0.4.11

– proof graph

* fixed a missing dependency cleanup for an owned union node

– main interface

* added parsing of embedded options

• Version 0.4.10

– proof graph

* changed the node hypotheses to be graph hypotheses

– fact database

* switched some other facts to the absolute value of the denominators

* added an explicit exclusion pattern for the rewriting rules (e.g. "x * x" is no more excluded)

– main interface

* added basic command-line parsing for warnings and parameters

• Version 0.4.9

– numbers and arithmetic

* separated number handling from special arithmetic



Appendix D. Changes 59 / 59

* added "relative", a format for handling varying precision rounding

– formulas

* implemented absolute value

– fact database

* made relative error depends on absolute value of the range

– proof graph

* fixed a bug related to the clean-up of the last graph of a dichotomy

* strengthened the role of modus nodes

• Version 0.4.8

– fact database

* tightened intervals for "a + b + a * b"

* discarded multiple occurrences of the same term in the rewriting rules

* cleaned up rewriting rules

• Version 0.4.7

– hint parser

* sped up verification

• Version 0.4.6

– floating-point numbers

* disabled relative error for subnormal numbers (potentially disruptive)

– homogen numbers

* cleaned up

* added non-homogen double rounded format

– hint parser

* added pseudo-support for quotient in hint

– parser

* added support for C99 hexadecimal floating-point format

– proof graph

* replaced useless empty intersections by contradiction proofs

• Version 0.4.5

– proof graph

* reworked modus ponens creation to fix an assertion failure in lemma invocation

– fact database

* added conditional rules (potentially disruptive)

– homogen numbers

* split roundings between initialization and computation

– Coq back-end

* implemented union
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